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Sequential Decoding of Intramuscular EMG
Signals via Estimation of a Markov Model

Jonathan Monsifrot∗, Eric Le Carpentier†,
Yannick Aoustin∗, Member, IEEE and Dario Farina‡, Senior Member, IEEE

Abstract—This paper addresses the sequential decoding of
intramuscular single-channel EMG signals to extract the activity
of individual motor neurons. A hidden Markov model is derived
from the physiological generation of the EMG signal. The EMG
signal is described as a sum of several action potentials (wavelet)
trains, embedded in noise. For each train, the time interval
between wavelets is modeled by a process that parameters are
linked to the muscular activity. The parameters of this process
are estimated sequentially by a Bayes filter, along with the firing
instants. The method was tested on some simulated signals and
an experimental one, from which the rates of detection and
classification of action potentials were above 95% with respect
to the reference decomposition. The method works sequentially
in time, and is the first to address the problem of intramuscular
EMG decomposition online. It has potential applications for man-
machine interfacing based on motor neuron activities.

Index Terms—Bayes methods, Biomedical signal processing,
Electromyography, Hidden Markov model, Recursive estimation,
Weibull distribution.

I. INTRODUCTION

E
LECTROMYOGRAPHIC (EMG) signals represent the
activity of muscle fibers, as driven by the population

of spinal motor neurons (MN) innervating the muscle. Thus,
despite being measured peripherally, EMG signals reflect
neural activity since they contain information on the activation
drive sent from the spinal cord to the muscles (neural drive to
the muscles).

The identification of individual MN spikes from the EMG
signal is termed EMG decomposition [1]. Intramuscular EMG
(iEMG) decomposition methods have been developed since
decades [2] [3], with highly accurate results [4]. The main
aim of these methods is to allow physiological investigations
of motor unit (MU) behavior during muscle contractions,
so that the neural strategies for movement control can be
decoded. Being mainly a research tool, EMG decomposi-
tion has been traditionally applied off-line, often including
an interaction with an expert operator for maximizing the
accuracy of the result. Despite the common offline use of EMG
decomposition, some available methods could be potentially

Manuscript created March 01, 2013; revised February 24, 2014
This work was partly sponsored by the European Research Council Ad-

vanced Grant DEMOVE (contract #267888) and the European Commission
via grant #280778 (MERIDIAN) (DF).
∗†LUNAM Université, ∗Université de Nantes, †École Centrale de Nantes,

∗†IRCCyN (UMR CNRS 6597), 1, rue de la Noë, 44321 Nantes, France,
{first-name.last-name@irccyn.ec-nantes.fr}
‡Department of Neurorehabilitation Engineering, Bernstein Center

for Computational Neuroscience, University Medical Center Göttingen,
Georg-August University, Von-Siebold-Str. 4, 37075 Göttingen, Germany,
{dario.farina@bccn.uni-goettingen.de}

implemented online. Systems that may be implemented online
need to work sequentially on the data samples or on data
intervals. In this paper, we propose a new sequential algorithm
for EMG decomposition that allows full decomposition in a
sequential way. The foreseen future application is in man-
machine interaction, where sequential decoding is needed.

In [5], a statistical model of intramuscular signals has been
proposed, that parameters (motor unit action potential shapes
(MUAP shapes) and spike train discharge rates) are estimated
off-line by means of a Monte Carlo Markov Chain technique.
In [6], similar techniques are used, but the sparsity and the
regularity of the input spike trains are taken into account
with a minimum time interval constraint between spikes.
The interspike interval is modeled by means of a log-normal
probability law in [7]. These methods are very efficient even
in the blind case (i.e. unknown waveform shapes and spike
trains) compared with the performance of an expert, but are not
designed to work online. Conversely, in this paper we present
a method to process single-channel iEMG signals sequentially.

The main difficulty comes from the mixture of several
wavelet trains in only one recording, leading to possible
superimposition of several action potential shapes. This study
aims for the online estimation of the discharge rate of each
train, despite these interferences and despite unknown action
potential shapes (although a rough initial shape is necessary).
It uses some of the concepts proposed in [8] and [9], where
the information carried by spike trains is encoded by action
potentials waveforms and decoded offline using a Viterbi
algorithm. Like [10] and [11], it tackles the online problem, but
it also uses tools from reliability theory to handle the regularity
of the trains.

This contribution is a first step toward the decoding of
MN activities in vivo, in humans, during natural movements,
and in an online fashion for the future objective of man-
machine interfacing. EMG signals are indeed extensively used
for man-machine interfacing, for example for the control of
prosthetic devices [12] or of exoskeletons [13], by extracting
global characteristics of the signal for control. For example,
the EMG amplitude can be used for direct proportional control
of force or speed [14]. However, as alternative to global
EMG processing, the activity of populations of MNs could
in principle be decoded from the EMG signal and used for
controlling external devices [15]. Indeed, the natural force
generation process is based on the control of the number and
discharge rates of the active MNs, so that the information
on MN recruitment and modulation of discharge rates would
provide an ideal prediction of force [16]. Although this concept
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is theoretically possible, a number of challenges should be
faced to make it practically feasible.

The paper is organized as follows. In Section II, we describe
a framework where the signal is modeled by a hidden Markov
model (HMM) and the online estimation of the state of the
Markov model by means of Bayes filtering is presented.
Section III is dedicated to simulation and experimental tests.
Conclusion and perspectives are given in section IV.

II. METHODS

A. Modeling

1) Basic hypotheses: An iEMG signal is an electrical
signature of muscle activity, i.e. activity of muscle fibers. As
remarked in [17], [18], the property of the linearity of the sum
of electrical signals justifies modeling the observed signal Y
as a sum of nM filtered spike trains embedded in a noise W ;
for all discrete time indexes n:

Y [n] =

nM∑

i=1

(hi ∗ Ui)[n] +W [n] (1)

For each source, a time-invariant linear filtering effect is
considered. It appears as a convolution between the input spike
train Ui and an impulse response hi:

• the spike trains Ui are sparse 0-1 processes which firing
rates are linked to the muscle activity;

• the shapes of the impulse responses hi represent the
MUAP and are assumed time-invariant.

This model is a reasonable simplification of the actual iEMG
signal in which wave shapes and amplitudes are in general non
stationary, due to needle movement, variable neuromuscular
junction transmission, and variable conduction velocities.

In a probabilistic framework, the spike train sequences and
the noise sequence are stochastic processes (and denoted using
upper case letters, as it is a commonly used convention for
random quantities, while lower case letters are used to denote
deterministic quantities; additionally, bold letters will be used
to denote vectors and matrices). They are supposed mutually
independent. The noise is assumed independent along time,
zero-mean, gaussian, with constant variance v. The spike
trains Ui are not available. The impulse responses hi are
assumed of finite length with known maximum length ℓIR.
The noise variance v is unknown. The number nM of firing
MNs is assumed to be known and fixed, and a rough initial
estimation of the wavelets hi is necessary; thus the method
proposed in the following requires an initial estimation of the
number of sources and a rough estimation of the wavelets; this
preliminary estimation is not discussed in this study.

We propose below a Markov representation of the system,
that state will be estimated online by a Bayes filter. A side
effect of the method is the reconstruction of the spike trains
(a.k.a. deconvolution).

2) Markov chain for input spike trains: each input sequence
(Ui[n])n∈Z is a binary discrete process, independent of other
sequences (Uj [n])n∈Z for all j 6= i (although this assumption
is questionable, especially when high contraction levels imply
MU synchronization). In previous articles [19] [20], these
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Figure 1. Spike train and corresponding sawtooth sequence

sequences were assumed to be time-independent but physio-
logical constraints make this assumption rather unrealistic. We
propose to represent these discrete-time and discrete-valued
sequences by a model based on renewal theory [21].

For each input source i, interspike intervals ∆i[k] - discrete
time length between spikes, k ∈ Z being the spike index -
are supposed to be independent and identically distributed
(i.i.d.) random variables, with a parameterized probability
mass function (PMF) defined by P(∆i[k] = t|Θi), for all
positive natural numbers t ≥ 1, where Θi is an unknown
parameter vector (which will be considered as random in the
Bayesian framework below).

In reliability theory [22], it is usual to represent a discrete
random variable by its survival function s or its hazard rate
(or failure rate) r; for all positive natural numbers t ≥ 1:

s(t,Θi) = P(∆i[k] ≥ t|Θi)

r(t,Θi) =
P(∆i[k] = t|Θi)

s(t,Θi)
(2)

For each source, we introduce the sawtooth sequence Ti[n],
which corresponds to the time interval since the last spike.
The value Ti[n] is incremented at each time index, unless the
MN fires; it is then set to zero, as seen in Fig.1.

Ti[n+ 1] =

{
0, if the MN fires at time n+ 1

Ti[n]+1, otherwise

By means of the Kronecker delta, the spike trains write
Ui[n] = δ (Ti[n]). Let us use the exponent n to denote a time
span till time n (e.g. Tn

i = (Ti[j])1≤j≤n). Then, under the
assumption that the sequence of interspike intervals is i.i.d.,
the following properties hold (see proof in appendix A).
• The sequence Ti[n] is Markovian (for all discrete times n,
given the present data T [n], future data (Ti[m])m>n and past
data (Ti[m])m<n are independent); for all possible time spans
t (positive integer valued) since the last spike:

P(Ti[n+ 1] = t|Tn
i ,Θi) = P(Ti[n+ 1] = t|Ti[n],Θi) (3)

• The transition probability writes, by means of the hazard
rate in (2):

P(Ti[n+ 1] = t|Ti[n],Θi) =



r(Ti[n] + 1,Θi), if t = 0

1− r(Ti[n] + 1,Θi), if t = Ti[n] + 1

0, otherwise

(4)
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Figure 2. Weibull PMF and hazard rate (t0 = 120, β = 3, tR = 30)

• The invariant distribution writes, by means of the survival
function, for all t ≥ 0:

P(Ti[n] = t|Θi) =
s(t+ 1,Θi)

E{∆i[k]|Θi}
(5)

• The firing rate in spikes per sample, that is the mean value
of the binary process Ui[n], is the inverse of the expectation
of the interspike process, that is 1/E{∆i[k]|Θi}.

We need an explicit form of the PMF P(∆i[k] = t|Θi)
which leads to a simple expression of the hazard rate in
(2), so that the transition probabilities in (4) are easily com-
puted. Few PMFs may lead to an explicit hazard rate. The
discrete Weibull distribution, initially proposed by [23], was
extended to three parameters by [24] with Θi = [t0, β, tR]

⊤:
t0 is a location parameter, β is a concentration parameter,
and tR is a shifting parameter. Although the expected value
E{∆i[k]|Θi} has no explicit form. It is included in an interval
of length 1 (corresponding to one sample), which the middle
is (t0−tR) Γ(1+1/β)+tR+1/2, where Γ is the Euler Gamma
function [25]. Thus, it can be approximated by the middle of
this interval:

E{∆i[k]|Θi} ≈ (t0 − tR) Γ(1 + 1/β) + tR + 1/2 (6)

Given Θi = [t0, β, tR]
⊤, the discrete Weibull PMF, the

survival function s and the hazard rate r writes, for all natural
numbers t ≥ tR:

P(∆i[k] = t|Θi) = e
−
(

t−tR−1

t0−tR

)β

− e
−
(

t−tR
t0−tR

)β

(7)

s(t,Θi) = e
−
(

t−tR−1

t0−tR

)β

(8)

r(t,Θi) = 1− e
(

t−1−tR
t0−tR

)β
−
(

t−tR
t0−tR

)β

(9)

Note that for t < tR, the PMF and the hazard rate are 0, the
survival function is 1.

An example of a Weibull PMF and hazard rate is shown in
Fig.2, and an associated realization of a spike train according
to this PMF is shown in Fig.3. If tR > 0 or β > 1, the produced
spike train is more regular than in the case of a geometric
distribution, which corresponds to tR = 0 and β = 1.

In our study, t0 and β have to be estimated, but tR is
assumed to be known due to the physiological constraint (a
wavelet occurrence is followed by a refractory period during
which no new wavelet can appear). Therefore, Θi will be
reduced to two components below.
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Figure 3. Spike train drawn from a Weibull PMF (t0 = 120, β = 3 and
tR = 30) and corresponding sawtooth sequence.

3) Hidden Markov model: Assuming that the length ℓIR, in
number of samples, of the impulse responses, is lower than
the refractory period tR, a simple state-space representation is
obtained. The random state vector is composed of:

• T[n], the nM sojourn times T[n] = [Ti[n]]i∈{1...nM}
,

• H, the column vector made from the concatenation of the
nM impulse responses (each one with ℓIR coefficients),

• Θ, the column vector made from the concatenation of
the nM parameter vectors related to the dynamics of the
sources (each one with two coefficients).

The HMM corresponds to:

• a transition law, in which the impulse responses and the
interspike laws parameters are constant through time:

{
H, Θ constant along time

P(T[n+ 1]|T[n],Θ) thanks to (4)
(10)

• an observation equation (where ϕt is a row vector of
size ℓIR such that all components are 0, except, if t < ℓIR,
the component in position t + 1 which is 1), which is
equivalent to the representation (1).

Y [n] =
[
ϕT1[n] . . .ϕTnM [n]

]

︸ ︷︷ ︸
ψT[n]

H+W [n] (11)

The Bayes filter designed to estimate H and Θ, with known
noise variance v, is primarily presented in next part. Then, it is
adapted for tracking purpose in the more realistic case of time-
varying H and Θ and unknown time-varying v in subsection
II-B5. The setting of the filter parameters is presented in sub-
section II-B6, while initializations are presented in subsection
II-B7.

B. Bayes filter

1) Principle: The purpose of a Bayes filter is to propagate
along time the posterior probability law of the state sequence
of a HMM. Let Y n be the measured data. Since the state
vector is made of discrete variables (the sawtooth sequences)
and continuous ones (the impulse responses and the interspike
laws parameters), we shall compute recursively, for a growing
time index n:

• the posterior probability density function (PDF) of the
interspike law parameters given the impulse responses
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and the sawtooth sequences: p
Θ|Tn,Y n,H, which obvi-

ously simplifies to p
Θ|Tn (since the knowledge of the

data Y n and of the filtering process H does not bring
any information about Θ when Tn is known), and finally
reduces to

∏nM

i=1 p
Θi|Tn

i
(since the nM binary sequences

are assumed to be independent),
• the posterior PDF of the set of the impulse responses

given the sawtooth sequences: p
H|Tn,Y n ,

• the posterior PMF of the set of random sawtooth se-
quences Tn, that is, for all possible values tn, P(Tn =
tn|Y n).

To simplify notation, we will use the exponent |n to mean
“knowing data Y n” (for example, P(Tn = tn|Y n) becomes
P
|n(Tn = tn)). Derivation of the Bayes estimators follows,

such as:

• the marginal maximum a posteriori (MAP) estimator for
the set of sawtooth sequences (that is to say the most
probable one):

T̂
n|n

= argmax
tn

P
|n(Tn = tn) (12)

• the minimum mean square error estimator for the continu-
ous valued state, that is, by means of the total expectation
formula, for the set of impulse responses:

Ĥ
|n

= E
|n{H}

= E
|n{E|n{H|Tn}}

=
∑

tn

E
|n{H|Tn = tn}︸ ︷︷ ︸

Ĥ
|n

tn

P
|n(Tn = tn) (13)

and for the interspike law parameters, for all MU indices
i:

Θ̂
|n

i =
∑

tn
i

E{Θi|T
n
i = tni }︸ ︷︷ ︸
θ̂tn

i

P
|n(Tn

i = tni ) (14)

To derive the recursion on the posterior probability laws, we
will use the marginalization principle (which is well known
in particle filter implementations [26]). For a fixed set of
sawtooth sequences Tn:

• unfortunately, the conditional PDF p
Θi|Tn

i
of the inter-

spike laws parameters is not simple and we will use
approximations to propose an alternative estimator θ̂tn

i

(see II-B2),
• the posterior PDF p

H|Tn,Y n of the set of impulse re-

sponses is gaussian, its mean Ĥ
|n

Tn and variance are
obtained with the standard Kalman filter [27] (see II-B3).

Finally, the probability of the sawtooth sequences is computed
according to previous estimates (see II-B4). Furthermore, it is
unthinkable to process all possible sawtooth sequences, since
their number increases exponentially as time index n grows.
At each step n, only the npath most probable sequences will
be kept, the number npath being a parameter of the method
similar to the number of particles in a particle filter [28].

2) Estimation of interspike law parameters: Up to our
knowledge, it is impossible to determine an easy way to
implement online minimum mean square error estimation
E{Θi|T

n
i } of the interspike laws parameters Θi. In [29],

an iterative procedure is presented to obtain a maximum
likelihood (ML) estimator for a discrete Weibull distribution.
We propose here a ML-based estimator, which leads to a
practical online implementation. The offline ML estimation
is given by:

θ̂tn
i
= argmin

θ

−
1

n
lnP(Tn

i = tni |Θi = θ)
︸ ︷︷ ︸

Jtn
i
(θ)

Using the Markov property of the sawtooth sequences and
with the initialization Jt1

i
(θ) = − lnP(Ti[1] = ti[1]|Θi = θ),

the objective function Jtn
i

recursively writes for all n ≥ 2:

Jtn
i
(θ) =

1

n
Qtn

i
(θ) + (1−

1

n
) Jtn−1

i
(θ)

with Qtn
i
(θ) = − lnP(Ti[n] = ti[n]|Θi = θ, Ti[n − 1] =

ti[n− 1]). Jt1
i

and Qtn
i

are computed using (4) and (5); note
that with a discrete Weibull law, in the special case where
β = 1 is fixed, the estimator of t0 is closed-form (see appendix
B). In the general case, we will use the heuristic online
implementation used in [30]; if θ̂tn−1

i
attains the minimum

of Jtn−1

i
(θ), the gradient of the objective function gives :

∂Jtn
i
(θ̂tn−1

i
)

∂θ
=

1

n

∂Qtn
i
(θ̂tn−1

i
)

∂θ

This gradient is straightforward to compute with the transition
probability given by a discrete Weibull law. The objective
function is recursively minimized by a stochastic gradient
update:

θ̂tn
i
= θ̂tn−1

i
−

1

n
G−1

tn
i

∂Qtn
i
(θ̂tn−1

i
)

∂θ
(15)

where the Riemannian metric tensor [31] is updated for all
n ≥ 2 using:

Gtn
i
=

1

n

∂Qtn
i
(θ̂tn−1

i
)

∂θ

∂Qtn
i
(θ̂tn−1

i
)

∂θ

⊤

+(1−
1

n
)Gt

n−1

i
(16)

Note that this can also be interpreted as a quasi-Newton online
optimization where Hessian matrix approximation is obtained
through the Fisher information matrix of the transition proba-
bility law [32].

3) Posterior PDF and estimation of the impulse responses:

For a given realization tn of the sawtooth sequences Tn, the
Markov model for the impulse responses H reduces, for all
n ≥ 1, to: {

H constant

Y [n] = ψt[n] H+W [n]
(17)

with (W [n])n≥1 being an i.i.d. Gaussian sequence with vari-
ance v. With a Gaussian prior to represent the confidence in
the initial prediction of H, this is a standard linear gaussian
model, for which the posterior law of H|Tn = tn, Y n is

Gaussian with mean Ĥ
|n

tn and covariance matrix ptn provided
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by the standard Kalman filter. With initial priors Ĥ
|0

t0 and pt0 ,
the recursion writes for all n ≥ 1:

ktn = ptn−1 ψ⊤
t[n] ν

−1
tn

Ĥ
|n

tn = Ĥ
|n−1

tn−1 + ktn (Y [n]− Ŷ
|n−1
tn

)

ptn = ptn−1 − ktn νtn k⊤
tn

(18)

In this equation, appears the prior law of the observation
Y [n]|Tn = tn, Y n−1 which is itself Gaussian with mean
Ŷ

|n−1
tn

and variance νtn , and is updated, for all n ≥ 0, through:

Ŷ
|n
tn+1 = ψt[n+1] Ĥ

|n

tn

νtn+1 = ψt[n+1] ptn ψ
⊤
t[n+1] + v

(19)

Ĥ
|n

tn is the conditional mean E
|n{H|Tn = tn} involved in

(13), and ktn is the well-known Kalman gain. If the additive
noise is not Gaussian, the Kalman filter becomes a recursive
implementation of a linear minimum mean square error es-
timator (LMMSE) which remains unbiased (with minimum
variance among all linear estimators). An autoregressive model
of the noise could be included to take into account dependency
along time. However, a trade-off between model complexity
and the feasibility of the Bayes filter leads us to the common
assumption of white Gaussian noise.

4) Posterior probability of sawtooth sequences: In an up-
date/prediction scheme, with an initial prior P(T1 = t1|Y 0),
the recursion on this posterior probability writes, for all
possible forks tn+1 coming from tn (that are sequences in
which scalar sub-sequences tn+1

i are obtained from tni either
by tn+1

i = {tni , ti[n] + 1}, or by tn+1
i = {tni , 0} if ti[n] ≥ tR;

there can be between 1 and 2nM forks):

P
|n(Tn = tn) ∝

g(Y [n]− Ŷ
|n−1
tn

, νtn)P
|n−1(Tn = tn) (20)

P
|n(Tn+1 = tn+1) = P

|n(Tn = tn)×

nM∏

i=1





E{r(ti[n] + 1,Θi)|T
n
i = tni },

if ti[n+ 1] = 0

1− E{r(ti[n] + 1,Θi)|T
n
i = tni },

if ti[n+ 1] = ti[n] + 1

0, otherwise

(21)

where g(., ν) is the PDF of a zero-mean Gaussian variable with
variance ν, and Ŷ

|n−1
tn

and νtn are provided by the Kalman
filter of the previous subsection (see proof in appendix C).

The expectation E{r(t,Θi)|T
n
i = tni } has no explicit ex-

pression. We use an approximation similar to the one involved
in the extended Kalman filter, which consists in a linearization
of θ 7→ r(t,θ) around E{Θi|T

n
i = tni }, leading to:

E{r(t,Θi)|T
n
i = tni } ≈ r(t,E{Θi|T

n
i = tni }) (22)

There is no easy solution to recursively compute the ex-
pectation E{Θi|T

n
i = tni }. We replace it by the Recursive

Maximum Likelihood estimation θ̂tn
i

obtained in II-B2. Then,

the prediction step in recursion (21) becomes:

P
|n(Tn+1 = tn+1) ≈ P

|n(Tn = tn)×

nM∏

i=1





r(ti[n] + 1, θ̂tn
i
), if ti[n+ 1] = 0

1− r(ti[n] + 1, θ̂tn
i
), if ti[n+ 1] = ti[n] + 1

0, otherwise

(23)

With the hazard rate of a discrete Weibull probability law, this
recursion is particularly easy to implement.

5) Tracking: In algorithm 1, we report a summary of the
whole process. The noise variance v is primarily estimated
on a time interval of the data where only noise is present,
for instance a period where the human subject does not
activate any muscle. Furthermore, as the parameters of the
interspike laws are known to be time varying, a slight change
is introduced in (15) and (16): the factor 1/n is replaced
by 1/ℓ[n] where ℓ[n] is a window length, which grows from
ℓ[1] = 1 to ℓ∞, according to the following recursion [30]:

ℓ[n+ 1] = (1−
1

ℓ∞
) ℓ[n] + 1

ℓ∞ is an equivalent window length which has to be set
according to the desired adaptivity. This corresponds to an
exponential forgetting factor 1− 1

ℓ∞
, lower than 1 but next to

1. There is no tracking when ℓ∞ = +∞.
Moreover, on actual iEMG signals, the impulse responses

are also known to be time-varying. A usual solution is to
introduce a random walk in the model, leading to a strict
implementation of the Kalman filter, which was used in [33].
Nevertheless, to avoid new parameters to tune this random
walk, we use the trick proposed in [34] which uses a forgetting
factor to artificially increase the covariance matrix in the
Kalman filter. The covariance matrix update in (18) becomes:

ptn =
1

1− 1
ℓ∞

(
ptn−1 − ktn νtn k⊤

tn

)
(24)

The noise variance v is itself unknown. We propose here an
heuristic approach to estimate it by filtering the square of the

estimation error Y [n] − ψt[n] Ĥ
|n

tn using the same adaptivity
coefficients; for each possible sawtooth sequence tn:

V̂
|n
tn

=
1

ℓ[n]

(
Y [n]−ψt[n] Ĥ

|n

tn

)2

+ (1−
1

ℓ[n]
) V̂

|n−1
tn−1 (25)

The global estimation is then:

V̂ |n =
∑

tn

V̂
|n
tn

P
|n(Tn = tn) (26)

The estimation V̂ |n replaces v in (19):

νtn+1 = ψt[n+1] ptn ψ
⊤
t[n+1] + V̂ |n (27)

6) Tuning: The algorithm works sample by sample se-
quentially and thus can provide a real time result if the
computational time is sufficiently fast to be completed within
one sample period. The scope of this work is to present a
sequential algorithm while the numerical implementation and
computational cost analysis are out of the scope of the current
study. Nevertheless, it is obvious that the number of kept
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Algorithm 1 Full estimation process

Initialize Ĥ
|0

t0 , pt0 , V̂ |0
t0

(t0 is empty matrix)
for all initial t[1] do

Initialize P
|0(T[1] = t[1]), θ̂ti[1], Gti[1]

Predict Ŷ |0
t1

and νt1 with (19)
end for

for all n ≥ 1 do

new data Y [n]
for all tn do

Compute the posterior P|n(Tn = tn) with (20)
end for

Select and keep the npath most probable paths
for all kept tn do

Update Ĥ
|n

tn , ptn with (18) (corrected by (24)), V̂ |n
tn

with (25)
end for

Compute the estimates Ĥ
|n

, Θ̂
|n

i , V̂ |n with (13), (14) and
(26)
for all kept tn do

for all possible forks tn+1 coming from tn do

Compute the prior P|n(Tn+1 = tn+1) with (23)
Compute θ̂tn+1

i
and Gt

n+1

i
with (15) and (16)

Predict Ŷ |n
tn+1 and νtn+1 with (19) (corrected by (27))

end for

end for

end for

paths npath is a crucial parameter of the method, which has
to be chosen as big as possible according to the available
computational power. Typically, it should be closely related
to the number of parallel units in a graphical processing unit
(GPU) used for general purpose processing (GPGPU). It must
be underlined that there is a tradeoff between this parameter
and the refractory period tR (although this setting is motivated
by physiological constraints): the higher the tR, the lower the
number of forks to investigate.

The equivalent window length ℓ∞, used to tune the filter
adaptivity, should be set in function of the human subject
task type. One can imagine automatic recognition of task
type (“slow and meticulous”, “fast”. . . ). Detection of abrupt
changes of parameters can also be implemented [35].

The main limitation of this paper is the assumption that the
number nM of MUs is known, although this typically changes
when force is time varying. In the next step of this research
work, beyond the scope of this paper, we plan to implement
a birth-and-death technique (see offline case in [36], or online
case in [37]).

7) Initializations: A pre-processing was made manually by
an expert to extract the number of sources, a rough initial-

ization of MUAP shapes Ĥ
|0

t0 (with a diagonal covariance
matrix pt0 corresponding to a standard deviation of 10% of
the initial value on each component) and a rough initialization
of the noise variance V̂

|0
t0

on a period with no activity. A
fully automated procedure will require a startup stage such
as a classification/estimation procedure [8] during a learning
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Figure 4. (a) Simulmation: sum of four convolved spike trains with additive
gaussian noise. (b) iEMG signal and expert decomposition.

procedure performed by the human subject.
npath initial t[1] are drawn from a uniform distribution

between tR + 1 and 3tR, and weighted with the same initial
probability.

Simulations have shown that the initial setup of the metric
tensor Gti[1] is crucial. We propose to operate in two steps;
for each source, till the second spike appears:

• set β = 1,
• estimate only t0 by means of the closed form solution of

Appendix B which does not require Gti[1],
• simultaneously estimate Gti[n] by means of (16), initial-

ized with Gti[1] = 02x2.

Then, the constraint β = 1 is relaxed.
8) Algorithm complexity: The computational complexity is

mainly due to the Kalman filter (18). For each of the proposed
npath paths, the computation cost of the variance-covariance
matrix Ptn is in O((nMℓIR)

3) [38]. The overall complexity is
in O(npath(nMℓIR)

3). Note that the computational cost of (19)
is low due to the sparsity of the ψt vector.

C. Simulated signals and experimental signal

Simulated signals were generated with the Markov model,
(10) and (11). A 10 kHz sampling frequency was assumed for
the simulated signals to ease comparison with the experimental
signal. The filters shapes were obtained from experimental
iEMG signals to make the simulation more realistic. The
signal to noise ratio (SNR) was set to 11 dB. The parameters
t0,i ranged from 70 ms to 110 ms, βi ranged from 3 to 7,
and tR was set at 30 ms. Fig.4 (a) shows the sum of four
convolved spike trains, and the firing instants, localized by
dots. The length of the simulated and experimental runs are
of eight seconds each. A jump from 90 ms to 105 ms on
t0 was simulated on source #1, at time 4 s. Although this
simulation does not reflect a precise physiological mechanism,
it permits to test, over a single trial, the tracking capability
of the algorithm over time-varying parameters, as well as its
capability of locking the values of parameters constant over
time.

The experimental iEMG signals were recorded from the
extensor digitorum muscle of a healthy subject (age 21 years),
with a pair of wire electrodes made of Teflon coated stainless
steel (A-M Systems, Carlsborg, WA, USA; diameter 50µm)
inserted into the muscle belly with a 25 G needle, with inser-
tion at approximately 45 degrees with respect to the skin plane.
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Figure 5. Reconstruction without noise of the signal for four spike trains:
the reconstruction of the signal between 6.6 and 7.1 seconds with the true and
reconstructed spike trains, and the estimated impulse responses (simulation)

The needle was then removed with the fine wires left into the
muscle for the recording. The muscle selected corresponds to a
source of EMG activity often used for the control of prostheses
by transradial amputees. The iEMG signals were amplified
bipolarly (Counterpoint EMG, DANTEC Medical Skovlunde,
Denmark), band-pass filtered (500 Hz-5 kHz), and sampled at
10 kHz. The subject performed constant isometric contractions
at 5% of the maximal voluntary contraction force (MVC) to
gather iEMG signals over a period length of approximately
one minute. During the experiment, the subject had access to
a visual feedback of the exerted force. Fig.4 (b) presents an
example of these recordings.

Algorithm 1 was applied to both the simulated signals
and the experimental one, with adaptivity corresponding to a
one-second equivalent window length. The algorithm realizes
a sequential estimation of the dynamic parameters {t0, β}
and the signature h of each spike trains. The number of
selected paths npath was set to 64. The number of MN for the
experimental signal was estimated by an expert and assumed
known (see II-B7), here 4 MNs.

The validation on experimental data was performed by
comparing the results of the proposed method with those
provided as reference results by manual offline decomposi-
tion of an expert operator using the EMGLAB tool [39].
The performance of the algorithm was evaluated with the
indices proposed in [40], which characterize the detection and
classification phase. For the proposed algorithm, both phases
are realized together but the indexes can still be computed
separately. The reference signals were the simulated trains
in the simulation case, meaning that the firing instants are
known exactly. In the experimental case, the firing instants are
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Figure 6. Reconstruction without noise of the signal for four identified spike
trains of an iEMG signals: the reconstruction with the expert and estimated
spike trains, and the estimated impulse responses (experimental signal)

obtained from the expert’s deconvoluted trains. Both patterns
of firing instants are named true spikes. Thus, the spike
trains proposed by Algorithm 1 and corresponding to true
spikes are named correct spikes. Considering all MUAP trains
as a unique process for the detection phase, we used as
performance indexes, the sensitivity, which is the number of
correct spikes relative to the number of detected spikes, and
the positive predictivity, which is the number of correct spikes
relative to the number of true spikes. A ±2 samples tolerance
on spike location was admitted. For the classification phase, we
report the sensitivity, defined similarly to the detection phase
but for each class (source), the specificity, which indicates the
ability to identify MUAPs belonging to a different class, and
the accuracy, indicating the quality of classification relative to
the other MUAP trains.

Another (indirect) index of performance is the normalized
root mean square error (NRMSE), computed as the root of
the empirical mean of the square difference between the
reconstructed signal ŷ and the actual signal realization y,
normalized by the empirical standard deviation of the data.

NRMSE =

√√√√
∑n

j=1(ŷ[j]− y[j])2
∑n

j=1 y
2[j]− 1

n
(
∑

y[j])
2

III. RESULTS

Fig.5 (simulated data) and Fig.6 (actual signal) present:

• processed data (simulated data or actual iEMG signal)
and noiseless reconstruction,

• spike trains (actual or from expert) and estimated ones,
• actual impulse responses (for simulated data only) and

estimated ones (initial and final values).
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Table I reports the normalized noise standard deviation (sim-
ulation), the NRMSE for the expert’s decomposition (actual
signal), and the NMSRE for the online decomposition.

For the simulated data (Fig.5), the reconstruction of the
spike trains did not miss any spikes over the duration of the
signal. The NRMSE is very close to the actual normalized
noise standard deviation meaning that the signal is almost
decomposed perfectly.

For the experimental iEMG signal (Fig.6), the global re-
construction was close to the actual signal. However, several
differences appear along the decomposition. Due to similarity
of MUAP shapes from the second and third trains, the algo-
rithm diverged from the expert, switching from one train to the
other. Nevertheless, the NRMSE results are nearly identical,
since the NRMSE is blind to errors between MU with similar
shapes, and to train regularity. It has to be noted that the expert
will mainly promote shape matching, whereas the algorithm
will take into account the train regularity.

The performance indexes were all 100% for the simulated
signals (except the detection sensitivity which was 99.9%).
For the experimental signals, the indexes are calculated with
respect to the expert decomposition, and are given in the table
II. The algorithm detected well the MUAP shapes in quality
and quantity. Double discharges may occur experimentally and
cause a decrease in performance because this phenomenon is
not taken into account in the model. The classification phase
for the experimental signal shows that train 1 is perfectly clas-
sified, whereas the trains 2 and 3 were occasionally switched
due to the similarity in the shapes of MUAPs in these two
trains.

Fig.7 shows the estimated discharge rates of the sources,
that is the number of spikes per unit time, computed from t̂0
and β̂ by means of (6). They converge quickly to their true
values, although there is variability around the true values.
This variability is not due to errors in the decomposition of
the spike trains by the proposed algorithm but to the need for
several action potentials for an estimate of discharge rate with
low variability. It has to be noted that the average discharge
rate (or cumulative, which is equivalent to the average apart
a multiplication factor) would be the control signal for man-
machine interfaces (estimated neural drive to the muscle). On
the simulated signal with the jump on discharge rate for the

Table I
ALGORITHM EVALUATION THROUGH NRMSE.

Simulation Experiment
Noise standard deviation 0.301 -
NRMSE expert - 0.318
NRMSE algorithm 0.306 0.321

Table II
DETECTION PHASE: SENSITIVITY AND POSITIVE PREDICTIVITY.

CLASSIFICATION PHASE: SENSITIVITY, SPECIFICITY AND ACCURACY.

Sens. Pred. Sens. Spec. Acc.
Detection 95.0 96.4 - - -
Class. MU1 - - 100 100 100
Class. MU2 - - 79.5 91.9 88.6
Class. MU3 - - 69.9 90.6 85.1
Class. MU4 - - 90.0 98.0 96.5

(a) Simulated signal

0 2 4 6 8

4

6

8

10

12

14

x 10
−4 MN 1

D
is

c
h
a
rg

e
 r

a
te

 

 

empirical

estimated

0 2 4 6 8

4

6

8

10

12

14

x 10
−4 MN 2

 

 

empirical

estimated

0 2 4 6 8

4

6

8

10

12

14

x 10
−4 MN 3

D
is

c
h
a
rg

e
 r

a
te

Time (sec)

 

 

empirical

estimated

0 2 4 6 8

4

6

8

10

12

14

x 10
−4 MN 4

Time (sec)

 

 

empirical

estimated

(b) iEMG signal

Figure 7. Discharge rate and the mean value of four firing sources over 8
seconds (simulation) and four firing MNs over 8 seconds (experimental)

first source, the estimation catches up the final value after
approximately 1.5 s, which is a coherent result according to
the 1 s equivalent window length ℓ∞. On the experimental
signal, the estimated firing rate catches up the empirical firing
rate (inverse of the current expert’s interspike interval) after
approximately 1 s too.

IV. DISCUSSION AND CONCLUSION

In this paper, we treated the case of signals with unknown
binary inputs and unknown impulse responses, although a
rough shape is necessary. A Markov model of sparse signals
has been presented. The iEMG signals were modeled as a
sum of independent convolved spike trains. The sparsity of
the spike trains was exploited with the introduction of a PMF
for the time between two spikes of the same train, which was
modeled by a discrete Weibull distribution. Then, an online es-
timation method for the parameters of the Weibull distribution
and impulse responses of the model was implemented. The
method, which works on each sample sequentially, was tested
on simulated and experimental iEMG signals, with promising
results on the decomposition of superimposed MUAP trains.

The main aim of the study was the development of a
sequential method for EMG decomposition, which can be
implemented online and does not require the storage of the
whole data sequence. The computational complexity is cubic
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with respect to the number of sources. The computational time
in the current implementation is high but the load can be
largely reduced by implementing an ensemble Kalman filter
(EnKF), an approximated Kalman filter designed for large
state [41], and by using parallel computation. These technical
computational aspects are out of the scope of this work.

A main issue of the work presented is the estimation (online)
of the number of active MNs, that is a discrete parameter
of the method. This issue will be addressed in future work.
We plan to use a birth-and-death technique to process either
the disappearance of MU (death) or the appearance of MU
(birth) through the selection of new approximate shapes in
a dictionary. This dictionary would be built from an offline
learning stage using a clustering method to determine a rough
shape of all possible isolated MUAP. For the time being, if the
number of sources is underestimated, the algorithm will give
poor estimations of MUAP shapes and dynamic parameters.

Solving this estimation problem will be the next step toward
the use of the number of active MNs and their discharge
frequencies to control external devices, by mimicking the
natural way of movement control based on recruitment and
rate coding of MNs. The signal processing stage presented in
this paper is indeed a first stage which needs to be followed
by a post-processing stage which will aim to derive the link
between the obtained decomposition and the developed force
or kinematics.

APPENDIX

A. Proof of formulas (3) and (4)

Let us drop the index i in the proof since all sources are
independent, and the parameter Θi for sake of simplicity. Let
us consider a discrete time n between k-th spike at time S[k]
and strictly before the (k+1)-th spike at time S[k+1] of the
source. The knowledge of Tn is obviously equivalent to the
one of {∆k−1, T [n]}; then:

P(T [n+ 1] = 0|T [n] = t, Tn−1)

= P(T [n+ 1] = 0|T [n] = t,∆k−1)

=
P(T [n+ 1] = 0, T [n] = t|∆k−1)

P(T [n] = t|∆k−1)

The event {T [n + 1] = 0, T [n] = t} corresponds to a spike
with a sojourn time ∆[k] of t+1, and the position of the last
spike S[k] at n−t. The event T [n] = t means that the sojourn
time is greater than t+1, and the position of the last spike is
still at n− t; then:

P(T [n+ 1] = 0|T [n] = t, Tn−1)

=
P(∆[k] = t+ 1, S[k] = n− t|∆k−1)

P(∆[k] ≥ t+ 1, S[k] = n− t|∆k−1)

=
P(∆[k] = t+ 1|S[k] = n− t,∆k−1)

P(∆[k] ≥ t+ 1|S[k] = n− t,∆k−1)

Supposing that the last firing time S[k] is independent of the
sojourn time sequence ∆k, and that this sequence is i.i.d., then:

P(T [n+ 1] = 0|T [n] = t, Tn−1) =
P(∆[k] = t+ 1)

P(∆[k] ≥ t+ 1)

which is the hazard rate r(t) of the interspike process defined
in (2). It is easy to show that the invariant distribution of T [n],
that is the solution PMF ρ(t) such that

ρ(t′) =
∑

t≥0

P(T [n+ 1] = t′|T [n] = t) ρ(t)

is given (using the fact that the sum of the survival function
is nothing but the mean value of the interspike process) by:

ρ(t) =
1−

∑t

τ=1 P(∆ = τ)

E{∆[k]}
=

s(t+ 1)

E{∆[k]}

The mean value of the sequence U [n] = δ(T [n]) is:

E{δ(T [n])} = P(T [n] = 0) = ρ(0) = 1/E{∆[k]}

B. Closed-form ML estimation of t0 when β = 1

Let us drop the index i and note λ = 1 − exp
[

−1
t0−tR

]
. If

β = 1, E{∆[k]|Λ} = tR + 1
Λ and, for all t > tR, r(t, λ) = λ

and s(t + 1, λ) = (1− λ)
t−tR . Denoting M = t[1] − tR, N0

the number of firing instants and N1 the number of instants
where the sojour time is superior to the refractory period, the
objective function writes:

Jtn(λ) =
1

n
ln (λtR + 1)−

N0 + 1

n
lnλ−

N1 +M

n
ln (1− λ)

Optimizing Jtn(λ) with respect to λ leads to the solution:

λ̂ = −
1

2tR

(
1−

N0tR − 1

N0 +N1 +M

)
+

1

2tR

√(
1−

N0tR − 1

N0 +N1 +M

)2

+ 4tR

N0 + 1

N0 +N1 +M

Then the solution in t0 is given by t̂0 = tR + 1
ln 1

1−λ̂

C. Proof or recursion (20) and (21)

Using Bayes rule:

P(Tn = tn|Y n) = P(Tn = tn|Y [n], Y n−1)

∝ pY [n]|Tn=tn,Y n−1(Y [n])P(Tn = tn|Y n−1)

The proportionality factor pY [n]|Y n−1(Y [n]) is dropped since
it does not depend on tn. pY [n]|Tn=tn,Y n−1 is the Gaussian
PDF with mean ŷtn(Y

n−1) and variance νtn provided by the
Kalman filter. The prediction step writes:

P(Tn+1 = tn+1|Y n) =

P(T[n+ 1] = t[n+ 1]|Tn = tn, Y n)P(Tn = tn|Y n)

Using successively the fact that given Tn, Y n does not bring
information about T[n+ 1], the independance of the sources
and the total probability law:

P(T[n+ 1] = t[n+ 1]|Tn = tn, Y n)

= P(T[n+ 1] = t[n+ 1]|Tn = tn)

=

nM∏

i=1

P(Ti[n+ 1] = ti[n+ 1]|Tn
i )

=

nM∏

i=1

E{P(Ti[n+ 1] = ti[n+ 1]|Tn
i ,Θi)|T

n
i }

Using Markov property, and respecting (4), one obtains (21).
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