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Here we study the initial trace problem for the nonnegative solutions of equation ut -∆u + |∇u| q = 0 in QΩ,T = Ω × (0, T ) , where q > 0, and Ω = R N , or Ω is a bounded domain of R N and u = 0 on ∂Ω × (0, T ) . We define the trace at t = 0 as a Borel measure (S, u0), infinite on a closed set S, where u0 is a Radon measure on Ω\S. We show that the trace is a Radon measure when q ≦ 1. We study the existence for q ∈ (1, (N + 2)/(N + 1) and any given (S, u0). When S = ω ∩ Ω (ω open⊂ Ω) existence is valid for q ≦ 2 when u0 ∈ L 1 loc (Ω), for q > 1 when u0 = 0. In particular there exists a self-similar nonradial solution with trace (R N+ , 0), with a growth rate of order |x| q/(q-1) as |x| → ∞ for fixed t. Moreover the solutions with trace (ω, 0) in Q R N ,T may present a growth rate of order t -1/(q-1) in ω and of order t -(2-q)/(q-1) on ∂ω.

Introduction

Here we consider the solutions of the parabolic Hamilton-Jacobi equation

u t -∆u + |∇u| q = 0 (1.1)
in Q Ω,T = Ω × (0, T ) , T ≦ ∞, where q > 0, and Ω = R N , or Ω is a smooth bounded domain of R N and u = 0 on ∂Ω × (0, T ) .

We mainly study the problem of initial trace of the nonnegative solutions. Our main questions are the following: Assuming that u is a nonnegative solution, what is the behaviour of u as t tends to 0? Does u converges to a Radon measure u 0 in Ω, or even to an unbounded Borel measure in Ω? Conversely, does there exist a solution with such a measure as initial data, and is it unique in some class?

In the sequel M(Ω) is the set of Radon measures in Ω, M b (Ω) the subset of bounded measures, and M + (Ω), M + b (Ω) are the cones of nonnegative ones. We say that a nonnegative solution u of (1.1) has a trace u 0 in M(Ω) if u(., t) converges to u 0 in the weak * topology of measures:

lim t→0 Ω u(., t)ψdx = Ω ψdu 0 , ∀ψ ∈ C c (Ω). (1.2)
First recall some known results. The Cauchy problem in Q R N ,T

(P R N ,T ) u t -∆u + |∇u| q = 0, in Q R N ,T , u(x, 0) = u 0 in R N , (1.3) 
and the Dirichlet problem in a bounded domain (P Ω,T )

   u t -∆u + |∇u| q = 0, in Q Ω,T , u = 0, on ∂Ω × (0, T ), u(x, 0) = u 0 .

(1.4)

have been the object of a rich literature, see among them [START_REF] Crandall | Maximal solutions and universal bounds for some partial differential equations of evolution[END_REF], [START_REF] Amour | Global existence and decay for Viscous H amilton-Jacobi equations, Nonlinear Anal[END_REF], [START_REF] Benachour | Global solutions to viscous Hamilton-Jacobi equations with irregular initial data[END_REF], [START_REF] Benachour | The mixed Cauchy-Dirichlet problem for a viscous Hamilton-Jacobi equation[END_REF], [START_REF] Ben Artzi | The local theory for Viscous Hamilton-Jacobi equations in Lebesgue spaces[END_REF], [START_REF] Souplet | Global solutions of inhomogeneous Hamilton-Jacobi equations[END_REF], [START_REF] Benachour | Sharp decay estimates and vanishing viscosity for diffusive Hamilton-Jacobi equations[END_REF], [START_REF] Bidaut-Véron | Isolated initial singularities for the viscous Hamilton Jacobi equation[END_REF], [START_REF] Bidaut-Véron | L ∞ estimates and uniqueness results for nonlinear parabolic equations with gradient absorption terms[END_REF], and references therein. The first studies of (P R N ,T ) concern the existence of classical solutions, that means u ∈ C 2,1 (Q R N ,T ), with smooth initial data: the case u 0 ∈ C 2 b R N and q > 1, was studied in [START_REF] Amour | Global existence and decay for Viscous H amilton-Jacobi equations, Nonlinear Anal[END_REF], and extended to any u 0 ∈ C b R N and q > 0 in [START_REF] Gilding | The Cauchy problem for u t = ∆u + |∇u| q[END_REF]. Then the problem was studied in a semi-group formulation for rough initial data u 0 ∈ L r R N , r ≧ 1, or u 0 ∈ M b (R N ), [START_REF] Benachour | Global solutions to viscous Hamilton-Jacobi equations with irregular initial data[END_REF], [START_REF] Ben Artzi | The local theory for Viscous Hamilton-Jacobi equations in Lebesgue spaces[END_REF], [START_REF] Souplet | Global solutions of inhomogeneous Hamilton-Jacobi equations[END_REF], and in the larger class of weak solutions in [START_REF] Bidaut-Véron | Isolated initial singularities for the viscous Hamilton Jacobi equation[END_REF], [START_REF] Bidaut-Véron | L ∞ estimates and uniqueness results for nonlinear parabolic equations with gradient absorption terms[END_REF].

A critical value appears when q > 1 :

q * = N + 2 N + 1 .
Indeed the problem with initial value u 0 = δ 0 , Dirac mass at 0 has a weak solution if and only if q < q * , see [START_REF] Benachour | Global solutions to viscous Hamilton-Jacobi equations with irregular initial data[END_REF], [START_REF] Bidaut-Véron | Isolated initial singularities for the viscous Hamilton Jacobi equation[END_REF]. In the same range the problem has a unique very singular solution (in short V.S.S.) Y {0} , such that lim t→0 |x|≧r Y {0} (., t)dx = 0, lim t→0 |x|<r Y {0} (., t)dx = ∞, ∀r > 0, see [START_REF] Qi | The self-similar profiles of generalized KPZ equation[END_REF], [START_REF] Benachour | Very singular solutions to a nonlinear parabolic equation with absorption, I-Existence[END_REF], [START_REF] Benachour | Very singular solutions to a nonlinear parabolic equation with absorption, II-Uniqueness[END_REF], [START_REF] Bidaut-Véron | Isolated initial singularities for the viscous Hamilton Jacobi equation[END_REF]. It is radial and self-similar: Y {0} (x, t) = t -a/2 F (|x| / √ t), with

F ∈ C([0, ∞)), F (0) > 0, F ′ (0) = 0, lim |η|→∞ e η 2 4 |η| N -a F (η) = C > 0, (1.5) 
where a = 2q q -1 .

(1.6)

It is clear that Y {0} does not admit a trace as a Radon measure. Otherwise, for any q > 1, the Dirichlet problem (P Ω,T ) admits a solution U such that lim t→0 U (x, t) = ∞ uniformly on the compact sets of Ω, see [START_REF] Crandall | Maximal solutions and universal bounds for some partial differential equations of evolution[END_REF]. Thus we are lead to define an extended notion of trace.

The problem has been considered in [START_REF] Brezis | Nonlinear parabolic equations involving measures as initial conditions[END_REF], [START_REF] Marcus | Initial trace of positive solutions of some nonlinear parabolic equation[END_REF] for the semi-linear equation

u t -∆u + u q = 0, (1.7) 
with q > 1. Here another critical value (N + 2)/N is involved: there exist solutions with initial value δ 0 if and only if q < (N + 2)/N, see [START_REF] Brezis | Nonlinear parabolic equations involving measures as initial conditions[END_REF], and then there exists a V.S.S., see [START_REF] Brézis | A very singular solution of the heat equation with absorption[END_REF], [START_REF] Kamin | Singular solutions of the heat equation with absorption[END_REF]. In [START_REF] Marcus | Initial trace of positive solutions of some nonlinear parabolic equation[END_REF] a precise description of the initial trace is given: any nonnegative solution admits a trace as an outer regular Borel measure U 0 in Ω. Moreover if q < (N + 2)/N , the problem is well posed in this set of measures in R N . The result of uniqueness lies on the monotony of the function u → u q . If q ≧ (N + 2)/N, necessary and sufficient conditions are given for existence, the problem admits a maximal solution, but uniqueness fails. Equation (1.7) admits a particular solution ((q -1)t) -1/(q-1) , which governs the upper estimates. Notice that the V.S.S. has precisely a behaviour in t -1/(q-1) at x = 0, as t → 0.

Here we extend some of these results to equation (1.1). Compared to problem (1.7), new difficulties appear:

1) The first one concerns the a priori estimates. The equation (1.1) has no particular solution depending only on t. Note also that the sum of two supersolutions is not in general a supersolution. In [START_REF] Crandall | Maximal solutions and universal bounds for some partial differential equations of evolution[END_REF] a universal upper estimate of the solutions u, of order t -1/(q-1) , is proved for the Dirichlet problem. For the Cauchy problem, universal estimates of the gradient have been obtained for classical solutions with smooth data u 0 , see [START_REF] Benachour | Global solutions to viscous Hamilton-Jacobi equations with irregular initial data[END_REF], and [START_REF] Souplet | Global solutions of inhomogeneous Hamilton-Jacobi equations[END_REF]. They are improved in [START_REF] Bidaut-Véron | Local and global apriori estimates of the solutions of Hamilton-Jacobi parabolic equation with absorption[END_REF], where estimates of u of order t -1/(q-1) are obtained, see Theorem 2.9 below, and it is one of the key points in the sequel.

2) The second one comes from the fact that singular solutions may present two different levels of singularity as t → 0. Notice that the V.S.S. Y {0} has a behaviour of order t -a/2 smaller than t -1/(q-1) .

3) The last one is due to the lack of monotony of the absorption term |∇u| q . Thus many uniqueness problems are still open.

We first recall in Section 2 the notions of solutions, and precise the a priori upper and lower estimates, for the Cauchy problem or the Dirichlet problem. In Section 3 we describe the initial trace for q > 1 :

Theorem 1.1 Let q > 1. Let u be any nonnegative weak solution of (1.1) in any domain Ω. Then there exist a set S ⊂ Ω such that R = Ω\S is open, and a measure u 0 ∈ M + (R), such that

• For any ψ ∈ C 0 c (R), lim t→0 R u(., t)ψ = R ψdu 0 .

(1.8)

• For any x 0 ∈ S and any ε > 0 lim t→0 B(x0,ε)∩Ω u(., t)dx = ∞.

(1.9)

The outer regular Borel measure U 0 on Ω associated to the couple (S, u 0 ) defined by

U 0 (E) = E du 0 if E ⊂ R, ∞ if E ∩ S = ∅,
is called the initial trace of u. The set S is called the set of singular points of U 0 and R called the set of regular points, and u 0 the regular part of U 0 .

As t → 0, we give lower estimates of the solutions on S of two types: of type t -1/(q-1) on

• S (if it is nonempty) and of type t -a/2 on S (if q < q * ). Moreover we describe more precisely the trace for equation (1.1) in Q R N ,T : Theorem 1.2 Let S be closed set in R N , S = R N , and u 0 ∈ M + R N \S . Let u be any nonnegative classical solution of (1.1) in Q R N ,T (any weak solution if q ≦ 2), with initial trace (S, u 0 ).

Then there exists a measure γ ∈ M + (R N ), concentrated on S, such that t 1/(q-1) u converges weak * to γ as t → 0. And γ ∈ L ∞ loc (R N ); in particular if

|S| = 0, then γ = 0; if S is compact, then γ ∈ L ∞ (R N ).
In Section 4 we study the existence and the behaviour of solutions with trace (ω ∩ Ω, 0), where ω is a smooth open subset of Ω. We construct new solutions of (1.1) in Q R N ,T , in particular the following one: Theorem 1.3 Let q > 1, q ′ = q/(q -1), and

R N + = R + ×R N -1 . There exists a nonradial self-similar solution of (1.1) in Q R N ,T , with trace (R N + , 0), only depending on x 1 : U (x, t) = t -a/2 f (t -1/2 x 1 ), where lim η→∞ η -q ′ f (η) = c q = (q ′ ) -q ′ ( 1 q -1 ) 1 q-1 , lim η→-∞ e η 2 4 (-η) -3-2q q-1 f (η) = C > 0.
Thus as t → 0, U (x, t) behaves like t -1/(q-1) for fixed x ∈ R N + , and U (x, t) = f (0)t -a/2 for x ∈ ∂R N + . And for fixed t > 0, U (x, t) is unbounded: it behaves like x q ′ 1 as x 1 → ∞.

By using U as a barrier, we can estimate precisely the two growth rates of the solutions in Q R N ,T with trace (ω, 0), on ω and on ∂ω, for any q > 1, see Proposition 4.8.

In Section 5 we show the existence of solutions with initial trace (S, u 0 ), when S = ω ∩ Ω and ω ⊂ Ω is open, and u 0 is a measure on Ω\ω, which can be unbounded, extending the results of [START_REF] Bidaut-Véron | Local and global apriori estimates of the solutions of Hamilton-Jacobi parabolic equation with absorption[END_REF]Theorem 1.4] relative to the case of a trace (0, u 0 ):

Theorem 1.4 Assume that Ω = R N (resp. Ω is bounded). Let ω be a smooth open subset of Ω, such that R = Ω\ω is nonempty, and let S = ω ∩ Ω. Let u 0 ∈ M + (R).
We suppose that either 1 < q < q * , or q * ≦ q ≦ 2 and u 0 ∈ L 1 loc (R) , or q > 2 and u 0 ∈ L 1 loc (R) is limit of a nondecreasing sequence of continuous functions.

Then there exists a weak solution u of (1.1) in Q R N ,T (resp. a weak solution of (D Ω,T )) such that u admits (S, u 0 ) as initial trace. Moreover as t → 0, u(., t) converges to ∞ uniformly on any compact in ω, and uniformly on ω ∩ Ω if q < q * .

In the subcritical case q < q * we study the existence of solutions with trace (S, u 0 ) for any closed set S in Ω. Our main result is the following:

Theorem 1.5 Let 1 < q < q * , and Ω = R N (resp. Ω is bounded). Let S be a closed set in R N , such that R = R N \S is nonempty. Let u 0 ∈ M + (R).
(i) Then there exists a minimal solution u of (1.1) with initial trace (S, u 0 )

(ii) If S is compact in Ω and u 0 ∈ M + b (Ω)
with support in R ∪ Ω, then there exists a maximal solution (resp. a maximal solution such that u(., t) converges weakly to u 0 in R as t → 0).

In Section 6 we study equation (1.1) for 0 < q ≦ 1, with more generally signed solutions, and the initial trace of the nonnegative ones. We first show the local regularity of the signed solutions, see Theorem 6.1. We prove a uniqueness result for the Dirichlet problem, extending to any 0 < q ≦ 1 the results of [START_REF] Benachour | The mixed Cauchy-Dirichlet problem for a viscous Hamilton-Jacobi equation[END_REF], relative to the case 0 < q < 2/(N + 1) : Theorem 1.6 Let Ω be bounded, 0 < q ≦ 1, and u 0 ∈ M b (Ω). Then there exists a unique weak (signed) solution u of problem (P Ω,T ) with initial data u

0 . Let u 0 , v 0 ∈ M b (Ω) such that u 0 ≦ v 0 . Then u ≦ v. In particular if u 0 ≧ 0, then u ≧ 0. If u 0 ≦ 0, then u ≦ 0.
Finally we show that any nonnegative solution admits a trace as a Radon measure: Theorem 1.7 Let 0 < q ≦ 1. Let u be any nonnegative weak solution of (1.1) in any domain Ω. Then u admits a trace u 0 in M + (Ω).

First properties of the solutions

We set Q Ω,s,τ = Ω × (s, τ ) , for any 0 ≦ s < τ ≦ ∞, thus Q Ω,T = Q Ω,0,T . We denote by C(Ω) the set of continuous functions in Ω, and

C b (Ω) = C(Ω) ∩ L ∞ (Ω), C c (Ω) = {ϕ ∈ C(Ω) : suppϕ ⊂⊂ Ω}, and C 0 (Ω) = ϕ ∈ C(Ω) : ϕ = 0 on ∂Ω .
Notation 2.1 Let Ω = R N or Ω bounded, and Σ ⊂ Ω. For any δ > 0, we set

Σ ext δ = {x ∈ Ω : d(x, Σ) ≦ δ} , Σ int δ = {x ∈ Σ : d(x, Ω\Σ) > δ} .
(2.1)

Weak solutions and regularity

Definition 2.2 Let q > 0 and Ω be any domain of R N . We say that a function u is a weak solution of equation of (

1.1) in Q Ω,T , if u ∈ C((0, T ); L 1 loc (Q Ω,T )) ∩ L 1 loc ((0, T ); W 1,1 loc (Ω)), |∇u| q ∈ L 1 loc (Q Ω,T
), and u satisfies (1.1) in the distribution sense:

T 0 Ω (-uϕ t -u∆ϕ + |∇u| q ϕ)dxdt = 0, ∀ϕ ∈ D(Q Ω,T ). (2.2)
We say that u is a classical solution of (

1.1) in Q Ω,T if u ∈ C 2,1 (Q Ω,T
) and satisfies(1.1) everywhere. For u 0 ∈ M + (R N ), we say that u is a weak solution of (P R N ,T ) if u is a weak solution of (1.1) with trace u 0 .

Remark 2.3 (i)If u is any nonnegative function such that u ∈ L 1 loc (Q Ω,T ), and |∇u| q ∈ L 1 loc (Q Ω,T
), and satisfies (2.2), then u is a weak solution of (1.1). Indeed, since u is subcaloric, there holds u ∈ Lemma 2.4] for q > 1; the proof is still valid for any q > 0, since it only uses the fact that u is subcaloric.

L ∞ loc (Q Ω,T )), |∇u| ∈ L 2 loc (Q Ω,T )), and u ∈ C((0, T ); L ρ loc (Q Ω,T )), for any ρ ≧ 1, see [13,
(ii) The weak solutions of (P R N ,T ) are called weak M loc solutions in [START_REF] Bidaut-Véron | L ∞ estimates and uniqueness results for nonlinear parabolic equations with gradient absorption terms[END_REF].

Definition 2.4

Let Ω be a smooth bounded domain of R N . We say that a function u is a weak solution of

(D Ω,T ) u t -∆u + |∇u| q = 0, in Q Ω,T , u = 0, on ∂Ω × (0, T ), (2.3) 
if it is a weak solution of (1.1) such that u ∈ C((0, T ); L 1 (Ω)), u ∈ L 1 loc ((0, T ); W 1,1 0 (Ω)), and |∇u| q ∈ L 1 loc ((0, T ); L 1 (Ω)). We say that u is a classical solution of (D Ω,T ) if u ∈ C 1,0 Ω × (0, T ) and u is a classical solution of (1.1).

For u 0 ∈ M b (Ω), we say that u is a weak solution of (P Ω,T ) if it is a weak solution of (D Ω,T ) such that u(., t) converges weakly to u 0 in M b (Ω) :

lim t→0 Ω u(., t)ψdx = Ω ψdu 0 , ∀ψ ∈ C b (Ω). (2.4)
Next we recall the regularity of the weak solutions for q ≦ 2, see [13, Theorem 2.9], [14, Corollary 5.14]:

Theorem 2.5 Let 1 < q ≦ 2. (i)
Let Ω be any domain in R N , and u be a weak nonnegative solution of (1.1) in Q Ω,T . Then u ∈ C 2+γ,1+γ/2 loc (Q Ω,T ) for some γ ∈ (0, 1) . Thus for any sequence (u n ) of nonnegative weak solutions of (1.1) in Q Ω,T , uniformly locally bounded, one can extract a subsequence converging in C 2,1 loc (Q Ω,T ) to a weak solution u of (1.1) in Q Ω,T .

(ii) Let Ω be bounded, and u be a weak nonnegative solution of (D Ω,T ). Then u ∈ C 1,0 Ω × (0, T ) and u ∈ C 2+γ,1+γ/2 loc (Q Ω,T ) for some γ ∈ (0, 1) . For any sequence of weak nonnegative solutions (u n ) of (D Ω,T ), one can extract a subsequence converging in C 2,1 loc (Q Ω,T ) ∩ C 1,0 loc Ω × (0, T ) to a weak solution u of (D Ω,T ).

Upper estimates

We first mention the universal estimates relative to classical solutions of the Dirichlet problem, see [START_REF] Crandall | Maximal solutions and universal bounds for some partial differential equations of evolution[END_REF], and [13, Remark 2.8]:

Theorem 2.6 Let q > 1, and Ω be any smooth bounded domain. and u be the classical solution of (D Ω,T ) with initial data u 0 ∈ C 1,0 Ω ∩ C 0 Ω . Then for any t ∈ (0, T ),

u(., t) L ∞ (Ω) ≦ C(1 + t -1 q-1 )d(x, ∂Ω), ∇u(., t) L ∞ (Ω) ≦ D(t), (2.5) 
where C > 0 and D ∈ C((0, ∞)) depend only of N, q, Ω. Thus, for any sequence (u n ) of classical solutions of (D Ω,T ), one can extract a subsequence converging in C 2,1 loc (Q Ω,T ) to a classical solution u of (D Ω,T ).

Morever some local estimates of classical solutions have been obtained in [START_REF] Souplet | Global solutions of inhomogeneous Hamilton-Jacobi equations[END_REF], for any q > 1:

Theorem 2.7 Let q > 1, and Ω be any domain in R N , and u be any classical solution of (1.1) in Q Ω,T .

Then for any ball B(x 0 , 2η) ⊂ Ω, there holds in

Q B(x0,η),T |∇u| (., t) ≦ C(t -1 q + η -1 + η -1 q-1 )(1 + u(., t)), C = C(N, q). (2.6)
Thus, for any sequence of classical solutions

(u n ) of (1.1) in Q Ω,T , uniformly bounded in L ∞ loc (Q Ω,T ), one can extract a subsequence converging in C 2,1 loc (Q R N ,T ) to a classical solution u of (1.

1).

A local regularizing effect is proved in [START_REF] Bidaut-Véron | Local and global apriori estimates of the solutions of Hamilton-Jacobi parabolic equation with absorption[END_REF], easy consequence of the subcaloricity of the solutions:

Theorem 2.8 Let q > 1. Let u be any nonnegative weak subsolution of (1.1) in Q Ω,T , and let B(x 0 , 2η) ⊂ Ω such that u has a trace u 0 ∈ M + (B(x 0 , 2η)). Then for any τ < T, and any t ∈ (0, τ ] ,

sup x∈B(x0,η/2) u(x, t) ≦ Ct -N 2 (t + B(x0,η) du 0 ), C = C(N, q, η, τ ). (2.7)
Concerning the Cauchy problem in Q R N ,T , global regularizing effects have been obtained in [START_REF] Bidaut-Véron | L ∞ estimates and uniqueness results for nonlinear parabolic equations with gradient absorption terms[END_REF] for weak solutions with trace u 0 in L r (R N ), r ≧ 1, or in M b (R N ). A universal estimate of the gradient was proved in [START_REF] Benachour | Global solutions to viscous Hamilton-Jacobi equations with irregular initial data[END_REF] for any classical solution of (1.1) [START_REF] Bidaut-Véron | Local and global apriori estimates of the solutions of Hamilton-Jacobi parabolic equation with absorption[END_REF], this estimate is valid for any classical solution, implying growth estimates of the function: Theorem 2.9 Let q > 1. Let u be any classical solution, in particular any weak solution if q ≦ 2, of (1.1)

in Q R N ,∞ such that u ∈ C b (Q R N ,∞ ). From
in Q R N ,T . Then |∇u(., t)| q ≦ 1 q -1 u(., t) t , in Q R N ,T . (2.8) 
As a consequence, if there exists a ball B(x 0 , 2η) such that u has a trace u 0 ∈ M + ((B(x 0 , 2η)), then for any

t ∈ (0, T ) , u(x, t) ≦ C(q)t -1 q-1 |x -x 0 | q ′ + C(t -1 q-1 + t + B(x0,η) du 0 ), C = C(N, q, η).
(2.9)

Remark 2.10 Estimate (2.9) is easy to obtain for classical solutions u such that u ∈ C b (Q R N ,∞ ) or for limit a.e. of such functions, since it is a consequence of the universal gradient estimate, see [START_REF] Bidaut-Véron | Local and global apriori estimates of the solutions of Hamilton-Jacobi parabolic equation with absorption[END_REF]Theorem 4.1]. The difficult part of Theorem 2.9 is the extension of the gradient estimate without a priori estimates as |x| → ∞.

Finally we recall some well known estimates, useful in the subcritical case, see [4, Lemma 3.3]:

Theorem 2.11 Let q > 0 and let Ω be any domain of R N and u be any (signed) weak solution of equation of (1.1) in Q Ω,T (resp. of (D Ω,T )). Then, u ∈ L 1 loc ((0, T ); W 1,k loc (Ω), for any k ∈ [1, q * ) , and for any open set ω ⊂⊂ Ω, and any 0 < s < τ < T,

u L k ((s,τ );W 1,k (ω)) ≦ C(k, ω)( u(., s) L 1 (ω) + |∇u| q + |∇u| + |u| L 1 (Qω,s,τ ) ).
(2.10)

If Ω is bounded, any solution u of (D Ω,T ) satisfies u ∈ L k ((s, τ ); W 1,k 0 (Ω)), for any k ∈ [1, q * ) , and

u L k ((s,τ );W 1,k 0 (Ω)) ≦ C(k, Ω)( u(., s) L 1 (Ω) + |∇u| q L 1 (QΩ,s,τ ) ).
(2.11)

Uniqueness and comparison results

Next we recall some known results, for the Cauchy problem, see [11, Theorem 2.12 Let Ω = R N (resp. Ω bounded). (i) Let 1 < q < q * , and

u 0 ∈ M b (R N ) (resp. u 0 ∈ M b (Ω)).
Then there exists a unique weak solution u of (1.1) with trace u 0 (resp. of (P Ω,T )). If v 0 ∈ M b (Ω) and u 0 ≦ v 0 , and v is the solution with trace v 0 , then u ≦ v.

(ii) Let u 0 ∈ L r (Ω) , 1 ≦ r ≦ ∞. If 1 < q < (N + 2r)/(N + r), or if q = 2, r < ∞, there exists a unique weak solution u of (P R N ,T ) (resp. (P Ω,T )) such that u ∈ C([0, T ) ; L r R N ). If v 0 ∈ L r R N and u 0 ≦ v 0 , then u ≦ v.
If u 0 is nonnegative, then for any 1 < q ≦ 2, there still exists a weak nonnegative solution u of

(P R N ,T ) (resp. (P Ω,T )) such that u ∈ C([0, T ) ; L r R N ).
Remark 2.13 Let 1 ≦ q < q * , and u 0 ∈ M + b (R N ) and u be the solution of (P R N ,T ) in R N , and u Ω be the solution of (D Ω,T ) for bounded Ω with initial data u Ω 0 = u 0 Ω, then u Ω ≦ u.

We add to the results above a stability property needed below:

Proposition 2.14 Assume that 1 < q < q * . Let Ω = R N (resp. Ω be bounded), and u 0,n , u 0 ∈ M + b (Ω) such that (u 0,n ) converge to u 0 weakly in M b (Ω). Let u n , u be the (unique) nonnegative solutions of (1.1) in Q R N ,T (resp. of (D Ω,T )) with initial data u 0,n , u 0 .

Then (u n ) converges to u in C 2,1 loc (Q R N ,T ) (resp. in C 2,1 loc (Q Ω,T ) ∩ C 1,0 Ω × (0, T ) ). Proof. (i) From [14, Theorem 2.2], (u n ) is uniformly locally bounded in Q R N ,T in case Ω = R N . From Theorem 2.5, one can extract a subsequence still denoted (u n ) converging in C 2,1 loc (Q R N ,T ) (resp. C 2,1 loc (Q Ω,T )∩C 1,0 Ω × (0, T ) ) to a classical solution w of (1.1) in Q R N ,T (resp. of (D Ω,T )).
From uniqueness, we only have to show that w(., t) converges weakly in M b (Ω) to u 0 . In any case, from [14, Theorem 4.15 and Lemma 5.11],

|∇u n | q ∈ L 1 loc ([0, T ) ; L 1 (Ω)) and Ω u n (., t)dx + t 0 Ω |∇u n | q dx ≦ Ω du 0,n , (2.12) 
and lim Ω du 0,n = Ω du 0 . Therefore (u n ) is bounded in L ∞ ((0, T ), L 1 (Ω)), and

(|∇u n | q ) is bounded in L 1 loc ([0, T ) ; L 1 (Ω)). From Theorem 2.11, for any k ∈ [1, q * ) , (u n ) is bounded in L k ((0, T ), W 1,k loc (R N )) (resp. L k ((0, T ), W 1,k 0 (Ω)). Then for any τ ∈ (0, T ) , ( |∇u n | q ) is equi-integrable in Q BR,τ for any R > 0 (resp. in Q Ω,τ ). For any ξ ∈ C 1 c (R N ) (resp. ξ ∈ C 1 b (Ω)), Ω u n (., t)ξdx + t 0 Ω (∇u n .∇ξ + |∇u n | q ξ)dxdt = Ω ξdu 0,n ,
and we can go to the limit and obtain Ω w(., t)ξdx

+ t 0 Ω (∇w.∇ξ + |∇u| q ξ)dxdt = Ω ξdu 0 ,
Then w is a weak solution of (P Ω,T ), unique from Theorem 2.12, thus w = u.

Corollary 2.15 Suppose 1 < q < q * , Ω bounded, and

let v ∈ C 2,1 (Q Ω,T ) ∩ C 0 (Ω × (0, T )) such that v t -∆v + |∇v| q ≧ 0, in D ′ (Q Ω,T ),
and v /Ω has a trace u 0 ∈ M b (Ω). Let w be the solution of (D Ω,T ) with trace u 0 . Then v ≧ w.

Proof. Let ǫ > 0 and (ϕ n ) be a sequence in andw ǫ n be the solution of (D Ω,T ) with trace ϕ n v(., ǫ) at time 0, unique from Theorem 2.12. 14,(w ǫ n ) converges to the solution w ǫ of (D Ω,T ) with trace v(., ǫ). Then v(., t + ǫ) ≧ w ǫ . As ǫ → 0, (v(., ǫ)) converges to u 0 weakly in M b (Ω), thus (w ǫ ) converges to w, thus v ≧ w.

D + (Ω) with values in [0, 1] , such that ϕ n (x) = 1 if d(x, ∂Ω) > 1/n,
From [27, Proposition 2.1], v(., t + ǫ) ≧ w ǫ n . As n → ∞, (ϕ n v(., ǫ)) converges to v(., ǫ) in L 1 (Ω), then from Proposition 2.

The case of zero initial data

Here we give more informations on the behaviour of the solutions with trace 0 on some open set. We show that the solutions are locally uniformly bounded on this set and converge locally exponentially to 0 as t → 0, improving some results of [START_REF] Crandall | Maximal solutions and universal bounds for some partial differential equations of evolution[END_REF] for the Dirichlet problem.

Lemma 2.16 Let F be a closed set in R N , F = R N (resp. a compact set in Ω bounded). (i) Let u be a classical solution of (1.1) in Q R N ,T (resp. (D Ω,T )) such that u ∈ C([0, T ) , C b (R N )) (resp. u ∈ C([0, T ) ; C 0 (Ω)) and suppu(0) ⊂ F . Then for any δ > 0, (resp. such that δ < d(F , ∂Ω)/2) u(., t) L ∞ (Ω\F ext δ ) ≦ C(N, q, δ)t, ∀t ∈ [0, T ) . ( 2 

.13)

In particular u(., t) converges uniformly to 0 on Ω\F ext δ as t → 0. Moreover, there exist C i,δ = C i,δ (N, q, δ) > 0 (i = 1, 2), and

τ δ > 0 such that u(., t) L ∞ (Ω\F ext δ ) ≦ C 1,δ e -C 2,δ t on (0, τ δ ] . (2.14) 
(ii) As a consequence, for any classical solution w of (1.1) in Q R N ,T (resp. (D Ω,T )) such that w(., t) converges to ∞ as t → 0, uniformly on F ext δ , for some δ > 0, there holds u ≦ w. (iii) If q ≦ 2, then (i) still holds for any weak solution u of (1.1) (resp. of (D Ω,T )) with trace 0 in M(R N \F ) (resp. which converges weakly to 0 in M b (Ω\F )), and (ii) holds if F ⊂⊂ Ω.

Proof. From [12, Lemma 3.2], for any domain Ω of R N , if u is any classical solution of (1.1) in Q Ω,T such that u ∈ C(Ω × [0, T )), for any ball B(x 0 , 3η) ⊂ Ω, and any t ∈ [0, T ) , u(., t) L ∞ (B(x0,η)) ≦ C(N, q)η -q ′ t + u 0 L ∞ (B(x0,2η)) .
(2.15) (i) Let Ω be arbitrary. For any x 0 ∈ Ω\F ext δ , taking η = δ/3 we deduce (2.13) follows. Next suppose Ω bounded and F compact. Consider a regular domain Ω ′ such that

F ext 2δ ⊂ Ω ′ ⊂⊂ Ω. Let γ = d(Ω ′ , ∂Ω). For any x 0 ∈ Ω ′ \F ext
δ , taking η = min(δ/3, γ/3), we have B(x 0 , 3η) ⊂ Ω\F thus we still get (2.13). As a consequence u(., t) ≦ Ct in Ω ′ \F ext δ , with C = C(N, q, δ, γ), in particular on ∂Ω ′ . Following an argument of [START_REF] Bidaut-Véron | Isolated initial singularities for the viscous Hamilton Jacobi equation[END_REF]Lemma 4.8], the function z = u -Ct solves

z t -∆z = -|∇u| q -C in Ω\Ω ′
then z + is subcaloric and z + = 0 on the parabolic boundary of Ω\Ω ′ , thus z + = 0. Thus u(., t) ≦ Ct in Ω\F ext δ .

Next consider the behaviour for small t. We use a supersolution in

B 1 × [0, ∞) given in [25, Proposition 5.1]. Let α ∈ (0, 1/2) , and d α (x) radial: d α (x) = d α (|x|), with d α ∈ C 2 ([0, 1)), d α (r) = 1 -r for 1 -r < α, d α (r) = 3α/2 for 1 -r > 2α, |∇d α | ≦ 1, |∆d α | ≦ C(N )d -2 α . Let v(x, t) = e 1 dα(x) -m dα(x) 3 t with m ≦ m(N ) small enough. Then if α ≦ α(N ) small enough, there exists τ (α) > 0 such that v is a supersolution of (1.1) in B 1 × (0, τ (α)] . Then v(x, t) = C 1 (α)e -C2(α)/t in B 1/2 × (0, τ (α)] . And v is infinite on ∂B 1 × (0, τ (α)
] and vanishes on B 1 × {0} . Then by scaling, for any

x 0 ∈ R N \F ext δ (resp. x 0 ∈ Ω\F ext δ ), from the comparison principle in B(x 0 , δ) ∩ Ω, we get u(x 0 , t) ≦ δ -a v(x 0 /δ, t/δ 2 ) ≦ C 1 (α)δ -a e -C2(α)δ 2 /t (2.16)
and (2.14) follows.

(ii) Suppose that w(., t) converges to ∞ as t → 0, uniformly on F ext δ . Then for any ǫ 0 > 0, there exists

τ 0 ∈ (0, T ) such that u(., t) ≦ ǫ 0 in Ω\F δ × (0, τ 0 ] . Let ǫ < τ 0 . then there exists τ ǫ < τ 0 such that for any θ ∈ (0, τ ǫ ) , w(., θ) ≧ max Ω u(., ǫ) in F δ . Then u(., t + ǫ) ≦ w(., t + θ) + ǫ 0 , in Ω × (0, τ 0 -ǫ] from the comparison principle. As θ → 0, then ǫ → 0, we get u(., t) ≦ w(., t) + ǫ 0 , in Ω × (0, τ 0 ] . From the comparison principle, u(., t) ≦ w(., t) + ǫ 0 , in Ω × (0, T ). As ǫ 0 → 0, we deduce that u ≦ w. (iii) Assume q ≦ 2. First suppose Ω = R N . From [13, Proposition 2.

and Corollary 2.18], the extension

u of u by 0 to (-T, T ) is a weak solution in Q R N \F ,-T,T , hence u ∈ C 2,1 (R N \F × [0, T )), then u is a classical solution of (1.1) in Q R N \F ,-T,T ; thus (2.13) and (2.14) follow. Moreover, if F is compact, then u(., ǫ/2) ∈ C b (R N ) from (2.13), then u(., ǫ) ∈ C 2 b (R N
), thus we still obtain u ≦ w from the comparison principle. Next suppose Ω bounded and F compact. Arguing as in [START_REF] Bidaut-Véron | Isolated initial singularities for the viscous Hamilton Jacobi equation[END_REF]Lemma 4.8], we show that u ∈ C 0 (Ω\F ext δ × [0, T )), and u(0) = 0 in Ω\F ext δ . We still get (2.13) by considering z as above, and using the Kato inequality, and (2.14) from the comparison principle. Moreover we still get u ≦ w.

Existence of initial trace as a Borel measure

Recall a simple trace result of [START_REF] Bidaut-Véron | Isolated initial singularities for the viscous Hamilton Jacobi equation[END_REF].

Lemma 3.1 Let Ω be any domain of R N , and U ∈ C((0, T ); L 1 loc (Ω)) be any nonnegative weak solution of equation

U t -∆U = Φ in Q Ω,T , (3.1 
)

with Φ ∈ L 1 loc (Q Ω,T ), Φ ≧ -G, where G ∈ L 1 loc (Ω × [0, T )). Then U (., t) admits a trace U 0 ∈ M + (Ω). Furthermore, Φ ∈ L 1 loc ([0, T ); L 1 loc (Ω)), and for any ϕ ∈ C 2 c (Ω × [0, T )), - T 0 Ω (U ϕ t + U ∆ϕ + Φϕ)dxdt = Ω ϕ(., 0)dU 0 . (3.2) If Φ has a constant sign, then U ∈ L ∞ loc ( [0, T ) ; L 1 loc (Ω)) if and only if Φ ∈ L 1 loc ([0, T ); L 1 loc (Ω)).
As a consequence, we get a characterization of the solutions of (1.1) in any domain Ω which have a trace in M + (Ω) : as in [13, Proposition 2.15] in case q > 1, we find: Proposition 3.2 Let q > 0. Let u be any nonnegative weak solution u of (1.1) in Q Ω,T . Then the following conditions are equivalent:

(i) u has a trace u 0 in M + (Ω), (ii) u ∈ L ∞ loc ( [0, T ) ; L 1 loc (Ω)), (iii) |∇u| q ∈ L 1 loc (Ω × [0, T )).
And then for any t ∈ (0, T ), and any

ϕ ∈ C 1 c (Ω × [0, T )), Ω u(., t)ϕdx + t 0 Ω (-uϕ t + ∇u.∇ϕ + |∇u| q ϕ)dxdt = Ω ϕ(., 0)du 0 . (3.3) And if q > 1, for any nonnegative ζ, ξ ∈ C 1 c (Ω), Ω u(., t)ζdx + t 0 Ω (∇u.∇ζ + |∇u| q ζ)dxdt = Ω ζdu 0 , (3.4 
)

Ω u(., t)ξ q ′ dx + 1 2 t 0 Ω |∇u| q ξ q ′ dx ≦ C(q)t Ω |∇ξ| q ′ dx + Ω ξ q ′ du 0 . (3.5)
Proof. The equivalence and equality (3.3) hold from Lemma 3.1. Moreoever for any 0 < s < t < T,

Ω u(., t)ξ q ′ dx + t s Ω |∇u| q ξ q ′ dx = -q ′ t s Ω ξ 1/(q-1) ∇u.∇ξdx + Ω u(s, .)ξ q ′ dx ≦ 1 2 t s Ω |∇u| q ξ q ′ dx + C(q)t Ω |∇ξ| q ′ dx + Ω u(., s)ξ q ′ dx,
hence we obtain (3.5) as s → 0.

Remark 3.3 Note that u ∈ L ∞ loc ( [0, T ) ; L 1 loc (Ω))
if and only if lim sup t→0 B(x0,ρ) u(., t)dx is finite, for any ball B(x 0 , ρ) ⊂⊂ Ω.

Remark 3.4 If Ω is bounded, u 0 ∈ M + b (Ω)
and u is any nonnegative classical solution (resp. weak solution if q ≦ 2) of (P Ω,T ), then (3.5) still holds for any nonnegative ξ ∈ C 1 b (Ω). Indeed for any 0 < s < t < T, (3.4) is replaced by an inequality

Ω u(., t)ζdx + t 0 Ω (∇u.∇ζdx + |∇u| q ζ)dxdt = t 0 ∂Ω ∂u ∂ν ζdsdt + Ω u(., s)ζdx ≦ Ω u(., s)ζdx,
and (3.5) follows as above.

Then we prove the trace Theorem:

Proof of Theorem 1.1. Let q > 1. Let u be any nonnegative weak solution of (1.1) in Q Ω,T .

(i) Let x 0 ∈ Ω. Then the following alternative holds (for any τ < T ):

(A1) Either there exists a ball B(x 0 , ρ) ⊂ Ω such that τ 0 B(x0,ρ) |∇u| q dxdt < ∞. Then from Lemma 3.1 in B(x 0 , ρ), there exists a measure m ρ ∈ M + (B(x 0 ,ρ)), such that for any ψ ∈ C 0 c (B(x 0 , ρ)),

lim t→0 B(x0,ρ) u(., t)ψ = B(x0,ρ) ψdm ρ , (3.6) 
(A2) Or for any ball B(x 0 , ρ) ⊂ Ω there holds

τ 0 B(x0,ρ) |∇u| q dxdt = ∞. Taking ψ = ξ q ′ with ξ ∈ D(Ω),
with ξ ≡ 1 on B(x 0 , ρ), with values in [0, 1] , we have for any 0 < t < τ,

B(x0,ρ) u(., t)dx ≧ Ω u(., t)ξ q ′ dx = Ω u(., τ )ξ q ′ dx + τ t Ω (q ′ ξ 1/(q-1) ∇u.∇ξ + |∇u| q ξ q ′ )dxdt ≧ 1 2 τ t Ω |∇u| q ξ q ′ )dxdt -C q τ t Ω |∇ξ| q ′ dxdt, then lim t→0 B(x0,ρ) u(., t)dx = ∞. (3.7) 
(ii) We define R as the open set of points x 0 ∈ Ω satisfying (A1) and S =Ω\R. Then from (A1), there exists a unique measure u 0 ∈ M(R) such that (1.8) holds; and (1.9) holds from (A2).

First examples

1) Let 1 < q < q * . (i) The V.S.S. Y {0} given by (1.5) in Q R N ,∞ admits the trace ({0} , 0).

(ii) Let Ω be bounded, and x 0 ∈ Ω. There exist a weak solution Y Ω {x0} of (D Ω,∞ ) with trace ({x 0 } , 0)), called V.S.S. in Ω relative to x 0 . It is the unique weak solution such that

lim t→0 B(x0,ρ) Y Ω {x0} (., t)dx = ∞, ∀ρ > 0, lim t→0 Ω Y Ω {x0} (., t)ψdx = 0, ∀ψ ∈ C c (Ω\ {x 0 }), (3.8) 
see [START_REF] Bidaut-Véron | Isolated initial singularities for the viscous Hamilton Jacobi equation[END_REF]Theorem 1.5].

2) Let 1 < q < q * . From [START_REF] Qi | The self-similar profiles of generalized KPZ equation[END_REF], for any β > F (0), where F is defined at (1.5), there exists a unique positive radial self-similar solution

U β (x, t) = t -a/2 f β ( |x| √ t ) such that f β (0) = β, f ′ β (0) = 0, and lim η→∞ f β (η)η a = C(β) > 0; (3.9) then U β has the trace ({0} , C(β) |x| -a ). Notice that x → |x| -a belongs to L 1 loc (R N \ {0}) but not to L 1 loc (R N ).
3) Let q * < q < 2. For any β > 0, there exists a unique solution as above, see [START_REF] Qi | The self-similar profiles of generalized KPZ equation[END_REF]. Then U β has the trace (∅, C(β) |x| -a ); notice that x → |x| -a belongs to L 1 loc (R N ) but not to L 1 (R N ). 4) Let Ω be bounded, and q > 1. From [START_REF] Crandall | Maximal solutions and universal bounds for some partial differential equations of evolution[END_REF], there exists a solution of (D Ω,∞ ) which converges to ∞ uniformly on the compact sets of Ω as t → 0. Then its trace is (Ω, 0). See more details in Section 4.

Lower estimates

We first give interior lower estimates, valid for any q > 1, by constructing a subsolution of the equation, with infinite trace in B 1/2 and compact support in B 1 . Proposition 3.5 Let q > 1, and Ω be any domain in R N , and let u be any classical solution u of (1.1) in Q Ω,T , such that u converges uniformly to ∞ on a ball B(x 0 , ρ) ⊂ Ω, as t → 0. Then there exists C = C(N, q, ρ) such that

lim inf t→0 t 1 q-1 u(x, t) ≧ C = C(N, q, ρ), ∀x ∈ B(x 0 , ρ 2 ), (3.10) lim inf t→0 t 1 q-1 u(x 0 , t) ≧ C q ρ q ′ , C q = ((q ′ (1 + q ′ )) q (q -1)) -1 q-1 . (3.11)
Proof. Let h, λ > 0 be two parameters. We consider a function t ∈ (0, ∞) -→ ψ(t) = ψ h (t) ∈ (1, ∞) depending on h, introduced in [START_REF] Bidaut-Véron | Local and global apriori estimates of the solutions of Hamilton-Jacobi parabolic equation with absorption[END_REF], solution of the ordinary differential equation

ψ t + h(ψ q -ψ) = 0 in (0, ∞) , ψ(0) = ∞, ψ(∞) = 1, (3.12) 
given explicitely by ψ(t) = (1e -h(q-1)t ) -1 q-1 ; hence ψ qψ ≧ 0, and ψ(t) ≧ (h(q -1)t) -1/(q-1) for any

t > 0. Setting V (x, t) = ψ(t)f (|x|), f (r) = (1 + q ′ r)(1 -r) q ′ , ∀r ∈ [0, 1] ,
we compute

D = V t -∆V + |∇V | q -λV = (|f ′ | q -hf )(ψ q -ψ) + (|f ′ | q -∆f -λf )ψ. Note that f ′ (r) = -M r(1 -r) q ′ -1 , with M = q ′ (1 + q ′ ). Thus f ′ (0) = 0 and f 0 is nonincreasing, and |f ′ | q -hf ≦ 0 on [0, 1] for h ≧ C 1 = M q . Otherwise |f ′ | q -∆f -λf = (1 -r) q ′ J(r) with J(r) = M q r q -λ(1 + q ′ r) + M G(r), G(r) = N -(N -1 + q ′ )r (1 -r) 2 .
Then

J(0) = M N -λβ ≦ 0 for λ ≧ C 2 = N M. We have J ′ (r) = qM q r q-1 -λq ′ + M G ′ (r), G ′ (r) = (1 -r) -3 (N + 1 -q ′ -(N -1 + q ′ )r).
If q ≦ (N + 1)/N, there holds

q ′ > N + 1, hence G ′ ≦ 0, thus J ′ ≦ 0, for λ ≧ (q -1)M q . If q > (N + 1)/N, then G ′ (r) ≦ 0 for r ≧ r N,q = (N + 1 -q ′ )/(N -1 + q ′ ), and G ′ is continuous on [0, 1), hence bounded on [0, r N,q ] . Then J ′ ≦ 0 as soon as λ ≧ C 3 = (q -1)M q + (1 + q ′ ) max [0,rN,q] G ′ . We fix h = h(N, q) ≧ C 1 and λ = λ(N, q) ≧ max(C 2 , C 3 ), then J(r) ≦ 0 on [0, 1] , thus D ≦ 0. Then the function (x, t) -→ w(x, t) = e -λt V (x, t) = e -λt ψ(t)f 0 (|x|)
satisfies w t -∆w + e λ(q-1)t |∇w| q ≦ 0, hence it is a subsolution of the Dirichlet problem (D B1,∞ ), since e λ(q-1)t ≧ 1. By scaling the function (x, t) -→ w(x, t) = ρ -a w((xx 0 )/ρ, t/ρ 2 ) is a subsolution of (D B(x0,ρ),∞ ). And u is a solution in Q Ω,T which converges uniformly to ∞ on B(x 0 , ρ) as t → 0. For given ǫ > 0, there holds w(., ǫ) ≦ m ǫ = ρ -a ψ(ǫ/ρ 2 ) in B(x 0 , ρ); and there exists τ ǫ ∈ (0, ǫ) such that for any θ ∈ (0, τ ǫ ) , u(., θ) ≧ m ǫ in B(x 0 , ρ). Then w(., t + ǫ) ≦ u(., t + θ) in Q B(x0,ρ),T -ǫ . As θ → 0 and ǫ → 0, we get w ≦ u in Q B(x0,ρ),T . And w(x, t) ≧ ρ -a e -λt/ρ 2 ψ(t/ρ 2 ) ≧ (ρ/2) q ′ e -λt/ρ 2 (h(q -1)t) -1/(q-1)

in B(x 0 , ρ/2), hence (3.10) holds. Taking h = M q = (q ′ (1 + q ′ )) q , there holds u(x 0 , t) ≧ ρ q ′ e -λt/ρ 2 (h(q -1)t) -1/(q-1) , thus (3.11) follows.

In case 1 < q < q * , we give a lower bound for all the weak solutions at any singular point, by an argument of stability-concentration, well-known for semilinear elliptic or parabolic equations, see [START_REF] Marcus | Initial trace of positive solutions of some nonlinear parabolic equation[END_REF].

Proposition 3.6 Let 1 < q < q * . (i) Let u be any nonnegative weak solution u (1.1) in Q R N ,T with singular set S. Then for any x 0 ∈ S, there holds u(x, t)

≧ Y {0} (x -x 0 , t) in Q R N ,T
, where Y {0} is the V.S.S. given at (1.5). In particular, u(x 0 , t) ≧ C(N, q)t -a/2 , ∀t > 0.

(3.13)

(ii) Let Ω bounded, and u be any nonnegative weak solution u of (D Ω,T ), with singular set S. Then for any

x 0 ∈ S, u(x, t) ≧ Y Ω {x0} (x, t) in Q Ω,T
, where Y Ω {x0} is given by (3.8). In particular,

lim inf t→0 t a 2 u(x 0 , t) ≧ C(N, q) > 0. (3.14)
In any case, u(., t) converges uniformly on S to ∞ as t → 0.

Proof. (i) We can assume x 0 = 0. For any ε > 0, there holds lim t→0 Bε u(x, t)dx = ∞. And u ∈ C 2,1 (Q R N ,T ). We will prove that for fixed k > 0, there holds u ≧ u k , where u k is the unique solution in R N with initial data kδ 0 , from Theorem 2.12. There exists t 1 > 0 such that B 2 -1 u(x, t 1 )dx > k; thus there exists s 1,k > 0 such that B 2 -1 min(u(x, t 1 ), s 1,k )dx = k. By induction, there exists a decreasing sequence (t n ) converging to 0, and a sequence (s n,k ) such that B 2 -n min(u(x, t n ), s n,k )dx = k. Let p ∈ N, p > 1. Denote by u n,k,p the solution of the Dirichlet problem (D Bp,∞ ), with initial data u n,k,p (., 0) = min(u(., t n ), s n,k )χ B 2 -n . Then we get u ≧ u n,k,p in B p , from Corollary 2.15. As n → ∞, (u n,k,p (0)) converges to kδ 0 weakly in M b (B p ). Indeed for any

ψ ∈ C + (B p ), Bp u n,k,p (0)ψdx -kψ(0) = B 2 -n min(u(x, t n ), s n,k )ψdx -kψ(0) ≦ k ψ -ψ(0) L ∞ (B 2 -n ) .
Then (u n,k,p ) converges in C 2,1 loc (Q Bp,T ) to the solution u k,Bp of the problem in B p with initial data kδ 0 , from Proposition 2.14. Thus u ≧ u k,Bp . Finally, as p → ∞, u k,Bp converges to u k from [13, Lemma 4.6] and uniqueness of 

u k ; thus u ≧ u k . As k → ∞, (u k ) converges to Y {0} , hence v ≧ Y {0} . Then (3.
≧ u n,k,x0 in Ω, then u ≧ u k,Ω x0 . As k → ∞, (u k,Ω ) converges to Y Ω {x0}
, and moreover, for any ε > 0, there exists Remark 3.7 As a consequence, for 1 < q < q * , there exists no weak solution u of (1.1) in Q R N ,T with singular set S = R N . Indeed if u exists, u satisfies (3.13), then u converges uniformly on R N as t → 0. Then for any k > 0 and any ϕ ∈ D + (B 1 ), ϕ = 1 in B 1/2 , u is greater than the solution u k,p with initial trace kϕ(x/p). As p → ∞, u k,p tends to the unique solution u k with initial data k, namely u k ≡ k, thus u ≧ k for any k > 0, which is contradictory. The question is open for q ≧ q * . Remark 3.8 Another question is to know for which kind of solutions (3.14) still holds when q ≧ q * . We give a partial answer in Section 4, see Proposition 4.8.

τ = τ (ε, d) such that Y {x0} (x, t) = Y (x -x 0 , t) ≦ Y Ω {x0} + ε in Ω × (0, τ ),

Trace of the Cauchy problem

In this part we show Theorem 1.2, based on the universal estimate of Theorem 2.9.

Proof of Theorem 1.2. (i) From Theorem 2.9, u satisfies (2.8). Reporting in (1.1), we deduce

u t -∆u + 1 q -1 u t ≧ 0.
Setting y = t 1/(q-1) u, we get that

y t -∆y = t 1 q-1 ( 1 q -1 u t -|∇u| q ) ≧ 0 in Q R N ,T
, thus y has a trace γ ∈ M + (R N ), see Lemma 3.1. Since u(., t) converges weak* to u 0 in R N \S, we find that supp γ ⊂ S. Let B(x 0 , 2η) ⊂ R N \S. From (2.9), we have

y(x, t) ≦ C(q) |x -x 0 | q ′ + C(1 + t q ′ + t 1 q-1 B(x0,η) du 0 ), C = C(N, q, η), hence γ ∈ L ∞ loc (R N ).
Remark 3.9 In particular for q < q * , the V.S.S. Y {0} in R N satisfies γ = 0, which can be checked directly, since lim t→0 t 1/(q-1)-a/2 = 0. The function U given at Theorem 1.3 satisfies γ(x) = c q (x + 1 ) q ′ .

4 Solutions with trace (ω ∩ Ω, 0), ω open

Here we extend and improve the pionneer result of [START_REF] Crandall | Maximal solutions and universal bounds for some partial differential equations of evolution[END_REF], valid for the Dirichlet problem in Ω bounded. In case of the Cauchy problem, the estimates (2.6) and (2.9) are essential for existence. 

= Y ω (resp. u = Y Ω ω ) of (1.1) in Q R N ,∞ (resp. of (D Ω,∞
)), with trace (ω ∩ Ω, 0). Moreover it satisfies uniform properties of convergence:

lim t→0 inf x∈K u(x, t) = ∞ ∀K compact ⊂ ω, lim t→0 sup x∈K u(x, t) = 0 ∀K compact ⊂ Ω\ω. (4.1)
More precisely, for any δ > 0, lim inf

t→0 t 1 q-1 u(x, t) ≧ C(N, q)δ q ′ , ∀x ∈ ω int δ , (4.2) 
sup

Ω\ω ext δ u(x, t) ≦ C(N, q, δ)t, ∀t > 0. (4.3) If q < q * , then for any x ∈ ω ∩ Ω, inf t>0 t a 2 u(x, t) ≧ C(N, q) > 0 (resp. lim inf t→0 t a 2 u(x, t) ≧ C(N, q) > 0). (4.4) 
Moreover, if Ω = R N , the function Y ω satisfies the growth condition in Q R N ,∞ Y ω (x, t) ≦ C(t + t -1 q-1 )(1 + |x| q ′
), C = C(N, q, ω) (4.5)

Proof. First suppose Ω bounded, then ω is a compact set in R N . We consider a nondecreasing sequence (ϕ p ) of nonnegative functions in C 1 c (Ω), with support in ω, such that ϕ p ≧ p in ω int 1/p , and the nondecreasing sequence of classical solutions u Ω p with initial data ϕ p . From Theorem 2.6, u Ω p converges in C 2,1 loc (Q Ω,T ) to a solution Y Ω ω of (D Ω,T ). Then by construction of u Ω p , Y Ω ω (., t) converges uniformly to ∞ on the compact sets in ω. Then the conclusions hold from Lemma 2.16, Propositions 3.5 and 3.6.

Next suppose Ω = R N . We can construct a nondecreasing sequence (ϕ p ) p>p0 of functions in C + b (R N ), with support in ω ∩ B p , such that ϕ p ≧ p on ω int 1/p ∩ B p-1/p . Let u p be the classical solution of (1.1) in Q R N ,∞ with initial data ϕ p . Since ω = R N , there exists a ball B(x 0 , η) ⊂ R N \ω). From (2.9),

u p (x, t) ≦ C(q)t -1 q-1 |x -x 0 | q ′ + C(N, q, η)(t -1 q-1 + t), (4.6) thus (u p ) is locally uniformly bounded in Q R N ,∞ . From Theorem 2.7, (u p ) converges in C 2,1 loc (Q R N ,∞ ) to a classical solution Y ω of (1.1) in Q R N ,∞ .
Then by construction of u p , Y ω (., t) converges uniformly to ∞ on the compact sets in ω, and the conclusions follow as above. Moreover, from (4.6), Y ω satisfies (4.5). 

Remark 4.3

When Ω is bounded, and ω ⊂ Ω, or ω = Ω, it was shown in [START_REF] Crandall | Maximal solutions and universal bounds for some partial differential equations of evolution[END_REF] that there exists a solution Y Ω ω satisfying (4.1). Moreover, using the change of unknown v = e -u , they proved that if ω ⊂⊂ Ω, then for any x ∈ ∂ω,

lim t→0 Y Ω ω (x, t) = ∞, if q < 2; lim t→0 Y Ω ω (x, t) = ln 2, if q = 2; lim t→0 Y Ω ω (x, t) = 0, if q > 2. (4.8)
Next we study the question of the uniqueness of solutions with trace (ω, 0) which appears to be delicate. A first point is to precise in what class of solutions the uniqueness may hold, in particular in what sense the initial data are achieved. Definition 4. [START_REF] Baras | Problemes paraboliques semi-linéaires avec données mesures[END_REF] Let Ω = R N (resp. Ω bounded) and ω be a open set in Ω. We denote by C the class of classical solutions of (1.1) in Q R N ,T (resp. of (D Ω,T )) satisfying (4.1). We denote by W the class of weak solutions of (1.1) in Q R N ,T (resp. of (D Ω,T )) with trace (ω, 0).

In [START_REF] Crandall | Maximal solutions and universal bounds for some partial differential equations of evolution[END_REF], the authors consider the class C. They show that if ω is compact contained in Ω bounded and ω, Ω are starshaped with respect to the same point or q ≧ 2, then Y Ω ω is unique in that class. But we cannot ensure that any weak solution u with trace (ω, 0) converges uniformly to ∞ on the compact sets in ω. And in case q > 2 we even do not know if u is continuous. Here we give some partial results, where we do not suppose that Ω is starshaped. 

Ω ω = sup Y Ω ω int δ and Y Ω ω is a minimal solution in the class C). If ω is compact, u ω = inf δ>0 Y ω ext δ is a maximal solution of (1.1) in Q R N ,T in the class C (resp. if ω ⊂⊂ Ω, then u Ω ω = inf δ Y Ω ω ext δ
is a maximal solution of (D Ω,T ) in the class C).

(ii) Let 1 < q ≦ 2 and suppose ω compact (resp. ω ⊂⊂ Ω). Then the function u ω (resp. u Ω ω ) defined above is maximal in the class W. If ω is starshaped, then Y ω (resp. Y Ω ω ) is the unique solution of (1.1) in Q R N ,T (resp. of (D Ω,T )) in the class C.

(iii) Let 1 < q < q * and suppose ω compact (resp. ω ⊂⊂ Ω). Then W = C. Thus Y ω (resp. Y Ω ω ) is minimal in the class W. If ω is starshaped it is unique in the class W.

Proof. (i) Let Ω be bounded. Let v be any classical solution of (D Ω,T ) satisfying (4.1). Let ϕ ∈ C + 0 (Ω) with suppϕ ⊂ ω. Then there exists a nondecreasing sequence (ϕ n ) ∈ C + 0 (Ω), with support in ω int 1/n , converging to ϕ in C + (Ω). Then the function (y ϕn (., t))) defined at Remark 4.2 converges to y ϕ (., t) in C(Ω), uniformly for t > 0. For fixed n, let ǫ ∈ (0, T ) . Since v(., t) converges uniformly to ∞ on the compact sets of ω, and ϕ n = 0 in Ω\ω int 1/n , there exists θ n ∈ (0, ǫ) such that inf v(., t) ≧ max ϕ n ≧ max y ϕn (., ǫ) for any t ≦ θ n . Then v ≧ y ϕn on [ǫ, T ) from the comparison principle, hence v ≧ y ϕ . Then Y Ω ω is minimal in the class C. Moreover for any δ > 0, Y Ω , then v ≦ u ω , thus u ω is maximal. Next assume Ω bounded and ω ⊂⊂ Ω;

the result follows as above by taking δ < δ 0 small enough such that ω ext δ0 ⊂ Ω and using Theorem 2.6. (ii) For q ≦ 2, u ω (resp. u Ω ω ) is also maximal in the class W, from Lemma 2.16 (iii). But we cannot ensure that is minimal in this class.

Suppose that ω is starshaped, then Y ω (x, t) = k a Y kω (kx, k 2 t), from (4.7). As above, any weak solution v of (1.1) in Q R N ,T with trace (ω, 0) satisfies v ≦ Y kω for any k > 1, hence v ≦ Y ω as k → 1, thus u ω ≦ Y ω , hence u ω = Y ω . We get uniqueness in the class C. Now any weak solution w of (D Ω,T ) with trace (ω, 0) also satisfies w ≦ Y kω in Ω × (0, T ) for any k > 1, then also

Y Ω ω ≦ u Ω ω ≦ Y kω . Thus as k → 1, one gets Y Ω ω ≦ u Ω ω ≦ Y ω . Let ǫ 0 > 0. We fix δ > 0 such that ω ext δ ⊂ Ω. From Lemma 2.16 (i), we get Y ω (., t) ≦ C(N, q, δ)t on ∂Ω; hence there exists τ 0 > 0 such that Y ω ≦ ǫ 0 on ∂Ω × (0, τ 0 ]; thus, for any η < 1, Y ηω ≦ Y Ω ω + ǫ 0 , in Ω × (0, τ 0 ] . As η → 1 we get Y ω ≦ Y Ω ω + ǫ 0 , in Ω × (0, τ 0 ] . Then u Ω ω ≦ Y Ω ω + ǫ 0 , in Ω × (0, τ 0 ] . From the comparison principle, u Ω ω ≦ Y Ω ω + ǫ 0 , in Ω × (0, T ). As ǫ 0 → 0 we get u Ω ω ≦ Y Ω ω , hence u Ω ω = Y Ω ω .
And any weak solution v of (1.1) with trace (ω, 0

) satisfies v ≦ Y kω in Q R N ,T , for any k > 1; thus as k → 1, u ω ≦ Y ω , hence u ω = Y ω .
(iii) Any weak solution v ∈ W is classical since q ≦ 2, and from Proposition 3.6, v(., t) converges uniformly in ω to ∞ as t → 0. Then W = C. the conclusions follow from (i) and (ii).

As a consequence we construct the solution of Theorem 1.3. We are lead to the case N = 1. Proposition 4.6 Let q > 1, N = 1. Then there exists a self-similar positive solution U (x, t) = t -a/2 f (t -1/2 x) of (1.1) in Q R,T , with trace ([0, ∞) , 0), and f satisfies the equation

f ′′ (η) + η 2 f ′ (η) + a 2 f (η) -|f ′ (η)| q = 0, ∀η ∈ R. (4.9) 
And setting c q = (q ′ ) -q ′ (q -1) -1/(q-1) ,

lim η→∞ η -q ′ f (η) = c q , (4.10) lim η→-∞ e η 2 4 (-η) -3-2q q-1 f (η) = C > 0. ( 4 

.11)

In case q = 2, f is given explicitely by

f (η) = -ln( 1 2 erf c(η/2)) = -ln( 1 2 ∞ η/2
e -s 2 ds). (4.12)

Proof. We apply Theorems 4.1 and 4.5 with Ω = R and ω = (0, ∞). Since ω is starshaped and stable by homothety, we have

Y ω (x, t) = k a Y kω (kx, k 2 t) = k a Y ω (kx, k 2 t) for any k > 0. Thus U = Y ω is self-similar. Hence U (x, t) = t -a/2 f (t -1/2 x), where η -→ f (η) is a nonnegative C 2 -
function on R and satisfies equation (4.9).

In the case q = 2, we can compute completely U : The function V = e -U is solution of the heat equation, with

V (0, x) = χ (-∞,0) , thus V (t, x) = (4πt) -1/2 0 -∞ e -(x-y) 2 4t dy = 1 2 erfc( x 2 √ t ) where x -→ erfc(x) = 2 √ π ∞
x e -s 2 ds is the complementary error function. Then U (x, t) =ln V, and f is given by (4.12). Note that f can also be obtained by solving equation

f ′′ (η) + η 2 f ′ (η) -f ′ (η) 2 = 0, of the first order in f ′ . We get f (0) = ln 2. As η → ∞, since erfc(x) = (1/ √ πx)e -x 2 (1 + o(1), we check that f (η) = (1/4)η 2 (1 + o(1)).
Next suppose q = 2. Writing (4.9) as a system

f ′ (η = g(η), g ′ (η) = - η 2 g(η) - a 2 f (η) + |g(η)| q ,
we obtain that f is positive, from the Cauchy-Lipschitz Theorem. Indeed if there holds f (η 1 ) = 0 for some η 1 ∈ R, then g(η 1 ) = f ′ (η 1 ) = 0, thus (f, g) ≡ (0, 0). From (3.10), we get U (1, t) = t -a/2 f (t -1/2 ) ≧ Ct 1/(q-1), for t small enough, hence f (η) ≧ Cη q ′ for large η. From (2.14), there holds U (-1, t) ≦ C 1,1 e -C2,1/t on (0, τ 1 ] , since U is a pointwise limit of classical solutions with initial data C b (R) with support in [0, ∞) . Then f (η) converges to 0 exponentially as η → -∞. Next we show that f ′ > 0 on R : if f ′ (η 0 ) = 0 for some η 0 we have f ′′ (η 0 ) + a 2 f (η 0 ) = 0. Since a = 0, η 0 is unique, it is a strict local extremum, which contradicts the behaviour at ∞ and -∞. The universal estimate (2.8) is equivalent to

f ′q (η) ≦ 1 q -1 f (η), ∀η ∈ R. (4.13)
Therefore the function η -→ f 1/q ′ (η)c

1/q ′ q η is nonincreasing, hence

f 1/q ′ (η) ≦ c 1/q ′ q η + f 1/q ′ (0), ∀η ≧ 0. (4.14)
Otherwise, f is convex: indeed

f ′′′ + η 2 f ′′ + 1 2(q -1) f ′ -qf ′q-1 f ′′ = 0. (4.15)
If f ′′ (η 1 ) = 0 for some η 1 , then f ′′′ (η 1 ) < 0, thus η 1 is unique, and f ′′ (η) < 0 for η > η 1 , then f is concave near ∞, which contradicts the estimates above; thus f ′′ (η) > 0 on R. From (4.9) and (4.13), we deduce that ηf ′ ≦ q ′ f. Let H(η) = η -q ′ f (η), for η > 0; then H is nonincreasing, and H(η) ≧ C for large η. Thus H has a limit λ > 0 as η → ∞, and λ ≦ c q from (4.14). Let us show that λ = c q . Suppose that λ < c q . We set ϕ(η) = η -1/(q-1) f ′ (η), for η > 0, then ϕ ≦ q ′ H; hence we can find b < 1 such that qϕ q-1 (η) < b for large η. By computation we find

1 η ϕ ′ = ϕ q -ϕ( 1 2 + 1 (q -1)η 2 ) - a 2 H, (4.16) 
and from (4.15) we obtain

ϕ ′′ + ϕ ′ ( 2 (q -1)η + η 2 -qηϕ q-1 ) + ϕ q -1 (1 -qϕ q-1 + a η 2 ) = 0
If ϕ is not monotone for large η, then, at any extremal point η,

-ϕ ′′ = ϕ q -1 (1 -qϕ q-1 + a η 2 ) ≧ ϕ q -1 (1 -b + a η 2 ),
hence ϕ ′′ < 0 for large η, which is impossible. Thus by monotony, ϕ has a limit θ as η → ∞. From the L'Hospital's rule, we deduce that λ = lim η→∞ f (η)/η q ′ = lim η→∞ f ′ (η)/q ′ η 1/(q-1) = θ/q ′ . Then from (4.16), lim η→∞ ϕ ′ (η)/η = (q ′ λ) qλ/(q -1). Since ϕ ′ is integrable, we deduce that λ = c q , thus we reach a contradiction. Then (4.10) follows.

Next we study the behaviour near -∞. From (4.13), f and f ′ converge exponentially to 0. Let h(η) = f ′ (η)/f (η) for any η ∈ R. Then we find

h ′ + h 2 + η 2 h + a 2 -f ′(q-1) h = 0, ( 4 
.17)

h ′′ + 2hh ′ + η 2 h ′ + h 2 -f ′(q-1) (qh ′ + (q -1)h 2 ) = 0.
Either h is not monotone near -∞. At any point where h ′ = 0, we find by computation

h ′′ = (q -1)h(h(h + η 2 ) - 1 2 
);

hence at any minimal point, h > |η| /2, then lim η→-∞ h(η) = ∞. Let us show that it also true if h is monotone. Suppose that h has a finite limit ℓ, then ℓ = 0 from (4.17). If q > 2, then lim inf η→-∞ h ′ (η) ≧ |a| /2, which is contradictory. If q < 2, following the method of [START_REF] Brézis | A very singular solution of the heat equation with absorption[END_REF] we write (e η 2 /4 h) ′ = e η 2 /4 (-a/2 + o(1)), then by integration we obtain that lim η→-∞ ηh(η) = a, from the l'Hospital' rule, then lim inf η→∞ (-η) a f (η) > 0, which is a contradiction. Thus again lim η→-∞ h(η) = ∞. And then (4.11) follows as in [START_REF] Brézis | A very singular solution of the heat equation with absorption[END_REF], more precisely, as η → -∞,

f (η) = Ce -η 2 4 |η| 3-2q q-1 (1 -(a -1)(a -2) |η| -2 + o(|η| -2 ).
Remark 4.7 We have constructed a nonradial solution f ∈ C 2 (R) of (4.9), satisfying (4.10) as η → ∞.

Let us show that there exists no radial solution f ∈ C 2 (R) satisfying the same conditions. Indeed suppose that such a radial solution f 0 exists; then it is still positive, f ′ 0 (0) = 0, and 0 is the unique local extremal point of f 0 , with f ′′ 0 (0) + a 2 f 0 (0) = 0. This is impossible if q ≦ 2. Next assume q > 2. From the Cauchy-Lipschitz Theorem, setting C 0 = f 0 (0) > 0 there exists a local unique solution of (4.9) such that f (0) = C 0 and f ′ (0) = 0. But the Cauchy problem with initial data C 0 |x| |a| has a self-similar solution of the form

U C0 (x, t) = t -a/2 f C0 (t -1/2 x) with f C0 ∈ C 2 (R) and f C0 (0) = C 0 , since |x| |a| ∈ L 1 loc (R), see [12, Theorems 1.4,1.5] 
or Theorem 1.4 below. From local uniqueness, f 0 = f C0 , which contradicts its behaviour as |η| → ∞.

Thanks to the barrier function U (x, t) = t -a/2 f (t -1/2 x) constructed at Proposition 4.6, we obtain more information on the behaviour of the solutions with trace (ω, 0) on the boundary of ω : Proposition 4.8 Let 1 < q, and ω be a smooth open set in R N . Then the function Y ω constructed at Theorem 4.1 satisfies (i) For any x 0 ∈ ∂ω, lim inf t→0 t a/2 Y ω (x 0 , t) ≧ f (0).

(ii) If ω is convex, then for any x 0 ∈ ∂ω, lim t→0 t a/2 Y ω (x 0 , t) = f (0), (iii) if R N \ω is convex, then for any x 0 ∈ ω, inf t>0 t a/2 Y ω (x 0 , t) ≧ f (0), where f is defined at Proposition 4.6.

Proof. (i) Since ω is smooth, it satisfies the condition of the interior sphere. Thus we can assume that x 0 = 0 and ω contains a ball B = B(y, ρ) with y = (ρ, 0

) ∈ R N + = R + ×R N -1 . Then Y ω ≧ Y B . Let us consider Y nB (x, t) = n -a Y B (x/n, t/n 2 )
. The sequence (Y nB ) is nondecreasing, and there holds Y nB (x, t) = 0 in B((-1, 0), 1). Thus from estimate (2.9),

Y nB (x, t) ≦ C(N, q)(t -1 q-1 (|x + (1, 0)| q ′ + 1) + t), hence the sequence is locally bounded in Q R N ,∞ . From Theorem 2.7, (Y nB ) converges in C 2,1 loc (Q R N ,∞ ) to a classical solution u of (1.1). Then u is a solution with trace (R N + , 0), satisfying (4.1), thus u(x, t) ≧ Y R N + (x, t). Observe that Y R N + (x, t) = U (x 1 , t), since U (x 1 , t) = sup ϕ∈C + b (R),suppϕ⊂0,∞ y ϕ , and Y R N + (x, t) = sup ϕ∈C + c (R N ),suppϕ⊂R N + y ϕ . Then u(0, t) ≧ U (0, t) = f (0)t -a/2
. And Y nB (0, 1) = n -a Y B (0, 1/n 2 ) converges to u(0, 1) ≧ f (0), then limn -a Y B (0, 1/n 2 ) ≧ f (0); similarly by replacing 1/n by any sequence (ǫ n ) decreasing to 0, then lim inf t→0 t a/2 Y ω (0, t) ≧ f (0).

(ii) Let us show that for any x 0 ∈ ∂ω, Y ω (x 0 , t) ≦ f (0)t -a/2 . We can assume x 0 = 0 and ω

⊂ R N + . Then Y ω (x, t) ≦ Y R N + (x, t) = U (x 1 , t), hence Y ω (0, t) ≦ f (0)t -a/2 .
(iii) Since R N \ω is convex, ω is the union of all the tangent half-hyperplanes that it contains. For any such half-hyperplane, we can assume that it is tangent at 0 and equal to R N + . Then for any x ∈ R N + , there holds Y ω (x, t) ≧ U (x 1 , t) ≧ f (0), since f is nondecreasing, and the conclusion follows.

5 Existence of solutions with trace (S, u 0 ) 5.1 Solutions with trace (ω ∩ Ω, u 0 ), ω open Proof of Theorem 1.4. (i) Approximation and convergence. We define suitable approximations of the initial trace (S, u 0 ) according to the value of q. We consider a sequence (ϕ p ) in C b R N (resp. C 0 Ω ) as in the proof of Theorem 4.1. We define a sequence (ψ p ) in the following way: if 1 < q < q * , we define ψ p by the restriction of the measure u 0 to R int 1/p ∩B p (resp. to R int 1/p ∩Ω int 1/p ); if q * ≦ q ≦ 2, we take ψ p = inf(u 0 , p)χ R∩Bp (resp. ψ p = inf(u 0 , p)χ R ). If q > 2, by our assumption we can take a nondecreasing sequence (ψ p ) in C c (R) converging to u 0 in L 1 loc (R) . We set u 0,p = ϕ p + ψ p . Then for 1 < q < q * , u 0,p ∈ M + b (Ω), for q * ≦ q ≦ 2, u 0,p ∈ L r (Ω) for any r > 1 and for q > 2, u 0,p ∈ C b R N . In any case there exists a solution u p of (1.1) (resp. of (D Ω,T )) with initial data u 0,p , unique among the weak solutions if q ≦ 2, see Theorem 2.12, and among the classical solutions in C [0, T ) × Ω if q > 2, and the sequence (u p ) is nondecreasing if q ≧ q * .

Moreover if Ω = R N , (u p ) satisfies the estimate (2.9): considering a ball B(x 0 , η) ⊂ R N \ω, there exists C = C(N, q, η) such that for p ≧ p(η) large enough,

u p (x, t) ≦ C(t -1 q-1 (|x -x 0 | q ′ + 1) + t + B(x0,η) du 0,p ) ≦ C(t -1 q-1 (|x -x 0 | q ′ + 1) + t + B(x0,η) du 0 ), then (u p ) is uniformly locally bounded in Q R N ,T ( resp.
if Ω is bounded, (u p ) satisfies (2.5), since it is constructed by approximation from solutions with smooth initial data). From Theorem 2.7 (resp. 2.6)), we can extract a subsequence C 2,1 loc -converging to a classical solution u of (1.1) in Q R N ,T (resp. of (D Ω,T )). If q ≧ q * , from uniqueness, (u p ) is nondecreasing, then (u p ) converges to u = sup u p .

(ii) Behaviour of u in ω. By construction, u ≧ Y ω , (resp. u ≧ Y Ω ω ), then u satisfies (4.2), hence as t → 0, u(., t) converges uniformly to ∞ on any compact in ω, thus (1.9) holds; if q < q * , u satisfies (4.4), thus the convergence is uniformly on ω ∩ Ω.

(iii) Behaviour of u in R. From (3.5) and (3.4), for any ξ ∈ C 1,+ (R N ), with support in R,

R N u p (., t)ξ q ′ dx + 1 2 t 0 R N |∇u p | q ξ q ′ dx ≦ Ct R N |∇ξ| q ′ dx + R N ξ q ′ dψ p , (5.1) 
Ω u p (., t)ξdx

+ t 0 Ω (∇u p .∇ξ + |∇u p | q ξ)dxdt = Ω ξdu 0,p . (5.2) 
First suppose q < q * . From Theorem 2.11, (|∇u p | q ) is equi-integrable in Q K,τ for any compact set K ⊂ R and τ ∈ (0, T ) . From (5.2) for any

ζ ∈ C c (R), for p = p(ζ) large enough such that the support of ζ is contained in R int 1/p ∩ B p (resp. R int 1/p ∩ Ω int 1/p ), R u p (t, .)ζdx + t 0 R |∇u p | q ζdx = - t 0 R ∇u p .∇ζdx + R ζdu 0 .
Then we can go to the limit as p → ∞: R u(t, .)ζdx

+ t 0 R |∇u| q ζdx = - t 0 R ∇u.∇ζdx + R ζdu 0 . thus lim t→0 R N u(., t)ζdx = R N ζdu 0 .
Next suppose q * ≦ q ≦ 2 and u 0 ∈ L 1 loc (R) , or q > 2 and u 0 is limit of a sequence of nondecreasing continuous functions. Then ψ p ≦ u 0 . From (5.1), we have |∇u| q ∈ L 1 loc [0, T ) ; L 1 loc (R) from the Fatou Lemma. Hence, from Lemma 3.1, u admits a trace µ 0 ∈ M(R). For any fixed

ζ ∈ C + c (R), we lim t→0 R N u p (., t)ζdx = R ζψ p dx. Since (u p ) is nondecreasing, we get lim t→0 R N u(., t)ζdx = R ζdµ 0 ≧ lim t→0 R N u p (., t)ζdx = R ζψ p dx.
thus from the Beppo-Levy Theorem, µ 0 ≧ u 0 . Moreover for any ζ ∈ C c (R), from (5.2), R u p (t, .)ζdx

+ t 0 R |∇u p | q ζdx = t 0 R u p ∆ζdx + R ζψ p dx;
and (u p ) is bounded in L k (Q K,τ ) for any k ∈ [1, q * ) , for any compact set K ⊂ R, and u p → u a.e. in R, then (u p ) converges strongly in L 1 (Q K,τ ), thus from the dominated convergence Theorem and the Fatou Lemma, R u(t, .)ζdx

+ t 0 R |∇u| q ζdx ≦ t 0 R u∆ζdx + R ζdu 0 . But from Lemma 3.1, R u(t, .)ζdx + t 0 R |∇u| q ζdx = t 0 R u∆ζdx + R ζdµ 0 , then R ζdµ 0 ≦ R ζdu 0 , hence µ 0 ≦ u 0 , hence µ 0 = u 0 .
In any case u admits the trace (S, u 0 ).

Solutions with any Borel measure

In this part we consider the subcritical case with an arbitrary closed set S.

Theorem 5.1 Let 1 < q < q * , and Ω = R N (resp. Ω bounded). Let S be a closed set in Ω, such that R = Ω\S is nonempty. Let u 0 ∈ M + (R).

(i) Then there exists a solution u of (1.1) (resp. of (D Ω,T )) with initial trace (S, u 0 ), such that u satisfies (4.4), hence u(t, .) converges to ∞ uniformly on S.

(ii) There exists a minimal solution u min , satisfying the same conditions.

Proof. Assume that Ω = R N (resp. Ω bounded) (i) Existence of a solution. Let B(x 0 , η) ⊂ Ω\S, and δ 0 small enough such that B(x 0 , η) ⊂ Ω\S ext δ0 . For any δ ∈ (0, δ 0 ) we can suppose that S ext ). Let u δ be the solution with initial trace (S ext δ , u 0 (Ω\S ext δ )) constructed at Theorem 1.4. Then u δ admits the trace u 0 on B(x 0 , η), thus it also satisfies the estimates (2.9) (resp. (2.5)), thus (u δ ) δ<δ0 is uniformly locally bounded in Q Ω,T . From Theorem 2.7 (resp. 2.6), one can extract a subsequence converging in C 2,1 loc (Q Ω,T ) to a solution u of (1.1) in Q R N ,T (resp. of (D Ω,T )). As in the proof of Theorem 1.4, for any compact K ⊂ R, taking δ < δ K small enough so that K ⊂ Ω\S ext δK , and choosing a test function ξ with compact support in K in R, we obtain that (|∇u δ | q ) δ<δK is equi-integrable in Q K,τ for any τ ∈ (0, T ). Then we get for any ξ ∈ C c (R),

R N u(t, .)ξdx + t 0 R N |∇u| q ξdx = - t 0 R N ∇u.∇ξdx + R N ξdu 0 . thus lim t→0 R N u(., t)ξdx = R N ξdu 0 . Moreover for any x 0 ∈ S, u δ ≧ Y {x0} in Q R N ,T , (resp. u δ ≧ Y Ω {x0} in Q Ω,T
) from Proposition 3.6, hence the same happens for u, which implies (1.9). Thus u admits (S, u 0 ) as initial trace, and u(., t) converges uniformly on S to ∞ as t → 0.

(ii) Existence of a minimal solution.

Assume that Ω = R N . Let A be the set of solutions with initial trace (S, u 0 ). We consider for fixed ǫ > 0, the Dirichlet problem in Q Bp,T , p ≧ 1, with initial data m(x, ǫ) = inf v∈A v(x, ǫ). Thus 0 ≦ m(x, ǫ) ≦ u(x, ǫ), where u has been defined at step (i), and u ∈ C 2,1 (Q R N ,T ), thus m(., ǫ) ∈ L 1 loc R N . Since m ∈ L 1 (B p ), there exists a unique solution w p,ǫ of (D Bp,T ) with initial data m(x, ǫ) in B p . From Corollary 2.15, w p,ǫ (x, t) ≦ Next we go to the limit as ǫ → 0. From Theorem 2.6, one can extract a subsequence, still denoted (w p,ǫ ) , converging a.e. to a solution w p of the Dirichlet problem (D Bp,T ). And in B p (with the notations above), w p ≦ v for any v ∈ A, w p ≧ Y Bp x0 and w p ≧ w U . Finally we go to the limit as p → ∞. Since u is locally bounded, then (w p ) is uniformly locally bounded. From Theorem 2.7, one can extract a subsequence converging in C Then u min admits the trace (S, u 0 ). Thus u min is minimal, and u min = min v∈A v.

Assume that Ω is bounded. The proof still works with B p replaced by Ω, which requires only to go to the limit in ε and use Theorem 2.6.

In the case where u 0 is a bounded measure we can give more convergence results: 

v(., t)(ψϕ n ) q ′ dx ≦ C(q)t R N |∇(ψϕ n )| q ′ dx + R N (ψϕ n ) q ′ du 0 ≦ Ct + R ψ q ′ du 0 ;
thus v(., t)ψ q ′ ∈ L 1 (R) , and lim sup t→0 R v(., t)ψ q ′ dx ≦ Ω ψ q ′ du 0 from the Fatou Lemma. And

lim inf t→0 R v(., t)ψ q ′ dx ≧ lim t→0 R v(., t)(ψϕ n ) q ′ dx = R (ψϕ n ) q ′ du 0 ,
thus from the Beppo-Levy Theorem, we get (5.3) by density.

Next suppose that Ω is bounded, note that u can be obtained as a limit in

C 2,1 loc (Q Ω,T ) ∩ C 1,0 loc Ω × (0, T ) of classical solutions u n with smooth data u n,0 = u 1 n,0 + u 2 n,0 with suppu 1 n,0 ⊂ • S ext 3δ0 , suppu 1 n,0 ⊂ R, and (u 1 n,0 ) converges to u 0 weakly in M b (R). For any nonnegative ξ ∈ C 1 b (Ω) with support in R, R u n (., t)ξ q ′ dx ≦ C(q)t R |∇ξ| q ′ dx + Ω ξ q ′ u 2 n,0 dx,
Let v be any weak solution with trace (S, u 0 ) (resp. and such that v(., t) converges weakly in M b (R).

Then v(., t) ≦ C(N, q, δ)t in

K δ = S ext 5δ/2 \ • S ext δ/2 , from Lemma 2.16 (resp. from (2.15) in O = • S ext 3δ \S ext δ , valid since v ∈ C([0, T )× O)). Let ǫ 0 > 0.
Then there exists τ 0 = τ 0 (ǫ 0 , δ) < T such that v(., t) ≦ ǫ 0 in K δ × (0, τ 0 ] . Let ǫ < τ 0 , and C ǫ = max S 2δ v(., ǫ). Since u δ converges to ∞ uniformly on the compact sets of S ext δ , there exists τ ǫ < τ 0 such that for any θ ∈ (0, τ ǫ ) , u δ (., θ) ≧ C ǫ ≧ v(., ǫ) in S δ/2 . Since v(., ǫ) ≦ ǫ 0 in K δ , there holds v(., ǫ) ≦ u δ (., θ) + ǫ 0 in S 2δ . And v(., t) ≦ ǫ 0 on ∂S 2δ × (0, τ 0 ] , thus v(., t + ǫ) ≦ u δ (., t + θ) + ǫ 0 in S 2δ × (0, τ 0ǫ] from the comparison principle. As θ → 0, then ǫ → 0, we get v(., t) ≦ u δ (., t) + ǫ 0 in S 2δ × (0, τ 0 ] .

(5.7)

Otherwise, since u 0 ∈ M + b (Ω) , there exists a unique solution w of (P Ω,T ) with initial data u 0 , from Theorem 2.12. We claim that v(x, t) ≦ w(x, t)

+ ǫ 0 , in Ω\S 2δ × (0, τ 0 ] . (5.8) 
Indeed let ϕ δ ∈ C(Ω) with values in [0, 1] with support in Ω\S 2δ and ϕ δ = 1 on R N \S 5δ/2 . From Proposition 5.4 (resp. from Theorem 2.12), the function x -→ v(x, τ 0 /n) is bounded, and continuous. Let w δ,n be the solution of (1.1) in Q Ω,T with initial data v(., τ 0 /n)ϕ δ . As n → ∞, v(., τ 0 /n)ϕ δ converges to u 0 ϕ δ = u 0 weakly in M b R N , from Remark 5.2 (resp. from our assumption). Hence w δ,n converges to w, from Proposition 2.14. And then

v(., τ 0 /n) = v(., τ 0 /n)ϕ δ + v(., τ 0 /n)(1 -ϕ δ ) ≦ w δ,n (., 0) + ǫ 0 in Ω\S 2δ , and on the lateral boundary of Ω\S 2δ × (0, τ 0 (1 -1/n)] , there holds v(x, t + τ 0 /n) ≦ ǫ 0 . Then v(x, t + τ 0 /n) ≦ w δ,n (., t) + ǫ 0 in Ω\S 2δ × (0, τ 0 (1 -1/n)] .
As n → ∞, we deduce (5.8).

Next we get easily that w ≦ u δ on Ω\S 2δ × (0, τ 0 ] , by considering their approximations, hence v(x, t) ≦ u δ (x, t) + ǫ 0 , in Ω\S 2δ × (0, τ 0 ] .

(5.9)

As a consequence, from (5.7) and 5.9),

v(x, t) ≦ u δ (x, t) + ǫ 0 , in Ω × (0, τ 0 ] .
The last step is to prove that the inequality holds up to time T. We can apply the comparison principle because, from Proposition 5.4, u and v ∈ C b ((ǫ, T ); C b (R N ) for any ǫ > 0 (resp. because v and u δ are classical solutions of (D Ω,T )). Then

v(x, t) ≦ u δ (x, t) + ǫ 0 , in Ω × (0, T )
As ǫ 0 → 0, we deduce that v ≦ u δ . Finally as δ → 0, up to a subsequence, {u δ } converges to a solution u of (1.1) (resp. of (D Ω,T ), such that v ≦ u, thus u satisfies (1.9). As in Theorem 1.4, by integrability of (|∇u δ | q ) we obtain that u admits the trace u 0 in R, thus u has the trace (S, u 0 ) (resp. and the convergence holds weakly in M b (R)). Thus u is maximal.

From Theorems 5.1 and 5.5, this ends the proof of Theorem 1.5.

6 The case 0 < q ≦ 1 Notice that Theorem 2.5 is also valid for q = 1. In fact it can be improved when q is subcritical, and extended to the case q < 1. Theorem 6.1 (i) Let 0 < q < q, and Ω be any domain in R N . Let u be any (signed) weak solution of (1

.1) in Q Ω,T . Then u ∈ C 2+γ,1+γ/2 loc (Q Ω,T ) for some γ ∈ (0, 1) . If Ω is bounded, any weak solution u of problem (D Ω,T ) satisfies u ∈ C 1,0 Ω × (0, T ) ∩ C 2+γ,1+γ/2 loc (Q Ω,T
) for some γ ∈ (0, 1) .

(ii) Let 0 < q ≦ 1 and Ω bounded. For any sequence of weak nonnegative solutions (u n ) of (D Ω,T ), bounded in L ∞ loc ((0, T ); L 1 (Ω)) one can extract a subsequence converging in C 2,1 loc (Q Ω,T ) ∩ C 1,0 Ω × (0, T ) to a weak solution u of (D Ω,T ).

Proof. (i) From our assumptions, u ∈ C((0, T ); L 1 loc (Q Ω,T )), thus u ∈ L ∞ loc ((0, T ); L 1 loc (Q Ω,T )). We can write (1.1) under the form u t -∆u = f, with f = -|∇u| q . From Theorem 2.11 u ∈ L 1 loc ((0, T ); W 1,k loc (Ω) for any k ∈ [1, q * ) and satisfies (2.10).

First suppose

q ≦ 1. We choose k ∈ (1, q * ), thus (|∇u| + |u|) ∈ L k loc (Q Ω,T ) . Then u ∈ W 2,1,k loc (Q Ω,T )
, see [22, theorem IV.9.1]. From the Gagliardo-Nirenberg inequality, for almost any t ∈ (0, T ), ∇u(., t) L kq * (ω) ≦ c u(t)

1 q * W 2,k (ω) u(t) 1-1 q * L 1 (ω) ,
where c = c(N, s, ω). Hence we obtain |∇u| ∈ L kq * loc (Ω) . In the same way

u(., t) L kq * (ω) ≦ c u(t) θ W 2,s (ω) u(t) 1-θ L 1 (ω) , with θ = (1 -1/kq * )/((N + 2)/N -1/s) < 1. Therefore |u| ∈ L sq * loc (Ω) . Then u ∈ W 2,1,kq * loc (Q Ω,T ). By induction u ∈ W 2,1,k(q * ) n loc (Q Ω,T ) for any n ≧ 1. Choosing n such that k(q * ) n > N + 2, we deduce that |∇u| ∈ C δ,δ/2 (Q ω,s,τ ) for any δ ∈ (0, 1 -(N + 2)/s(q * ) n ), see [22, Lemma II.3.3]. Then f ∈ C δq,δq/2 loc (Q Ω,T ), thus u ∈ C 2+δq,1+δq/2 (Q ω,s,τ ). Next suppose 1 < q < q * . we choose k ∈ (1, q * /q), hence (|∇u| q + |u|) ∈ L k loc (Ω) ; as above, |∇u| + |u| ∈ L kq * loc (Ω) , hence (|∇u| q +|u|) ∈ L kq * /q loc (Ω) ; then u ∈ W 2,1,kq * /q loc (Q Ω,T ). By induction we get again that |∇u| ∈ C δ,δ/2 loc (Q Q,T ) for some δ ∈ (0, 1), then f ∈ C γ,γ/2 loc (Q Q,T ) for some γ ∈ (0, 1), thus u ∈ C 2+γ,1+γ/2 loc (Q Ω,T ) for some γ ∈ (0, 1) .
If Ω is bounded, and u is a weak solution of (D Ω,T ), then u satisfies (2.11). In the same way, u ∈ W 2,1,k (Q Ω,s,τ ), and by induction u ∈ C 1,0 Ω × (0, T ) ∩ C 2+γ,1+γ/2 loc (Q Ω,T ).

(ii) From (2.11), u C 1,0 (QΩ,s,τ ) + ∇u C γ,γ/2 (QΩ,s,τ ) is bounded in terms of |∇u| q L 1 (Qω,s,τ ) + u(., s) L 1 (Ω) . And since u is nonnegative, from [14, lemma 5.3] (valid for q > 0),

Ω u(t, .)dx + t s Ω |∇u| q dx ≦ Ω u(s, .)dx. (6.1) 
Thus |∇u| q L 1 (Qω,s,τ ) is bounded in terms of u(., s) L 1 (Ω) . Then one can extract a subsequence converging in C 2,1 loc (Q Ω,T ) ∩ C 1,0 Ω × (0, T ) to a weak solution u of (D Ω,T ).

Remark 6.2 In case of the Dirichlet problem, the result also follows from [7, Theorem 3.2 and Proposition 5.1], by using the uniqueness of the solution in (Q ω,ǫ,T ).

Next we prove the uniqueness result of Theorem 1.6. For that purpose we recall a comparison property given in [1, Lemma 4.1]: Lemma 6.3 ([1]) Let Ω be bounded, and A ∈ L σ (Q Ω,T ) with σ > N + 2. Let w ∈ L 1 ((0, T ); W 1,1 0 (Ω)), with w ∈ C((0, T ] ; L 1 (Ω), such that w t -∆w ∈ L 1 (Q Ω,T ), and w(., t) converges to a nonpositive measure w 0 ∈ M b (Ω), weakly in M b (Ω), and w t -∆w ≦ A.∇w in D ′ (Q Ω,T ).

Then w ≦ 0 in Q Ω,T .

Proof of Theorem 1.6. From [START_REF] Benachour | The mixed Cauchy-Dirichlet problem for a viscous Hamilton-Jacobi equation[END_REF], the problems with initial data u 0 , v 0 admit at least two solutions u, v. Then f = |∇u| q ∈ L 1 loc ([0, T ) ; L 1 (Ω)). And by hypothesis u ∈ C((0, T ); L 1 (Ω)) ∩ L 1 ((0, T ); W 1,1 0 (Ω)). Assume that u 0 ≦ v 0 . Let w = uv. Then we have w ∈ C((0, T ); L 1 (Ω)) ∩ L 1 ((0, T ); W 1,1 0 (Ω)), |∇w| ∈ L k (Q Ω,τ ) for any k ∈ [1, q * ) and τ ∈ (0, T ). Setting g = |∇u| q -|∇v| q , then w is the unique solution of the problem    w t -∆w = g, in Q Ω,T , w = 0, on ∂Ω × (0, T ), lim t→0 w(., t) = u 0v 0 , weakly in M b (Ω).

Since q ≦ 1, there holds w t -∆w = g ≦ |∇w| q ≦ |∇w| + 1.

In case q = 1, Lemma 6.3 applies. Assume that q < 1. Let ε, η ∈ (0, 1). Then g ≦ C η |∇w| + η. with C η = η -q/(1-q) . As in his proof we get by approximation

1 1 + ε Ω (w + ) 1+ε (t, .)dx + ε t 0 Ω (w + ) ε-1 |∇w| 2 ψdxdt ≦ C η t 0 Ω (w + ) ε |∇w| dxdt + η t 0 Ω (w + ) ε dxdt,
and the second member is finite. Then lim t→0 Ω (w + ) 1+ε (t, .)dx = 0, hence lim t→0 Ω w + (t, .)dx = 0. Let z = wηt, then satisfies z ∈ C((0, T ); L 1 (Ω)) ∩ L 1 ((0, T ); W 1,1 (Ω)) and z t -∆z = gη ≦ C η |∇z| in D ′ (Q Ω,T ) . Then z + ∈ C((0, T ); L 1 (Ω)) ∩ L 1 ((0, T ); W 1,1 0 (Ω)) and from [4, Lemma 3.2], z + t -∆z + ≦ C η |∇(z + )|. And lim t→0 z + (t) = 0 weakly in M b (Ω), since z + ≦ w + . Then z + = 0 from Lemma 6.3 applied with A = C ε . Thus w ≦ ηt; as η → 0, we obtain w ≦ 0. Remark 6. [START_REF] Baras | Problemes paraboliques semi-linéaires avec données mesures[END_REF] We can give an alternative proof of uniqueness, using regularity: let u, v be two solutions with initial data u 0 , and w = uv, thus w satisfies    w t -∆w = g := |∇u| q -|∇v| q , in Q Ω,T , w = 0, on ∂Ω × (0, T ), lim t→0 w(., t) = 0, weakly in M b (Ω).

(6.2)

Since q ≦ 1, there holds |g| ≦ |∇w| q . As in Theorem 6.1, we choose k ∈ (1, q * ), thus |∇w| ∈ L k (Q Ω,τ ) .

From the uniqueness of the solution w due to [4, Lemma 3.4], we deduce that w ∈ W 2,1,k (Q Ω,τ ), for any τ ∈ (0, T ) , from [START_REF] Ladyzenskaja | Linear and Quasilinear Equations of Parabolic Type[END_REF]theorem IV.9.1]. By induction we deduce that w ∈ C 0 Ω × [0, T ) ∩C 2+γ,1+γ/2 (Q Ω,T ).

Then w = 0 from the classical maximum principle.

Next we prove the trace result of Theorem 1.7:

First proof of Theorem 1.7. From Theorem 6.1, u ∈ C 2,1 loc (Q Ω,T ). And 1 + u is also a solution of (1.1). We can set 1 + u = v α , with α > 1, in particular v ≧ 1. Then we obtain an equivalent equation for v :

v t -∆v = H := (α -1) |∇v| 2 v -α q-1 |∇v| q v (α-1)(1-q) .
From the Young inequality, setting C = ((α -1) /2) (q-2)/q , there holds, since v ≧ 1,

|∇v| q v (α-1)(1-q) ≦ α -1 2 |∇v| 2 v + Cv 1-2(1-q) 2-q α ≦ α -1 2 |∇v| 2 v + Cv.
Hence w = e Ct v satisfies w t -∆w = G := e Ct (H + Cv) ≧ α -1 2 |∇w| 2 w .

Then w is supercaloric, and nonnegative, and G ∈ L 1 loc (Q T ). From Lemma 3.1, w admits a trace in M (Ω), and then w ∈ L ∞ loc ( [0, T ) ; L 1 loc (Ω)), and G ∈ L 1 loc ([0, T ); L 1 loc (Ω)). As a consequence, v ∈ L ∞ loc ( [0, T ) ; L 1 loc (Ω)) and |∇v| 2 /v ∈ L 1 loc ([0, T ); L 1 loc (Ω)). Next we show that moreover u itself admits a trace measure. For any 0 < s < t < T, from the Hölder inequality, α -q t s ω |∇u| q dxdt = t s Ω v (α-1)q |∇v| q dxdt ≦ t s ω |∇v| 2 v dxdt + t s ω v (2α-1)q 2-q dxdt. (6.3) First suppose q < 1. Choosing α such that moreover 1 < α ≦ 1/q, in order that (2α -1)q ≦ 2q. Since v ∈ L ∞ loc ( [0, T ) ; L 1 loc (Ω)), we have v ∈ L 1 (Q T ), hence

α -q t s ω |∇u| q dxdt ≦ t 0 ω |∇v| 2 v dxdt + t 0 ω
(v + 1)dxdt, hence |∇u| q ∈ L 1 loc (Ω × [0, T )). Then u admits a trace u 0 ∈ M + (Ω). Next assume q = 1. From the Hölder inequality, Then z ∈ L k loc ([0, T ); L k (Ω)). We can choose α such that 1 < α < 1 + q * /2, and take k = 2α -1. From (6.3) we deduce that |∇u| ∈ L 1 loc (Ω × [0, T )), and conclude again that u admits a trace u 0 ∈ M + (Ω). Finally we give an alternative proof by using comparison with solutions with initial Dirac mass, inspired of [START_REF] Sayed | Initial trace of solutions of semilinear heat equations with absorption[END_REF]. We first extend Proposition 2.14 to the case q ≦ 1 when Ω is bounded: Lemma 6.5 Let 0 < q ≦ 1, Ω bounded, and u 0,n , u 0 ∈ M + b (Ω) such that u 0,n converge to u 0 weakly in M b (Ω). Let u n , u be the unique nonnegative solutions of (D Ω,T ) with initial data u 0,n , u 0 . Then u n converges to u in C 2,1 loc (Q Ω,T ) ∩ C 1,0 Ω × (0, T ) .

Proof. We still have (2.12) and lim s→0 Ω u n (s, .)dx = Ω du 0,n , thus Ω u n (t, .)dx ≦ Ω du 0,n , and lim n→∞ Ω du 0,n = Ω du 0 , thus (u n ) is bounded in L ∞ ((0, T ); L 1 (Ω)). From Theorem 6.1, one can extract a subsequence converging in C 2,1 loc (Q Ω,T ) ∩ C 1,0 Ω × (0, T ) to a weak solution w of (D Ω,T ). And (u n ) is bounded in L k ((0, T ), W 1,k 0 (Ω) for any k ∈ [1, q * ) . As in Proposition 2.14, for any τ ∈ (0, T ) , ( |∇u n | q ) is equi-integrable in Q Ω,τ , and we conclude that w = u.

Second proof of Theorem 1.7. We still have u ∈ C 2,1 loc (Q Ω,T ) from Theorem 6.1. It is enough to show that for any ball B(x 0 , ρ) ⊂⊂ Ω, there exists a measure m ρ ∈ M(B(x 0 , ρ)) such that the restriction of u to B(x 0 , ρ) admits a trace m ρ ∈ M(B(x 0 , ρ)). Suppose that it is not true. Then from Proposition 3.2 and Remark 3.3, there exists a ball B(x 0 , ρ) ⊂⊂ Ω such that lim sup t→0 B(x0,ρ) u(., t)dx = ∞.

  [START_REF] Bidaut-Véron | Isolated initial singularities for the viscous Hamilton Jacobi equation[END_REF] holds with C = F (0) given by (1.5).(ii) In the same way, denote by u k,Ω x0 , u n,k,x0 the solutions of the Dirichlet problem (D Ω,∞ ), with respective initial data kδ x0 and T s n,k v(., t n )χ B (x 0 ,2 -n d) , where d = d(x 0 , ∂Ω). Then as above we get u

  see the proof of [13, Theorem 1.5]. Then u ≧ Y Ω {x0} and (3.14) follows by taking ε = F (0)/2.

Theorem 4 . 1

 41 Let q > 1 and ω be a smooth open set in R N with ω = R N (resp. a smooth open set in Ω bounded). There exists a classical solution u

Remark 4 . 2 7 )

 427 Moreover, from the construction of the solutions, denoting by y ϕ the solution of (1.1) with initial data ϕ ∈ C + b (R N ) ∩ C + 0 (ω) (resp. the solution of (D Ω,∞ ) with initial data ϕ ∈ C + 0 (Ω)) we get the relations Y Indeed we get y ϕ ≦ Y ω , for any nonnegative ϕ ∈ C 1 c (R N ) (resp. C 1 c (Ω)) with suppϕ ⊂ ω, and the relation extends to any ϕ ∈ C + b (R N ) (resp. C + 0 (Ω)), from uniqueness of y ϕ .

Theorem 4 . 5

 45 (i) Let q > 1. Under the assumptions of Theorem 4.1, Y ω = sup Y ω int δ and Y ω is a minimal solution in the class C (resp. Y

.

  Now consider the case Ω = R N . Let v be any classical solution in Q R N ,T satisfying (4.1). Let ϕ ∈ C + c (R N ), with suppϕ ⊂ ω. As above we deduce that v ≧ y ϕ . From the uniqueness of the solutions, we deduce that v ≧ y ϕ , for any ϕ ∈ C + b (R N ), with suppϕ ⊂ ω. Then Y ω is minimal in the class C. As above we obtain Y ω = sup Y ω int δ Assume that Ω = R N and ω is compact. For δ > 0 we consider the function Y ω ext δ constructed as above. Then by construction, Y ω ≦ Y ω ext δ . Taking δ n → 0, (Y ω ext δn ) decreases to a classical solution u ω of (1.1) in Q R N ,T from Theorem 2.7 thus u ω ≧ Y ω , then u ω satisfies (4.1). Moreover let v be any solution in the class C. From Lemma 2.16 (ii), v ≦ Y ω ext δ

δ=

  ω δ ∩ Ω, where ω δ is a smooth open subset of Ω (if S ext δ is not smoothenough regular, we replace it by a smooth open set S ′ext δ such that S ⊂ S ′ext δ ⊂ S ext δ

  v(x, t + ǫ) for any v ∈ A and x ∈ B p . Moreover for any v ∈ A and any x 0 ∈ S, there holdsv ≧ Y {x0} ≧ Y Bp x0 , thus m(x, ǫ) ≧ Y Bp x0 (x, ǫ), hence w p,ǫ (x, t) ≧ Y Bp x0 (x, t + ǫ), from [27, Proposition 2.1].For any z 0 ∈ B p and γ > 0 such that B = B(z 0 , γ) satisfies B ⊂ R ∩ B p , let w U be the unique solution of the Dirichlet problem in B with initial data u 0 B. Then from Corollary 2.15, v(x, t) ≧ w B (x, t) in Q B,T , for any v ∈ A, thus m(x, ǫ) ≧ w B (x, ǫ), thus w p,ǫ (x, t) ≧ w B (x, t + ǫ).

2 , 1

 21 loc (Q R N ,T ) to a weak solution denoted u min of (1.1) in Q R N ,T . Then u min satisfies u min ≦ v for any v ∈ A, and u min ≧ Y Bp x0 for any x 0 ∈ S, and u min ≧ w U for any z 0 ∈ R and γ > 0 such that B = B(z 0 , γ) satisfies B ⊂ R. As a consequence u min satisfies the trace condition (1.9) on S. And for any z 0 ∈ R, and any ξ ∈ C 0 c (R) with support in U, R u(., t)ξdx ≧ R u min (., t)ξdx ≧ R w U (., t)ξdx hence lim t→0 R u min (., t)ξdx = R ξdu 0 .

Corollary 5 . 2

 52 Under the assumptions of Theorem 5.1 suppose that u 0 ∈ M + b (R) . Then for any ϕ ∈ C b (Ω) with support in R, u(., t)ϕ ∈ L 1 (R) for any t ∈ (0, T ) , andlim t→0 R u(., t)ϕdx = R ϕdu 0 ,(5.3)and similarly for u min . More precisely, if Ω = R N , (5.3) is valid for any weak solution v of (1.1) with trace (S, u 0 ).Proof. First assume that Ω = R N and v is any weak solution with trace (S, u 0 ) let ψ ∈ C 1 b (R N ) with support in R, and ϕ n ∈ D R N with values in [0, 1] , with ϕ n = 1 on B n , 0 on B 2n , and (|∇ϕ n |) bounded. Then from (3.5),

R

  

  L 1 loc ([0, T ); L 1 loc (Ω)). Let ξ ∈ D(Ω). Setting vξ = z, z is the unique solution of the problem in Q Ω,T    z t -∆z = g := F ξ + v(-∆ψ) -2∇v.∇ψ, in Q Ω,T , z = 0, on ∂Ω × (0, T ), lim t→0 z(., t) = ξu 0 , weakly in M b (Ω),where g ∈ L 1 (Q Ω,T ). From Theorem 2.11, for any k ∈ [1, q * ) , and for any 0 < s < τ < T, and any domain ω ⊂⊂ Ω, z L k (Qω,s,τ ) ≦ C( F ξ L 1 (Qω,s,τ ) + z(s, .) L 1 (ω) ) ≦ C( F ξ L 1 (Qω,τ ) + v L ∞ ((0,τ );L 1 (ω)) )

from Remark 3.4, hence R u(., t)ξ q ′ dx ≦ C(q)t R |∇ξ| q ′ dx + Ω ξ q ′ du 0 , and then lim sup t→0 R u(., t)ψ q ′ dx ≦ Ω ψ q ′ du 0 . And for any ϕ n ∈ D (Ω) with values in [0, 1] , with

Thus u still satisfies (5.3). The same happens for u min , since lim sup t→0 R u min (., t)ϕdx ≦ R ϕdu 0 and lim inf t→0 R u min (., t)ψ q ′ dx ≧ R (ψϕ n ) q ′ du 0 .

Remark 5.3 Assume 1 < q < q * . Note some consequences of Theorems 5.1 and 1.4.

(i) For any constant C > 0, there exists a minimal solution u C with trace ({0} , C |x| -a )). Then u C is radial and self-similar. This shows again the existence of the solutions of example 2, Section 3. This shows that the set {C(β) : β > F (0)} , where F and C(β) ere defiend at (1.5) and (3.9), is equal to (0, ∞) .

(ii) Suppose N = 1. For any C > 0 there exists a minimal solution u C with trace

x); as in the proof of Proposition 4.6, we obtain that f is increasing and lim η→∞ f (η)η -q ′ = c, and lim η→-∞ η f ′ (η)/ f (η) = a, and then lim η→-∞ f (η) |η| a = C. In the same way, for any C > 0, there exists a minimal solution u C with trace ({0} , C(x + ) -a ); then it is self-similar, u C (x, t) = t -a/2 f (t -1/2 x), where η -→ f (η) is defined on R, and we check that f has an exponential decay at -∞, and lim η→∞ f (η)η a = C.

Next we look for a maximal solution when the measure u 0 is bounded. A crucial point in case Ω = R N is the obtention of an upper estimate, based on Theorems 2.8 and 2.9: Proposition 5.4 1 < q ≦ 2. Let S be a compact set in R N , and u 0 ∈ M + R N \S , bounded at ∞. Then any weak solution v of (1.1) in Q R N ,T with trace (S, u 0 ) satisfies, for any 0 < ǫ < τ < T,

(5.4)

Proof. Let τ ∈ 0, T ). We take η = 1 and x 0 ∈ R N \S 1 in (2.9). Then for any (x, t)

In particular it holds in S 2 × (0, τ ]. And for any (x,

Then (5.4) follows.

Theorem 5.5 Let 1 < q < q * . Let Ω = R N (resp. Ω bounded). Assume that S is compact in Ω and u 0 ∈ M + b (Ω) with support in R ∪ Ω, where R = Ω\S. Then there exists a maximal solution u of (1.1) (resp. of (D Ω,T )) among the solutions with trace (S, u 0 ) (resp. among the solutions v of trace (S, u 0 ) such that v(., t) converges weakly in R to u 0 as t → 0).

Proof.

Assume Ω = R N (resp. Ω bounded). Let δ > 0 be fixed, such that δ < d(S,suppu 0 )/3, hence suppu 0 ⊂ Ω\S 3δ . Let u δ be the solution with initial trace (S ext δ , u 0 ) constructed at Theorem 1.4.

We can assume that x 0 = 0 and ρ = 1. For any k > 0, the Dirichlet problem (P B1,T ) with initial data kδ 0 has a unique solution u B1 k , from Theorem 1.6. As in the proof of Proposition 3.6, there exists t 1 > 0 such that B 2 -1 u(x, t 1 )dx > k; thus there exists s 1,k > 0 such that B 2 -1 min(u(x, t 1 ), s 1,k )dx = k. By induction, there exists a decreasing sequence (t n ) converging to 0, and a sequence (s n,k ) such that B 2 -n min(u(x, t n ), s n,k )dx = k. Denote by u n,k the solution of (P B1,T ) with initial data u n,k,0 = χ B 2 -n min(u(., t n ), s n,k ). Then u ≧ u n,k in B 1 , from Theorem 1.6. And (u n,k,0 ) converges weakly in M b (Ω) to kδ 0 . From Lemma 6.5, (u n,k ) converges in C 2,1 loc (Q B1,T ) ∩ C 1,0 B 1 × (0, T ) to the solution u k,B1 of the problem in B 1 with initial data kδ 0 , Thus u ≧ u k,B1 . Now, since q ≦ 1, for any k > 1, the function ku 1,B1 is a subsolution of (1.1), since ∇(ku 1,B1 ) q ≦ k ∇(u 1,B1 ) q . From Lemma 6.3, we deduce that u ≧ ku 1,B1 for any k > 1. Since u 1,B1 is not identically 0, we get a contradiction as k → ∞.