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Initial trace of solutions of Hamilton-Jacobi parabolic equation with

absorption

Marie Françoise BIDAUT-VERON Nguyen Anh DAO

Abstract

Here we study the initial trace problem for the nonnegative solutions of the equation

ut −∆u+ |∇u|q = 0

in QΩ,T = Ω× (0, T ) , T ≦ ∞, where q > 0, and Ω = R
N , or Ω is a smooth bounded domain of

R
N and u = 0 on ∂Ω× (0, T ) . We can define the trace at t = 0 as a nonnegative Borel measure

(S, u0), where S is the closed set where it is infinite, and u0 is a Radon measure on Ω\S. We
show that the trace is a Radon measure when q ≦ 1. For q ∈ (1, (N +2)/(N +1) and any given
nonnegative Borel measure, we show the existence of a minimal solution, and a maximal one on
conditions on u0. When S = ω ∩ Ω and ω is an open subset of Ω, the existence extends to any
q ≦ 2 when u0 ∈ L1

loc(Ω) and any q > 1 when u0 = 0. In particular there exists a self-similar

nonradial solution with trace (RN+, 0), with a growth rate of order |x|q/(q−1)
as |x| → ∞ for

fixed t. Moreover we show that the solutions with trace (ω, 0) in QRN ,T may present near t = 0

a growth rate of order t−1/(q−1) in ω and of order t−(2−q)/(q−1) on ∂ω.
Keywords Hamilton-Jacobi equation; Radon measures; Borel measures; initial trace; uni-

versal bounds
A.M.S. Subject Classification 35K15, 35K55, 35B33, 35B65, 35D30
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1 Introduction

Here we consider the solutions of the parabolic Hamilton-Jacobi equation

ut −∆u+ |∇u|q = 0 (1.1)

in QΩ,T = Ω× (0, T ) , T ≦ ∞, where q > 0, and Ω = R
N , or Ω is a smooth bounded domain of RN

and u = 0 on ∂Ω× (0, T ) .

We mainly study the problem of initial trace of the nonnegative solutions. Our main questions
are the following: Assuming that u is a nonnegative solution, what is the behaviour of u as t tends
to 0? Does u converges to a Radon measure u0 in Ω, or even to an unbounded Borel measure in
Ω? Conversely, does there exist a solution with such a measure as initial data, and is it unique in
some class?

In the sequel M(Ω) is the set of Radon measures in Ω,Mb(Ω) the subset of bounded measures,
and M+(Ω),M+

b (Ω) are the cones of nonnegative ones. We say that a nonnegative solution u of
(1.1) has a trace u0 in M(Ω) if u(., t) converges to u0 in the weak∗ topology of measures:

lim
t→0

∫

Ω
u(., t)ψdx =

∫

Ω
ψdu0, ∀ψ ∈ Cc(Ω). (1.2)

First recall some known results. The Cauchy problem in QRN ,T

(PRN ,T )

{
ut −∆u+ |∇u|q = 0, in QRN ,T ,

u(x, 0) = u0 in R
N ,

(1.3)

and the Dirichlet problem in a bounded domain

(PΩ,T )





ut −∆u+ |∇u|q = 0, in QΩ,T ,
u = 0, on ∂Ω× (0, T ),
u(x, 0) = u0.

(1.4)

have been the object of a rich literature, see among them [17], [3],[9], [7], [11], [27], [6], [13], [14],
and references therein. The first studies of (PRN ,T ) concern the existence of classical solutions, that

means u ∈ C2,1(QRN ,T ), with smooth initial data: the case u0 ∈ C2
b

(
R
N
)
and q > 1, was studied

in [3], and extended to any u0 ∈ Cb

(
R
N
)
and q > 0 in [18]. Then the problem was studied in a

semi-group formulation for rough initial data u0 ∈ Lr
(
RN

)
, r ≧ 1, or u0 ∈ Mb(R

N ), [9], [11], [27],
and in the larger class of weak solutions in [13], [14].

A critical value appears when q > 1 :

q∗ =
N + 2

N + 1
.
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Indeed the problem with initial value u0 = δ0, Dirac mass at 0 has a weak solution if and only if
q < q∗, see [9], [13]. In the same range the problem has a unique very singular solution (in short
V.S.S.) Y{0}, such that

lim
t→0

∫

|x|≧r
Y{0}(., t)dx = 0, lim

t→0

∫

|x|<r
Y{0}(., t)dx = ∞, ∀r > 0,

see [26], [10], [8], [13]. It is radial and self-similar: Y{0}(x, t) = t−a/2F (|x| /
√
t), with

F ∈ C([0,∞)), F (0) > 0, F ′(0) = 0, lim
|η|→∞

e
η2

4 |η|N−a F (η) = C > 0, (1.5)

where

a =
2− q

q − 1
. (1.6)

It is clear that Y{0} does not admit a trace as a Radon measure. Otherwise, for any q > 1,
the Dirichlet problem (PΩ,T ) admits a solution U such that limt→0U(x, t) = ∞ uniformly on the
compact sets of Ω, see [17]. Thus we are lead to define an extended notion of trace.

The problem has been considered in [15], [23] for the semi-linear equation

ut −∆u+ uq = 0, (1.7)

with q > 1. Here another critical value (N+2)/N is involved: there exist solutions with initial value
δ0 if and only if q < (N+2)/N, see [15], and then there exists a V.S.S., see [16], [19]. In [23] a precise
description of the initial trace is given: any nonnegative solution admits a trace as an outer regular
Borel measure U0 in Ω. Moreover if q < (N+2)/N , the problem is well posed in this set of measures
in R

N . The result of uniqueness lies on the monotony of the function u 7→ uq. If q ≧ (N + 2)/N,
necessary and sufficient conditions are given for existence, the problem admits a maximal solution,
but uniqueness fails. Equation (1.7) admits a particular solution ((q − 1)t)−1/(q−1), which governs
the upper estimates. Notice that the V.S.S. has precisely a behaviour in t−1/(q−1) at x = 0, as
t→ 0.

Here we extend some of these results to equation (1.1). Compared to problem (1.7), new
difficulties appear:

1) The first one concerns the a priori estimates. The equation (1.1) has no particular solution
depending only on t. Note also that the sum of two supersolutions is not in general a supersolution.
In [17] a universal upper estimate of the solutions u, of order t−1/(q−1), is proved for the Dirichlet
problem. For the Cauchy problem, universal estimates of the gradient have been obtained for
classical solutions with smooth data u0, see [9], and [27]. They are improved in [12], where estimates
of u of order t−1/(q−1) are obtained, see Theorem 2.9 below, and it is one of the key points in the
sequel.

2) The second one comes from the fact that singular solutions may present two different levels
of singularity as t→ 0. Notice that the V.S.S. Y{0} has a behaviour of order t−a/2 ≪ t−1/(q−1).

3) The last one is due to the lack of monotony of the absorption term |∇u|q. Thus many
uniqueness problems are still open.
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We first recall in Section 2 the notions of solutions, and precise the a priori upper and lower
estimates, for the Cauchy problem or the Dirichlet problem. In Section 3 we describe the initial
trace for q > 1 :

Theorem 1.1 Let q > 1. Let u be any nonnegative weak solution of (1.1) in any domain Ω. Then
there exist a set S ⊂ Ω such that R = Ω\S is open, and a measure u0 ∈ M+(R), such that

• For any ψ ∈ C0
c (R),

lim
t→0

∫

R
u(., t)ψ =

∫

R
ψdu0. (1.8)

• For any x0 ∈ S and any ε > 0

lim
t→0

∫

B(x0,ε)∩Ω
u(., t)dx = ∞. (1.9)

The outer regular Borel measure U0 on Ω associated to the couple (S, u0) defined by

U0(E) =

{ ∫
E du0 if E ⊂ R,

∞ if E ∩ S 6= ∅,

is called the initial trace of u. The set S is called the set of singular points of ν and R called the
set of regular points, and u0 the regular part of ν.

As t→ 0, we give lower estimates of the solutions on S of two types: of type t−1/(q−1) on
◦
S (if

it is nonempty) and of type t−a/2 on S (if q < q∗). Moreover we describe more precisely the trace
for equation (1.1) in QRN ,T , thanks to a recent result of [12] (see Theorem 2.9):

Theorem 1.2 Let S be closed set in R
N , S 6= R

N , and u0 ∈ M+
(
R
N\S

)
. Let u be any nonnegative

classical solution of (1.1) in QRN ,T (any weak solution if q ≦ 2), with initial trace (S, u0).
Then there exists a measure γ ∈ M+(RN ), concentrated on S, such that t1/(q−1)u converges

weak ∗ to γ as t→ 0. And γ ∈ L∞
loc(R

N ); in particular if |S| = 0, then γ = 0; if S is compact, then
γ ∈ L∞(RN ).

In Section 4 we study the existence and the behaviour of solutions with trace (ω ∩Ω, 0), where
ω is a smooth open subset of Ω. We construct new solutions of (1.1) in QRN ,T , in particular the
following one:

Theorem 1.3 Let q > 1, q′ = q/(q − 1), and R
N+ = R

+×R
N−1. There exists a nonradial

self-similar solution of (1.1) in QRN ,T , with trace (RN+, 0), only depending on x1 : U(x, t) =

t−a/2f(t−1/2x1), where

lim
η→∞

η−q′f(η) = cq = (q′)−q′(
1

q − 1
)

1
q−1 , lim

η→−∞
e

η2

4 (−η)−
3−2q
q−1 f(η) = C > 0.

Thus as t → 0, U(x, t) behaves like t−1/(q−1) for fixed x ∈ R
N+, and U(x, t) = f(0)t−a/2 for x ∈

∂RN+. And for fixed t > 0, U(x, t) is unbounded: it behaves like xq
′

1 as x1 → ∞.
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By using U as a barrier, we can estimate precisely the two growth rates of the solutions in
QRN ,T with trace (ω, 0), on ω and on ∂ω, for any q > 1, see Proposition 4.7.

In Section 5 we show the existence of solutions with initial trace (S, u0), when S = ω ∩ Ω and
ω ⊂ Ω is open, and u0 is a measure on Ω\ω, which can be unbounded, extending the results of [12,
Theorem 1.4] relative to the case of a trace (0, u0):

Theorem 1.4 Assume that Ω = R
N (resp. Ω is bounded). Let ω be a smooth open subset of Ω,

such that R = Ω\ω is nonempty, and let S = ω ∩ Ω. Let u0 ∈ M+ (R). We suppose that either
1 < q < q∗, or q∗ ≦ q ≦ 2 and u0 ∈ L1

loc (R) , or q > 2 and u0 ∈ L1
loc (R) is limit of a nondecreasing

sequence of continuous functions.
Then there exists a weak solution u of (1.1) in QRN ,T (resp. a weak solution of (DΩ,T )) such

that u admits (S, u0) as initial trace. Moreover as t → 0, u(., t) converges to ∞ uniformly on any
compact in ω, and uniformly on ω ∩ Ω if q < q∗.

In the subcritical case q < q∗ we study the existence of solutions with trace (S, u0) for any
closed set S in Ω. Our main result is the following:

Theorem 1.5 Let 1 < q < q∗, and Ω = R
N (resp. Ω is bounded). Let S be a closed set in R

N ,
such that R = R

N\S is nonempty. Let u0 ∈ M+ (R).

(i) Then there exists a minimal solution u of (1.1) with initial trace (S, u0)
(ii) If S is compact in Ω and u0 ∈ M+

b (Ω) with support in R∪Ω, then there exists a maximal
solution (resp. a maximal solution such that u(., t) converges weakly to u0 in R as t→ 0).

In Section 6 we study equation (1.1) for 0 < q ≦ 1, with more generally signed solutions, and the
initial trace of the nonnegative ones. We first show the local regularity of the signed solutions, see
Theorem 6.1. We prove a uniqueness result for the Dirichlet problem, extending to any 0 < q ≦ 1
the results of [7], relative to the case 0 < q < 2/(N + 1) :

Theorem 1.6 Let Ω be bounded, 0 < q ≦ 1, and u0 ∈ Mb(Ω). Then there exists a unique weak
(signed) solution u of problem (PΩ,T ) with initial data u0. Let u0, v0 ∈ Mb(Ω) such that u0 ≦ v0.
Then u ≦ v. In particular if u0 ≧ 0, then u ≧ 0. If u0 ≦ 0, then u ≦ 0.

Finally we show that any nonnegative solution admits a trace as a Radon measure:

Theorem 1.7 Let 0 < q ≦ 1. Let u be any nonnegative weak solution of (1.1) in any domain Ω.
Then u admits a trace u0 in M+(Ω).

2 First properties of the solutions

We set QΩ,s,τ = Ω× (s, τ) , for any 0 ≦ s < τ ≦ ∞, thus QΩ,T = QΩ,0,T .

Notation 2.1 Let Ω = R
N or Ω bounded, and Σ ⊂ Ω. For any δ > 0, we set

Σext
δ = {x ∈ Ω : d(x,Σ) ≦ δ} , Σint

δ = {x ∈ Σ : d(x,Ω\Σ) > δ} .
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2.1 Weak solutions and regularity

Definition 2.2 Let q > 0 and Ω be any domain of R
N . We say that a function u is a weak

solution of equation of (1.1) in QΩ,T , if u ∈ C((0, T );L1
loc(QΩ,T ))∩L1

loc((0, T );W
1,1
loc (Ω)), |∇u|q ∈

L1
loc(QΩ,T ), and u satisfies (1.1) in the distribution sense:

∫ T

0

∫

Ω
(−uϕt − u∆ϕ+ |∇u|qϕ)dxdt = 0, ∀ϕ ∈ D(QΩ,T ). (2.1)

We say that u is a classical solution of (1.1) in QΩ,T if u ∈ C2,1(QΩ,T ) and satisfies(1.1) every-
where.

For u0 ∈ M+(RN ), we say that u is a weak solution of (PRN ,T ) if u is a weak solution of (1.1)
with trace u0.

Remark 2.3 (i)If u is any nonnegative function such that u ∈ L1
loc(QΩ,T ), and |∇u|q ∈ L1

loc(QΩ,T ),
and satisfies (2.1), then u is a weak solution of (1.1). Indeed, since u is subcaloric, there holds
u ∈ L∞

loc(QΩ,T )), |∇u| ∈ L2
loc(QΩ,T )), and u ∈ C((0, T );Lρ

loc(QΩ,T )), for any ρ ≧ 1, see [13, Lemma
2.4] for q > 1; the proof is still valid for any q > 0, since it only uses the fact that u is subcaloric.

(ii) The weak solutions of (PRN ,T ) are called weak Mloc solutions in [14].

Definition 2.4 Let Ω be a smooth bounded domain of RN . We say that a function u is a weak

solution of

(DΩ,T )

{
ut −∆u+ |∇u|q = 0, in QΩ,T ,
u = 0, on ∂Ω× (0, T ),

(2.2)

if it is a weak solution of (1.1) such that u ∈ C((0, T );L1 (Ω)), u ∈ L1
loc((0, T );W

1,1
0 (Ω)), and

|∇u|q ∈ L1
loc((0, T );L

1 (Ω)). We say that u is a classical solution of (DΩ,T ) if u ∈ C1,0
(
Ω× (0, T )

)

and u is a classical solution of (1.1).
For u0 ∈ Mb(Ω), we say that u is a weak solution of (PΩ,T ) if it is a weak solution of (DΩ,T )

such that u(., t) converges weakly to u0 in Mb(Ω) :

lim
t→0

∫

Ω
u(., t)ψdx =

∫

Ω
ψdu0, ∀ψ ∈ Cb(Ω). (2.3)

Next we recall the regularity of the weak solutions for q ≦ 2, see [13, Theorem 2.9], [14, Corollary
5.14]:

Theorem 2.5 Let 1 < q ≦ 2.
(i) Let Ω be any domain in R

N , and u be a weak nonnegative solution of (1.1) in QΩ,T . Then

u ∈ C
2+γ,1+γ/2
loc (QΩ,T ) for some γ ∈ (0, 1) . Thus for any sequence (un) of nonnegative weak solutions

of (1.1) in QΩ,T , uniformly locally bounded, one can extract a subsequence converging in C2,1
loc (QΩ,T )

to a weak solution u of (1.1) in QΩ,T .

(ii) Let Ω be bounded, and u be a weak nonnegative solution of (DΩ,T ). Then u ∈ C1,0
(
Ω× (0, T )

)

and u ∈ C
2+γ,1+γ/2
loc (QΩ,T ) for some γ ∈ (0, 1) . For any sequence of weak nonnegative solutions (un)

of (DΩ,T ), one can extract a subsequence converging in C2,1
loc (QΩ,T ) ∩ C1,0

loc

(
Ω× (0, T )

)
to a weak

solution u of (DΩ,T ).
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2.2 Upper estimates

We first mention the universal estimates relative to classical solutions of the Dirichlet problem, see
[17], and [13, Remark 2.8]:

Theorem 2.6 Let q > 1, and Ω be any smooth bounded domain. and u be the classical solution of
(DΩ,T ) with initial data u0 ∈ C1,0

(
Ω
)
∩C0

(
Ω
)
. Then for any t ∈ (0, T ),

‖u(., t)‖L∞(Ω) ≦ C(1 + t
− 1

q−1 )d(x, ∂Ω), ‖∇u(., t)‖L∞(Ω) ≦ D(t), (2.4)

where C > 0 and D ∈ C((0,∞)) depend only of N, q,Ω. Thus, for any sequence (un) of classical
solutions of (DΩ,T ), one can extract a subsequence converging in C2,1

loc (QΩ,T ) to a classical solution
u of (DΩ,T ).

Morever some local estimates have been obtained in [27]:

Theorem 2.7 Let Ω be any domain in R
N , and u be any classical solution of (1.1) in QΩ,T . Then

for any ball B(x0, 2η) ⊂ Ω, there holds in QB(x0,η),T

|∇u| (., t) ≦ C(t
− 1

q + η−1 + η
− 1

q−1 )(1 + u(., t)), C = C(N, q). (2.5)

Thus, for any sequence of classical solutions (un) of (1.1) in QΩ,T , uniformly bounded in L∞
loc(QΩ,T ),

one can extract a subsequence converging in C2,1
loc (QRN ,T ) to a classical solution u of (1.1).

A local regularizing effect is proved in [12]:

Theorem 2.8 Let q > 1. Let u be any nonnegative weak subsolution of (1.1) in QΩ,T , and let
B(x0, 2η) ⊂ Ω such that u has a trace u0 ∈ M+(B(x0, 2η)). Then for any τ < T, and any t ∈ (0, τ ] ,

sup
x∈B(x0,η/2)

u(x, t) ≦ Ct−
N
2 (t+

∫

B(x0,η)
du0), C = C(N, q, η, τ). (2.6)

Concerning the Cauchy problem in QRN ,T , global regularizing effects have been obtained in [14]

for weak solutions with trace u0 in Lr(RN ), r ≧ 1, or in Mb(R
N ). A universal estimate of the

gradient was proved in [9] for any classical solution of (1.1) in QRN ,∞ such that u ∈ Cb(QRN ,∞).
From [12], this estimate is valid without conditions as |x| → ∞, implying growth estimates of the
function:

Theorem 2.9 Let q > 1. Let u be any classical solution, in particular any weak solution if q ≦ 2,
of (1.1) in QRN ,T . Then

|∇u(., t)|q ≦ 1

q − 1

u(., t)

t
, in QRN ,T . (2.7)

Moreover, if there exists a ball B(x0, 2η) such that u has a trace u0 ∈ M+((B(x0, 2η)), then for
any t ∈ (0, T ) ,

u(x, t) ≦ C(q)t−
1

q−1 |x− x0|q
′

+ C(t−
1

q−1 + t+

∫

B(x0,η)
du0), C = C(N, q, η). (2.8)
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Finally we recall some well known estimates, useful in the subcritical case, see [4, Lemma 3.3]:

Theorem 2.10 Let q > 0 and let Ω be any domain of RN and u be any (signed) weak solution of

equation of (1.1) in QΩ,T (resp. of (DΩ,T )). Then, u ∈ L1
loc((0, T );W

1,k
loc (Ω), for any k ∈ [1, q∗) ,

and for any open set ω ⊂⊂ Ω, and any 0 < s < τ < T,

‖u‖Lk((s,τ);W 1,k(ω)) ≦ C(k, ω)(‖u(s, .)‖L1(ω) + ‖|∇u|q + |∇u|+ |u|‖L1(Qω,s,τ )
). (2.9)

If Ω is bounded, any solution u of (DΩ,T ) satisfies u ∈ Lk((s, τ);W 1,k
0 (Ω)), for any k ∈ [1, q∗) , and

‖u‖
Lk((s,τ);W 1,k

0 (Ω))
≦ C(k,Ω)(‖u(., s)‖L1(Ω) + ‖|∇u|q‖L1(QΩ,s,τ )

). (2.10)

2.3 Uniqueness and comparison results

Next we recall some known results, for the Cauchy problem, see [11, Theorems 2.1,4.1,4.2 and
Remark 2.1 ],[14, Theorem 2.3, 4.2, 4.25, Proposition 4.26 ], and for the Dirichlet problem, see [1,
Theorems 3.1, 4.2], [7], [14, Proposition 5.17], [24].

Theorem 2.11 Let Ω = R
N (resp. Ω bounded). (i) Let 1 < q < q∗, and u0 ∈ Mb(R

N ) (resp.
u0 ∈ Mb(Ω)). Then there exists a unique weak solution u of (1.1) with trace u0 (resp. of (PΩ,T )).
If v0 ∈ Mb(Ω) and u0 ≦ v0, and v is the solution with trace v0, then u ≦ v.

(ii) Let u0 ∈ Lr (Ω) , 1 ≦ r ≦ ∞. If 1 < q < (N +2r)/(N + r), or if q = 2, r <∞, there exists a
unique weak solution u of (PRN ,T ) (resp. (PΩ,T )) such that u ∈ C([0, T ) ;Lr

(
R
N
)
). If v0 ∈ Lr

(
R
N
)

and u0 ≦ v0, then u ≦ v. If u0 is nonnegative, then for any 1 < q ≦ 2, there still exists a weak
nonnegative solution u of (PRN ,T ) (resp. (PΩ,T )) such that u ∈ C([0, T ) ;Lr

(
R
N
)
).

Remark 2.12 Let 1 ≦ q < q∗, and u0 ∈ M+
b (R

N ) and u be the solution of (PRN ,T ) in R
N , and uΩ

be the solution of (DΩ,T ) for bounded Ω with initial data uΩ0 = u0xΩ, then u
Ω ≦ u.

We also mention a stability property needed below:

Proposition 2.13 Assume that 1 < q < q∗. Let Ω = R
N (resp. Ω be bounded), and u0,n, u0 ∈

M+
b (Ω) such that (u0,n) converge to u0 weakly in Mb(Ω). Let un, u be the unique nonnegative

solutions of (1.1) in QRN ,T (resp. of (DΩ,T )) with initial data u0,n, u0. Then (un) converges to u

in C2,1
loc (QRN ,T ) (resp. in C2,1

loc (QΩ,T ) ∩ C1,0
(
Ω× (0, T )

)
).

Proof. (i) From [14, Theorem 2.2], (un) is uniformly locally bounded in QRN ,T in case Ω = R
N .

From Theorem 2.5, one can extract a subsequence still denoted (un) converging in C2,1
loc (QRN ,T )

(resp. C2,1
loc (QΩ,T )∩C1,0

(
Ω× (0, T )

)
) to a classical solution w of (1.1) in QRN ,T (resp. of (DΩ,T )).

From uniqueness, we only have to show that w(., t) converges weakly in Mb(Ω) to u0. In any case,
from [14, Theorem 4.15 and Lemma 5.11], |∇un|q ∈ L1

loc([0, T ) ;L
1(Ω)) and

∫

Ω
un(., t)dx +

∫ t

0

∫

Ω
|∇un|qdx ≦

∫

Ω
du0,n, (2.11)
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and lim
∫
Ω du0,n =

∫
Ω du0. Therefore (un) is bounded in L∞((0, T ), L1(Ω)), and (|∇un|q) is bounded

in L1
loc([0, T ) ;L

1(Ω)). From Theorem 2.10, for any k ∈ [1, q∗) , (un) is bounded in Lk((0, T ),W 1,k
loc (R

N ))

(resp. Lk((0, T ),W 1,k
0 (Ω)). Then for any τ ∈ (0, T ) , ( |∇un|q) is equi-integrable in QBR,τ for any

R > 0 (resp. in QΩ,τ ). For any ξ ∈ C1
c (R

N ) (resp. ξ ∈ C1
b (Ω)),

∫

Ω
un(., t)ξdx+

∫ t

0

∫

Ω
(∇un.∇ξ + |∇un|q ξ)dxdt =

∫

Ω
ξdu0,n,

and we can go to the limit and obtain

∫

Ω
w(., t)ξdx +

∫ t

0

∫

Ω
(∇w.∇ξ + |∇un|q ξ)dxdt =

∫

Ω
ξdu0,

Then w is the unique weak solution of (PΩ,T ), thus w = u.

Corollary 2.14 Suppose 1 < q < q∗, Ω bounded, and let v ∈ C2,1(QΩ,T )∩C0(Ω× (0, T )) such that

vt −∆v + |∇v|q ≧ 0, in D′(Ω),

and v/Ω has a trace u0 ∈ Mb(Ω). Let w be the solution of (DΩ,T ) with trace u0. Then v ≧ w.

Proof. Let ǫ > 0 and (ϕn) be a sequence in D+(Ω) with values in [0, 1] , such that ϕn(x) = 1
if d(x, ∂Ω) > 1/n, and wǫ

n be the solution of (DΩ,T ) with trace ϕnv(., ǫ) at time 0. From [27,
Proposition 2.1], v(., t + ǫ) ≧ wǫ

n. As n → ∞, (ϕnv(., ǫ)) converges to v(., ǫ) in L1(Ω), then from
above, (wǫ

n) converges to the solution wǫ of (DΩ,T ) with trace v(., ǫ). Then v(., t + ǫ) ≧ wǫ. As
ǫ→ 0, (v(., ǫ)) converges to u0 weakly in Mb(Ω), thus (w

ǫ) converges to w, thus v ≧ w.

2.4 The case of zero initial data

Here we give more informations on the behaviour of the solutions with trace 0 on some open set. We
show that the solutions are locally uniformly bounded on this set and converge locally exponentially
to 0 as t → 0, improving some results of [17] for the Dirichlet problem.

Lemma 2.15 Let F be a closed set in R
N , F 6= R

N (resp. a compact set in Ω bounded).

(i) Let u be a classical solution of (1.1) in QRN ,T (resp. (DΩ,T )) such that u ∈ C(RN × [0, T ))

(resp. u ∈ C([0, T ) ;C0(Ω)) and suppu(0) ⊂ F . Then for any δ > 0, (resp. such that δ <
d(F , ∂Ω)/2)

‖u(., t)‖L∞(Ω\Fext
δ ) ≦ C(N, q, δ)t, ∀t ∈ [0, T ) . (2.12)

In particular u(., t) converges uniformly to 0 on Ω\Fext
δ as t → 0. Moreover, there exist Ci,δ =

Ci,δ(N, q, δ) > 0 (i = 1, 2), and τδ > 0 such that

‖u(., t)‖L∞(Ω\Fext
δ ) ≦ C1,δe

−C2,δ
t on (0, τδ] . (2.13)

(ii) As a consequence, for any classical solution w of (1.1) in QRN ,T (resp. (DΩ,T )) such that w(., t)
converges to ∞ as t→ 0, uniformly on Fext

δ , for some δ > 0, there holds u ≦ w.

(iii) If q ≦ 2, then (i) still holds for any weak solution u of (1.1) (resp. of (DΩ,T )) with trace 0
in M(RN\F) (resp. which converges weakly to 0 in Mb(Ω\F)), and (ii) holds if F ⊂⊂ Ω.
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Proof. From [12, Lemma 3.2], for any domain Ω of RN , if u is any classical solution of (1.1) in
QΩ,T such that u ∈ C(Ω× [0, T )), for any ball B(x0, 3η) ⊂ Ω, and any t ∈ [0, T ) ,

‖u(., t)‖L∞(B(x0,η))
≦ C(N, q)η−q′t+ ‖u0‖L∞(B(x0,2η))

. (2.14)

(i) Let Ω be arbitrary. For any x0 ∈ Ω\Fext
δ , taking η = δ/3 we deduce (2.12) follows. Next

suppose Ω bounded and F compact. Consider a regular domain Ω′ such that Fext
2δ ⊂ Ω′ ⊂⊂ Ω. Let

γ = d(Ω′, ∂Ω). For any x0 ∈ Ω′\Fext
δ , taking η = min(δ/3, γ/3), we have B(x0, 3η) ⊂ Ω\F thus we

still get (??). As a consequence u(., t) ≦ Ct in Ω′\Fext
δ , with C = C(N, q, δ, γ), in particular on

∂Ω′. Following an argument of [13, Lemma 4.8], the function z = u− Ct solves

zt −∆z = − |∇u|q − C in Ω\Ω′

then z+ is subcaloric and z+ = 0 on the parabolic boundary of Ω\Ω′, thus z+ = 0. Thus u(., t) ≦ Ct
in Ω\Fext

δ .
Next consider the behaviour for small t. We use a supersolution in B1 × [0,∞) given in [25,

Proposition 5.1]. Let α ∈ (0, 1/2) , and r 7→ dα(r) ∈ C2([0, 1)), radial, with dα(x) = 1 − r for
1− r < α, dα(r) = 3α/2 for 1− r > 2α, |∇dα| ≦ 1, |∆dα| ≦ C(N)d−2

α . Let

v(x, t) = e
1

dα(x)
−m dα(x)3

t

with m ≦ m(N) small enough. Then if α ≦ α(N) small enough, there exists τ(α) > 0 such that v
is a supersolution of (1.1) in B1 × (0, τ(α)] . Then v(x, t) = C1(α)e

−C2(α)/t in B1/2 × (0, τ(α)] . And

v is infinite on ∂B1 × (0, τ(α)] and vanishes on B1 × {0} . Then by scaling, for any x0 ∈ R
N\Fext

δ

(resp. x0 ∈ Ω\Fext
δ ), from the comparison principle in B(x0, δ) ∩Ω, we get

u(x0, t) ≦ δ−av(x0/δ, t/δ
2) ≦ C1(α)δ

−ae−C2(α)δ2/t (2.15)

and (2.13) follows.

(ii) Suppose that w(., t) converges to ∞ as t → 0, uniformly on Fext
δ . Then for any ǫ0 > 0,

there exists τ0 ∈ (0, T ) such that u(., t) ≦ ǫ0 in Ω\Fδ × (0, τ0] . Let ǫ < τ0. then there exists τǫ < τ0
such that for any θ ∈ (0, τǫ) , w(., θ) ≧ maxΩ u(., ǫ) in Fδ. Then u(., t + ǫ) ≦ w(., t + θ) + ǫ0, in
Ω × (0, τ0 − ǫ] from the comparison principle (note that in case Ω = R

N , u(., t) is bounded for
t > 0). As θ → 0, then ǫ → 0, we get u(., t) ≦ w(., t) + ǫ0, in Ω × (0, τ0] . From the comparison
principle, u(., t) ≦ w(., t) + ǫ0, in Ω× (0, T ). As ǫ0 → 0, we deduce that u ≦ w.

(iii) Assume q ≦ 2. First suppose Ω = R
N . From [13, Proposition 2.17 and Corollary 2.18], the

extension u of u by 0 to (−T, T ) is a weak solution in QRN\F ,−T,T , hence u ∈ C2,1(RN\F × [0, T )),
then u is a classical solution of (1.1) in QRN\F ,−T,T ; thus (2.12) and (2.13) follow. Moreover, if

F is compact, then u(., ǫ/2) ∈ Cb(R
N ) from (2.12), then u(., ǫ) ∈ C2

b (R
N ), thus we still obtain

u ≦ w from the comparison principle. Next suppose Ω bounded and F compact. Arguing as in [13,

Lemma 4.8], we show that u ∈ C0(Ω\Fext
δ × [0, T )), and u(0) = 0 in Ω\Fext

δ . We still get (2.12) by
considering z as above, and using the Kato inequality, and (2.13) from the comparison principle.
Moreover we still get u ≦ w.
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3 Existence of initial trace as a Borel measure

Recall a simple trace result of [13].

Lemma 3.1 Let Ω be any domain of R
N , and U ∈ C((0, T );L1

loc(Ω)) be any nonnegative weak
solution of equation

Ut −∆U = Φ in QΩ,T , (3.1)

with Φ ∈ L1
loc(QΩ,T ), Φ ≧ −F, where F ∈ L1

loc(Ω×[0, T )). Then U(., t) admits a trace U0 ∈ M+(Ω).
Furthermore, Φ ∈ L1

loc([0, T );L
1
loc(Ω)), and for any ϕ ∈ C2

c (Ω× [0, T )),

−
∫ T

0

∫

Ω
(Uϕt + U∆ϕ+Φϕ)dxdt =

∫

Ω
ϕ(., 0)dU0 . (3.2)

If Φ has a constant sign, then U ∈ L∞
loc( [0, T ) ;L

1
loc(Ω)) if and only if Φ ∈ L1

loc([0, T );L
1
loc(Ω)).

As a consequence, we get a characterization of the solutions of (1.1) in any domain Ω which
have a trace in M+(Ω) : as in [13, Proposition 2.15] in case q > 1, we find:

Proposition 3.2 Let q > 0. Let u be any nonnegative weak solution u of (1.1) in QΩ,T . Then
u has a trace u0 in M+(Ω) if and only if u ∈ L∞

loc( [0, T ) ;L
1
loc(Ω)), and if and only if |∇u|q ∈

L1
loc(Ω× [0, T )). And then for any t ∈ (0, T ), and any ϕ ∈ C1

c (Ω× [0, T )),

∫

Ω
u(., t)ϕdx +

∫ t

0

∫

Ω
(−uϕt +∇u.∇ϕ+ |∇u|q ϕ)dxdt =

∫

Ω
ϕ(., 0)du0. (3.3)

And if q > 1, for any nonnegative ζ, ξ ∈ C1
c (Ω),

∫

Ω
u(., t)ζdx+

∫ t

0

∫

Ω
(∇u.∇ζ + |∇u|q ζ)dxdt =

∫

Ω
ζdu0, (3.4)

∫

Ω
u(., t)ξq

′

dx+
1

2

∫ t

0

∫

Ω
|∇u|qξq′dx ≦ C(q)t

∫

Ω
|∇ξ|q′dx+

∫

Ω
ξq

′

du0. (3.5)

Proof. The equivalence and equality (3.3) hold from Lemma 3.1. Moreoever for any 0 < s <
t < T,

∫

Ω
u(., t)ξq

′

dx+

∫ t

s

∫

Ω
|∇u|qξq′dx = −q′

∫ t

s

∫

Ω
ξ1/(q−1)∇u.∇ξdx+

∫

Ω
u(s, .)ξq

′

dx

≦
1

2

∫ t

s

∫

Ω
|∇u|qξq′dx+ C(q)t

∫

Ω
|∇ξ|q′dx+

∫

Ω
u(., s)ξq

′

dx,

hence we obtain (3.5) as s→ 0.

Remark 3.3 Note that u ∈ L∞
loc( [0, T ) ;L

1
loc(Ω)) if and only if lim supt→0

∫
B(x0,ρ)

u(., t)dx is finite,

for any ball B(x0, ρ) ⊂⊂ Ω.
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Remark 3.4 If Ω is bounded, u0 ∈ M+
b (Ω) and u is any nonnegative classical solution (resp. weak

solution if q ≦ 2) of (PΩ,T ), then (3.5) still holds for any nonnegative ξ ∈ C1
b (Ω). Indeed for any

0 < s < t < T, (3.4) is replaced by an inequality

∫

Ω
u(., t)ζdx+

∫ t

0

∫

Ω
(∇u.∇ζdx+ |∇u|q ζ)dxdt =

∫ t

0

∫

∂Ω

∂u

∂ν
ζdsdt+

∫

Ω
u(., s)ζdx ≦

∫

Ω
u(., s)ζdx,

and (3.5) follows as above.

Then we prove the trace Theorem:

Proof of Theorem 1.1. Let q > 1. Let u be any nonnegative weak solution of (1.1) in QΩ,T .

(i) Let x0 ∈ Ω. Then the following alternative holds (for any τ < T ):

(A1) Either there exists a ball B(x0, ρ) ⊂ Ω such that
∫ τ
0

∫
B(x0,ρ)

|∇u|q dxdt < ∞. Then

from Lemma 3.1 in B(x0, ρ), there exists a measure mρ ∈ M+(B(x0,ρ)), such that for any
ψ ∈ C0

c (B(x0, ρ)),

lim
t→0

∫

B(x0,ρ)
u(., t)ψ =

∫

B(x0,ρ)
ψdmρ, (3.6)

(A2) Or for any ball B(x0, ρ) ⊂ Ω there holds
∫ τ
0

∫
B(x0,ρ)

|∇u|q dxdt = ∞. Taking ψ = ξq
′

with

ξ ∈ D(Ω), with ξ ≡ 1 on B(x0, ρ), with values in [0, 1] , we have for any 0 < t < τ,
∫

B(x0,ρ)
u(., t)dx ≧

∫

Ω
u(., t)ξq

′

dx =

∫

Ω
u(., τ)ξq

′

dx+

∫ τ

t

∫

Ω
(q′ξ1/(q−1)∇u.∇ξ + |∇u|q ξq′)dxdt

≧
1

2

∫ τ

t

∫

Ω
|∇u|q ξq′)dxdt− Cq

∫ τ

t

∫

Ω
|∇ξ|q′ dxdt,

then

lim
t→0

∫

B(x0,ρ)
u(., t)dx = ∞. (3.7)

(ii) We define R as the open set of points x0 ∈ Ω satisfying (A1) and S =Ω\R. Then from (A1),
there exists a unique measure u0 ∈ M(R) such that (1.8) holds; and (1.9) holds from (A2).

3.0.1 First examples

1) Let 1 < q < q∗. (i) The V.S.S. Y{0} given by (1.5) in QRN ,∞ admits the trace ({0} , 0).
(ii) Let Ω be bounded, and x0 ∈ Ω. There exist a weak solution Y Ω

{x0}of (DΩ,∞) with trace

({x0} , 0)), called V.S.S. in Ω relative to x0. It is the unique weak solution such that

lim
t→0

∫

Bρ

Y Ω
{x0}(., t)dx = ∞,∀ρ > 0, lim

t→0

∫

Ω
Y Ω
{x0}(., t)ψdx = 0,∀ψ ∈ Cc(Ω\ {a}), (3.8)

see [13, Theorem 1.5].

2) Let 1 < q < q∗. From [26], for any β > F (0), there exists a unique positive radial self-similar

solution Uβ(x, t) = t−a/2fβ(
|x|√
t
) such that

fβ(0) = β, f ′β(0) = 0, and lim
η→∞

fβ(η)η
a = C(β) > 0;
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then Uβ has the trace ({0} , C(β) |x|−a). Notice that x 7→ |x|−a belongs to L1
loc(R

N\ {0}) but not
to L1

loc(R
N ).

3) Let q∗ < q < 2. For any β > 0, there exists a unique solution as above, see [26]. Then Uβ has
the trace (∅, C(β) |x|−a); notice that x 7→ |x|−a belongs to L1

loc(R
N ) but not to L1(RN ).

4) Let Ω be bounded, and q > 1. From [17], there exists a solution of (DΩ,∞) which converges to ∞
uniformly on the compact sets of Ω as t→ 0. Then its trace is (Ω, 0). See more details in Section 4.

3.0.2 Lower estimates

We first give interior lower estimates, valid for any q > 1, by constructing a subsolution of the
equation, with infinite trace in B1/2 and compact support in B1.

Proposition 3.5 Let q > 1, and Ω be any domain in R
N , and let u be any classical solution u of

(1.1) in QΩ,T , such that u converges uniformly to ∞ on a ball B(x0, ρ) ⊂ Ω, as t→ 0. Then there
exists C = C(N, q, ρ) such that

lim inf
t→0

t
1

q−1u(x, t) ≧ C = C(N, q, ρ), ∀x ∈ B(x0, ρ/2), (3.9)

lim inf
t→0

t
1

q−1u(x0, t) ≧ Cqρ
q′ , Cq = ((q′(1 + q′))q(q − 1))−

1
q−1 . (3.10)

Proof. Let h, λ > 0 be two parameters. We consider a function t ∈ (0,∞) 7−→ ψ(t) = ψh(t) ∈
(1,∞) depending on h, introduced in [12], solution of the ordinary differential equation

ψt + h(ψq − ψ) = 0 in (0,∞) , ψ(0) = ∞, ψ(∞) = 1, (3.11)

given explicitely by ψ(t) = (1 − e−h(q−1)t)−
1

q−1 ; hence ψq − ψ ≧ 0, and ψ(t) ≧ (h(q − 1)t)−1/(q−1)

for any t > 0. Setting

V (x, t) = ψ(t)f(|x|), f(r) = (1 + q′r)(1− r)q
′

, ∀r ∈ [0, 1] ,

we compute

D = Vt −∆V + |∇V |q − λV = (
∣∣f ′

∣∣q − hf0)(ψ
q − ψ) + (

∣∣f ′
∣∣q −∆f − λf)ψ.

Note that f ′(r) = −Mr(1 − r)q
′−1, with M = q′(1 + q′). Thus f ′(0) = 0 and f0 is nonincreasing,

and |f ′|q − hf ≦ 0 on [0, 1] for h ≧ C1 =M q. Otherwise |f ′|q −∆f − λf = (1− r)q
′

F (r) with

F (r) =M qrq − λ(1 + q′r) +MG(r), G(r) =
N − (N − 1 + q′)r

(1− r)2
.

Then F (0) =MN − λβ ≦ 0 for λ ≧ C2 = NM. We have

F ′(r) = qM qrq−1 − λq′ +MG′(r), G′(r) = (1− r)−3(N + 1− q′ − (N − 1 + q′)r).

If q ≦ (N + 1)/N, there holds q′ > N + 1, hence G′ ≦ 0, thus F ′ ≦ 0, for λ ≧ (q − 1)M q. If
q > (N + 1)/N, then G′(r) ≦ 0 for r ≧ rN,q = (N + 1− q′)/(N − 1 + q′), and G′ is continuous on
[0, 1), hence bounded on [0, rN,q] . Then F

′ ≦ 0 as soon as λ ≧ C3 = (q−1)M q+(1+q′)max[0,rN,q]G
′.
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We fix h = h(N, q) ≧ C1 and λ = λ(N, q) ≧ max(C2, C3), then F (r) ≦ 0 on [0, 1] , thus D ≦ 0.
Then the function

(x, t) 7−→ w(x, t) = e−λtV (x, t) = e−λtψ(t)f0(|x|)
satisfies

wt −∆w + eλ(q−1)t |∇w|q ≦ 0,

hence it is a subsolution of the Dirichlet problem (DB1,T ), since e
λ(q−1)t ≧ 1. By scaling the function

(x, t) 7−→ w̃(x, t) = ρ−aw((x − x0)/ρ, t/ρ
2) is a subsolution of (DB(x0,ρ),T ). And u is a solution

which converges uniformly to ∞ on B(x0, ρ). For given ǫ > 0, there holds w̃ ≦ mǫ = ρ−aψ(ǫ/ρ2)
in B(x0, 2η); and there exists τǫ > 0 such that for any θ ∈ (0, τǫ) , u(., θ) ≧ mǫ in B(x0, 2η). Then
w̃(., t+ ǫ) ≦ u(., t+ θ). As θ → 0 and ǫ→ 0, we get w̃ ≦ u in B(x0, 2η). And

w̃(x, t) ≧ ρ−ae−λt/ρ2ψ(t/ρ2) ≧ (ρ/2)q
′

e−λt/ρ2(h(q − 1)t)−1/(q−1)

in B(x0, ρ), hence (3.9) holds. Taking h =M q = (q′(1+q′))q, there holds u(x0, t) ≧ ρq
′

e−λt/ρ2(h(q−
1)t)−1/(q−1), thus (3.10) follows.

In case 1 < q < q∗, we give a lower bound for all the weak solutions at any singular point, by an
argument of stability-concentration, well-known for semilinear elliptic or parabolic equations, see
[23].

Proposition 3.6 Let 1 < q < q∗. (i) Let u be any nonnegative weak solution u (1.1) in QRN ,T

with singular set S. Then for any x0 ∈ S, there holds u(x, t) ≧ Y{0}(x−x0, t) in QRN ,T , where Y{0}
is the V.S.S. given at (1.5). In particular,

u(x0, t) ≧ C(N, q)t−a/2, ∀t > 0. (3.12)

(ii) Let Ω bounded, and u be any nonnegative weak solution u of (DΩ,T ). Then u(x, t) ≧

Y Ω
{x0}(x, t) in QΩ,T , where Y

Ω
{x0} is given by (3.8). In particular,

lim inf
t→0

t
a
2u(x0, t) ≧ C(N, q) > 0. (3.13)

In any case, u(., t) converges uniformly on S to ∞ as t→ 0.

Proof. (i) We can assume x0 = 0. For any ε > 0, there holds limt→0

∫
Bε
u(x, t)dx = ∞. And u ∈

C2,1(QRN ,T ).We will prove that for fixed k > 0, there holds u ≧ uk, where uk is the unique solution

in R
N with initial data kδ0, from Theorem 2.11. There exists t1 > 0 such that

∫
B2−1

u(x, t1)dx > k;

thus there exists s1,k > 0 such that
∫
B2−1

Ts1,kv(x, t1)dx = k. By induction, there exists a decreasing

sequence (tn) converging to 0, and a sequence (sn,k) such that
∫
B2−n

Tsn,k
u(x, tn)dx = k. Let

p ∈ N, p > 1. Denote by un,k,p the solution of the Dirichlet problem (DBp,∞), with initial data
un,k,p(., 0) = Tsn,k

u(., tn)χB2−n . Then we get u ≧ un,k,p in Bp, from Corollary 2.14. As n → ∞,

(un,k,p(0)) converges to kδ0 weakly in Mb(Bp). Indeed for any ψ ∈ C+(Bp),

∣∣∣∣∣

∫

Bp

vn,k,p(0)ψdx − kψ(0)

∣∣∣∣∣ =
∣∣∣∣∣

∫

B2−n

Tsn,k
v(x, tn)ψdx− kψ(0)

∣∣∣∣∣ ≦ k ‖ψ − ψ(0)‖L∞(B2−n ) .
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Then (un,k,p) converges in C
2,1
loc (QBp,T ) to the solution uk,Bp of the problem in Bp with initial data

kδ0, from Proposition 2.13. Thus u ≧ uk,Bp . Finally, as p → ∞, uk,Bp converges to uk from [13,
Lemma 4.6] and uniqueness of uk; thus u ≧ uk. As k → ∞, (uk) converges to Y{0}, hence v ≧ Y{0}.
Then (3.12) holds with C = F (0) given by (1.5).

(ii) In the same way, denote by uk,Ωx0 , un,k,x0 the solutions of the Dirichlet problem (DΩ,∞), with
respective initial data kδx0and Tsn,k

v(., tn)χB(x0,2
−nd)

, where d = d(x0, ∂Ω). Then as above we get

u ≧ un,k,x0 in Ω, then u ≧ uk,Ωx0 . As k → ∞, (uk,Ω) converges to Y Ω
{x0}, and moreover, for any ε > 0,

there exists τ = τ(ε, d) such that Y{x0}(x, t) = Y (x− x0, t) ≦ Y Ω
{x0} + ε in Ω× (0, τ), see the proof

of [13, Theorem 1.5]. Then u ≧ Y Ω
{x0} and (3.13) follows by taking ε = F (0)/2.

Remark 3.7 As a consequence, for 1 < q < q∗, there exists no weak solution u of (1.1) in QRN ,T

with singular set S = R
N . Indeed if u exists, u satisfies (3.12), then u converges uniformly on R

N

as t → 0. Then for any k > 0 and any ϕ ∈ D+(B1), ϕ = 1 in B1/2, u is greater than the solution
uk,p with initial trace kϕ(x/p). As p→ ∞, uk,p tends to the unique solution uk with initial data k,
namely uk ≡ k, thus u ≧ k for any k > 0, which is contradictory. The question is open for q ≧ q∗.

Remark 3.8 Another question is to know for which kind of solutions (3.13) still holds when q ≧ q∗.
We give a partial answer in Section 4, see Proposition 4.7.

3.0.3 Trace of the Cauchy problem

In this part we show Theorem 1.2, based on the universal estimate of Theorem 2.9.

Proof of Theorem 1.2. (i) From Theorem 2.9, u satisfies (2.7). Reporting in (1.1), we deduce

ut −∆u+
1

q − 1

u

t
≧ 0.

Setting y = t1/(q−1)u, we get that

yt −∆y = t
1

q−1 (
1

q − 1

u

t
− |∇u|q) ≧ 0

in QRN ,T , thus y has a trace γ ∈ M+(RN ), see Lemma 3.1. Since u(., t) converges weak* to u0 in

R
N\S, we find that supp γ ⊂ S. Let B(x0, 2η) ⊂ R

N\S. From (2.8), we have

y(x, t) ≦ C(q) |x− x0|q
′

+ C(1 + tq
′

+ t
1

q−1

∫

B(x0,η)
du0), C = C(N, q, η),

hence γ ∈ L∞
loc(R

N ).

Remark 3.9 In particular for q < q∗, the V.S.S. Y{0} in R
N satisfies γ = 0, which can be

checked directly, since limt→0t
1/(q−1)−a/2 = 0. The function U given at Theorem 1.3 satisfies

γ(x) = cq(x
+
1 )

q′ .
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4 Solutions with trace (ω ∩ Ω, 0), ω open

Here we extend and improve the pionneer result of [17], valid for the Dirichlet problem in Ω bounded.
In case of the Cauchy problem, the estimates (2.5) and (2.8) are essential for existence.

Theorem 4.1 Let q > 1 and ω be a smooth open set in R
N with ω 6= R

N (resp. a smooth open set
in Ω bounded). There exists a classical solution u = Yω (resp. u = Y Ω

ω
) of (1.1) in QRN ,∞ (resp.

of (DΩ,∞)), with trace (ω ∩ Ω, 0). Moreover it satisfies uniform properties of convergence:

lim
t→0

inf
x∈K

u(x, t) = ∞ ∀K compact ⊂ ω, lim
t→0

sup
x∈K

u(x, t) = 0 ∀K compact ⊂ Ω\ω. (4.1)

More precisely, for any δ > 0,

lim inf
t→0

t
1

q−1u(x, t) ≧ C(N, q)δq
′

, ∀x ∈ ωint
δ , (4.2)

sup
Ω\ωext

δ

u(x, t) ≦ C(N, q, δ)t, ∀t > 0. (4.3)

If q < q∗, then for any x ∈ ω ∩ Ω,

inf
t>0

t
a
2u(x, t) ≧ C(N, q) > 0 (resp. lim inf

t→0
t
a
2u(x, t) ≧ C(N, q) > 0). (4.4)

Moreover, if Ω = R
N , the function Yω satisfies the growth condition in QRN ,∞

Y
ω
(x, t) ≦ C(t+ t−

1
q−1 )(1 + |x|q′), C = C(N, q, ω) (4.5)

Proof. First suppose Ω bounded, then ω is a compact set in R
N . We consider a nondecreasing

sequence (ϕp) of nonnegative functions in C1
c (Ω), with support in ω, such that ϕp ≧ p in ωint

1/p,

and the nondecreasing sequence of classical solutions uΩp with initial data ϕp. From Theorem 2.6,(
uΩp

)
converges in C2,1

loc (QΩ,T ) to a solution Y Ω
ω

of (DΩ,T ). Then by construction of uΩp , Y
Ω
ω
(., t)

converges uniformly to ∞ on the compact sets in ω.Then the conclusions hold from Lemma 2.15,
Propositions 3.5 and 3.6.

Next suppose Ω = R
N . We can construct a nondecreasing sequence (ϕp)p>p0 of functions in

C+
b (RN ), with support in ω∩Bp, such that ϕp ≧ p on ωint

1/p∩Bp−1/p. Let up be the classical solution

of (1.1) in QRN ,∞ with initial data ϕp. Since ω 6= R
N , there exists a ball B(x0, η) ⊂ R

N\ω). From
(2.8),

up(x, t) ≦ C(q)t
− 1

q−1 |x− x0|q
′

+ C(N, q, η)(t
− 1

q−1 + t), (4.6)

thus (up) is locally uniformly bounded in QRN ,∞. From Theorem 2.7, (up) converges in C
2,1
loc (QRN ,∞)

to a classical solution Yω of (1.1) in QRN ,∞. Then by construction of up, Yω(., t) converges uniformly
to ∞ on the compact sets in ω, and the conclusions follow as above. Moreover, from (4.6), Yω

satisfies (4.5).

Remark 4.2 Moreover, from the construction of the solutions, denoting by yϕ the solution of (1.1)
with initial data ϕ ∈ C+

b (R
N ) ∩ C+

0 (ω) (resp. the solution of (DΩ,∞) with initial data ϕ ∈ C+
0 (Ω))

we get the relations

Y Ω
ω

= sup
ϕ∈C+

0 (Ω),suppϕ⊂ω

yϕ, Yω = sup
ϕ∈C+

b (RN ),suppϕ⊂ω

yϕ. (4.7)
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Indeed we get yϕ ≦ Yω , for any nonnegative ϕ ∈ C1
c (R

N ) (resp. C1
c (Ω)) with suppϕ ⊂ ω, and the

relation extends to any ϕ ∈ C+
b (R

N ) (resp. C+
0 (Ω)), from uniqueness of yϕ.

Remark 4.3 When Ω is bounded, and ω ⊂ Ω, or ω = Ω, it was shown in [17] that there exists a
solution Y Ω

ω
satisfying (4.1). Moreover, using the change of unknown v = e−u, they proved that if

ω ⊂⊂ Ω, then for any x ∈ ∂ω,

lim
t→0

Y Ω
ω
(x, t) = ∞, if q < 2; lim

t→0
Y Ω

ω
(x, t) = ln 2, if q = 2; lim

t→0
Y Ω

ω
(x, t) = 0, if q > 2.

(4.8)

Next we study the question of the uniqueness of solutions with trace (ω, 0) which appears to be
delicate. A first point is to precise in what class of solutions the uniqueness may hold, in particular
in what sense the initial data are achieved.

Definition 4.4 Let Ω = R
N (resp. Ω bounded) and ω be a open set in Ω. We denote by C the

class of classical solutions of (1.1) in QRN ,T (resp. of (DΩ,T )) satisfying (4.1). We denote by W
the class of weak solutions of (1.1) in QRN ,T (resp. of (DΩ,T )) with trace (ω, 0).

In [17], the authors consider the class C. They show that if ω is compact contained in Ω bounded
and ω,Ω are starshaped with respect to the same point or q ≧ 2, then Y Ω

ω
is unique in that class.

But we cannot ensure that any weak solution u with trace (ω, 0) converges uniformly to ∞ on the
compact sets in ω. And in case q > 2 we even do not know if u is continuous. Here we give some
partial results, where we do not suppose that Ω is starshaped.

Theorem 4.5 (i) Let q > 1. Under the assumptions of Theorem 4.1, Yω = supY
ωint
δ

and Yω is a

minimal solution in the class C (resp. Y Ω
ω

= supY Ω
ωint
δ

and Y Ω
ω

is a minimal solution in the class

C). If ω is compact, uω = infδ>0 Yωext
δ

is a maximal solution of (1.1) in QRN ,T in the class C (resp.

if ω ⊂⊂ Ω, then uΩ
ω
= infδ Y

Ω
ωext
δ

is a maximal solution of (DΩ,T ) in the class C).

(ii) Let 1 < q ≦ 2 and suppose ω compact (resp. ω ⊂⊂ Ω) Then uω(resp. u
Ω
ω
) is maximal in

the class W. If ω is starshaped, then Yω (resp. Y Ω
ω
) is the unique solution of (1.1) in QRN ,T (resp.

of (DΩ,T )) in the class C.
(iii) Let 1 < q < q∗ and suppose ω compact (resp. ω ⊂⊂ Ω). Then W = C. Thus Yω (resp. Y Ω

ω
)

is minimal in the class W. If ω is starshaped it is unique in the class W.

Proof. (i) Let Ω be bounded. Let v be any classical solution of (DΩ,T ) satisfying (4.1).
Let ϕ ∈ C+

0 (Ω) with suppϕ ⊂ ω. Then there exists a nondecreasing sequence (ϕn) ∈ C+
0 (Ω), with

support in ωint
1/n, converging to ϕ in C+(Ω). Then (yϕn(., t))) converges to yϕ(., t) in C(Ω), uniformly

for t > 0. For fixed n, let ǫ ∈ (0, T ) . Since v(., t) converges uniformly to ∞ on the compact sets
of ω, and ϕn = 0 in Ω\ωint

1/n, there exists θn ∈ (0, ǫ) such that inf v(., t) ≧ maxϕn ≧ max yϕn(., ǫ)

for any t ≦ θn. Then v ≧ yϕn on [ǫ, T ) from the comparison principle, hence v ≧ yϕ. Then Y
Ω
ω

is
minimal in the class C. Moreover for any δ > 0, Y Ω

ωint
δ

≦ Y Ω
ω
, and

supY Ω

ωint
δ

= sup
δ
( sup
ϕ∈C+

0 (Ω),suppϕ⊂ωint
δ

yϕ) = sup
ϕ∈C+

0 (Ω),suppϕ⊂ω

yϕ = Y Ω
ω
.
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Now consider the case Ω = R
N . Let v be any classical solution in QRN ,T satisfying (4.1). Let

ϕ ∈ C+
c (R

N ), with suppϕ ⊂ ω. As above we deduce that v ≧ yϕ. From the uniqueness of the
solutions, we deduce that v ≧ yϕ, for any ϕ ∈ C+

b (RN ), with suppϕ ⊂ ω. Then Yω is minimal in
the class C. As above we obtain Yω = supY

ωint
δ

.

Assume that Ω = R
N and ω is compact. For δ > 0 we consider the function Y

ωext
δ

constructed

as above. Then by construction, Y
ω
≦ Y

ωext
δ

. Taking δn → 0, (Y
ωext
δn

) decreases to a classical solution

u
ω
of (1.1) in QRN ,T from Theorem 2.7 thus u

ω
≧ Y

ω
, then u

ω
satisfies (4.1). Moreover let v be

any solution in the class C. From Lemma 2.15 (ii), v ≦ Y
ωext
δ

, then v ≦ uω , thus uω is maximal.

Next assume Ω bounded and ω ⊂⊂ Ω; the result follows as above by taking δ < δ0 small enough
such that ωext

δ0
⊂ Ω and using Theorem 2.6.

(ii) For q ≦ 2, uω(resp. u
Ω
ω
) is also maximal in the class W, from Lemma 2.15 (iii). But we

cannot ensure that is minimal in this class.
Suppose that ω is starshaped, then Y

ω
(x, t) = kaYkω(kx, k

2t), from (4.7). As above, any weak
solution v of (1.1) in QRN ,T with trace (ω, 0) satisfies v ≦ Ykω for any k > 1, hence v ≦ Yω as k → 1,
thus u

ω
≦ Yω, hence uω

= Yω.We get uniqueness in the class C. Now any weak solution w of (DΩ,T )
with trace (ω, 0) also satisfies w ≦ Ykω in Ω× (0, T ) for any k > 1, then also Y Ω

ω
≦ uΩω ≦ Ykω. Thus

as k → 1, one gets Y Ω
ω

≦ uΩω ≦ Yω . Let ǫ0 > 0. We fix δ > 0 such that ωext
δ ⊂ Ω. From Lemma 2.15

(i), we get Yω(., t) ≦ C(N, q, δ)t on ∂Ω; hence there exists τ0 > 0 such that Yω ≦ ǫ0 on ∂Ω× (0, τ0];
thus, for any η < 1, Yηω ≦ Y Ω

ω
+ ǫ0, in Ω × (0, τ0] . As η → 1 we get Yω ≦ Y Ω

ω
+ ǫ0, in Ω × (0, τ0] .

Then uΩω ≦ Y Ω
ω

+ ǫ0, in Ω × (0, τ0] . From the comparison principle, uΩω ≦ Y Ω
ω

+ ǫ0, in Ω × (0, T ).
As ǫ0 → 0 we get uΩω ≦ Y Ω

ω
, hence uΩω = Y Ω

ω
. And any weak solution v of (1.1) with trace (ω, 0)

satisfies v ≦ Ykω in QRN ,T , for any k > 1; thus as k → 1, uω ≦ Y
ω
, hence uω = Y

ω
.

(iii) Any weak solution v ∈ W is classical since q ≦ 2, and from Proposition 3.6, v(., t) converges
uniformly in ω to ∞ as t→ 0. Then W = C. the conclusions follow from (i) and (ii).

As a consequence we construct the solution of Theorem 1.3. We are lead to the case N = 1.

Proposition 4.6 Let q > 1, N = 1. Then there exists a self-similar positive solution U(x, t) =
t−a/2f(t−1/2x) of (1.1) in QR,T , with trace ([0,∞) , 0), and f satisfies the equation

f ′′(η) +
η

2
f ′(η) +

a

2
f(η)−

∣∣f ′(η)
∣∣q = 0, ∀η ∈ R. (4.9)

And setting cq = (q′)−q′(q − 1)−1/(q−1),

lim
η→∞

η−q′f(η) = cq, (4.10)

lim
η→−∞

e
η2

4 (−η)−
3−2q
q−1 f(η) = C > 0. (4.11)

In case q = 2, f is given explicitely by

f(η) = − ln(
1

2
erfc(η/2)) = − ln(

1

2

∫ ∞

η/2
e−s2ds). (4.12)
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Proof. We apply Theorems 4.1 and 4.5 with ω = (0,∞). Since ω is starshaped and stable by
homothety, we have Yω(x, t) = kaYkω(kx, k

2t) = kaYω(kx, k
2t) for any k > 0. Thus U = Yω is self-

similar. Hence U(x, t) = t−a/2f(t−1/2x), where η 7−→ f(η) is defined on R and satisfies equation
(4.9).

In the case q = 2, we can compute completely U : The function V = e−U is solution of the heat
equation, with V (0, x) = χ(−∞,0), thus

V (t, x) = (4πt)−1/2

∫ 0

−∞
e−

(x−y)2

4t dy =
1

2
erfc(

x

2
√
t
)

where x 7−→ erfc(x) = 2√
π

∫∞
x e−s2ds is the complementary error function. Then U(x, t) = − lnV,

and f is given by (4.12). Note that f can also be obtained by solving equation f ′′(η) + η
2f

′(η) −
f ′(η)2 = 0, of the first order in f ′. We get f(0) = ln 2. As η → ∞, since erfc(x) = (1/

√
πx)e−x2

(1+
o(1), we check that f(η) = (1/4)η2(1 + o(1)).

Next suppose q 6= 2. Writing (4.9) as a system, we obtain that f is positive, from the Cauchy-
Lipschitz Theorem. Indeed if at some point f(η1) = 0, then f ′(η1) = 0, thus f ≡ 0. From (3.9),
we get U(1, t) = t−a/2f(t−1/2) ≧ Ct1/(q−1), for t small enough, hence f(η) ≧ Cηq

′

for large η.
From (2.13), there holds U(−1, t) ≦ C1,1e

−C2,1/t on (0, τ1] , since U is a pointwise limit of classical
solutions with initial data Cb(R) with support in [0,∞) . Then f(η) converges to 0 exponentially as
η → −∞. Next we show that f ′ > 0 on R : if f ′(η0) = 0 for some η0 we have f ′′(η0) + a

2f(η0) = 0.
Since a 6= 0, η0 is unique, it is a strict local extremum, which contradicts the behaviour at ∞ and
−∞. The universal estimate (2.7) is equivalent to

f ′q(η) ≦
1

q − 1
f(η), ∀η ∈ R. (4.13)

Therefore the function η 7−→ f1/q
′

(η) − c
1/q′
q η is nonincreasing, hence

f1/q
′

(η) ≦ c1/q
′

q η + f1/q
′

(0), ∀η ≧ 0. (4.14)

Otherwise, f is convex: indeed

f ′′′ +
η

2
f ′′ +

1

2(q − 1)
f ′ − qf ′q−1f ′′ = 0. (4.15)

If f ′′(η1) = 0 for some η1, then f ′′′(η1) < 0, thus η1 is unique, and f ′′(η) < 0 for η > η1, then f
is concave near ∞, which contradicts the estimates above; thus f ′′(η) > 0 on R. From (4.9) and
(4.13), we deduce that ηf ′ ≦ q′f.

Let H(η) = η−q′f(η), for η > 0; then H is nonincreasing, and H(η) ≧ C for large η. Thus H
has a limit λ > 0 as η → ∞, and λ ≦ cq from (4.14). Let us show that λ = cq. Suppose that
λ < cq. We set ϕ(η) = η−1/(q−1)f ′(η), for η > 0, then ϕ ≦ q′H; hence we can find b < 1 such that
qϕq−1(η) < b for large η. By computation we find

1

η
ϕ′ = ϕq − ϕ(

1

2
+

1

(q − 1)η2
)− a

2
H, (4.16)
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and from (4.15) we obtain

ϕ′′ + ϕ′(
2

(q − 1)η
+
η

2
− qηϕq−1) +

ϕ

q − 1
(1− qϕq−1 +

a

η2
) = 0

If ϕ is not monotone for large η, then, at any extremal point η,

−ϕ′′ =
ϕ

q − 1
(1− qϕq−1 +

a

η2
) ≧

ϕ

q − 1
(1− b+

a

η2
),

hence ϕ′′ > 0 for large η, which is impossible. Thus by monotony, ϕ has a limit θ as η → ∞. From
the L’Hospital’s rule, we deduce that λ = limη→∞ f(η)/ηq

′

= limη→∞ f ′(η)/q′η1/(q−1) = θ/q′. Then
from (4.16), limη→∞ ϕ′(η)/η = (q′λ)q − λ/(q − 1). Since ϕ′ is integrable, we deduce that λ = cq,
thus we reach a contradiction. Then (4.10) follows.

Next we study the behaviour near −∞. From (4.13), f and f ′ converge exponentially to 0. Let
h(η) = f ′(η)/f(η).for any η ∈ R. Then we find

h′ + h2 +
η

2
h+

a

2
− f ′(q−1)h = 0, (4.17)

h′′ + 2hh′ +
η

2
h′ +

h

2
− f ′(q−1)(qh′ + (q − 1)h2) = 0.

Either h is not monotone near −∞. At any point where h′ = 0, we find by computation

h′′ = (q − 1)h(h(h +
η

2
)− 1

2
);

hence at any minimal point, h > |η| /2, then limη→−∞ h(η) = ∞. Let us show that it also true
if h is monotone. Suppose that h has a finite limit ℓ, then ℓ = 0 from (4.17). If q > 2, then
lim infη→−∞ h′(η) ≧ |a| 2, which is contradictory. If q < 2, following the method of [16] we

write (eη
2/4h)′ = eη

2/4(−a/2 + o(1)), then by integration we obtain that limη→−∞ ηh(η) = a,
from the l’Hospital’ rule, then lim infη→∞ (−η)a f(η) > 0, which is a contradiction. Thus again
limη→−∞ h(η) = ∞. And then (4.11) follows as in [16], more precisely, as η → −∞,

f(η) = Ce
−η2

4 |η|
3−2q
q−1 (1− (a− 1)(a − 2) |η|−2 + o(|η|−2).

Thanks to the barrier function U we obtain more information on the behaviour of the solutions
with trace (ω, 0) on the boundary of ω :

Proposition 4.7 Let 1 < q, and ω be a smooth open set in R
N . Then the function Yω constructed

at Theorem 4.1 satisfies
(i) For any x0 ∈ ∂ω, lim inft→0 t

a/2Yω (x0, t) ≧ f(0).

(ii) If ω is convex, then for any x0 ∈ ∂ω, limt→0 t
a/2Yω (x0, t) = f(0).

(iii) if RN\ω is convex, then for any x0 ∈ ω, inft>0 t
a/2Yω (x0, t) ≧ f(0).
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Proof. (i) Since ω is smooth, it satisfies the condition of the interior sphere. Thus we can
assume that x0 = 0 and ω contains a ball B = B(y, ρ) with y = (ρ, 0) ∈ R

N+ = R
+×R

N−1. Then
Yω ≧ YB . Let us consider YnB(x, t) = n−aYB(x/n, t/n

2). The sequence
(
YnB

)
is nondecreasing, and

there holds YnB(x, t) = 0 in B((−1, 0), 1). Thus from estimate (2.8),

YnB(x, t) ≦ C(N, q)(t
− 1

q−1 (|x+ (1, 0)|q′ + 1) + t),

hence the sequence is locally bounded inQRN ,∞. From Theorem 2.7,
(
YnB

)
converges in C2,1

loc (QRN ,∞)

to a classical solution u of (1.1). Then u is a solution with trace (RN+, 0), satisfying (4.1), thus
u(x, t) ≧ Y

RN+(x, t). Observe that Y
RN+(x, t) = U(x1, t), since U(x1, t) = supϕ∈C+

b (R),suppϕ⊂0,∞ yϕ,

and Y
RN+(x, t) = sup

ϕ∈C+
c (RN ),suppϕ⊂RN+ yϕ. Then u(0, t) ≧ U(0, t) = f(0)t−a/2. And YnB(0, 1) =

n−aYB(0, 1/n
2) converges to u(0, 1) ≧ f(0), then limn−aYB(0, 1/n

2) ≧ f(0); similarly by replacing
1/n by any sequence (ǫn) decreasing to 0, then lim inft→0 t

a/2Yω (0, t) ≧ f(0).

(ii) Let us show that for any x0 ∈ ∂ω, Yω (x0, t) ≦ f(0)t−a/2. We can assume x0 = 0 and
ω ⊂ R

N+. Then Yω(x, t) ≦ Y
RN+(x, t) = U(x1, t), hence Yω (0, t) ≦ f(0)t−a/2.

(iii) Since R
N\ω is convex, ω is the union of all the tangent half-hyperplanes that it contains.

For any such half-hyperplane, we can assume that it is tangent at 0 and equal to R
N+. Then for

any x ∈ R
N+, there holds Yω (x, t) ≧ U(x1, t) ≧ f(0), since f is nondecreasing, and the conclusion

follows.

5 Existence of solutions with trace (S, u0)

5.1 Solutions with trace (ω ∩ Ω, u0), ω open

Proof of Theorem 1.4. (i) Approximation and convergence. We define suitable approximations
of the initial trace (S, u0) according to the value of q. We consider a sequence (ϕp) in Cb

(
R
N
)

(resp. C0

(
Ω
)
) as in the proof of Theorem 4.1. We define a sequence (ψp) in the following way: if

1 < q < q∗, we define ψp by the restriction of the measure u0 to Rint
1/p ∩Bp (resp. to Rint

1/p ∩Ωint
1/p); if

q∗ ≦ q ≦ 2, we take ψp = inf(u0, p)χR∩Bp (resp. ψp = inf(u0, p)χR). If q > 2, by our assumption we
can take a nondecreasing sequence (ψp) in Cc (R) converging to u0 in L

1
loc (R) .We set u0,p = ϕp+ψp.

Then for 1 < q < q∗, u0,p ∈ M+
b (Ω), for q∗ ≦ q ≦ 2, u0,p ∈ Lr(Ω) for any r > 1 and for q > 2,

u0,p ∈ Cb

(
R
N
)
. In any case there exists a solution up of (1.1) (resp. of (DΩ,T )) with initial data

u0,p, unique among the weak solutions if q ≦ 2, see Theorem 2.11, and among the classical solutions
in C

(
[0, T )× Ω

)
if q > 2, and the sequence (up) is nondecreasing if q ≧ q∗.

Moreover if Ω = R
N , (up) satisfies the estimate (2.8): considering a ball B(x0, η) ⊂ R

N\ω,
there exists C = C(N, q, η) such that for p ≧ p(η) large enough,

up(x, t) ≦ C(t
− 1

q−1 (|x− x0|q
′

+1) + t+

∫

B(x0,η)
du0,p) ≦ C(t

− 1
q−1 (|x− x0|q

′

+1) + t+

∫

B(x0,η)
du0),

then (up) is uniformly locally bounded in QRN ,T ( resp. if Ω is bounded, (up) satisfies (2.4), since it
is constructed by approximation from solutions with smooth initial data). From Theorem 2.7 (resp.
2.6)), we can extract a subsequence C2,1

loc -converging to a classical solution u of (1.1) in QRN ,T (resp.
of (DΩ,T )). If q ≧ q∗, from uniqueness, (up) is nondecreasing, then (up) converges to u = supup.
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(ii) Behaviour of u in ω. By construction, u ≧ Yω, (resp. u ≧ Y Ω
ω ), then u satisfies (4.2), hence

as t → 0, u(., t) converges uniformly to ∞ on any compact in ω, thus (1.9) holds; if q < q∗, u
satisfies (4.4), thus the convergence is uniformly on ω ∩ Ω.

(iii) Behaviour of u in R. From (3.5) and (3.4), for any ξ ∈ C1,+(RN ), with support in R,
∫

RN

up(., t)ξ
q′dx+

1

2

∫ t

0

∫

RN

|∇up|qξq
′

dx ≦ Ct

∫

RN

|∇ξ|q′dx+

∫

RN

ξq
′

dψp, (5.1)

∫

Ω
up(., t)ξdx+

∫ t

0

∫

Ω
(∇up.∇ξ + |∇up|q ξ)dxdt =

∫

Ω
ξdu0,p. (5.2)

First suppose q < q∗. From Theorem 2.10, (|∇up|q) is equi-integrable in QK,τ for any compact
set K ⊂ R and τ ∈ (0, T ) . From (5.2) for any ζ ∈ Cc(R), for p = p(ζ) large enough such that the
support of ζ is contained in Rint

1/p ∩Bp (resp. Rint
1/p ∩ Ωint

1/p),

∫

R
up(t, .)ζdx+

∫ t

0

∫

R
|∇up|qζdx = −

∫ t

0

∫

R
∇up.∇ζdx+

∫

R
ζdu0.

Then we can go to the limit as p→ ∞:

∫

R
u(t, .)ζdx+

∫ t

0

∫

R
|∇u|qζdx = −

∫ t

0

∫

R
∇u.∇ζdx+

∫

R
ζdu0.

thus limt→0

∫
RN u(., t)ζdx =

∫
RN ζdu0.

Next suppose q∗ ≦ q ≦ 2 and u0 ∈ L1
loc (R) , or q > 2 and u0 is limit of a sequence of nonde-

creasing continuous functions. Then ψp ≦ u0. From (5.1), we have |∇u|q ∈ L1
loc

(
[0, T ) ;L1

loc(R)
)

from the Fatou Lemma. Hence, from Lemma 3.1, u admits a trace µ0 ∈ M(R). For any fixed
ζ ∈ C+

c (R), we limt→0

∫
RN up(., t)ζdx =

∫
R ζψpdx. Since (up) is nondecreasing, we get

lim
t→0

∫

RN

u(., t)ζdx =

∫

R
ζdµ0 ≧ lim

t→0

∫

RN

up(., t)ζdx =

∫

R
ζψpdx.

thus from the Beppo-Levy Theorem, µ0 ≧ u0. Moreover for any ζ ∈ Cc(R), from (5.2),

∫

R
up(t, .)ζdx +

∫ t

0

∫

R
|∇up|qζdx =

∫ t

0

∫

R
up∆ζdx+

∫

R
ζψpdx;

and (up) is bounded in Lk(QK,τ ) for any k ∈ [1, q∗) , for any compact set K ⊂ R, and up → u a.e.
in R, then up converges strongly in L1(QK,τ ), thus from the Fatou Lemma,

∫

R
u(t, .)ζdx+

∫ t

0

∫

R
|∇u|qζdx ≦

∫ t

0

∫

R
u∆ζdx+

∫

R
ζdu0.

But from Lemma 3.1,

∫

R
u(t, .)ζdx+

∫ t

0

∫

R
|∇u|qζdx =

∫ t

0

∫

R
u∆ζdx+

∫

R
ψdµ0,

then
∫
R ψdµ0 ≦

∫
R ψdu0, hence µ0 ≦ u0, hence µ0 = u0.

In any case u admits the trace (S, u0).
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5.2 Solutions with any Borel measure

In this part we consider the subcritical case with an arbitrary closed set S.

Theorem 5.1 Let 1 < q < q∗, and Ω = R
N (resp. Ω bounded). Let S be a closed set in Ω, such

that R = Ω\S is nonempty. Let u0 ∈ M+ (R).

(i) Then there exists a solution u of (1.1) (resp. of (DΩ,T )) with initial trace (S, u0), such that
u satisfies (4.4), hence u(t, .) converges to ∞ uniformly on S.

(ii) There exists a minimal solution umin, satisfying the same conditions.

Proof. Assume that Ω = R
N (resp. Ω bounded) (i) Existence of a solution. Let B(x0, η) ⊂

Ω\S, and δ0 small enough such that B(x0, η) ⊂ Ω\Sδ0 . For any δ ∈ (0, δ0) we can, by slight changes,
suppose that Sδ = ωδ∩Ω, where ωδ is a smooth open subset of Ω. Let uδ be the solution with initial
trace (Sext

δ , u0x(Ω\Sext
δ )) constructed at Theorem 1.4. Then uδ also satisfies the estimates (2.8)

(resp. (2.4), thus (uδ)δ<δ0 is uniformly locally bounded in QΩ,T . From Theorem 2.7 (resp. 2.6),

one can extract a subsequence converging in C2,1
loc (QΩ,T ) to a solution u of (1.1) in QRN ,T (resp. of

(DΩ,T )). As in the proof of Theorem 1.4, for any compact K ⊂ R, taking δ < δK small enough so
that K ⊂ Ω\Sext

δK
, and choosing a test function ξ with compact support in K in R, we obtain that

(|∇uδ|q)δ<δK is equi-integrable in QK,τ for any τ ∈ (0, T ). Then we get for any ξ ∈ Cc(R),

∫

RN

u(t, .)ξdx +

∫ t

0

∫

RN

|∇u|qξdx = −
∫ t

0

∫

RN

∇u.∇ξdx+

∫

RN

ξdu0.

thus limt→0

∫
RN u(., t)ξdx =

∫
RN ξdu0. Moreover for any x0 ∈ S, uδ ≧ Y{x0} in QRN ,T , (resp. uδ ≧

Y Ω
{x0} in QΩ,T ) from Proposition 3.6, hence the same happens for u, which implies (1.9). Thus u

admits (S, u0) as initial trace, and u(., t) converges uniformly on S to ∞ as t→ 0.

(ii) Existence of a minimal solution.

Assume that Ω = R
N . Let A be the set of solutions with initial trace (S, u0). We consider

for fixed ǫ > 0, the Dirichlet problem in QBp,T , p ≧ 1, with initial data m(x, ǫ) = infv∈A v(x, ǫ).
Thus 0 ≦ m(x, ǫ) ≦ u(x, ǫ), and u ∈ C2,1(QRN ,T ), thus m(., ǫ) ∈ L1

loc

(
R
N
)
. Since m ∈ L1(Bp),

there exists a unique solution wp,ǫ of (DBp,T ) with initial data m(x, ǫ) in Bp. From Corollary 2.14,
wp,ǫ(x, t) ≦ v(x, t + ǫ) for any v ∈ A and x ∈ Bp. Moreover for any v ∈ A and any x0 ∈ S,
there holds v ≧ Y{x0} ≧ Y

Bp
x0 , thus m(x, ǫ) ≧ Y

Bp
x0 (x, ǫ), hence wp,ǫ(x, t) ≧ Y

Bp
x0 (x, t + ǫ), from [27,

Proposition 2.1]. For any z0 ∈ Bp and γ > 0 such that U = B(z0, γ) satisfies U ⊂ R∩Bp, let wU be
the unique solution of the Dirichlet problem in U with initial data u0xU. Then from Corollary 2.14,
v(x, t) ≧ wU (x, t) in QU,T , for any v ∈ A, thus m(x, ǫ) ≧ wU (x, ǫ), thus wp,ǫ(x, t) ≧ wU (x, t+ ǫ).

Next we go to the limit as ǫ → 0. From Theorem 2.6, one can extract a subsequence, still
denoted (wp,ǫ) , converging a.e. to a solution wp of the Dirichlet problem (DBp,T ). And in Bp (with

the notations above), wp ≦ v for any v ∈ A,wp ≧ Y
Bp
x0 and wp ≧ wU . Finally we go to the limit

as p → ∞. Since u is locally bounded, then (wp) is uniformly locally bounded. From Theorem

2.7, one can extract a subsequence converging in C2,1
loc (QRN ,T ) to a weak solution denoted umin of

(1.1) in QRN ,T . Then umin satisfies umin ≦ v for any v ∈ A, and umin ≧ Y
Bp
x0 for any x0 ∈ S, and

umin ≧ wU for any z0 ∈ R and γ > 0 such that U = B(z0, γ) satisfies U ⊂ R. As a consequence
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umin satisfies the trace condition (1.9) on S. And for any z0 ∈ R, and any ξ ∈ C0
c (R) with support

in U, ∫

R
u(., t)ξdx ≧

∫

R
umin(., t)ξdx ≧

∫

R
wU (., t)ξdx

hence

lim
t→0

∫

R
umin(., t)ξdx =

∫

R
ξdu0.

Then umin admits the trace (S, u0). Thus umin is minimal, and umin = minv∈A v.

Assume that Ω is bounded. The proof still works with Bp replaced by Ω, which requires only
to go to the limit in ε and use Theorem 2.6.

Remark 5.2 Under the assumptions of Theorem 5.1 suppose that u0 ∈ M+
b (R) . Then for any

ϕ ∈ Cb(Ω) with support in R, u(., t)ϕ ∈ L1 (R) for any t ∈ (0, T ) , and

lim
t→0

∫

R
u(., t)ϕdx =

∫

R
ϕdu0, (5.3)

and similarly for umin. More precisely, if Ω = R
N , (5.3) is valid for any weak solution v of (1.1)

with trace (S, u0). Indeed let ψ ∈ C1
b (R

N ) with support in R, and ϕn ∈ D
(
R
N
)
with values in

[0, 1] , with ϕn = 1 on Bn, 0 on B2n, |∇ϕn| bounded. Then from (3.5),
∫

R
v(., t)(ψϕn)

q′dx ≦ C(q)t

∫

RN

|∇(ψϕn)|q
′

dx+

∫

RN

(ψϕn)
q′du0 ≦ Ct+

∫

R
ψq′du0;

thus v(., t)ψq′ ∈ L1 (R) , and lim supt→0

∫
R v(., t)ψ

q′dx ≦
∫
Ω ψ

q′du0 from the Fatou Lemma. And

lim inf
t→0

∫

R
v(., t)ψq′dx ≧ lim

t→0

∫

R
v(., t)(ψϕn)

q′dx =

∫

R
(ψϕn)

q′du0,

thus from the Beppo-Levy Theorem, we get (5.3) by density. If Ω is bounded, note that u can
be obtained as a limit in C2,1

loc (QΩ,T ) ∩ C1,0
loc

(
Ω× (0, T )

)
of classical solutions un with smooth data

un,0 = u1n,0+u
2
n,0 with suppu1n,0 ⊂

◦
Sext
3δ0

, suppu1n,0 ⊂ R, and (u1n,0) converges to u0 weakly in Mb(R).

For any nonnegative ξ ∈ C1
b (Ω) with support in R,

∫

R
un(., t)ξ

q′dx ≦ C(q)t

∫

R
|∇ξ|q′dx+

∫

Ω
ξq

′

u2n,0dx,

from Remark 3.4, hence
∫

R
u(., t)ξq

′

dx ≦ C(q)t

∫

R
|∇ξ|q′dx+

∫

Ω
ξq

′

du0,

and then lim supt→0

∫
R u(., t)ψ

q′dx ≦
∫
Ω ψ

q′du0. And for any ϕn ∈ D (Ω) with values in [0, 1] , with
ϕn = 1 on Rint

1/n,

lim inf
t→0

∫

R
u(., t)ψq′dx ≧ lim

t→0

∫

R
v(., t)(ψϕn)

q′dx =

∫

R
(ψϕn)

q′du0,

Thus u still satisfies (5.3). The same happens for umin, since lim supt→0

∫
R umin(., t)ϕdx ≦

∫
R ϕdu0

and lim inft→0

∫
R umin(., t)ψ

q′dx ≧
∫
R(ψϕn)

q′du0.
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Remark 5.3 Assume 1 < q < q∗. Note some consequences of Theorems 5.1 and 1.4.
(i) For any constant C > 0, there exists a minimal solution uC with trace ({0} , C |x|−a)). Then

uC is radial and self-similar. This shows again the existence of the solutions of example 2, Section
3. This shows that the set {C(β) : β > F (0)} is equal to (0,∞) .

(ii) Suppose N = 1. For any C > 0, there exists a minimal solution ûC with trace ({0} , C(x+)−a);
then it is self-similar, ûC(x, t) = t−a/2f̂(t−1/2x), where η 7−→ f̂(η) is defined on R, and f̂ has
an exponential decay at −∞, and limη→−∞f̂(η) |η|a = C. For any C > 0 there exists a mini-

mal solution ũC with trace ([0,∞) , C(x−)−a); it is self-similar, ũC(x, t) = t−a/2f̃(t−1/2x), and

limη→−∞f̃(η) |η|a = C and limη→−∞f̃(η) |η|−q′ = cq.

Next we look for a maximal solution when the measure u0 is bounded. A crucial point in case
Ω = R

N is the obtention of an upper estimate, based on Theorems 2.8 and 2.9:

Proposition 5.4 1 < q ≦ 2. Let S be a compact set in R
N , and u0 ∈ M+

(
R
N\S

)
, bounded at ∞.

Then any weak solution v of (1.1) in QRN ,T with trace (S, u0) satisfies, for any 0 < ǫ < τ < T,

‖v‖L∞((ǫ,τ);L∞(RN )) ≦ C, C = C(N, q, ǫ, τ). (5.4)

Proof. Let τ ∈ 0, T ). We take η = 1 and x0 ∈ RN\S1 in (2.8). Then for any (x, t) ∈ QRN ,τ ,

v(x, t) ≦ C(q)t
− 1

q−1 |x− x0|q
′

+ C(N, q)(t
− 1

q−1 + t+

∫

B(x0,1)
du0). (5.5)

In particular it holds in S2 × (0, τ ]. And for any (x, t) ∈ R
N\S2, since u0 ∈ M+

b

(
R
N\S1

)
, from

(2.6),

v(x, t) ≦ C(N, q, τ)t−N/2(t+

∫

B(x0,1)
du0) ≦ C(N, q, τ)t−N/2(t+

∫

RN\S1

du0). (5.6)

Then (5.4) follows.

Theorem 5.5 Let 1 < q < q∗. Let Ω = R
N (resp. Ω bounded). Assume that S is compact in Ω

and u0 ∈ M+
b (Ω) with support in R∪Ω, where R = Ω\S. Then there exists a maximal solution u

of (1.1) (resp. of (DΩ,T )) among the solutions with trace (S, u0) (resp. among the solutions v of
trace (S, u0) such that v(., t) converges weakly in R to u0 as t→ 0).

Proof. Assume Ω = R
N (resp. Ω bounded). Let δ > 0 be fixed, such that δ < d(S,suppu0)/3,

hence suppu0 ⊂ Ω\S3δ . Let uδ be the solution with initial trace (Sext
δ , u0) constructed at Theorem

1.4.
Let v be any weak solution with trace (S, u0) (resp. and such that v(., t) converges weakly in

Mb(R). Then v(., t) ≦ C(N, q, δ)t in Kδ = Sext
5δ/2\

◦
Sext
δ/2, from Lemma 2.15 (resp. from (2.14) in

O =
◦

Sext
3δ \Sext

δ , valid since v ∈ C([0, T ) × O)). Let ǫ0 > 0. Then there exists τ0 = τ0(ǫ0, δ) < T
such that v(., t) ≦ ǫ0 in Kδ × (0, τ0] . Let ǫ < τ0, and Cǫ = maxS2δ

v(., ǫ). Since uδ converges
to ∞ uniformly on the compact sets of Sext

δ , there exists τǫ < τ0 such that for any θ ∈ (0, τǫ) ,
uδ(., θ) ≧ Cǫ ≧ v(., ǫ) in Sδ/2. Since v(., ǫ) ≦ ǫ0 in Kδ , there holds v(., ǫ) ≦ uδ(., θ) + ǫ0 in S2δ. And
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v(., t) ≦ ǫ0 on ∂S2δ×(0, τ0] , thus v(., t+ǫ) ≦ uδ(., t+θ)+ǫ0 in S2δ×(0, τ0 − ǫ] from the comparison
principle. As θ → 0, then ǫ → 0, we get

v(., t) ≦ uδ(., t) + ǫ0 in S2δ × (0, τ0] . (5.7)

Otherwise, since u0 ∈ M+
b (Ω) , there exists a unique solution w of (PΩ,T ) with initial data u0, from

Theorem 2.11. We claim that

v(x, t) ≦ w(x, t) + ǫ0, in Ω\S2δ × (0, τ0] . (5.8)

Indeed let ϕδ ∈ C(Ω) with values in [0, 1] with support in Ω\S2δ and ϕδ = 1 on R
N\S5δ/2.

From Proposition 5.4 (resp. from Theorem 2.11), the function x 7−→ v(x, τ0/n) is bounded, and
continuous. Let wδ,n be the solution of (1.1) in QΩ,T with initial data v(., τ0/n)ϕδ . As n →
∞, v(., τ0/n)ϕδ converges to u0ϕδ = u0 weakly in Mb

(
R
N
)
, from Remark 5.2 (resp. from our

assumption). Hence wδ,n converges to w, from Proposition 2.13. And then

v(., τ0/n) = v(., τ0/n)ϕδ + v(., τ0/n)(1− ϕδ) ≦ wδ,n(., 0) + ǫ0

in Ω\S2δ, and on the lateral boundary of Ω\S2δ × (0, τ0(1− 1/n)] , there holds v(x, t+ τ0/n) ≦ ǫ0.
Then v(x, t+ τ0/n) ≦ wδ,n(., t) + ǫ0 in Ω\S2δ × (0, τ0(1− 1/n)] . As n→ ∞, we deduce (5.8).

Next we get easily that w ≦ uδ on Ω\S2δ × (0, τ0] , by considering their approximations, hence

v(x, t) ≦ uδ(x, t) + ǫ0, in Ω\S2δ × (0, τ0] . (5.9)

As a consequence, from (5.7) and 5.9),

v(x, t) ≦ uδ(x, t) + ǫ0, in Ω× (0, τ0] .

The last step is to prove that the inequality holds up to time T. We can apply the comparison
principle because, from Proposition 5.4, u and v ∈ Cb((ǫ, T );Cb(R

N ) for any ǫ > 0 (resp. because
v and uδ are classical solutions of (DΩ,T )). Then

v(x, t) ≦ uδ(x, t) + ǫ0, in Ω× (0, T )

As ǫ0 → 0, we deduce that v ≦ uδ. Finally as δ → 0, up to a subsequence, {uδ} converges to a
solution u of (1.1) (resp. of (DΩ,T ), such that v ≦ u, thus u satisfies (1.9). As in Theorem 1.4, by
integrability of (|∇uδ|q) we obtain that u admits the trace u0 in R, thus u has the trace (S, u0)
(resp. and the convergence holds weakly in Mb(R)). Thus u is maximal.

From Theorems 5.1 and 5.5, this ends the proof of Theorem 1.5.

6 The case 0 < q ≦ 1

Notice that Theorem 2.5 is also valid for q = 1. In fact it can be improved when q is subcritical,
and extended to the case q < 1.
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Theorem 6.1 (i) Let 0 < q < q, and Ω be any domain in R
N . Let u be any (signed) weak solution

of (1.1) in QΩ,T . Then u ∈ C
2+γ,1+γ/2
loc (QΩ,T ) for some γ ∈ (0, 1) . If Ω is bounded, any weak

solution u of problem (DΩ,T ) satisfies u ∈ C1,0
(
Ω× (0, T )

)
∩C2+γ,1+γ/2

loc (QΩ,T ) for some γ ∈ (0, 1) .

(ii) Let 0 < q ≦ 1 and Ω bounded. For any sequence of weak nonnegative solutions (un) of
(DΩ,T ), bounded in L∞

loc((0, T );L
1(Ω)) one can extract a subsequence converging in C2,1

loc (QΩ,T ) ∩
C1,0

(
Ω× (0, T )

)
to a weak solution u of (DΩ,T ).

Proof. (i) From our assumptions, u ∈ C((0, T );L1
loc(QΩ,T )), thus u ∈ L∞

loc((0, T );L
1
loc(QΩ,T )).

We can write (1.1) under the form ut − ∆u = f, with f = −|∇u|q. From Theorem 2.10 u ∈
L1
loc((0, T );W

1,k
loc (Ω) for any k ∈ [1, q∗) and satisfies (2.9).

First suppose q ≦ 1. We choose k ∈ (1, q∗), thus (|∇u| + |u|) ∈ Lk
loc (QΩ,T ) . Then u ∈

W2,1,k
loc (QΩ,T ), see [22, theorem IV.9.1]. From the Gagliardo-Nirenberg inequality, for almost any

t ∈ (0, T ),

‖∇u(., t)‖Lkq∗ (ω) ≦ c‖u(t)‖
1
q∗

W 2,k(ω)
‖u(t)‖1−

1
q∗

L1(ω)
,

where c = c(N, s, ω). Hence we obtain |∇u| ∈ Lkq∗
loc (Ω) . In the same way

‖u(., t)‖Lkq∗ (ω) ≦ c‖u(t)‖θW 2,s(ω)‖u(t)‖1−θ
L1(ω)

,

with θ = (1 − 1/kq∗)/((N + 2)/N − 1/s) < 1. Therefore |u| ∈ Lsq∗
loc (Ω) . Then u ∈ W2,1,kq∗

loc (QΩ,T ).

By induction u ∈ W2,1,k(q∗)n

loc (QΩ,T ) for any n ≧ 1. Choosing n such that k(q∗)n > N + 2, we
deduce that |∇u| ∈ Cδ,δ/2(Qω,s,τ ) for any δ ∈ (0, 1− (N +2)/s(q∗)n), see [22, Lemma II.3.3]. Then

f ∈ Cδq,δq/2
loc (QΩ,T ), thus u ∈ C2+δq,1+δq/2(Qω,s,τ ).

Next suppose 1 < q < q∗. we choose k ∈ (1, q∗/q), hence (|∇u|q + |u|) ∈ Lk
loc (Ω) ; as above,

|∇u|+ |u| ∈ Lkq∗
loc (Ω) , hence (|∇u|q+ |u|) ∈ L

kq∗/q
loc (Ω) ; then u ∈ W2,1,kq∗/q

loc (QΩ,T ). By induction we

get again that |∇u| ∈ C
δ,δ/2
loc (QQ,T ) for some δ ∈ (0, 1), then f ∈ C

γ,γ/2
loc (QQ,T ) for some γ ∈ (0, 1),

thus u ∈ C
2+γ,1+γ/2
loc (QΩ,T ) for some γ ∈ (0, 1) .

If Ω is bounded, and u is a weak solution of (DΩ,T ), then u satisfies (2.10). In the same way,

u ∈ W2,1,k(QΩ,s,τ ), and by induction u ∈ C1,0
(
Ω× (0, T )

)
∩ C2+γ,1+γ/2

loc (QΩ,T ).

(ii) From (2.10), ‖u‖C1,0(QΩ,s,τ )
+ ‖∇u‖

Cγ,γ/2(QΩ,s,τ )
is bounded in terms of ‖|∇u|q‖L1(Qω,s,τ )

+

‖u(., s)‖L1(Ω) . And since u is nonnegative, from [14, lemma 5.3] (valid for q > 0),

∫

Ω
u(t, .)dx+

∫ t

s

∫

Ω
|∇u|qdx ≦

∫

Ω
u(s, .)dx. (6.1)

Thus ‖|∇u|q‖L1(Qω,s,τ )
is bounded in terms of ‖u(., s)‖L1(Ω) . Then one can extract a subsequence

converging in C2,1
loc (QΩ,T ) ∩C1,0

(
Ω× (0, T )

)
to a weak solution u of (DΩ,T ).

Remark 6.2 In case of the Dirichlet problem, the result also follows from [7, Theorem 3.2 and
Proposition 5.1], by using the uniqueness of the solution in (Qω,ǫ,T ).

Next we prove the uniqueness result of Theorem 1.6. For that purpose we recall a comparison
property given in [1, Lemma 4.1]:
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Lemma 6.3 Let Ω be bounded, and A ∈ Lσ(QΩ,T ) with σ > N + 2. Let w ∈ L1((0, T );W 1,1
0 (Ω)),

with w ∈ C((0, T ] ;L1(Ω), such that wt − ∆w ∈ L1(QΩ,T ), and w(., t) converges to a nonpositive
measure w0 ∈ Mb(Ω), weakly in Mb(Ω), and

wt −∆w ≦ A.∇w in D′(QΩ,T ).

Then w ≦ 0 in QΩ,T .

Proof of Theorem 1.6. From [7], the problems with initial data u0, v0 admit at least two
solutions u, v. Then f = |∇u|q ∈ L1

loc([0, T ) ;L
1 (Ω)). And by hypothesis u ∈ C((0, T );L1 (Ω)) ∩

L1((0, T );W 1,1
0 (Ω)). Assume that u0 ≦ v0. Let w = u − v. Then we have w ∈ C((0, T );L1 (Ω)) ∩

L1((0, T );W 1,1
0 (Ω)), |∇w| ∈ Ls(QΩ,τ ) Setting g = |∇u|q − |∇v|q, then w is the unique solution of

the problem 



wt −∆v = g, in QΩ,T ,
w = 0, on ∂Ω× (0, T ),
limt→0 w(., t) = u0 − v0, weakly in Mb(Ω).

Since q ≦ 1, for any ε > 0, there holds

wt −∆w = g ≦ |∇w|q ≦ |∇w|+ 1.

In case q = 1, Lemma 6.3 applies. Assume that q < 1. Let ε, η ∈ (0, 1). Then g ≦ Cη|∇w|+ η. with
Cη = η−q/(1−q). As in his proof we get by approximation

1

1 + ε

∫

Ω
(w+)1+ε(t, .)dx + ε

∫ t

0

∫

Ω
(w+)ε−1|∇w|2ψdxdt

≦ Cη

∫ t

0

∫

Ω
(w+)ε |∇w| dxdt+ η

∫ t

0

∫

Ω
(w+)εdxdt,

and the second member is finite. Then limt→0

∫
Ω(w

+)1+ε(t, .)dx = 0, hence limt→0

∫
Ω w

+(t, .)dx =
0. Let z = w− ηt, then satisfies z ∈ C((0, T );L1 (Ω)) ∩L1((0, T );W 1,1 (Ω)) and zt −∆z = g − η ≦

Cη|∇z| in D′ (QΩ,T ) . Then z
+ ∈ C((0, T );L1 (Ω)) ∩ L1((0, T );W 1,1

0 (Ω)) and from [4, Lemma 3.2],
z+t − ∆z+ ≦ Cη|∇(z+)|. And limt→0 z

+(t) = 0 weakly in Mb(Ω), since z
+ ≦ w+. Then z+ = 0

from Lemma 6.3 applied with A = Cε. Thus w ≦ ηt; as η → 0, we obtain w ≦ 0.

Remark 6.4 We can give an alternative proof of uniqueness, using regularity: let u, v be two
solutions with initial data u0, and w = u− v, thus w satisfies





wt −∆w = g := |∇u|q − |∇v|q, in QΩ,T ,
w = 0, on ∂Ω× (0, T ),
limt→0 w(., t) = 0, weakly in Mb(Ω).

(6.2)

Since q ≦ 1, there holds |g| ≦ |∇w|q. As in Theorem 6.1, we choose k ∈ (1, q∗), thus |∇w| ∈
Lk (QΩ,τ ) . From the uniqueness of the solution w due to [4, Lemma 3.4], we deduce that w ∈
W2,1,k(QΩ,τ ), for any τ ∈ (0, T ) , from [22, theorem IV.9.1]. By induction we deduce that w ∈
C0

(
Ω× [0, T )

)
∩C2+γ,1+γ/2(QΩ,T ). Then w = 0 from the classical maximum principle.
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Next we prove the trace result of Theorem 1.7:

First proof of Theorem 1.7. From Theorem 6.1, u ∈ C2,1
loc (QΩ,T ). And 1+u is also a solution

of (1.1). We can set 1 + u = vα, with α > 1, in particular v ≧ 1. Then we obtain an equivalent
equation for v :

vt −∆v = F = (α− 1)
|∇v|2
v

− αq−1 |∇v|q
v(α−1)(1−q)

.

From the Young inequality, setting C = ((α− 1) /2)(q−2)/q , there holds, since v ≧ 1,

|∇v|q
v(α−1)(1−q)

≦
α− 1

2

|∇v|2
v

+ Cv
1− 2(1−q)

2−q
α
≦
α− 1

2

|∇v|2
v

+ Cv.

Hence w = eCtv satisfies

wt −∆w = G = eCt(F + Cv) ≧
α− 1

2

|∇w|2
w

.

Then w is supercaloric, and nonnegative, and G ∈ L1
loc(QT ). From Lemma 3.1, w admits a trace

in M (Ω), and then w ∈ L∞
loc( [0, T ) ;L

1
loc(Ω)), and G ∈ L1

loc([0, T );L
1
loc(Ω)). As a consequence,

v ∈ L∞
loc( [0, T ) ;L

1
loc(Ω)) and |∇v|2 /v ∈ L1

loc([0, T );L
1
loc(Ω)).

Next we show that moreover u itself admits a trace measure. For any 0 < s < t < T, from the
Hölder inequality,

α−q

∫ t

s

∫

ω
|∇u|q dxdt =

∫ t

s

∫

Ω
v(α−1)q |∇v|q dxdt ≦

∫ t

s

∫

ω

|∇v|2
v

dxdt+

∫ t

s

∫

ω
v

(2α−1)q
2−q dxdt. (6.3)

First suppose q < 1. Choosing α such that moreover 1 < α ≦ 1/q, in order that (2α− 1)q ≦ 2− q.
Since v ∈ L∞

loc( [0, T ) ;L
1
loc(Ω)), we have v ∈ L1(QT ), hence

α−q

∫ t

s

∫

ω
|∇u|q dxdt ≦

∫ t

0

∫

ω

|∇v|2
v

dxdt+

∫ t

0

∫

ω
(v + 1)dxdt,

hence |∇u|q ∈ L1
loc(Ω× [0, T )). Then u admits a trace u0 ∈ M+(Ω). Next assume q = 1. From the

Hölder inequality, ∫

ω
|∇v| dx ≦

∫

ω

|∇v|2
v

dx+

∫

ω
vdx

hence |∇v| ∈ L1
loc([0, T );L

1
loc(Ω)). Let ξ ∈ D(Ω). Setting vξ = z, z is the unique solution of the

problem in QΩ,T





zt −∆z = g := Fξ + v(−∆ψ)− 2∇v.∇ψ, in QΩ,T ,
z = 0, on ∂Ω× (0, T ),
limt→0 z(., t) = ξu0, weakly in Mb(Ω),

where g ∈ L1(QΩ,T ). From Theorem 2.10, for any k ∈ [1, q∗) , and for any 0 < s < τ < T, and any
domain ω ⊂⊂ Ω,

‖z‖Lk(Qω,s,τ )
≦ C(‖Fξ‖L1(Qω,s,τ )

+ ‖z(s, .)‖L1(ω)) ≦ C(‖Fξ‖L1(Qω,τ )
+ ‖v‖L∞((0,τ);L1(ω)))
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Then z ∈ Lk
loc([0, T );L

k(Ω)). We can choose α such that 1 < α < 1 + q∗/2, and take k = 2α − 1.
From (6.3) we deduce that |∇u| ∈ L1

loc(Ω × [0, T )), and conclude again that u admits a trace
u0 ∈ M+(Ω).

Finally we give an alternative proof by using comparison with solutions with initial Dirac mass,
inspired of [2]. We first extend Proposition 2.13 to the case q ≦ 1 when Ω is bounded:

Lemma 6.5 Let 0 < q ≦ 1, Ω bounded, and u0,n, u0 ∈ M+
b (Ω) such that u0,n converge to u0 weakly

in Mb(Ω). Let un, u be the unique nonnegative solutions of (DΩ,T ) with initial data u0,n, u0. Then

un converges to u in C2,1
loc (QΩ,T ) ∩ C1,0

(
Ω× (0, T )

)
.

Proof. We still have (2.11) and lims→0

∫
Ω un(s, .)dx =

∫
Ω du0,n, thus

∫
Ω un(t, .)dx ≦

∫
Ω du0,n,

and limn→∞
∫
Ω du0,n =

∫
Ω du0, thus (un) is bounded in L∞((0, T );L1(Ω)). From Theorem 6.1, one

can extract a subsequence converging in C2,1
loc (QΩ,T ) ∩ C1,0

(
Ω× (0, T )

)
to a weak solution w of

(DΩ,T ). And (un) is bounded in Lk((0, T ),W 1,k
0 (Ω) for any k ∈ [1, q∗) . As in Proposition 2.13, for

any τ ∈ (0, T ) , ( |∇un|q) is equi-integrable in QΩ,τ , and we conclude that w = u.

Second proof of Theorem 1.7. We still have u ∈ C2,1
loc (QΩ,T ) from Theorem 6.1. It is enough

to show that for any ball B(x0, ρ) ⊂⊂ Ω, there exists a measure mρ ∈ M(B(x0, ρ)) such that the
restriction of u to B(x0, ρ) admits a trace mρ ∈ M(B(x0, ρ)). Suppose that it is not true. Then
from Proposition 3.2 and Remark 3.3, there exists a ball B(x0, ρ) ⊂⊂ Ω such that

lim sup
t→0

∫

B(x0,ρ)
u(., t)dx = ∞.

We can assume that x0 = 0 and ρ = 1. For any k > 0, the Dirichlet problem (PB1,T ) with initial
data kδ0 has a unique solution uB1

k . There exists t1 > 0 such that
∫
B2−1

u(x, t1)dx > k; thus

there exists s1,k > 0 such that
∫
B2−1

Ts1,ku(x, t1)dx = k. By induction, there exists a decreasing

sequence (tn) converging to 0, and a sequence (sn,k) such that
∫
B2−n

Tsn,k
u(x, tn)dx = k. Denote by

un,k the solution of (PB1,T ) with initial data un,k,0 = Tsn,k
u(., tn)χB2−n . Then from Theorem 1.6,

u ≧ un,k in B1. And (un,k,0) converges weakly in Mb(Ω) to kδ0. From Lemma 6.5, (un,k) converges

in C2,1
loc (QB1,T ) ∩ C1,0

(
B1 × (0, T )

)
. to the solution uk,B1 of the problem in B1 with initial data

kδ0, Thus u ≧ uk,B1 . Now, since q ≦ 1, for any k > 1, the function ku1,B1 is a subsolution of (1.1),
since

∣∣∇(ku1,B1)
∣∣q ≦ k

∣∣∇(u1,B1)
∣∣q . From Lemma 6.3, we deduce that u ≧ ku1,B1 for any k > 1.

Since u1,B1 is not identically 0, we get a contradiction as k → ∞.
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