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Initial trace of solutions of Hamilton-Jacobi parabolic equation with

absorption

Marie Francoise BIDAUT-VERON Nguyen Anh DAO

Abstract

Here we study the initial trace problem for the nonnegative solutions of the equation
ug — Au+ |[Vul?=0

in Qo =0 x (0,T), T < oo, where ¢ > 0, and Q = RY | or  is a smooth bounded domain of
RY and u =0 on 9Q x (0,T). We can define the trace at t = 0 as a nonnegative Borel measure
(S, ugp), where S is the closed set where it is infinite, and ug is a Radon measure on Q\S. We
show that the trace is a Radon measure when ¢ < 1. For ¢ € (1, (N +2)/(N + 1) and any given
Borel measure, we show the existence of a minimal solution, and a maximal one on conditions
on ug. When & = w N and w is an open subset of €2, the existence extends to any ¢ < 2 when
up € L},.(Q) and any ¢ > 1 when ug = 0. In particular there exists a self-similar nonradial

solution with trace (RV*,0), with a growth rate of order |x|q/ as |z| — oo for fixed t. Moreover
we show that the solutions with trace (@,0) in Qg~ 1 may present near ¢t = 0 a growth rate of
order t=*/(¢=1) in w and of order ¢t~2~9/(@=1) on Huw.

Keywords Hamilton-Jacobi equation; Radon measures; Borel measures; initial trace; uni-
versal bounds
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1 Introduction
Here we consider the solutions of the parabolic Hamilton-Jacobi equation
u —Au+ |Vul? =0 (1.1)

in Qor =02 x(0,T), T £ oo, where ¢ > 0, and Q = RY, or Q is a smooth bounded domain of
RY and u = 0 on 9Q x (0,7). We mainly study the problem of initial trace of the nonnegative
solutions.

Our main questions are the following: what is the behaviour of u as ¢ tends to 07 Does it
converges to a Radon measure ug in {2, or even to an unbounded Borel measure in 27 Conversely
for such a measure, does there exist a solution, is it unique in some class?

In the sequel M(€2) is the set of Radon measures in Q, M(§2) the subset of bounded measures,
and M™T (), M,/ (Q) are the cones of nonnegative ones. We say that a nonnegative solution u of
(1.1) has a trace ug in M() if u(.,t) converges to ug in the weak™ topology of measures:

lim [ wu(., t)dx = / Pdug, Vi) € Ce(9). (1.2)
Q

t—0 Q

First recall some known results. The Cauchy problem in Qg~

ug — Au+[Vul? =0, in Qgw 7,
(Pew 1) { u(z,0) = ug in RY, (13)

and the Dirichlet in a bounded domain

u — Au+ [Vul?=0, in Qqr,
(Por)q u=0, ondQdx(0,T), (1.4)
u(z,0) = ug.

have been the object of a rich literature, see among them [17], [3],[9], [7], [11], [27], [6], [13], [14],
and references therein. The first studies of (Pg~ 1) concern the existence of classical solutions, that
means u € CQ’I(QRN7T)7 with smooth initial data: the case ug € Cg (IR{N) and ¢ > 1, was studied
in [3], and extended to any ug € Cy (RY) and ¢ > 0 in [18]. Then the problem was studied in a
semi-group formulation for rough initial data ug € L™ (RY), 7 2 1, or ug € My(R™), 9], [11], [27],
and in the larger class of weak solutions in [13], [14].

A critical value appears when ¢ > 1:

==
+|+



Indeed the problem with initial value ug = dg, Dirac mass at 0 has a weak solution if and only if
q < g, see [9], [13]. In the same range the problem has a unique V.S.S. (very singular solution)
Y(0}, such that

lim Yioy (., t)dx =0, lim Yioy(., t)dz = oo, Vr >0,

t—0 ‘$|zr t—0 |1L“<7’

see [26], [10], [8], [13]. Tt is radial and self-similar: Yoy (,t) = t=%2F(|z| /\/t), with

FeC(0,00), F(0) > 0,F/(0) =0, lim % [N F(y) = C >0, (1.5)

In|—o0

where 5
—q
= —. 1.6
a= =1 (16)
It is clear that Yj5) does not admit a trace as a Radon measure. Otherwise, for any ¢ > 1,
the Dirichlet problem (Pqo ) admits a solution U such that lim; ,oU(z,t) = oo uniformly on the

compact sets of €2, see [17]. Thus we are lead to define an extended notion of trace.

The problem has been considered in [15], [23] for the semi-linear equation
ug — Au+u? =0, (1.7)

with ¢ > 1. Here another critical value (N +2)/N is involved: there exist solutions with initial value
dp if and only if ¢ < (IN+42)/N, see [15], and then there exists a V.S.S., see [16], [19]. In [23] a precise
description of the initial trace is given: any nonnegative solution admits a trace as an outer regular
Borel measure Uy in 2. Moreover if ¢ < (N +2)/N, the problem is well posed in this set of measures
in RY. The result of uniqueness lies on the monotony of the function u ~ u?. If ¢ = (N + 2)/N,
necessary and sufficient conditions are given for existence, the problem admits a maximal solution,
but uniqueness fails. Equation (1.7) admits a particular solution ((¢ — 1)t)~*/(¢=1 which governs

the upperestimates. Notice that the V.S.S. has precisely a behaviour in %/~ at 2 = 0, as t — 0.

Here we extend some of these results to equation (1.1). Compared to problem (1.7), new
difficulties appear:

1) The first one concerns the a priori estimates. The equation (1.1) has no particular solution
depending only on t. Note also that the sum of two supersolutions is not in general a supersolution.
In [17] a universal upperestimate of the solutions w, of order t~1/(a=1) is proved for the Dirichlet
problem. For the Cauchy problem, universal estimates of the gradient have been obtained for
classical solutions with smooth data ug, see [9], and [27]. They are improved in [12], where estimates
of u of order t=1/(4=1) are obtained, see Theorem 2.9 below, and it is one of the key points in the
sequel.

2) The second one comes from the fact that singular solutions may present two different levels
of singularity as ¢ — 0. Notice that the V.S.5. Y(o, has a behaviour of order 2 <« =1/,

3) The last one is due to the lack of monotony of the absorption term |Vu|?. Thus many
uniqueness problems are still open.



We first recall in Section 2 the notions of solutions, and precise the a priori upper and lower
estimates, for the Cauchy problem or the Dirichlet problem. In Section 3 we describe the initial
trace for ¢ > 1:

Theorem 1.1 Let g > 1. Let u be any nonnegative weak solution of (1.1) in any domain Q2. Then
there exist a set S C Q such that R = Q\S is open, and a measure ug € M (R), such that
e For any ¢ € C)(R),
lim [ (., t)y = / Pdug. (1.8)
R R

t—0

e For any xg € S and any € >0

lim u(.,t)dx = oo. (1.9)
t=0 J B(z0,5)NQ

The outer regular Borel measure Uy on 2 associated to the couple (S, ug) defined by

. fEduo if B CR,
UO(E)_{OO ifENS #0,

is called the initial trace of u. The set § is called the set of singular points of v and R called the
set of reqular points, and ug the regular part of v.

e]
As t — 0, we give lower estimates of the solutions on S of two types: of type t=1/@@1) on S (if
it is nonempty) and of type =2 on S (if ¢ < g«). Moreover we describe more precisely the trace
for equation (1.1) in Qg~ 7, thanks to a recent result of [12] (see Theorem 2.9):

Theorem 1.2 LetS be closed set in RN, S # RN and ug € M+ (RN\S) . Let u be any nonnegative
classical solution of (1.1) in Qgn  (any weak solution if ¢ < 2), with initial trace (S,up).

Then there exists a measure v € MT(RYN), concentrated on S, such that t'/0~Dy converges
weak * to vy as t — 0. And v € L (RN); in particular if |S| = 0, then v = 0; if S is compact, then
v € L=®(RYN).

In Section 4 we study the existence and the behaviour of solutions with trace (w N2, 0), where
w is a smooth open subset of 2. We construct new solutions of (1.1) in Qg~ 7, in particular the
following one:

Theorem 1.3 Let ¢ > 1, and RNt = Rt xRN, There exists a nonradial self-similar solution of
(1.1) in Qgy p, with trace (RN+,0), only depending on x1 : U(x,t) = t=2f(t=Y22y), where

lim 779 f(n) = cq = ()7 ()77,  lim X (—n) T f(n) =C > 0.

n—00 qg—1 n——00

Thus as t — 0, U(x,t) behaves like =/ @V for fired x € RNT, and U(x,t) = f(0)t~%? for x €
ORN*. And for fizred t > 0, U(x,t) is unbounded: it behaves like z{ as 1 — oco.



Using U as a barrier, we can estimate precisely the two growth rates of the solutions in Qr~ 7
with trace (@, 0), on w and on dw, for any ¢ > 1, see Proposition 4.8.

In Section 5 we show the existence of solutions with initial trace (S,up), when S = QNw and
w C  is open, and ug is a measure on Q\w, possibly unbounded, extending the results of [12,
Theorem 1.4] relative to the case of a trace (0, ug):

Theorem 1.4 Assume that Q = RN (resp. Q is bounded). Let w be a smooth open subset of €,
such that R = Q\w is nonempty, and let S = QNw. Let ug € M (R). We suppose that either
1<q<q,org.<qg=2andug € L. (R), orq>2andug € L}, (R) is limit of a nondecreasing
sequence of continuous functions.

Then there exists a weak solution uw of (1.1) in Qgn  (resp. a weak solution of (Do T)) such
that uw admits (S, up) as initial trace. Moreover as t — 0, u(.,t) converges to oo uniformly on any
compact in w, and uniformly on Q@ Nw if ¢ < qs.

In the subcritical case ¢ < g. we study the existence of solutions with trace (S,uq) for any
closed set § in . Our main result is the following:

Theorem 1.5 Let 1 < q < qi, and Q = RY (resp. Q is bounded). Let S be a closed set in RN,
such that R = RN\S is nonempty. Let ug € MT (R).

(i) Then there exists a minimal solution w of (1.1) with initial trace (S, ug)

(ii) If S is compact in 2 and ug € M () with support in R USY, then there exists a mazimal
solution (resp. a mazimal solution such that u(.,t) converges weakly to ug in R ast — 0).

In Section 6 we study equation (1.1) for 0 < ¢ < 1, with possibly signed solutions, and the

initial trace of the nonnegative solutions. We first show the local regularity of the signed solutions,
see Theorem 6.1. We prove uniqueness for the Dirichlet problem, extending to any 0 < g < 1 the
results of [7], relative to the case 0 < ¢ <2/(N +1):

Theorem 1.6 Let Q be bounded, 0 < q¢ < 1, and uy € My(Q2). Then there exists a unique weak
(signed) solution w of problem (Por) with initial data ug. Let ug,vo € Mp(2) such that ug < vo.
Then v < v. In particular if ug = 0, then u 2 0. If ug < 0, then u < 0.

Finally we show that any nonnegative solution admits a trace as a Radon measure:

Theorem 1.7 Let 0 < ¢ < 1. Then any nonnegative weak solution of (1.1) in any domain Q2. Then
u admits a trace ug in MT().

2 First properties of the solutions
We set Qq,sr = Q x (s,7), for any 0 < s < 7 = 00, thus Qo7 = Qo0.1-
Notation 2.1 Let Q =RY or Q bounded, and ¥ C Q. For any § > 0, we set

Yt = {x e Q:d(x, %) L6}, Yt = {z e ¥ d(x, Q\X) > 6}



2.1 Weak solutions, regularity

Definition 2.2 Let ¢ > 0 and Q be any domain of RN. We say that a function u is a weak
solution of equation of (1.1) in Qar, if u € C((0,T); Li, (Qar)) NLE ((0,T); I/Vlic1 (Q)), [Vul? €
L} (Qar), and u satisfies (1.1) in the distribution sense:

T
/ /(—utpt —ulAp+ |Vullp)dzdt =0, Yo € D(Qa,r). (2.1)
0 Q

We say that u is a classical solution of (1.1) in Qo1 if u € C*1(Qqr) and satisfies(1.1) every-
where.

For ug € M*(RYN), we say that u is a weak solution of (P~ 1) if u is a weak solution of (1.1)
with trace ug.
Remark 2.3 (i)Ifu is any nonnegative function such thatu € L}, (Qqa.r), and |Vul? € L}, .(Qa.T),
and satisfies (2.1), then w is a weak solution of (1.1). Indeed, since u is subcaloric, there holds
u € L2 (Qar)), |Vul € LE (Qar)), and u € C((0,T); LY (Qa,r)), for any p = 1, see [13, Lemma

2.4] for q > 1; the proof is still valid for any q > 0, since it only uses the subcaloricity.
(ii) The weak solutions of (Pgn 1) are called weak M, solutions in [14].

Definition 2.4 Let Q be a smooth bounded domain of RN. We say that a function u is a weak
solution of
up — Au+|Vul? =0, in Qo,r,

(Da.r) { u=0, ondQx(0,T), (22)

if it is a weak solution of (1.1) such that u € C((0,T); L' (Q)), u € L} ((O,T);V[/'Ol’1 (Q)), and

loc _
|Vul? € L}, ((0,T); L' (Q)). We say that u is a classical solution of (Do) if u € C° (Q x (0,T))
and u is a classical solution of (1.1).
For ug € My(Q2), we say that u is a weak solution of (Po,r) if it is a weak solution of (Do)

such that u(.,t) converges weakly to ug in My(S2) :

%i_r)]% Qu(.,t)wdx = /deuo, Vip € Cp(Q). (2.3)

Next we recall the regularity of the weak solutions for ¢ < 2, see [13, Theorem 2.9], [14, Corollary
5.14]:

Theorem 2.5 Let 1 < g < 2.
(i) Let Q be any domain in RN, and u be a weak monnegative solution of (1.1) in Qq.r.

Then u € C?Ot%HWQ(QQ,T) for some v € (0,1). Thus for any sequence (uy,) of nonnegative weak

solutions of (1.1) in Qq,r, uniformly locally bounded, one can extract a subsequence converging in
C’lzo’;(QQT) to a weak solution u of (1.1) in Qqo,r.

(i) Let Q be bounded, and u be a weak nonnegative solution of (Do.r). Thenu € CH0 (Q x (0,T))

2y, 147/2
and u € Clot% +v/

of (Da,r), one can extract a subsequence converging in Clzg’cl(QQ,T) N Cllg’co (Qx (0,T)) to a weak
solution u of (Da,r).

(Qa,r) for some ~y € (0,1) . For any sequence of weak nonnegative solutions (uy,)



2.2 Upperestimates

We first mention the universal estimates relative to classical solutions of the Dirichlet problem, see
[17], and [13, Remark 2.8]:

Theorem 2.6 Let g > 1, and 2 be any smooth bounded domain. and u be the classical solution of
(Da,r) with initial data ug € C*° () N Cy (Q). Then for any t € (0,T),

[l )l[Loe(@) = CA+E a7 T)d(z,00),  [[Vu(,t)|lLe@) = D(), (2.4)

where C' > 0 and D € C((0,00)) depend only of N,q,Q. Thus, for any sequence (u,) of classical
solutions of (Dqr), one can extract a subsequence converging in Cfo’i(QQ,T) to a classical solution

u of (Da,r).

Morever local estimates have been obtained in [27]:

Theorem 2.7 Let Q) be any domain in RY, and u be any classical solution of (1.1) in Qa,r- Then
for any ball B(xo,2n) C §, there holds in Qp(yyn),T

Vul (L) SCET+n 4y 7)1 +ul,t), C=CN,q). (2.5)

Thus, for any sequence of classical solutions (uy) of (1.1) in Qq 1, uniformly bounded in LjS.(Qa ),
one can extract a subsequence converging in CZQO’cl(Qwa) to a classical solution u of (1.1).

A local regularizing effect is proved in [12]:

Theorem 2.8 Let ¢ > 1. Let u be any nonnegative weak subsolution of (1.1) in Qqr, and let
B(z0,2n) C Q such that u has a trace ug € M™(B(xg,2n)). Then for any 7 < T, and any t € (0, 7],

sup  u(z,t) < Ct*%(t +/ duy), C =C(N,q,n,T). (2.6)
z€B(z0,n/2) B(zo,n)

Concerning the Cauchy problem in Qg~ 7, global regularizing effects have been obtained in [14]
for weak solutions with trace up in L"(RY),r = 1, or in My(RYN). A universal estimate of the
gradient was proved in [9] for any classical solution of (1.1) in Qrn o, such that u € Cp(Qprn )-
From [12], this estimate is valid without conditions as |z| — oo, implying growth estimates of the
function:

Theorem 2.9 Let g > 1. Let u be any classical solution, in particular any weak solution if ¢ < 2,
of (1.1) in Qgn . Then

1 u(.,t)
q <+ Ul
[Vu(., )| < 1t

Moreover, if there exists a ball B(xo,2n) such that u has a trace ug € M™((B(wo,2n)), then for
any t € (0,7),

in Qgn . (2.7)

u(z,t) < C(q)t 71 |z —wol? + C(tTT +1+ /B o dwh C=CNoqn), (2.8)
Zo,Nn



Finally note some well known estimates, useful in the subcritical case, see [4, Lemma 3.3]:

Theorem 2.10 Let ¢ > 0 and let Q be any domain of RN and u be any (signed) weak solution of
equation of (1.1) in Qar (resp. of (Dar)). Then, u € L}Oc((O,T);I/Vli’f(Q), for any k € [1,q.),
and for any open set w CC Q, and any 0 < s <71 < T,

lull Lk s,k )y S CRw)([[uls, gy + 11Vl + [Vul + |ulll 1o, ) (2.9)
If Q is bounded, any solution u of (Do,r) satisfies u € L¥((s,T); Wol’k(Q)), for any k € [1,q.), and

ol o oy S €O QN 8) sy + 1IF00 s ) (2.10)

)

2.3 Uniqueness and comparison results

Next we recall some known results, for the Cauchy problem, see [11, Theorems 2.1,4.1,4.2 and
Remark 2.1 |,[14, Theorem 2.3, 4.2, 4.25, Proposition 4.26 |, and for the Dirichlet problem, see [1,
Theorems 3.1, 4.2], [7], [14, Proposition 5.17], [24].

Theorem 2.11 Let Q = RY (resp. Q bounded). (i) Let 1 < q < q., and ug € My(RN) (resp.
ug € My(2)). Then there exists a unique weak solution w of (1.1) with trace ug (resp. of (Par)).
If vg € My(2) and ug < vy, and v is the solution with trace vy, then u < v.

(ii) Let ug € L" (), 1 Sr<o0. If 1 <qg< (N+2r)/(N+r), orif g =2, r < oo, there exists a
unique weak solution u of (Pgn 1) (resp. (Pa,r)) such thatu € C([0,T); L" (RN)). Ifvg € L" (RY)
and ug < vy, then u < v. If ug is nonnegative, then for any 1 < q < 2, there still exists a weak
nonnegative solution u of (P~ 1) (resp. (Po,r)) such that u € C([0,T);L" (RY)).

Remark 2.12 Let 1 < q < q., and ug € M; (RY) and u be the solution of (Pgn 1) in RN, and u®
be the solution of (D7) for bounded Q with initial data ufl = uoLQ, then u$t < w.

We also mention a stability property needed below:

Proposition 2.13 Assume that 1 < ¢ < q.. Let Q@ = RY (resp. Q be bounded), and ug,uy €
MZF(Q) such that (ug,) converge to ug weakly in My(Q2). Let u,,u be the unique nonnegative
solutions of (1.1) in Qgn~ 1 (resp. of (Dqr)) with initial data ug,,uo. Then (uy) converges to u

in Cfécl(QRNJﬂ) (resp. in CLN(Qar) N CY0 (Q x (0,T))).

Proof. (i) From [14, Theorem 2.2], (uy,) is uniformly locally bounded in Qgx 7 in case Q = RY.
From Theorem 2.5, one can extract a subsequence still denoted (u,) converging in Cl2 O’CI(QRNJ«)
(resp. C?O’CI(QQ,T) NCHY (2% (0,7))) to a weak solution w of (1.1) in Qgn 7 (resp. of (Dar)).
From uniqueness, we only have to show that w(.,t) converges weakly in M;(€2) to up. In any case,
from [14, Theorem 4.15 and Lemma 5.11], [Vu, |9 € L} ([0,T); L' (2)) and

t
/un(.,t)dx—i—/ /\Vun\qu§/duo,n, (2.11)
Q 0 JQ Q



and lim [, duo,, = [, dug. Therefore (u,) is bounded in L>((0,T), L' (Q2)), and (|Vu,|?) is bounded
in L} ([0,T); L*()). From Theorem 2.10, for any k € [1,q.) , (uy,) is bounded in L*((0, T), I/Vli)’ck(RN))

(resp. L*((0,T), Wol’k(Q)) Then for any 7 € (0,7, ( |Vu,|?) is equi-integrable in Qp, . for any
R > 0 (resp. in Qq ;). For any & € CLRYN) (resp. & € CL(2)),

/Qun(.,t)fdx—i-/ot/Q(Vun.Vf—i-!Vun]q@dxdt:/Qfduom,

and we can go to the limit and obtain

/Qw(.,t)fdx—i-/ot/g(Vw.V§+\Vun\q@dxdt:/Qfduo,

Then w is the unique weak solution of (Pq, r), thus w = u. ]

Remark 2.14 As a consequence, suppose 1 < q < q., Q bounded, and let v € C?*(Qqr)NC°(Q x
(0,T)) such that
v —Av—|Vol|! 20, in D'(Q),

and vq has a trace ug € My(S2). Let w be the solution of (Dqr) with trace ug. Then v = w.

Indeed let € > 0 and (¢n) be a sequence in DT (Q) with values in [0,1], such that @, = 1 in
Q’ln/il and ws, be the solution of (Dqr) with trace ppv(.,€) at time 0. From [27, Proposition 2.1],
v(.,t+e) Z ws. Asn — 0o, (pav(.,€)) converges to (., €) in LY (), then from above, (wf,) converges
to the solution w® of (Dq,r) with trace v(.,€). Then v(.,t +¢€) = w. As e — 0, (v(.,€)) converges
to uy weakly in My(Q2), thus (w) converges to w, thus v = w.

2.4 Case of zero initial data

Here we give more informations on the behaviour of the solutions with trace 0 on some open set. We
show that the solutions are locally uniformly bounded on this set and converge locally exponentially
to 0 as t — 0, improving some results of [17] for the Dirichlet problem.

Lemma 2.15 Let F be a closed set in RN, F #RYN (resp. a compact set in Q bounded,).
(i) Let u be a classical solution of (1.1) in Qgn 7 (resp. (Da,r)) such that u € C(RYN x [0,T))

(resp. u € C([0,7);Co(R)) and suppu(0) C F. Then for any & > 0, (resp. such that § <
d(F,00)/2)

Hu(.,t)HLm(Q\fgm) < C(N,q,0)t, vVt €10,7T). (2.12)
In particular u(.,t) converges uniformly to 0 on Q\F* as t — 0. Moreover, there exist C;5 =
Cis(N,q,6) >0 (i =1,2), and 75 > 0 such that
2,5

[ )] poe ety = Cise” "t on (0,75]. (2.13)

(ii) As a consequence, for any classical solution w of (1.1) in Qg~ 1 (resp. (Dar)) such that w(.,t)
converges to oo as t — 0, uniformly on Fg*, for some § > 0, there holds u < w.

(1ii) If ¢ < 2, then (i) still holds for any weak solution u of (1.1) (resp. of (Dqr)) with trace 0
in M(RN\F) (resp. which converges weakly to 0 in My(Q\F)), and (ii) holds if F CC Q.



Proof. From [12, Lemma 3.2], for any domain © of RY | if u is any classical solution of (1.1) in
Qq,r such that u € C(Q x [0,T")), for any ball B(zo,3n) C 2, and any ¢t € [0,T),

(s ) Lo (B(zg.m) = C UV, Q) t+ (s ) oo (B(z0,2n)) - (2.14)

(i) Let Q be arbitrary. For any zg € Q\F¢*, taking n = §/3 we deduce (2.12) follows. Next
suppose Q bounded and F compact. Consider a regular domain ' such that 75 € Q' CC Q. Let
v = d(V,09). For any ¢ € U\ F§*, taking n = min(§/3,+/3), we have B(zg,3n) C Q\F thus we
still get (??). As a consequence u(.,t) £ Ct in Q\F§, with C = C(N,g,6,7), in particular on
€Y. Following an argument of [13, Lemma 4.8], the function z = u — Ct solves

2 — Az = —|Vu|! = C in Q\QY

then 27 is subcaloric and 2 = 0 on the parabolic boundary of Q\Q, thus z* = 0. Thus u(.,t) < Ct
in Q\Fgt.

Next consider the behaviour for small t. We use a supersolution in By X [0,00) given in [25,
Proposition 5.1]. Let a € (0,1/2), and r ~ du(r) € C?([0,1)), radial, with du(z) = 1 — r for
1—r<a,dy(r)=3a/2 for 1 —r >2a, [Vds| £ 1, |Ady| £ C(N)d, 2. Let

1 da(x)a
v(z,t) = edal(@ t

with m < m(N) small enough. Then if a < a(N) small enough, there exists 7(«) > 0 such that v
is a supersolution of (1.1) in By x (0, 7(c)]. Then v(z,t) = C1(a)e~ 2@/t in By x (0,7(a)] . And
v is infinite on dB; x (0,7(c)] and vanishes on By x {0}. Then by scaling, for any o € RV\Fg*!

(resp. zo € Q\F£*"), from the comparison principle in B(zg,d) N Q, we get
u(0,1) < 6-90(20/6,1/6%) < Cy(a)5~0e 2@ /1 (2.15)

and (2.13) follows.

(ii) Suppose that w(.,t) converges to oo as ¢ — 0, uniformly on F§¢*'. Then for any ¢ > 0,
there exists 79 € (0, T) such that u(.,t) < e in Q\Fs x (0,79] . Let € < 7p. then there exists 7. < 7o
such that for any 0 € (0,7), w(.,0) = maxgu(.,€) in Fs. Then u(.,t +¢€) < w(.,t +6) + €, in
Q x (0,79 — €] from the comparison principle (note that in case Q = RY, wu(.,t) is bounded for
t>0). As § — 0, then ¢ — 0, we get u(.,t) < w(.,t) + €, in Q x (0,70] . From the comparison
principle, u(.,t) < w(.,t) + €, in Q x (0,T). As eg — 0, we deduce that u < w.

(iii) Assume ¢ < 2. First suppose Q = R". From [13, Proposition 2.17 and Corollary 2.18], the
extension u of u by 0 to (=T, T) is a weak solution in Qg~x\ 7 77, hence u € CHLRN\F x [0,T)),
then u is a classical solution of (1.1) in Qgmv\ 7 _7,r; thus (2.12) and (2.13) follow. Moreover, if
F is compact, then u(.,e/2) € Cp(RY) from (2.12), then u(.,e) € CZ(RY), thus we still obtain
u < w from the comparison principle. Next suppose €2 bounded and F compact. Arguing as in [13,
Lemma 4.8], we show that u € CO(Q\Fg* x [0,T)), and u(0) = 0 in Q\F§*". We still get (2.12) by
considering z as above, and using the Kato inequality, and (2.13) from the comparison principle.
Moreover we still get u < w. [ ]
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3 Existence of initial trace as a Borel measure
Recall a simple trace result of [13].

Lemma 3.1 Let Q be any domain of RY, and U € C((0,T); L} () be any nonnegative weak
solution of equation

Uy—AU =% inQqr, (3.1)

with ® € L}OC(QQT), ® = —F, where F € L}OC(Q x [0,T)). Then U(.,t) admits a trace Uy € M(Q).
Furthermore, ® € L} ([0,T); L} (), and for any ¢ € C2(Q x [0,T)),

loc loc

T
—/ /(Utpt + UAp + ®p)drdt = / ©(.,0)dUyp. (3.2)
0o Ja Q

If ® has a constant sign, then U € L2.([0,T); L}, () if and only if ® € L}, .([0,T); L},.(2)).

loc loc loc

As a consequence, we get a characterization of the solutions of (1.1) in any domain 2 which
have a trace in M1 (Q) : as in [13, Proposition 2.15] in case ¢ > 1, we find:

Proposition 3.2 Let ¢ > 0. Let u be any nonnegative weak solution u of (1.1) in Qqor. Then
u has a trace ug in MT(Q) if and only if u € L. ([0,T);LL.()), and if and only if |Vul? €

loc

LL (2 x[0,T)). And then for any t € (0,T), and any ¢ € CL(Q x [0,T)),

t
/u(.,t)gpdac —|—/ /(—ugpt + Vu.Ve + |[Vul? p)dxdt = / ©(.,0)dug. (3.3)
Q 0 JQ Q

And if ¢ > 1, for any nonnegative ¢, & € CL(Q),

t
/u(.,t)Cdx —l—/ /(Vu.VC—i— |Vul|? ¢)dzdt = / Cduy, (3.4)
Q 0 JQ Q
! 1 t / / /
/ u(., )% dx + —/ / |Vul|1€? dx < C(q)t/ |VE|T da +/ &7 duy. (3.5)
0 2 Jo Ja Q Q
Proof. The equivalence and equality (3.3) hold from Lemma 3.1. Moreoever for any 0 < s <
t<T,
/ t ! t !
/u(.,t){q dﬂ:—l—/ / |Vul1¢? do = —q'/ /51/(q_1)Vu.V£dx—|— / u(s, )¢t dx
Q s JQ s JQ Q
I : : :
<5 [ [ vureras s e [ verds s [ .ol in,
2Js Ja 0 0
hence we obtain (3.5) as s — 0. ]

Remark 3.3 Note that u € L2.([0,T); L}, () if and only if lim sup,_, fB(m ) u(.,t)dx is finite,
for any ball B(xq,p) CC .
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Remark 3.4 If Q is bounded, ug € M;(Q) and u is any classical solution (resp. weak solution if
q £ 2) of (Pa,r), then (3.5) still holds for any nonnegative £ € CL(SY). Indeed for any 0 < s < t < T,
(8.4) is replaced by an inequality

/Qu(.,t)gdx—l—/ot/Q(Vu.VCdx—i-\Vu]qﬁ)dxdt:/ot/m %Cdsdt—i—/ﬂu(.,s)ﬁdw§/Qu(.,s)gdx,

and (8.5) follows as above.

Then we prove the trace Theorem:
Proof of Theorem 1.1. Let ¢ > 1. Let u be any nonnegative weak solution of (1.1) in Qq 7.
(i) Let zp € Q. Then the following alternative holds (for any 7 < T'):

Al) Either there exists a ball B(xg, C Q such that [ Vu|?drdt < oo. Then
( P 0 JB(@o.p)

from Lemma 3.1 in B(zo, p), there exists a measure m, € M7T(B(zg,p)), such that for any
W € C2(B(xo,p)),

lim u(.,t) = / )z/)dmp, (3.6)
(zo,p

t—0 B(z0,p)

(A2) Or for any ball B(xzg,p) C 2 there holds [ fB p 1 Vul? dzdt = oo. Taking 1 = ¢4 with
£ € D), with £ =1 on B(xg, p), with values in [0,1], we have forany 0 <t <,

/(J;O,p) u(.,t)dx 2 / ( )é‘q’dx = / u(., )fq dx +/ / qgl/ =17y, VE+ ’vu‘q§q )d.%'dt

> 1 //\vungq dodt — c/ /\vqu ddt,

then
lim u(.,t)dxr = oo. 3.7
=0 JB(0,p) 0 -7
(ii) We define R as the open set of points xg € Q satisfying (A1) and S =Q\R. Then there exists
a unique measure ug € M(Q2) such that (1.8) holds, and (1.9) holds from (A2). ]

3.0.1 First examples
1) Let 1 < ¢ < gu. (i) The V.S.S. Y{qy given by (1.5) in Qgw ., admits the trace ({0} ,0).

(ii) Let Q2 be bounded, and zy € Q. There exist a weak solution Y, { o30f (Dq,o0) with trace
({z0},0)), called V.S.S. in € relative to z¢. It is the unique weak solution such that

t—0 B

lim / Y, (o tda = 00,Yp > 0, lim / Y (G tede = 0,¥49) € Co(Q\{a}), (3.8)

see [13, Theorem 1.5].

2) Let 1 < ¢ < ¢« From [26], for any 5 > F(0), there exists a unique positive radial self-similar
solution Ug(x,t) = t*a/2f5(|i\/t‘-) such that

f3(0) = B, f3(0) =0, and lim fz(n)n" = C(B) > 0;

n—00

12



then Ug has the trace ({0},C(B)|z|~). Notice that = + |2|~® belongs to Li,.(RV\ {0}) but not
to Li (RM).

loc
3) Let ¢« < ¢ < 2. For any 8 > 0, there exists a unique solution as above, see [26]. Then Ug has
the trace (0, C(B) |z|~*); notice that x — |z|~® belongs to L}, (RY) but not to L}(RY).

4) Let Q be bounded, and g > 1. From [17], there exists a solution of (Dq ) which converges to oo
uniformly on the compact sets of Q2 as t — 0. Then its trace is (£2,0). See more details in Section 4.

3.0.2 Lower estimates

We first give interior lower estimates, valid for any ¢ > 1, by constructing a subsolution of the
equation, with infinite trace in B;/; and compact support in Bj.

Proposition 3.5 Let ¢ > 1, and Q be any domain in RN, and let u be any classical solution u of
(1.1) in Qq,r, such that u converges uniformly to oo on a ball B(xg,p) C Q, ast — 0. Then there
exists C = C(N,q,p) such that

hmtmft - lu(x t) = C=C(N,q,p), Vx € B(xo,p/2), (3.9)

—0

lim inf £ Tu(a, 1) 2 Cy?, Gy = (L +¢))(g — 1)), (3.10)
—

Proof. Let h, A > 0 be two parameters. We consider a function ¢ € (0,00) — ¥(t) = ¢¥p(t) €
(1,00) depending on h, introduced in [12], solution of the o.d.e.

G+ h(? =) =0 in (0,00),  (0) =00, w(oc)=1, (3.11)

given explicitely by (t) = (1 — e "e=D!)77=1; hence ¢? — 1) > 0, and ¥(t) > (h(q — 1)t)~ /(@D
for any ¢t > 0. Setting

Vi t) =9 follzl),  for)=1+4¢r)1-r7,  vrelo],
we compute
D=V, = AV + |[VV[T= AV = (|fo|" = hfo)(? =) + (| f'|" = Af = Af)e.

Note that f4(r) = —Mr(1 — 7))~ with M = ¢/(1 + ¢). Thus f}(0) = 0 and fy is nonincreasing,
and |f}|? — hfy £0on [0,1] for h = C; = MY. Otherwise | f/|? — Af — Af = (1 — r)? F(r) with

N—(N-1+¢)r
(1—r)2

F(r)= M7 —X1+¢'r)+ MG(r), G(r) =

Then F(0) = MN — A3 <0 for A 2 Cy = NM. We have
F'(r) = gM9r9™ " — \¢ + MG'(r), Gr)=0-r)3(N+1-¢ = (N —-1+¢)r).

If ¢ < (N + 1)/N, there holds ¢ > N + 1, hence G’ < 0, thus F/ < 0, for A\ = (¢ — 1)M?. If
q>(N+1)/N, then G'(r) £0forr 2ry,=(N+1-¢)/(N—-1+¢'), and G’ is continuous on
[0,1), hence bounded on [0, 7y 4] . Then ) F <0assoonas A = C5 = (¢q—1)MI4+(1+¢') maxpo .. 1 G
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We fix h = h(N,q) = C1 and A = A\(N,q) = max(Ca,C3), then F(r) < 0 on [0,1], thus D < 0.
Then the function
(,1) — w(w,t) = e MV (2, t) = e (1) fo(|2])
satisfies
wy — Aw + M7V 7|7 <0,

hence it is a subsolution of the Dirichlet problem (Dp, 1), since eMa—1t > 1. By scaling the function
(z,t) — w(z,t) = p~“w((x — x0)/p,t/p?) is a subsolution of (Dp(y, 7). And u is a solution
which converges uniformly to oo on B(zg, p). For given € > 0, there holds @ < m. = p~%)(e/p?)
in B(xo,2n); and there exists 7. > 0 such that for any 6 € (0,7), u(.,0) = m, in B(x,2n). Then
W(,t+e) Su(.,t+0). As — 0 and € — 0, we get w < w in B(zg,27n). And

w(z,t) = pfaef)\t/p2¢(t/p2) > (/)/Q)q/ef)\t/p2 (h(g — 1)75)71/(q71)

in B(zo, p), hence (3.9) holds. Taking h = M4 = (¢’ (14¢'))?, there holds u(z, t) = p? e~ /7" (h(q—
1)t)~/(=1 thus (3.10) follows. |

In case 1 < g < g4, we give a lower bound for all the weak solutions at any singular point, by an

argument of stability-concentration, well-known for semilinear elliptic or parabolic equations, see
[23].

Proposition 3.6 Let 1 < q < g«. (i) Let u be any nonnegative weak solution u (1.1) in Qgn
with singular set S. Then for any xg € S, there holds u(z,t) = Yoy (2 —x0,1) in Qpn 7, where Yo
is the V.S.S. given at (1.5). In particular,

u(xo,t) = C(N, )t~ 2, Vit >0. (3.12)

(ii) Let Q bounded, and u be any nonnegative weak solution u of (Dqr). Then u(x,t) 2
Y{%O}(x,t) in Qq,r, where Y{%O} is given by (3.8). In particular,

lim tinfot%u(mo,t) > C(N,q) > 0. (3.13)
_)
In any case, u(.,t) converges uniformly on S to oo ast — 0.

Proof. (i) We can assume z¢ = 0. For any € > 0, there holds lim;_, fBE u(x,t)dr = co. And u €
C*HQgw ). We will prove that for fixed k > 0, there holds u = uF, where u” is the unique solution
in RY with initial data kdy, from Theorem 2.11. There exists t; > 0 such that f32_1 u(z, t1)dx > k;
thus there exists sq ; > 0 such that fBTl Tsl’kv(az, t1)dz = k. By induction, there exists a decreasing
u(z,ty)dr = k. Let
p € N, p > 1. Denote by uy, the solution of the Dirichlet problem (Dp, ), with initial data
Unkp(,0) = Ts, ul, tn)xs, - Then we get u = up g, in By, from Remark 2.14. As n — oo,
(tn k p(0)) converges to kdy weakly in My(Bp). Indeed for any ¢ € CT(B,),

sequence (t,) converging to 0, and a sequence (spj) such that [ B, Ts, 0

‘/ Un k,p(0)tdx — k1p(0)
By

/B T, 0@, tade — ki (0)] £ k| = $(0) e, -

2—n
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Then (up,p) converges in Cfgcl(QBp,T) to the solution u*5» of the problem in B, with initial data
k&, from Proposition 2.13. Thus u > u*Pr. Finally, as p — oo, u*Pr converges to u* from [13,
Lemma 4.6] and uniqueness of u*; thus v > u*. As k — oo, (u*) converges to Y0y, hence v = Yyq.

Then (3.12) holds with C' = F'(0) given by (1.5).

(ii) In the same way, denote by u’ég)g, Un, k2, the solutions of the Dirichlet problem (Dgq o), with
respective initial data kd,,and Tsn,kv(vtn)XB(zo y—ngys Where d = d(xo,08). Then as above we get
U 2 Up a0 0§, then u 2 u’;;)ﬂ. As k — oo, (uF%) converges to Y{%O}, and moreover, for any € > 0,
there exists 7 = 7(e,d) such that Y,y (7,t) =Y (2 — 20,t) = Y{go} +¢ein 2 x (0,7), see the proof

of [13, Theorem 1.5]. Then u = Y{go} and (3.13) follows by taking ¢ = F(0)/2. ]

Remark 3.7 As a consequence, for 1 < q < qx, there exists no weak solution u of (1.1) in Qrn 1
with singular set S = RY. Indeed if u exists, u satisfies (3.12), then u converges uniformly on RY
as t — 0. Then for any k > 0 and any ¢ € DY (B1), p =1 in By o, u is greater than the solution
Uk, p with initial trace kp(x/p). As p — 00, uy, tends to the unique solution wy, with initial data k,
namely uy = k, thus u 2 k for any k > 0, which is contradictory. The question is open for q = qx.

Remark 3.8 Another question is to know for which kind of solutions (3.13) still holds when q 2 g.
We give a partial answer in Section 4, see Proposition 4.8.
3.0.3 Trace of the Cauchy problem

Here we show Theorem 1.2, based on the universal estimate of Theorem 2.9.

Proof of Theorem 1.2. (i) From Theorem 2.9, u satisfies (2.7). Reporting in (1.1), we deduce

1 u
- A ———20
Ut U+q_1t_
Setting y = /@y, we get that
v — Ay = 47T (—= 2~ [Vu?) 2 0
q—11 -

in Qgw 7, thus y has a trace y € MT(RY), see Lemma 3.1. Since u(.,t) converges weak* to ug in
RM\S, we find that supp v C S. Let B(zg,2n) C RV\S. From (2.8), we have

y(a,t) < C(q) |z — w0l + C(1+47 + ¢t / dw),  C=C(N,qn),
B(zo,n)

hence v € L2 (RV). ]
Remark 3.9 In particular for ¢ < q¢*, the V.S.S. Y5 in RN satisfies v = 0, which can be
checked directly, since limy_ot'/(4=V=9/2 = 0. The function U given at Theorem 1.3 satisfies

/

v(x) = cq(xf)q .
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4 Solutions with trace (wNQ,0), w open

Here we extend and improve the pionneer result of [17], valid for the Dirichlet problem in 2 bounded.
In case of the Cauchy problem, the estimates (2.5) and (2.8) are essential for existence.

Theorem 4.1 Let ¢ > 1 and w be a smooth open set in RV with w # RY (resp. a smooth open set
in Q bounded). There exists a classical solution u =Y_ (resp. u = YGQ) of (1.1) in Qrv o (Tesp.
of (Da,o0)), with trace (N Q,0). Moreover it satisfies uniform properties of convergence:

lim inf u(x,t) =00 VK compact C w, hm supu(z,t) =0 VK compact C Q\w.  (4.1)
t—0 z€ K =0 ek

More precisely, for any é > 0,

hmtmf ta- 1u(x t) = C(N,q)s?, Vr € wit, (4.2)
H
sup u(z,t) < C(N,q,0)t, vt > 0. (4.3)
Q\wget

If q < qx, then for any x € WN S,

}ggt%u(:ﬂ,t) = C(N,q) >0 (resp. limtinf(']t%u(:v,t) = C(N,q) > 0). (4.4)
—

Moreover, if 2 = RN the function Y. satisfies the growth condition in QRN 00

Y (0,t) SO+t 7)1 +|2|7), C=C(N,qw) (4.5)

Proof. First suppose Q bounded, then @ is a compact set in RY. We consider a nondecreasing
sequence (¢p) of nonnegative functions in C}(Q), with support in @, such that ¢, = p in wzl%,

and the nondecreasing sequence of classical solutions u!’ with initial data ¢p. From Theorem 2.6,

P
(u}?) converges in C%E(QQT) to a solution Y** of (Do,r). Then by construction of ug, V(1)
converges uniformly to co on the compact sets in w.Then the conclusions hold from Lemma 2.15,
Propositions 3.5 and 3.6.

Next suppose Q = RY. We can construct a nondecreasing sequence (¢p)p>pe of functions in

C’+(RN) with support in @N B,, such that ¢, = p on w”}t NBy_1/p- Let uy, be the classical solution

of (1.1) in Qgw ,, with initial data ¢,. Since w # RY, there exists a ball B(xz,7) C RV\@). From
(2.8),

up(,8) < Clg)t T |z — mo|? + C(N, g, ) (7T +1), (4.6)

thus (up) is locally uniformly bounded in Qgn . From Theorem 2.7, (u;) converges in Cfo’i(QRNm)
to a classical solution Y_ of (1.1) in Qgw .- Then by construction of u,, Y_(.,t) converges uniformly
to oo on the compact sets in w, and the conclusions follow as above. Moreover, from (4.6), Y_
satisfies (4.5). ]

Remark 4.2 Moreover, from the construction of the solutions, denoting by y, the solution of (1.1)
with initial data ¢ € C;f (RN) N Cy (W) (resp. the solution of (Dq ) with initial data ¢ € Cf (2))
we get the relations

YwQ = sup Yo Y. = sup Yo (4.7)

w

PeCT (), supppCw PeC;H (RN ), supppCw
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Indeed we get y, < Y_, for any nonnegative ¢ € CLRN) (resp. CL(Y)) with suppp C @, and the
relation extends to any ¢ € C;f (RYN) (resp. C;(2)), from uniqueness of y.,.

Remark 4.3 When Q is bounded, and @ C Q, or w = Q, it was shown in [17] that there exists a
solution YUQ satisfying (4.1). Moreover, using the change of unknown v = e~ ", they proved that if
w CC 8, then for any x € Ow,

lm Yz, t) =00, if ¢<2; lim Y%z, t) =In2, if¢q=2; limY%(x,t) =0, if ¢ > 2.
t—0 ¢ t—0 ¢ t—0 ¢ (4 8)

Next we study the question of the uniqueness of solutions with trace (w,0) which appears to
be delicate. A first point is to precise in what class of solutions it may hold, in particular in what
sense the initial data are achieved.

Definition 4.4 Let Q = RY (resp. Q bounded) and w be a open set in Q. We denote by C the
class of classical solutions of (1.1) in Qg~ 1 (resp. of (Dar)) satisfying (4.1). We denote by W
the class of weak solutions of (1.1) in Qg~ 1 (resp. of (Dq,r)) with trace (@,0).

In [17], the authors consider the class C. They show that if @ is compact contained in §2 bounded
and w, ) are starshaped with respect to the same point or ¢ = 2, then YUQ is unique in that class.
But we cannot ensure that any weak solution u with trace (w,0) converges uniformly to oo on the
compact sets in w. And in case ¢ > 2 we even do not know if u is continuous. Here we give some
partial results, where we do not suppose that €2 is starshaped.

. and Y_ is

Theorem 4.5 (i) Let ¢ > 1. Under the assumptions of Theorem 4.1, Y_ = supY .
“s
minimal in the class C (resp. YUQ = sup Yf}m and YUQ is minimal in the class C). If w is compact,

u, = infs0Y ., is a mazimal solution of (1.1) in Qrn 1 in the class C (resp. if w CC Q, then
UJ6 k)

=0

a2 =

w

infs YS! is a maximal solution of (Do) in the class C).
“s

(i) Let 1 < q¢ < 2 and suppose w compact (resp. w CC Q) Then T_(resp.

-) is mazimal in
the class W. If w is starshaped, then Y_ (resp. Ywﬂ) is the unique solution of (1.1) in Qgn 7 (Tesp.

of (Da,r)) in the class C.

(iii) Let 1 < q < gy and suppose w compact (resp. w CC Q). Then W = C. Thus Y_ (resp. YUQ)
is minimal in the class W. If w is starshaped it is unique in the class V.

Proof. (i) Let ©Q be bounded. Let v be any classical solution of (Dgq r) satisfying (4.1).
Let ¢ € Cf (Q) with suppy C w. Then there exists a nondecreasing sequence (¢,,) € Cy (Q), with
support in wm, converging to ¢ in C*(2). Then (y,, (.,t))) converges to y,(., t) in C(Q), uniformly
for ¢t > 0. For fixed n, let € € (0,7T). Since v(.,t) converges uniformly to co on the compact sets
of @, and ¢, = 0 in ﬁ\wg%, there exists 6,, € (0,¢€) such that infv(.,t) 2 maxy, = maxy,,(.,€)
for any ¢ < 6,,. Then v 2 y,, on [¢,T") from the comparison principle, hence v 2 y,. Then YUQ is
minimal in the class C. Moreover for any J > 0, Yffm < YUQ, and

“s

sup Yf}nt = sup( sup Yo) = sup Yp = Ywﬂ.
s

: 0 peCY (Q),supppcwint @eCY (Q),supppCw
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Now consider the case Q = RY. Let v be any classical solution in Qg 7 satisfying (4.1). Let
¢ € CHRYN), with suppy C w. As above we deduce that v > Y. From the uniqueness of the
solutions, we deduce that v 2 y,, for any ¢ € Cgr (RY), with suppy C @. Then Y_ is minimal in
the class C. As above we obtain Y_ = squ .

Assume that Q = RY and @ is compact. For 0 > 0 we consider the function Y___, constructed

as above. Then by construction, Y_ Y .. Taking 6, = 0, (Y_ezt
“on

u of (1.1) in Qgn 7 from Theorem 2.7 thus u_ = Y_, then u_ satisfies (4.1). Moreover let v be
any solution in the class C. From Lemma 2.15 (11) v < Y

wext

) decreases to a classical solution

then v < w_, thus w_ is maximal.

wext?
Next assume 2 bounded and w CC §2; the result follows as above by taking § < &g small enough
such that wggt C Q and using Theorem 2.6.
(ii) For ¢ < 2, u_(resp. ﬂg) is also maximal in the class W, from Lemma 2.15 (iii). But we
cannot ensure that is minimal in this class.

Suppose that w is starshaped, then Y_(z,t) = k%Y (kz, k*t), from (4.7). As above, any weak
solution v of (1.1) in Qg~ 7 with trace (w, 0) satisfies v < Yj for any k > 1, hence v = Yz as k — 1,
thus @ < Y, hence @, = Y. We get uniqueness in the class C. Now any weak solution w of (Dgq 1)
with trace (@, 0) also satisfies w < Yj in Q x (0,T) for any k > 1, then also YQ < 7! £ Y. Thus
as k — 1, one gets YQ <al <Y Let ¢g > 0. We fix § > 0 such that Wt C Q. From Lemma 2.15
(1), we get Y_(.,t) < C(N q, )t on 0%; hence there exists 79 > 0 such that Y5 < €9 on 99 x (0, 7o];
thus, for any n < 1, Y5 _YQ—i—eo, in Qx (0,79]. As n — 1 we get Y, <YQ—|—€0, in Q x (0, 7] .
Then @} < YQ + €g, in Q x (0,70]. From the comparison principle, uQ < YQ + €9, in Q x (0,7).
As ¢g — 0 we get u! < YQ hence '} YQ And any weak solution v of (1 1) with trace (w,0)
satisfies v < Yz in Qpn T for any k > 1; thus as k — 1,74, SY_, hence @, = Y_.

(iv) Any weak solution v € W is classical since ¢ < 2, and from Proposition 3.6, v(.,t) converges
uniformly in @ to co as t — 0. Then W = C. the conclusions follow from (i) and (ii). ]

As a consequence we construct the solution of Theorem 1.3. We are lead to the case N = 1.

Proposition 4.6 Let ¢ > 1, N = 1. Then there exists a self-similar positive solution U(x,t) =
t=2f(t=12x) of (1.1) in Qr1, with trace ([0,00),0), and f satisfies the equation

P+ 2 )+ 5Fm) = [T =0, vpeR (4.9)

And setting c, = (¢')~7 (¢ — 1)~ Y@=1),

; -q —
Jim ™ f(n) = cq, (4.10)
n> _3-2q
lim e (—n) <1 f(n)=C>0. (4.11)

In case q = 2, f is given explicitely by

Fn) = —ln(%er fe(n/2)) = — In( / T e ds). (4.12)
n
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Proof. We apply Theorems 4.1 and 4.5 with w = (0,00). Since w is starshaped and stable by
homothethy, we have Y_(z,t) = k*Yiz(kz, k?t) = kY (kz,k*t) for any k > 0. Thus U = Y, is
self-similar. Hence U(z,t) = t~%2 f(t~1/2z), where 7 — f() is defined on R and satisfies equation
(4.9).

In the case ¢ = 2, we can compute completely U : The function V = e~
equation, with V(0,2) = X(—x0,0), thus

U is solution of the heat

0 2
(z—y) 1 T
V(t, :4t1/2/ @ dy = —erfe(——
() = (am) 2 [ Ty = et
2

where x — erfe(z) = NG [ ¢~*"ds is the complementary error function. Then U(z,t) = —InV,

and f is given by (4.12). Note that f can also be obtained by solving equation f"(n) 4+ 4 f'(n) —
F/(m)2 = 0, of the first order in f’. We get f(0) = In2. As n — o0, since erfe(z) = (1/y/mz)e =" (1+
o(1), we check that f(n) = (1/4)n*(1 + o(1)).

)

Next suppose g # 2. Writing (4.9) as a system, we obtain that f is positive, from the Cauchy-
Lipschitz Theorem. Indeed if at some point f(n;) = 0, then f'(n;) = 0, thus f = 0. From (3.9),
we get U(1,t) = t=%2f(t=1/2) > Ct'/(¢=1): for ¢ small enough, hence f(p) = Cp? for large p.
From (2.13), there holds U(—1,t) < Cy e~ %21/t on (0,7], since U is a pointwise limit of classical
solutions with initial data Cj(R) with support in [0, 00) . Then f(n) converges to 0 exponentially as
n — —oo. Next we show that f’ > 0 on R : if f'(n9) = 0 for some 7 we have f”(no) + §f(no) = 0.
Since a # 0, ng is unique, it is a strict local extremum, which contradicts the behaviour at co and
—o00. The universal estimate (2.7) is equivalent to

10 S —=f). Ve (413)

Then the function 5 — /¢ (n) — cé/ q/77 is nonincreasing, hence
U ) S+ fY70),  wp=o. (4.14)

Moreover, from (4.13),
n
)+ 5= =0, VneRr.

Setting g = (f')'74, we deduce that

(=T g () 2 —Q(q; D o3t

Hence the function n — e_q%l"Qg — (¢\/7(q —1)/2)erfc(y/(q — 1)n/2) is nondecreasing, and has
a limit 0 as 1) — oo, thus it is nonpositive. Since erfe(z) < e /x\/7 for z > 0, we obtain

g q W(q - 1) a—1p2 (qz_ 1)77) g ’ vn > 0.

T o
5 e erfe(

SRS

Thus by integration, the function n — f(n) — cqnq/ is nondecreasing on R, thus
f) 2 en® + f(0),  Vnz0. (4.15)
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In particular (4.10) follows from (4.14) and (4.15).
Next we study the behaviour near —oo. From (4.13), f and f’ converge exponentially to 0. Let
h = f'/f. Then by computation

W +h*+ gh + % — @ Ph =0, (4.16)

h
h" + 2hh + gh’ - Fa (g + (¢ — 1)A%) = 0.
Either h is not monotone near —oco. At any point where b/ = 0, we find by computation

W= (= Dhh(h+ ) - 3);

hence at any minimal point, h > |n|/2, then lim, ,_h = oco. Let us show that it also true
if h is monotone. Suppose that h has a finite limit ¢, then ¢ = 0 from (4.16). If ¢ > 2, then
liminf, ., A" 2 |a|2, which is contradictory. If ¢ < 2, following the method of [16] we write
(e"/4h) = e"’/4(—a/2 + o(1)), then by integration we obtain that lim, o nh = a, from the
I'Hospital’ rule, then lim inf, o (—7)* f > 0, which is a contradiction. Thus again lim,, ., h = co.
And then (4.11) follows as in [16], more precisely, as n — —o0,

fn) = Ce™F ' (1= (a - 1)(a - 2) 1ol "2+ ol|nl ).

Remark 4.7 Note that f is convex: indeed
1
20 -1)
If f"(m) =0 for some my, then f"(m) < 0, thus m is unique, and f"(n) <0 for n > ny, then f is

concave near oo, which contradicts the estimates above. Then f"(n) > 0 on R. From that property,
we can obtain the behaviour (4.10) with pure o.d.e. techniques, without using the estimate (4.13).

R UOR @) =al ol £ ") = 0.

Thanks to the barrier function U we obtain more information on the behaviour of the solutions
with trace (w,0) on the boundary of w :

Proposition 4.8 Let 1 < q, and w be a smooth open set in RV, Then the function Yz constructed
at Theorem 4.1 satisfies

(i) For any xo € Ow, lim inf;_,q t“/QYw(xo,t) = f(0).
(ii) If w is conver, then for any xg € Ow, limy_,0 t% %Y (20, t) = £(0).
(iii) if RN\w is conver, then for any x¢ € @, infi~o t%2Yy (20, t) = £(0).

Proof. (i) Since w is smooth, it satisfies the condition of the interior sphere. Thus we can
assume that 2o = 0 and w contains a ball B = B(y, p) with y = (p,0) € RN* = R*xRY~!. Then
Y 2 Yg. Let us consider Y 5(x,t) = n~*Yg(z/n, t/n?). The sequence (Y, ) is nondecreasing, and
there holds Y5 (z,t) = 0 in B((—1,0),1). Thus from estimate (2.8),

Yaop(a,t) £ C(N,q) (¢ 7T (Jz + (1,0)|7 +1) + 1),
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hence the sequence is locally bounded in Qgn .. From Theorem 2.7, (YrTB) converges in C’fo’cl (Qr~ )

to a classical solution w of (1.1). Then w is a solution with trace (RN*,0), satisfying (4.1), thus

u(z,t) 2 Ygze(z,t). Observe that Yege(z,t) = U(x1,1), since U(x1,t) = SUD e (R) suppip 055 Yo

and Ygre(w,t) = SUD_ ¢ o+ (RN suppoCRNF Yo+ Then u(0,t) = U(0,t) = £(0)t~%%. And Y-5(0,1) =
n~*Y5(0,1/n?) converges to u(0,1) = £(0), then limn~*Y%(0,1/n?) = £(0); similarly by replacing
1/n by any sequence (e,) decreasing to 0, then liminf; t9/2Y;; (0,t) = f(0).

(ii) Let us show that for any zg € dw, Y (zo,t) < f(0)t~%2. We can assume zy = 0 and
w C RN*. Then Yy(z,t) £ Yaxr(2,t) = U(z1,t), hence Yz (0,1) < f(0)t~/2.

RN+

(iii) Since RV\w is convex, @ is the union of all the tangent half-hyperplanes that it contains.
For any such half-hyperplane, we can assume that it is tangent at 0 and equal to RV*. Then for
any x € RV*, there holds Yz (x,t) = U(x1,t) = f(0), since f is nondecreasing, and the conclusion
follows. ]

5 Existence of solutions with trace (S, u)

5.1 Solutions with trace (N, uy), w open

Proof of Theorem 1.4. (i) Approximation and convergence. We define suitable approximations
of the initial trace (S,ug) according to the value of g. We consider a sequence (pp) in Cj (RY)
(resp. Cy (£2)) as in the proof of Theorem 4.1. We define a sequence (¢,) in the following way: if
1 < g < g+, we define 1), by the restriction of the measure ug to 7?,’1"/; N B, (resp. to Rll% N Qll%), if
¢« = q < 2, we take ¢, = inf(ug,p)XRrnB, (resp. ¥p = inf(ug,p)xr). If ¢ > 2, by our assumption we
can take a nondecreasing sequence (1,) in C. (R) converging to ug in Li, . (R) . We set ug,p = @p+p.
Then for 1 < ¢ < g, ugy € MZF(Q), for g < ¢ < 2, up, € L"(R2) for any r > 1 and for ¢ > 2,
ugp € Cp (RY) . In any case there exists a solution u, of (1.1) (resp. of (Dg,r)) with initial data
Ug,p, unique among the weak solutions if ¢ < 2, see Theorem 2.11, and among the classical solutions
in C ([0, T) x ﬁ) if ¢ > 2, and the sequence (u,) is nondecreasing if ¢ = g.

Moreover if Q = RY (u,) satisfies the estimate (2.8): considering a ball B(zg,n) C RV \w,
there exists C'= C(N,q,n) such that for p = p(n) large enough,

up(z,t) = C(fﬁ(]x - molq, +1) +t+/

dupp) < C(tqll(\m—xo‘q'—i—l)—l—t—i—/ dug),
B(zo0,m)

B(zo,m)

then (uy) is uniformly locally bounded in Qgw~ 1 ( resp. if  is bounded, (u,) satisfies (2.4), since it
is constructed by approximation by solutions with smooth initial data). From Theorem 2.7 (resp.
2.6)), we can extract a subsequence Cfg’cl—converging to a classical solution u of (1.1) in Qg~ 7 (resp.
of (Dar)). If ¢ 2 g«, from uniqueness, (u,) is nondecreasing, then (u,) converges to u = sup u,.

(ii) Behaviour of u in @. By construction, u = Yz, (resp. u = Y&, then u satisfies (4.2), hence
as t — 0, u(.,t) converges uniformly to co on any compact in w, thus (1.9) holds; if ¢ < gs, u
satisfies (4.4), thus the convergence is uniformly on @ N .

(iii) Behaviour of u in R. From (3.5) and (3.4), for any ¢ € CHH(RY), with support in R,

, 1 [t , , ,
/ Uy (., )& dx+§/ / V|97 da gm/ |vg|qu+/ 9 dip, (5.1)
RN 0 JRN RN RN
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t
/Qup(.,t)gdm—i—/o /Q(Vup.Vé“—HVup]q{)dxdt:/Qfduovp. (5.2)

First suppose ¢ < g*. From Theorem 2.10, (|[Vu,|?) is equi-integrable in Q- for any compact
set K C R and 7 € (0,7). From (5.2) for any ¢ € C.(R), for p = p({) large enough such that the

. o : : int . int int
support of ¢ is contained in ’R,Zf}p N B, (resp. R’ln/p N Qlf}p),

/Rup(t,.)gdx—i—/ot/R|Vup|qux:—/Ot/RVup.VCd:U—i—/RCduo.

Then we can go to the limit as p — oo:

/Ru(t,.)g“dx—i—/ot/R\Vu]qux:—/Ot/RVu.VCdx—i—/RCduo.

thus limy_,o [pr (., t)¢de = [pn Cdug.
1

Next suppose ¢« = ¢ <2 and ug € L;,.(R), or ¢ > 2 and ug is limit of a sequence of nonde-
creasing continuous functions. Then t, < ug. From (5.1), we have |Vul? € L}, ([0,T);L},.(R))

loc loc
from the Fatou Lemma. Hence, from Lemma 3.1, u admits a trace po € M(R). For any fixed

¢ € CHR), we limy_0 [pn up(.,t)Cdx = [ Cihpda. Since (up) is nondecreasing, we get

lim u(.,t)(dx :/ Cdpg = lim up (., t)Cdx :/ Cpda.
R R

t—0 JpN T t=0 JpN

thus from the Beppo-Levy Theorem, 19 = ug. Moreover for any ¢ € C.(R), from (5.2),

/R wy(t, )¢z + /0 t /R Vu|t¢d = /O t /R wy ACdz + /R Cyd;

and (up) is bounded in L¥(Qp ;) for any k € [1,¢.), for any compact set K C R, and u, — u a.e.
in R, then u, converges strongly in L'(Q ;), thus from the Fatou Lemma,

/Ru(t, .)gd:c+/0t/n|vu|qux§/Ot/RuAgdﬂ/RgduO.

But from Lemma 3.1,

/Ru(t,.)gdx%—/ot/RWuPCdx:/Ot/RuACdx%—/R¢d,u0,

then fR Wdpg < fR pdug, hence pg < ug, hence pg = ug.
In any case u admits the trace (S, ug). |

5.2 Solutions with any Borel measure

Here we consider the subcritical case with an arbitrary closed set S.
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Theorem 5.1 Let 1 < q < gy, and Q = RY (resp. Q bounded). Let S be a closed set in Q, such
that R = Q\S is nonempty. Let ug € M* (R).

(1) Then there exists a solution u of (1.1) (resp. of (Dqr)) with initial trace (S,ug), such that
u satisfies (4.4), hence u(t,.) converges to oo uniformly on S.

(i) There exists a minimal solution umin, satisfying the same conditions.

Proof. Assume that Q = RY (resp.  bounded) (i) Existence of a solution. Let B(zg,7n) C
O\S, and dp small enough such that B(xg,n) C Q\Ss,. For any ¢ € (0,dy) we can, by slight changes,
suppose that S5 = ws N, where w;y is a smooth open subset of €). Let us be the solution with initial
trace (S5, uoL(Q\Sg*)) constructed at Theorem 1.4. Then u; also satisfies the estimates (2.8)
(resp. (2.4), thus (us)s<s, is uniformly locally bounded in Qq r. From Theorem 2.7 (resp. 2.6),
one can extract a subsequence converging in CZZO’E(QQ,T) to a solution u of (1.1) in Qgn~ 1 (resp. of
(Dq,1)). As in the proof of Theorem 1.4, for any compact K C R, taking § < dx small enough so
that K C Q\Sg;’?, and choosing a test function £ with compact support in K in R, we obtain that
(|Vus|t)s<s, is equi-integrable in Qg , for any 7 € (0,7). Then we get for any £ € C(R),

/RN u(t, .)de+/0t/RN yvu\qum:—/ot . vu.vgder/RN Edug.

thus lim; o [pn u(., t)dz = [pn Edug. Moreover for any xg € S, us 2 Yigo) in Qrn 7, (resp. us 2
Y{go} in Qq,r) from Proposition 3.6, hence the same happens for u, which implies (1.9). Thus u
admits (S, ug) as initial trace, and u(.,t) converges uniformly on S to oo as t — 0.

(ii) Existence of a minimal solution.

Assume that Q = RY. Let A be the set of solutions with initial trace (S,ug). We consider
for fixed € > 0, the Dirichlet problem in B,, p € N*, with initial data m(x,€) = inf,cqv(z,€).
Thus 0 < m(z,€) < u(x,¢), and u € C*HQgn 1), thus m(.,e) € L, (RY). Since m € L*(B,),
there exists a unique solution w, . of (Dp, ) with initial data m(xz,¢) in B),. From Remark 2.14,
wpe(x,t) < v(x,t +€) for any v € A and = € Bj,. Moreover for any v € A and any z9 € S,
there holds v = Y,y 2 ng", thus m(zx,e) = Y;gp (x,€), hence wy ¢(z,t) 2 Y;gp (x,t+¢), from [27,
Proposition 2.1]. For any 29 € B, and y > 0 such that U = B(z0,7) satisfies U C RN By, let wy be
the unique solution of the Dirichlet problem in U with initial data uoLU. Then from Remark 2.14,
v(z,t) 2 wy(x,t) in Qur, for any v € A, thus m(z,€) 2 wy(z,€), thus wy (z,t) 2 wy(z,t + €).

Next we go to the limit as ¢ — 0. From Theorem 2.6, one can extract a subsequence, still
denoted (wp,) , converging a.e. to a solution wy, of the Dirichlet problem (Dp, r). And in B, (with
the notations above), w, < v for any v € A, w, = Ygﬁ" and w, 2 wy. Finally we go to the limit
as p — 00. Since u is locally bounded, then (wp) is uniformly locally bounded. From Theorem
2.7, one can extract a subsequence converging in C’fo’cl(QRN’T) to a weak solution denoted wupyiy of
(1.1) in Qgw~ . Then upiy satisfies umin = v for any v € A, and umin = Y2 for any zo € S, and
Umin = wy for any zp € R and v > 0 such that U = B(zg,) satisfies U C R. As a consequence

Umin satisfies the trace condition (1.9) on S. And for any zy € R, and any ¢ € C?(R) with support
in U,

[ uttigde 2 [ wnttide 2 [ vt
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hence

lim umin(.,t)fd:v:/ Eduyg. (5.3)
R R

t—0
Then upi, admits the trace (S,up). Thus up;, is minimal, and uy,i, = min,e v.

Assume that €2 is bounded. The proof still works with B, replaced by (2, which requiers only
to go to the limit in € and use Theorem 2.6. ]

Remark 5.2 Under the assumptions of Theorem 5.1 suppose that ug € .M;“ (R). Then for any
@ € Cy(Q) with support in R, u(.,t)p € L' (R) for any t € (0,T), and

t—0

lim u(.,t)gpdx:/ wduy, (5.4)
R R

and similarly for umi,. More precisely, if @ = RY, (5.4) is valid for any weak solution v of (1.1)
with trace (S,up). Indeed let ¢ € Cl}(RN) with support in R, and o, € D (RN) with values in
[0,1], with ¢, =1 on By, 0 on Bay,, |Ve,| bounded. Then from (3.5),

[ vtnwende < clar [

WW%WM+/(WMWW§&+/me
RN RN R

then v(.,t)y? € L' (R), and limsup,_,, J= v(., t)y? dx < Jo Y7 dug from the Fatou Lemma. And

lim inf/ v(, O dz = lim | (., t) (W) do = / (ipn)? dug,
R R

t—0 — t—0 R

thus from the Beppo-Levy Theorem, we get (5.4) by density. If Q0 is bounded, note that u can

be obtained as a limit in CIQO’CI(QQ,T) N Cllo’g (Qx (0,T)) of classical solutions u, with smooth data

Up,0 = u,lho—l—ui’0 with suppu,lho - S?fg(f, suppu,lho CR, and (u}%O) converges to ug weakly in Mp(R).

For any nonnegative £ € C’,}(Q) with support in R,

/ Un (-, 1)€% dz < C(q)t / Ve da + / £7'u? yda,
R R Q
from Remark 3.4, hence
[ utglan < clar [ 967 dn+ [ e,
R R Q

and then limsup, .o [ u(., )4 dx < [, 7 dug. And for any ¢, € D (Q) with values in [0,1], with
nt

pon=1on Rl/n,

t—0

lim inf / u(, )T de = lim [ v(.,t)(Yen)? da = / (1hpn)? dug,
R t—0 R R

Thus u still satisfies (5.4). The same happens for umin, since lim sup,_, fR Umin (., t)pdz < fR wdug
and Himinfy o [ tmin(., )07 dz = [ (Ven)? duo.
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Remark 5.3 Assume 1 < g < g.. Note some consequences of Theorems 5.1 and 1.4.

(i) For any constant C > 0, there exists a minimal solution uc with trace ({0}, C'|z|™")). Then
uc s radial and self-similar. This shows again the existence of the solutions of example 2, Section
3. This shows that the set {C(B) : B > F(0)} is equal to (0,00) .

(i) Suppose N = 1. For any C > 0, there exists a minimal solution Uc with trace ({0} ,C(z)™%);

~

then it is self-similar, uc(x,t) = t*a/2f(t*1/fx), where n — f(n) is defined on R, and f has
an exponential decay at —oo, and limy_,_oo f(n)|n|* = C. For any C > 0 there exists a mini-
mal solution Uc with trace ([0,00),C(z~)~%); it is self-similar, Uc(x,t) = t=2f(t~1/2z), and

limy—so () [0l = C' and limy, oo F(n) [n| ™ = cy.

Next we look for a maximal solution when the measure ug is bounded. A crucial point in case
Q = RY is the obtention of an upperestimate, based on Theorems 2.8 and 2.9:

Proposition 5.4 1 < ¢ < 2. Let S be a compact set in RN, and ug € M+ (RN\S), bounded at co.
Then any weak solution v of (1.1) in Qg~ 1 with trace (S,uq) satisfies, for any 0 < e <7 < T,

HU”LOO((e,T);Lw(]RN)) < C, C=C(N,q,€,7). (5.5)

Proof. Let 7 € 0,T). We take = 1 and 2y € RN\S; in (2.8). Then for any (z,t) € QrnN s

o) S C@ETT o —al” + CNQ(ETT 1+ [ du) (5.6)
B(zo,1)
In particular it holds in Sz x (0,7]. And for any (z,t) € RN\Sy, since ug € M, (RM\Sy), from
(26).
oat) SCNa ot [ dug) SOWg e e [ ). ()
B(zo,1) RN\S;
Then (5.5) follows. ]

Theorem 5.5 Let 1 < q < gi. Let Q = RN (resp. Q bounded). Assume that S is compact in Q
and ug € M;" () with support in R UQ, where R = Q\S. Then there ezists a mazimal solution u

of (1.1) (resp. of (Da,r)) among the solutions with trace (S,up) (resp. among the solutions v of
trace (S, ug) such that v(.,t) converges weakly in R to uy ast — 0).

Proof. Assume Q = R (resp.  bounded). Let § > 0 be fixed, such that § < d(S,suppug)/3,
hence suppug C Q\Sss. Let us be the solution with initial trace (S§**,ug) constructed at Theorem
1.4.

Let v be any weak solution with trace (S,up) (resp. and such that v(.,t) converges weakly in
My(R). Then v(.,t) < C(N,q,0)t in K5 = Sgg;Q\Sgg, from Lemma 2.15 (resp. from (2.14) in
O = SFN\SE™, valid since v € C([0,T) x O)). Let €y > 0. Then there exists 79 = 79(e0,0) < T
such that v(.,t) < € in K5 x (0,70]. Let € < 79, and Cc = maxg,; v(.,€). Since us converges

to oo uniformly on the compact sets of S§**, there exists 7. < 7y such that for any 6 € (0,7),
us(.,0) 2 Ce 2 v(.,€) in Ss/9. Since v(.,€) = g in K5, there holds v(.,€) = us(.,0) + €o in Sps. And
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v(.,t) £ €9 on 0Ss5 % (0, 79] , thus v(.,t+€) < ug(.,t+6)+€p in Sys X (0, 79 — €] from the comparison
principle. As 8 — 0, then € — 0, we get

v(,t) Sus(.,t) +e in Sas x (0,70] . (5.8)

Otherwise, since ug € .M; (), there exists a unique solution w of (Pn, ) with initial data ug, from
Theorem 2.11. We claim that

v(z,t) < w(zx,t) + €, in Q\Sas x (0,79] - (5.9)

Indeed let @5 € C() with values in [0,1] with support in Q\Szs and @5 = 1 on RNV\S;55.
From Proposition 5.4 (resp. from Theorem 2.11), the function = — v(z,79/n) is bounded, and
continuous. Let ws, be the solution of (1.1) in Qo with initial data v(.,79/n)ps. As n —
00, v(.,To/n)ps converges to ugps = ug weakly in M, (RN ), from Remark 5.2 (resp. from our
assumption). Hence w;, converges to w, from Proposition 2.13. And then

v(.,m0/n) = v(., T0/n)es +v(.,To/n)(1 — @5) = wsn(.,0) + €

in Q\Ssys, and on the lateral boundary of Q\Sas x (0,79(1 — 1/n)], there holds v(z,t + 79/n) < €.
Then v(z,t + 19/n) < wsp(.,t) + € in Q\Sas x (0,70(1 —1/n)]. As n — oo, we deduce (5.9).
Next we get easily that w < us on Q\Sas x (0, 7], by considering their approximations, hence

v(z,t) < us(z,t) + €, in Q\Sys x (0,79] . (5.10)
As a consequence, from (5.8) and 5.10),
v(z,t) < us(x,t) + €, in Q x (0,7].

The last step is to prove that the inequality holds up to time 7. We can apply the comparison
principle because, from Proposition 5.4, v and v € Cy((e, T); Cy(RY) for any ¢ > 0 (resp. because
v and us are classical solutions of (Dgq r)). Then

v(z,t) < us(x,t) + €, in Q x (0,7)

As ¢y — 0, we deduce that v < us. Finally as 6 — 0, up to a subsequence, {us} converges to a
solution u of (1.1) (resp. of (Dq 1), such that v < u, thus u satisfies (1.9). As in Theorem 1.4, by
integrability of (|Vus|?) we obtain that u admits the trace ug in R, thus u has the trace (S,up)
(resp. and the convergence holds weakly in Mj(R)). Thus u is maximal. |

From Theorems 5.1 and 5.5, this ends the proof of Theorem 1.5.

6 The case ¢ <1

Notice that Theorem 2.5 is also valid for ¢ = 1. In fact it can be improved when ¢ is subcritical,
and extended to the case ¢ < 1.
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Theorem 6.1 (i) Let 0 < q < q, and Q be any domain in RYN. Let u be any (signed) weak solution
of (1.1) in Qor. Then u € CQ+’Y71+’Y/2(QQ7T) for some v € (0,1). If Q is bounded, any weak

loc

solution u of problem (Dqr) satisfies u € C*° (Q x (0,T)) ﬂC’2+%1+7/2(QQ,T) for some v € (0,1).

loc

(ii) Let 0 < ¢ < 1 and Q bounded. For any sequence of weak nonnegative solutions (uy) of

(Do), bounded in Lf;’c((O,T);Ll(Q)) one can extract a subsequence converging in CZZO’E(QQ,T) N

CYO(Qx (0,7)) to a weak solution u of (Dg,r).

Proof. (i) From our assumptions, u € C((0,7); L}, .(Qa.r)), thus u € L ((0,T); Li, .(Qa1))-

loc
We can write (1 1) under the form u; — Au = f, with f = —|Vu|?. From Theorem 2.10 u €
L} ((0,T); VVlOc (Q) for any k € [1, ¢.) and satisfies (2.9).
First suppose ¢ < 1. We choose k € (1,q¢:), thus (|Vu| + |u|) € L (Qqor). Then u €

ZQO’cl’k(QQ 7), see [22, theorem IV.9.1]. From the Gagliardo-Nirenberg inequality, for almost any

€ (0,7),

1—-L
IVl D)l pras ) = ellult )||W2k M@l @)

kqs
loc

s Ol s ) S ellul®lfyzs @ lu® 72,

with 0 = (1 — 1/kq.)/((N + 2)/N —1/s) < L. Therefore [u] € Lij; (2). Then u € WELET (Qq 7).

loc loc

By induction u € WELHT) (QQT) for any n = 1. Choosing n such that k(¢*)" > N + 2, we

loc

deduce that |Vu| € C%9/2(Q,, ) for any & € (0,1 — (N +2)/s(¢*)"), see [22, Lemma 11.3.3]. Then
f e C&Iﬁq/Q(QQT)a thus u € 02+5q’1+5q/2(Qw,s,7—)-

loc

where ¢ = ¢(N, s,w). Hence we obtain |Vu| € L (). In the same way

Next suppose 1 < q < g.. we choose k € (1,q./q), hence (|Vul? + |u|) € LF _(Q); as above,
|Vu|+ |u| € LF% (Q), hence (|Vul?+ |u) € Lra-/a (Q); then u € Wbk /q(QQT). By induction we

loc loc loc

get again that |Vul| € Cﬁ;g/z(QQgﬂ) for some 6 € (0,1), then f € CZ)Z/ (Qq.r) for some v € (0,1),
thus u € 012;7 1+7/2(QQ7T) for some v € (0,1) .

If © is bounded, and u is a weak solution of (Dq r), then u satisfies (2.10). In the same way,
u € W»LK(Qq s +), and by induction u € C10 (Q x (0,T)) N CQ+%1+W2(Q97T).

loc

(ii) From (2.10), Hu||0170(m) + HVUHC%W/Q(QQ—ST) is bounded in terms of [[[Vu|!| 11, )+
[u(-, $)[[ 1) - And since u is nonnegative, from [14, lemma 5.3] (valid for ¢ > 0),

/Qu(t, .)dx—i—/st/Q\Vu]qu§/Qu(s,.)dx. (6.1)

Thus [|[[Vul?|[11(q,..,) is bounded in terms of [lu(.,s)[| ;1) - Then one can extract a subsequence
converging in ClQL)’;(QQT) NCLHO (Q x (0,T)) to a weak solution u of (Dg,r). |

Remark 6.2 In case of the Dirichlet problem, the result also follows from [7, Theorem 3.2 and
Proposition 5.1], by using the uniqueness of the solution in (Qu.e1)-

Next we prove the uniqueness result of Theorem 1.6. For that purpose we recall a comparison
property given in [1, Lemma 4.1]:
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Lemma 6.3 Let Q be bounded, and A € L°(Qqr) with o > N + 2. Let w € L*((0,T); Wol’l(Q)),
with w € C((0,T]; LY(Q), such that wy — Aw € LY(Qq.r), and w(.,t) converges to a nonpositive
measure wy € Mp(Q2), weakly in My(Q2), and

wy — Aw < AVw in D'(Qa.r).
Then w £ 0 in Qq,r.

Proof of Theorem 1.6. From [7], the problems with initial data wug,vo admit at least two
solutions u,v. Then f = |Vul|? € L{,.([0,T); L (). And by hypothesis u € C((0,7); L' (22)) N
LY((0,T); Wy'' (). Assume that ug < vo. Let w = u — v. Then we have w € C((0,T); L' (2)) N
LY((0,T); I/Vol’1 (), |[Vw| € L*(Qq,r) Setting g = |Vul? — |Vv|?, then w is the unique solution of
the problem

wy—Av =g, in QQ,T,
w=0, ondQx(0,7T),
limy_,o w(.,t) = ug — vg, weakly in M;(Q).

Since ¢ £ 1, for any € > 0, there holds
w—Aw =g < [Vu|? < [Vw| + 1.

In case ¢ = 1, Lemma 6.3 applies. Assume that ¢ < 1. Let ¢, € (0,1). Then g < C,|Vw| +n. with
C, = n~9/(=49) " As in his proof we get by approximation

1 t
/(w+)1+6(t, Jdz + 6/ /(w+)5_1|Vw|21/)dxdt
1+e¢ Q 0o JO

t t
< Cn/ /(w‘F)8 |Vw| dzdt + 77/ /(w+)5dxdt,
0 JQ 0 JQ

and the second member is finite. Then lim;_o [o(w ™) (¢, .)dz = 0, hence limy_,o [, w*(¢,.)dz =
0. Let 2 = w — nt, then satisfies z € C((0,T); L' ()N LY ((0,T); Wt (Q)) and z; — Az =g —n <
C,|Vz| in D' (Qqr) . Then 2t € C((0,T); L' (2)) N L'((0,T); Wy'' (€2)) and from [4, Lemma 3.2],
zm — Azt £ Cy|V(zT)|. And limy_y0 27 () = 0 weakly in My(Q), since z¥ < w*. Then 2t =0
from Lemma 6.3 applied with A = C.. Thus w < nt; as n — 0, we obtain w < 0. [

Remark 6.4 We can give an alternative proof of uniqueness, using regularity: let u,v be two
solutions with initial data ug, and w = u — v, thus w satisfies

wy — Aw = g := |Vul? — [Vu|?,  inQar,

w=0, ondQdx(0,T), (6.2)

limy,ow(.,t) =0, weakly in My(S2).
Since ¢ < 1, there holds |g| < |Vwl|?. As in Theorem 6.1, we choose k € (1,qs), thus |Vw| €
L*(Qq.;). From the uniqueness of the solution w due to [4, Lemma 3.4], we deduce that w €
WALk (Qq 1), for any T € (0,T), from [22, theorem IV.9.1]. By induction we deduce that w €
CcO (ﬁ X [O,T)) N CZ+%1+7/2(QQ7T). Then w = 0 from the classical mazimum principle.
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Next we prove the trace result of Theorem 1.7:

First proof of Theorem 1.7. From Theorem 6.1, u € CIQO’CI(QQ,T). And 14w is also a solution
of (1.1). We can set 1 +u = v*, with a > 1, in particular v = 1. Then we obtain an equivalent
equation for v :

Vol
ple—1(1—=q)"

From the Young inequality, setting C' = ((a — 1) /2)@~2/4_ there holds, since v > 1,

™t

2
vt—Av:F:(a—l)@—

|Vu|? oa—1|Vul? 120-0, _ a—1|Vo]?
< 2= R B
N T

C

Hence w = e“tv satisfies

_ 2
wt—Aw:G:eCt(F—i—C?))gaQ 1\V$\ .

Then w is supercaloric, and nonnegative, and G € L}OC(QT). From Lemma 3.1, w admits a trace

in M (), and then w € L2.([0,T); L} (), and G € L} ([0,T); Li,.(2)). As a consequence,

ve L2 (0.7): L1 () and (Vo2 jo € L (0.T): L1 (©2)).

loc loc loc loc

Next we show that moreover u itself admits a trace measure. For any 0 < s <t < T, from the
Hoélder inequality,

t t t 2 t
(2a—1)
aq/ /|Vu|qudt:/ /v(al)q|Vv|qudt§/ /ﬂdazdt%—/ /v >0 dudt. (6.3)
s Jw s JQ s Jw U s Jw

First suppose g < 1. Choosing « such that moreover 1 < a < 1/q, in order that (2o — 1)g £ 2 — q.
Since v € L ([0,T); L. (Q)), we have v € L'(Q7), hence

loc loc

t t ’V?}‘Q t
a_q/ /\Vu]qdmdt §/ /dedt—i—/ /(v—l—l)dwdt,
s Jw 0 Jw 0 Jw

hence |Vul|? € L} _(Q x [0,T)). Then u admits a trace ug € M*(Q). Next assume g = 1. From the

loc
2
/|Vv|dx§/ﬂd:c+/vdx
w w v w

Hoélder inequality,
hence |Vou| € L} ([0,7); Li. .(Q)). Let ¢ € D(Q). Setting v€ = 2, z is the unique solution of the

loc loc
problem in Qo1

2 — Az =g:=F+v(—Ay) —2Vo.VY, in Qaor,
z=0, ondx(0,7),
limy—,0 2(., ) = &up, weakly in M;(Q),

where g € L'(Qq.r). From Theorem 2.10, for any k € [1,¢.), and for any 0 < s < 7 < T, and any
domain w CC £,

120l k(0o sy S CUFEN L1 (g oy + 112085 Ml prwy) S CUFEN L1 g,y + VI Lo (0,701 )
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Then z € L ([0,T); L*(2)). We can choose « such that 1 < a < 1 + ¢*/2, and take k = 2o — 1.

loc

From (6.3) we deduce that |Vu| € L (Q x [0,7)), and conclude again that u admits a trace

loc
ug € M+(Q) |
Finally we give an alternative proof by using comparison with solutions with initial Dirac mass,
inspired of [2]. We first extend Proposition 2.13 to the case ¢ £ 1 when Q is bounded:

Lemma 6.5 Let 0 < ¢ = 1, Q bounded, and ug p,up € M;(Q) such that ug,, converge to ug weakly
in My(S2). Let uy,u be the unique nonnegative solutions of (Dq ) with initial data ug,,uo. Then
Uy, converges to u in C%E(QQT) NCHO (2 x (0,7)).

Proof. We still have (2.11) and lims_0 [, un(s, .)dz = [, dugn, thus [, u,(t,.)de < [, dug,,
and limy, 00 [ duo,n = [ dug, thus (uy,) is bounded in L*°((0,7); L' (2)). From Theorem 6.1, one
can extract a subsequence converging in C’lzo’cl(QQT) NCY (2 x (0,T)) to a weak solution w of
(Do.r). And (uy,) is bounded in L¥((0,T), Wol’k(Q) for any k € [1,q4) . As in Proposition 2.13, for
any 7 € (0,7), ( |[Vup|?) is equi-integrable in Qq r, and we conclude that w = . |

Second proof of Theorem 1.7. We still have u € C’l2 O’Cl(QQ,T) from Theorem 6.1. It is enough
to show that for any ball B(xg,p) CC €, there exists a measure m, € M(B(xo, p)) such that the
restriction of u to B(xo, p) admits a trace m, € M(B(xg,p)). Suppose that it is not true. Then
from Proposition 3.2 and Remark 3.3, there exists a ball B(xg, p) CC Q such that

t—0

limsup/ u(.,t)dr = oo.
B(wo,p)

We can assume that g = 0 and p = 1. For any k > 0, the Dirichlet problem (Pp, ) with initial
data kdy has a unique solution ufl. There exists t;1 > 0 such that fB . u(z,t1)dr > k; thus
o

there exists sy > 0 such that fB ) Ts, ,u(x,t1)de = k. By induction, there exists a decreasing
- .

u(zx,t,)dr = k. Denote by
Up,k; the solution of (Pp, r) with initial data u, 0 = Ts, ,u(.,tn)XB,_,- Then from Theorem 1.6,
U 2 Uy in Bi. And (up 0) converges weakly in My(£2) to kdg. From Lemma 6.5, (uy 1) converges
in Cfo’cl(QBhT) NCH0 (By x (0,T)). to the solution u*5! of the problem in B; with initial data
kéy, Thus u > u®P1. Now, since ¢ < 1, for any k > 1, the function ku'-P! is a subsolution of (1.1),
since |V (ku'"P1)|" < k|V(u"P1)|?. From Lemma 6.3, we deduce that u = ku>5 for any k > 1.

We get a contradiction since u'P! is not identically 0. ]

sequence (t,) converging to 0, and a sequence (s,, ;) such that ‘[Bg—n T,
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