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Abstract

We consider precolouring extension problems for proper edge-colourings of graphs
and multigraphs, in an attempt to prove stronger versions of Vizing’s and Shan-
non’s bounds on the chromatic index of (multi)graphs in terms of their maximum
degree ∆. We are especially interested in the following question: when is it possible
to extend a precoloured matching to a colouring of all edges of a (multi)graph?
This question turns out to be related to the notorious List Colouring Conjecture
and other classic notions of choosability.

Mathematics Subject Classifications: 05C15

∗Supported by Veni (639.031.138) and Vidi (639.032.614) grants of the Netherlands Organisation for
Scientific Research (NWO).
†This author’s work was partially supported by Agence Nationale de la Recherche under references

anr 10 jcjc 0204 01 and anr 13 BS02 0007.

the electronic journal of combinatorics 25(3) (2018), #P3.1 1



1 Introduction

Let G = (V,E) be a (multi)graph and let K = [K] = {1, . . . , K} be a palette of available
colours. (In this paper, a multigraph can have multiple edges, but no loops; while a graph
is always simple.) We consider the following question: given a subset S ⊆ E of edges
and a proper colouring of elements of S (i.e., adjacent edges must receive distinct colours)
using only colours from K, is there a proper colouring of all edges of G (again using only
colours from K) in concordance with the given colouring on S? We may consider the
set S as a set of precoloured edges, while the full colouring, if it exists, may be considered
as extending the precolouring. If the set S forms a matching in G, then the precolouring
of S may be arbitrary from K.

An early appearance of a problem regarding precolouring extension of edge-colourings
can be found in Marcotte and Seymour [25]. Note also that the completion of partial
Latin squares can be interpreted as an edge-precolouring extension problem restricted to
complete bipartite graphs, and this has been studied since as early as 1960, cf. e.g., [33].
Nevertheless, in general the edge-precolouring extension problem has been less compre-
hensively studied than its vertex-colouring counterpart. We hope to provoke interest in
edge-precolouring extension and in the following question especially.

Question 1. Let G be a multigraph with maximum degree ∆(G) and maximum multi-
plicity µ(G), let K = [∆(G) + µ(G)], and let M be a matching of G precoloured from the
palette K. What conditions on G and M ensure that the precolouring of M extends to a
proper K-edge-colouring of all of G?

The obvious relationship between edge-precolouring and its vertex counterpart — in which
we can see edge-precolouring extension of G as vertex-precolouring extension in its line
graph L(G) — yields immediate implications. For us, the distance between two edges
in G is their corresponding distance in L(G), i.e., the number of vertices contained in a
shortest path in G between any of their end-vertices. A distance-t matching is a set of
edges having pairwise distance greater than t. (This means that a matching is a distance-
1 matching, while an induced matching is a distance-2 matching. Any set of edges is a
distance-0 matching.) We point out the following consequence of a result of Albertson [1,
Thm. 4] (see Subsection 1.2) and Vizing’s theorem.

Proposition 2. Let G be a multigraph with maximum degree ∆(G) and maximum mul-
tiplicity µ(G). Using the palette K = [∆(G) + µ(G) + 1], any precoloured distance-3
matching can be extended to a proper edge-colouring of all of G.

Albertson and Moore [3, Conj. 1] conjectured that when G is a simple graph, any pre-
coloured distance-3 matching can be extended to a proper edge-colouring of G using the
palette K = [∆(G) + 1]. We propose a stronger conjecture.

Conjecture 3. Let G be a multigraph with maximum degree ∆(G) and maximum multi-
plicity µ(G). Using the palette K = [∆(G) + µ(G)], any precoloured distance-2 matching
can be extended to a proper edge-colouring of all of G.
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Figure 1: A representative G of a class of trees, with a non-extendable precoloured
(distance-2) matching, using the palette [∆(G)] = [χ′(G)]. Dashed lines indicate edges
precoloured with colour 1.

Figure 2: A representativeG of a class of bipartite graphs, with a non-extendable matching
consisting of two edges, using the palette [∆(G)] = [χ′(G)]. Dashed lines indicate edges
precoloured with colour 1.

Conjecture 3 strengthens Proposition 2 in two ways: we impose a weaker constraint on the
distance between precoloured edges, and we use a smaller palette. Evidently, we believe
that in edge-precolouring the distance requirement ought to be not as strong as it is for
vertex-precolouring extension. In Section 2, however, we show how Conjecture 3 becomes
false if we are allowed to precolour a distance-1 rather than a distance-2 matching. Note
that Conjecture 3 easily becomes false, even for trees, if we replace the palette K by
[∆(G)] or by [χ′(G)], where χ′(G) is the chromatic index of G. For instance, consider
stars with each edge subdivided exactly once; see Figure 1.

In another direction, one might wonder if a strong enough distance requirement on the
precoloured matching permits us to take a smaller palette, like [∆(G)] or [χ′(G)]. This
fails however, even for bipartite graphs, as we now show.

First, for any positive integer m, let Dm denote the bipartite graph on vertex set
{x}∪Ax ∪B ∪Ay ∪{y}, where |Ax| = |Ay| = m and |B| = 2m− 1, and whose edge set is
the set of all pairs between {x} ∪B and Ax and between {y} ∪B and Ay. Let us observe
an easy property of the graph Dm: in any proper edge-colouring of Dm with colours from
[2m], there must be at least one edge of colour 1 incident to x or y. For otherwise, since
each vertex in Ax has degree 2m, there must be m edges of colour 1 between Ax and B;
similarly, there must be m edges of colour 1 between Ay and B. But this implies that
there are 2m distinct edges of colour 1 incident to the 2m− 1 vertices in B, which means
that a vertex of B is incident to two edges of colour 1, a contradiction.

Next, for any positive integers `,m, let Gm,` be the graph formed by taking ` disjoint
copies H1, . . . , H` of Dm with vertex sets labelled {xi} ∪ Axi ∪Bi ∪ Ayi ∪ {yi}, identifying
yi with xi+1 for all i = 1, . . . , ` − 1, and then adding two new vertices x′ and y′ and
two new edges x′x1 and y`y

′. See Figure 2 for a depiction of G3,2. It is straightforward
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to check that Gm,` is bipartite, has maximum degree 2m, and that the edges x′x1 and
y`y
′ are at distance 4` + 1 in Gm,`. Consider a precolouring of Gm,` from the palette

[2m] = [∆(Gm,`)] = [χ′(Gm,`)] in which the edges x′x1 and y`y
′ are precoloured 1. Suppose,

for a contradiction, that there is a proper extension of this precolouring. Then there can
be no edge of colour 1 between Ay1 and B1. By our observation about Dm, there must
be an edge of colour 1 between Ay1 and y1 = x2. It follows by an induction (via copies of
Dm) that there is an edge of colour 1 between Ay` and y`. Since y`y

′ is precoloured 1, we
have arrived at our desired contradiction.

If true, Conjecture 3 would extend Vizing’s theorem [37], which is independently due
to Gupta, cf. [18]. A variant of Conjecture 3 was proved by Berge and Fournier [7, Cor. 2]
— they showed that extension is guaranteed, even from precoloured distance-1 matchings,
provided that all edges of the matching have been precoloured with the same colour.

In this paper, we prove several special cases of Conjecture 3, in particular, for bipartite
multigraphs, subcubic multigraphs, and planar graphs of large enough maximum degree.
Indeed, for these classes we show that Conjecture 3 holds even when the precoloured set is
allowed to be a distance-1 matching. Moreover, we prove a variant of Conjecture 3, where
the extended edge-colouring avoids some prescribed colours on a (distance-1) matching.
We discuss this further in Subsection 1.1. However, first allow us to place the conjecture
in context by giving some preliminary observations.

By the following easy observation, Conjecture 3 is also related to list edge-colouring,
and therefore to the List Colouring Conjecture (LCC), which states that ch′(G) = χ′(G)
for any multigraph G (where ch′(G) is, as usual, the list chromatic index of G).

For a non-precoloured edge, we define its precoloured degree as the number of adjacent
precoloured edges.

Observation 4. Let G be a multigraph with list chromatic index ch′(G). For a positive
integer k, take the palette as K = [ch′(G) + k]. If G is properly precoloured so that the
precoloured degree of any non-precoloured edge is at most k, then the precolouring can be
extended to a proper edge-colouring of all of G.

So, if we assume that the LCC holds, then the following weak form of Conjecture 3 holds
as well: using the palette K = [∆(G) + µ(G) + 1], any precoloured distance-2 matching
extends to all of G. Observation 4 follows from a more refined statement we will give in
Section 3.

Due to the remarkable work of Kahn [22, 23, 24] on edge-colourings and list edge-
colourings of (multi)graphs, not only does an asymptotic form of Conjecture 3 hold, but so
does a precolouring extension of an asymptotic form of the Goldberg–Seymour Conjecture
(which we review in Subsection 1.2). Kahn’s theorem and Observation 4 together imply
the following.

Proposition 5. For any ε > 0, there exists a constant Cε such that the following holds.
For any multigraph G with χ′(G) > Cε, any precoloured matching using the palette K =
[(1 + ε)χ′(G)] can be extended to a proper edge-colouring of all of G.
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If we replace χ′(G) in the statement above by ∆(G) +µ(G) or by the Goldberg–Seymour
bound, then the statement remains valid, either due to Vizing’s theorem or due to another
theorem of Kahn.

One of our motivations for the formulation and study of Conjecture 3 comes from the
close connections with vertex-precolouring and with the LCC.

1.1 Main Results

Although it appears that the LCC and our conjecture are independent statements, we have
obtained several results corresponding to specific areas of success in list edge-colouring. In
summary, we confirm Conjecture 3 for bipartite multigraphs, subcubic multigraphs, and
planar graphs of large enough maximum degree. We also obtain a precolouring extension
variant of Shannon’s theorem, and we confirm a relaxed version of Conjecture 3, where
the extended edge-colouring avoids some prescribed colours on a matching. Furthermore,
all of these partial results hold in the more general context where the precoloured set
is allowed to be a distance-1 matching, rather than the distance-2 matching required by
Conjecture 3. In fact, in this section we mostly present our main results restricted to
precoloured matchings, to aid clarity, even when yet more general statements hold.

Our first result is an edge-precolouring extension of Kőnig’s theorem that any bipar-
tite multigraph G is ∆(G)-edge-colourable, whereas the subsequent result is an edge-
precolouring analogue of Shannon’s theorem that any multigraph G is

⌊
3
2
∆(G)

⌋
-edge-

colourable.

Theorem 6. Let G be a bipartite multigraph with maximum degree ∆(G). With the palette
K = [∆(G) + 1], any precoloured matching can be extended to a proper edge-colouring of
all of G.

As indicated in Figures 1 and 2, the palette size in Theorem 6 is sharp.

Theorem 7. Let G be a multigraph with maximum degree ∆(G). With the palette K =[ ⌊
3
2
∆(G) + 1

2

⌋ ]
, any precoloured matching can be extended to a proper edge-colouring of

all of G.

Due to the Shannon multigraphs, this last statement is sharp if ∆(G) is even, and within 1
of being sharp if ∆(G) is odd. Theorems 6 and 7 are proved in Section 3 using powerful
list colouring tools developed by Borodin, Kostochka and Woodall [11].

The following theorem concerns multigraphs that are subcubic, i.e., of maximum de-
gree at most 3. Note that Theorem 8 improves upon Theorem 7 for ∆(G) = 3.

Theorem 8. Let G be a subcubic multigraph. With the palette K = [4], any precoloured
matching can be extended to a proper edge-colouring of all of G.

The example we give in Section 2 shows that 3 is the largest value of ∆(G) for which
we are guaranteed that the palette [∆(G) + 1] is enough to extend every precoloured
matching to a proper edge-colouring of the whole graph. In other words, Theorem 8 is
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best possible with respect to ∆(G). A form of Theorem 8, for subcubic simple graphs
and with a distance condition on the precoloured matching, was observed by Albertson
and Moore [3]. Although the LCC remains open for subcubic graphs, Juvan, Mohar and
Škrekovski [20] have made a significant attempt. They showed that for any subcubic
graph G, if lists of 3 colours are given to the edges of a subgraph H with ∆(H) 6 2 and
lists of 4 colours to the other edges, then G has a proper edge-colouring using colours
from those lists.

Theorem 8 is a direct corollary of the following theorem, which may be of interest in
its own right. Its proof uses a degree-choosability condition and can be found in Section 4.

Theorem 9. Let G be a connected multigraph with maximum degree ∆(G). Choose a non-
negative integer k such that ∆(L(G)) 6 ∆(G)+k, and take the palette as K = [∆(G)+k].
If G is properly precoloured so that the precoloured degree of any vertex is at most k, then
the precolouring can be extended to a proper edge-colouring of all of G, except in the
following cases:

(a) k = 0 and G is a simple odd cycle;

(b) G is a triangle with edges of multiplicity m1,m2,m3 and k = min{m1,m2,m3} − 1.

Note that, when restricted to precoloured matchings, this theorem produces weak or
limited bounds for larger maximum degree. On the other hand, if we replace every
precoloured edge in the example of Figure 1 by a precoloured multi-edge of multiplicity k
(or k + 1) and a precolouring from [k] (or [k + 1]), we see that the palette bound (or
precoloured degree condition) is best possible.

In the case where k = ∆(L(G)) − ∆(G) in Theorem 9, the number of colours used
is equal to the maximum degree of the line graph. In that sense the theorem can be
considered as a precolouring extension of Brooks’s theorem restricted to line graphs. It is
relevant to mention that vertex-precolouring extension versions of Brooks’s theorem [2, 6,
28] require, among other conditions, a large minimum distance between the precoloured
vertices.

The class of planar graphs could be of particular interest. There is a prominent line of
work on (list) edge-colouring for this class, which we discuss further in Subsection 1.2 and
Section 5. Our main contributions to this area are the following results, the second one
of which can be viewed as a strengthening of another old result of Vizing [38], provided
the graph’s maximum degree is large enough.

Theorem 10. Let G be a planar graph with maximum degree ∆(G) > 17. Using the
palette K = [∆(G) + 1], any precoloured matching can be extended to a proper edge-
colouring of all of G.

Theorem 11. Let G be a planar graph with maximum degree ∆(G) > 23. Using the
palette K = [∆(G)], any precoloured distance-3 matching can be extended to a proper
edge-colouring of all of G.
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Palette K Distance t Max. degree ∆ Reference

1. [∆ + 4] 1 all ∆ Thm. 7 (∆ 6 7) and
Obs. 4 with [8] (∆ > 8)

2. [∆ + 3] 1 ∆ 6 5; ∆ > 8 Thm. 7; Obs. 4 with [8]
3. [∆ + 2] 1 ∆ > 12 Obs. 4 with [11]
4. [∆ + 2] 2 ∆ 6 4; ∆ > 8 [21]; Obs. 4 with [8]
5. [∆ + 2] 3 all ∆ Prop. 2
6. [∆ + 1] 1 ∆ 6 3; ∆ > 17 Thm. 8; Thm. 10
7. [∆ + 1] 2 ∆ > 12 Obs. 4 with [11]
8. [∆] 3 ∆ > 23 Thm. 11

Table 1: Summary of edge-precolouring extension results for planar graphs with maximum
degree ∆, when a distance-t matching M is precoloured using the palette K. See Section 5
for further details how these results can be obtained.

Due to the trees exhibited in Figure 1, the palette size in Theorem 10 cannot be reduced,
while the minimum distance condition in Theorem 11 cannot be weakened. In Section 5,
we give some more results on when it is possible for a precoloured matching in a planar
graph to be extended. A summary of the results is given in Table 1.

Suppose that we would go to any means to obtain an extension form of Vizing’s
theorem, say, by weakening the precolouring condition. We still let K = [K] be a palette
of available colours. Given a subset S ⊆ E of edges and an arbitrary (i.e., not necessarily
proper) colouring of elements of S using only colours from K, is there a proper colouring
of all edges of G (using colours from K) that differs from the given colouring on every
edge of S? We may consider the coloured set S as a set of forbidden (coloured) edges,
while the full colouring, if it can be produced, is called an avoidance of the forbidden
edges. We can show the following result, which, while it is in one sense weaker than
the statement in Conjecture 3, is directly implied by neither the LCC nor other existing
precolouring results, implies Vizing’s theorem, and provides further evidence in support of
Conjecture 3. (This result was stated as a conjecture in an earlier version of this paper.)

Theorem 12. Let G be a multigraph with maximum degree ∆(G) and maximum multi-
plicity µ(G). Using the palette K = [∆(G)+µ(G)], any forbidden matching can be avoided
by a proper edge-colouring of all of G.

We use an aforementioned result of Berge and Fournier and a recolouring argument to
prove this theorem in Section 6.

Some basic knowledge of edge-colouring is a prerequisite to the consideration of edge-
precolouring extension problems — we provide some related background in the next sub-
section. To our frustration, many of the major methods for colouring edges (such as
Kempe chains, Vizing fans, Kierstead paths, Tashkinov trees) seem to be rendered useless
by precoloured edges. Though Conjecture 3 may at first seem as if it should be an “easy
extension” of Vizing’s theorem, it might well be difficult to confirm (if true). We are
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keen to learn of related edge-precolouring results independent of current list colouring
methodology.

1.2 Further Background

Edge-colouring is a classic area of graph theory. We give a quick overview of some of
the most relevant history for our study. The reader is referred to the recent book by
Stiebitz, Scheide, Toft and Favrholdt [34] for detailed references and fuller insights. The
lower bound χ′(G) > ∆(G) is obviously true for any multigraph G. Close to a century
ago, Kőnig proved that all bipartite multigraphs meet this lower bound with equality.
Shannon [32] in 1949 proved that χ′(G) 6

⌊
3
2
∆(G)

⌋
for any multigraph G. Somewhat

later, Gupta (as mentioned in [18]) and, independently, Vizing [37] proved that χ′(G) 6
∆(G) + µ(G) for any multigraph G, so χ′(G) ∈ {∆(G),∆(G) + 1} if G is simple. Both
the Shannon bound and the Gupta–Vizing bound are tight in general due to the Shannon
multigraphs, which are triangles whose multi-edges have balanced multiplicities. (Note
however that the latter bound can be improved for specific choices of ∆(G) and µ(G), as
described in the work of Scheide and Stiebitz [30].)

A notable conjecture on edge-colouring arose in the 1970s, on both sides of the iron
curtain. The Goldberg–Seymour Conjecture, due independently to Goldberg [17] and
Seymour [31], asserts that χ′(G) ∈ {∆(G),∆(G) + 1, dρ(G)e } for any multigraph G,
where

ρ(G) = max
{ 2|E(G[T ])|
|T | − 1

∣∣∣ T ⊆ V, |T | > 3, |T | odd
}
.

The parameter ρ(G) is a lower bound on χ′(G) based on the maximum ratio between
the number of edges in H and the number of edges in a maximum matching of H, taken
over induced subgraphs H of G. This conjecture remains open and is regarded as one of
the most important problems in chromatic graph theory. Perhaps the most outstanding
progress on this problem is due to Kahn [23], who established an asymptotic form.

The list variant of edge-colouring can be traced as far back as list colouring itself.
The concept of list colouring was devised independently by Vizing [39] and Erdős, Rubin
and Taylor [14], with the iron curtain playing its customary role here too. The List
Colouring Conjecture (LCC) was already formulated by Vizing as early as 1975 and was
independently reformulated several times, a brief historical account of which is given by,
e.g., Häggkvist and Janssen [19]. For more on the LCC, particularly with respect to the
probabilistic method, consult the monograph of Molloy and Reed [27]. The results on the
LCC most relevant to our investigations also happen to be two of the most striking, both
from the mid-1990s. First, Galvin [16] used a beautiful short argument to prove Dinitz’s
Conjecture (concerning the extension of arrays to partial Latin squares), which at the same
time confirmed the LCC for bipartite multigraphs. Not long after Galvin’s work, Kahn
applied powerful probabilistic methods, with inspiration from extremal combinatorics and
statistical physics, to asymptotically affirm the LCC [23, 24]. For more background on
Kahn’s proof, related methods, and improvements, consult [19, 26, 27].

Inspiration for this class of problems may also be taken from list vertex-colouring. For
instance, we utilise a degree-choosability criterion due independently to Borodin [9] and
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Erdős, Rubin and Taylor [14]. See for example a survey of Alon [4] for an excellent (if
older) survey on list colouring in somewhat more generality. We should mention that part
of the motivation for studying list colouring was to use it to attack other, less constrained
colouring problems. The connection has gone back in the other direction as well, as
precolouring extension demonstrates.

Activity in the area of precolouring extension increased dramatically as a result of
the startling proof by Thomassen of planar 5-choosability [35]; a key ingredient in that
proof was a particular type of precolouring extension from some pair of adjacent vertices,
according to a specific planar embedding. A little bit later, Thomassen asked about
precolouring extension for planar graphs under a more general setup [36]. Eliding the
planarity condition, Albertson [1] quickly answered Thomassen’s question and proved
more: in any k-colourable graph, for any set of vertices with pairwise minimum distance
at least 4, any precolouring of that set from the palette [k+1] can be extended to a proper
colouring of the entire graph. (This implies Proposition 2 above.)

Since Albertson’s seminal work, a large body of research has developed around pre-
colouring extension. But this research has focused almost exclusively on extension of
vertex-colourings. One of the few papers we are aware of that deals with edge-precolouring
extension is by Marcotte and Seymour [25], in which a different type of necessary condi-
tion for extension is studied — curiously, this paper predates the above mentioned activity
in vertex-precolouring.

For planar graphs, there has been significant interest in both edge-colouring and list
edge-colouring. It is known that planar graphs G with ∆(G) > 7 satisfy χ′(G) = ∆(G).
This was proved in 1965 by Vizing [38] in the case ∆(G) > 8, and much later by Sanders
and Zhao [29] for ∆(G) = 7. We remark that Theorem 11 strengthens this for ∆(G)
somewhat larger. Vizing conjectured that the same can be said for planar graphs G
with ∆(G) = 6, but this long-standing question remains open. Vizing also noted that
not every planar graph G with ∆(G) ∈ {4, 5} is ∆(G)-edge-colourable. Regarding list
edge-colouring, Borodin, Kostochka and Woodall [11] proved the LCC for planar graphs
with maximum degree at least 12, i.e., they proved that such graphs have list chromatic
index equal to their maximum degree. The LCC remains open for planar graphs with
smaller maximum degree, though it is known that if ∆(G) 6 4 or ∆(G) > 8, then
ch′(G) 6 ∆(G) + 1 (Juvan, Mohar and Škrekovski [21] for ∆(G) 6 4; Bonamy [8] for
∆(G) = 8; Borodin [10] for ∆(G) > 9). As noted above, it is not true that planar graphs
G with ∆(G) ∈ {4, 5} are always ∆(G)-edge-choosable.

2 Necessity of the Distance-2 Condition

In this section, we show that if we omit the distance-2 condition on the precoloured
matching then Conjecture 3 becomes false whenever ∆(G) > 4. For each t > 3, we
construct a graph Gt of maximum degree t+ 1 with the property that, using the palette
K = [t + 2], there is a matching M and a precolouring of M that cannot be extended to
a proper edge-colouring of all of Gt.

Our construction is based on an observation by Anstee and Griggs [5]. For t > 3,
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v∗

Figure 3: A graph G3 with maximum degree 4 and a non-extendable precoloured matching
using the palette [5]. Wavy edges are precoloured 1, while dotted edges are precoloured 2.

let Ht be the graph obtained from Kt,t by subdividing one edge.

Lemma 13 (Anstee and Griggs [5]). For every t > 3, the equality χ′(Ht) = ∆(Ht) + 1 =
t+ 1 holds.

Proof. Since Ht has 2t+ 1 vertices, its largest matching has size t. Since Ht has t2 + 1
edges, we cannot cover all the edges with t matchings.

Let A,B ⊆ V (Ht) be the original partite sets of Kt,t, so that A and B are independent sets
of size t in Ht, and the only vertex of Ht not contained in A∪B is the vertex of degree 2.
Let H ′t be the graph obtained from Ht by attaching a pendant edge to each vertex of Ht,
and for each v ∈ V (Ht), let v′ be the other endpoint of the pendant edge at v. Finally,
set M0 = { vv′ | v ∈ V (Ht) }. We precolour the matching M0 by colouring vv′ colour 1 if
v ∈ A, and colouring vv′ colour 2 otherwise. Now we define the full graph Gt by taking
t + 1 disjoint copies of H ′t, and adding a new vertex v∗ adjacent to the unique vertex
of degree 3 in each copy of H ′t. The precoloured matching M in Gt is just the union of
each precoloured matching M0 in each copy of H ′t, with the same precolouring. Figure 3
shows G3.

Theorem 14. For every t > 3, using the palette K = [t + 2] = [∆(Gt) + µ(Gt)], the
precolouring of the matching M as described above cannot be extended to a proper edge-
colouring of all of Gt.

Proof. Suppose to the contrary that Gt has an edge-colouring from K that extends the
precolouring of M . Since every neighbour of v∗ has an incident edge precoloured 2, no
edge incident to v∗ can be coloured 2. Therefore, since d(v∗) = t + 1, each of the t+ 1
colours excluding 2 is used exactly once on the edges incident to v∗. In particular, some
edge e incident to v∗ has colour 1. Let H be the copy of Ht containing the other endpoint
of e. Observe that no edge of H can be coloured 1 or 2: every edge joining A and B
has an edge precoloured 1 at one endpoint and an edge precoloured 2 at the other, while
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the vertex of degree 2 in H is incident to an edge precoloured 2 as well as the edge e
coloured 1. Hence all edges of H use only the t remaining colours. Since χ′(Ht) = t + 1
by Lemma 13, this is impossible.

3 Extensions of Kőnig’s and Shannon’s Theorems

Theorem 15 below implies Theorem 6, and hence verifies Conjecture 3 for bipartite multi-
graphs. Theorem 16 implies Theorem 7. Recall that the precoloured degree of a vertex is
the number of incident precoloured edges.

Theorem 15. Let G be a bipartite multigraph and k > 1. Take the palette as K =
[∆(G) + k]. If G is properly precoloured so that the precoloured degree of any vertex is at
most k, then this precolouring can be extended to a proper edge-colouring of all of G.

Theorem 16. Let G be a multigraph and k > 1. Take the palette as K =
[ ⌊

3
2
∆(G)+ 1

2
k
⌋ ]

.
If G is properly precoloured so that the precoloured degree of any vertex is at most k, then
this precolouring can be extended to a proper edge-colouring of all of G.

The two results are corollary to two theorems of Borodin, Kostochka and Woodall [11].
A multigraph G is f -edge-choosable, where f : E(G)→ Z+, if for any assignment of lists
in which every edge e receives a list of size at least f(e), there is a proper edge-colouring
of G using colours from the lists.

Theorem 17 (Borodin, Kostochka & Woodall [11]). Let G be a bipartite multigraph, and
set f(uv) = max{d(u), d(v)} for each edge uv ∈ E(G). Then G is f -edge-choosable.

Theorem 18 (Borodin, Kostochka & Woodall [11]). Let G be a multigraph, and set
f(uv) = max{d(u), d(v)} +

⌊
1
2

min{d(u), d(v)}
⌋

for each edge uv ∈ E(G). Then G is
f -edge-choosable.

Note that Theorem 17 is a strengthening of Galvin’s theorem; while Theorem 18 is a list
colouring version of Shannon’s theorem (and in fact follows from Theorem 17).

In our proofs of Theorems 15 and 16, we use the following refinement of Observation 4.
Given a graph G and an edge e, the degree dG(e) of e is the number of edges adjacent to e
in G.

Observation 19. Let G = (V,E) be a multigraph. For a positive integer K, take the
palette as K = [K]. Suppose G is properly precoloured, with S ⊆ E the precoloured edges.
Set E ′ = E \ S, G′ = (V,E ′) and G′′ = (V, S). Suppose that G′ is f -edge-choosable, for
some function f : E ′ → Z+. If for all e ∈ E ′ we have K − dG′′+e(e) > f(e), then the
precolouring can be extended to a proper edge-colouring of all of G.

Proof of Theorems 15 and 16. Assume that G = (V,E) and S ⊆ E is the set of pre-
coloured edges. Set E ′ = E \ S, G′ = (V,E ′) and G′′ = (V, S). Consider any uncoloured
edge e = uv ∈ E ′, and assume that dG′(u) 6 dG′(v).
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In the bipartite case, since ∆(G)− dG′′(v) > dG(v)− dG′′(v) = dG′(v) and k > dG′′(u),
we infer that

|K| − dG′′+e(e) = ∆(G) + k −
(
dG′′(u) + dG′′(v)

)
> dG′(v) = max{ dG′(u), dG′(v) }.

Theorem 15 follows by combining Observation 19 and Theorem 17.
In the general case (Theorem 16) we obtain

|K| − dG′′+e(e) =
⌊

3
2
∆(G) + 1

2
k
⌋
−
(
dG′′(u) + dG′′(v)

)
= (∆(G)− dG′′(v)) +

⌊
1
2
∆(G) + 1

2
k − (dG′′(u)

⌋
> dG′(v) +

⌊
1
2

(
∆(G)− dG′′(u)

)⌋
> dG′(v) +

⌊
1
2
dG′(u)

⌋
= max{ dG′(u), dG′(v) }+

⌊
1
2

min{ dG′(u), dG′(v) }
⌋
.

This time combining Observation 19 with Theorem 18 completes the proof.

4 An Approach using Gallai Trees

In this section, we use a result due independently to Borodin [9] and to Erdős, Rubin and
Taylor [14]. This is a list version of an older result of Gallai [15] on colour-critical graphs.
A connected graph all of whose blocks are either complete graphs or odd cycles is called
a Gallai tree.

Theorem 20 (Borodin [9], Erdős, Rubin & Taylor [14]). Given a connected graph G =
(V,E), let `(v), for v ∈ V , be an assignment of lists where each vertex v receives at least
d(v) colours. Then there is a proper colouring of G using colours from the lists, unless G
is a Gallai tree and |`(v)| = d(v) for all v.

With this we prove Theorem 9, which implies Theorem 8.

Proof of Theorem 9. Assume to the contrary that the connected multigraph G and the
non-negative integer k satisfy ∆(L(G)) 6 ∆(G) + k, but that, using the palette K =
[∆(G) + k], there is a proper edge-precolouring of G of the required type that does not
extend to a proper edge-colouring of G. For a vertex v, let K(v) ⊆ K be the set of colours
appearing on the precoloured edges incident with v, and set k(v) = |K(v)|.

Let G′ be obtained from G by deleting all precoloured edges. To each edge e = uv
in G′, we assign a list `(e) containing those colours in K not appearing on precoloured
edges adjacent to e in G. For any edge e = uv in G′ we obtain, using that ∆(G) + k >
∆(L(G)) > dL(G)(e),

|`(e)| = |K| − |K(u) ∪K(v)| = (∆(G) + k)− |K(u) ∪K(v)|
> dL(G)(e)− |K(u) ∪K(v)| > dL(G′)(e).

(1)

Since there is no extension of the precolouring of L(G) to a full colouring of L(G), it
follows that L(G′) is not vertex-choosable with the lists `(e), for e ∈ E(G′). In particular,
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there is a component C ′ of G′ such that L(C ′) is not vertex-choosable with the lists `(e),
for e ∈ E(C ′). By Theorem 20, L(C ′) must be a Gallai tree such that |`(e)| = dL(C′)(e) for
every e. This also means that we must have equality in all inequalities used to derive (1);
in particular:

for all e ∈ E(C ′): dL(G)(e) = ∆(L(G)) = ∆(G) + k; (2a)

for all e = uv ∈ E(C ′): |`(e)| = dL(C′)(e) = dL(G)(e)− |K(u) ∪K(v)|. (2b)

Now note that dC′(v) + k(v) = dG(v) 6 ∆(G) for every vertex v. So, analogously to (1)
above, we infer that for each edge e = uv in C ′ the order of `(e) is at least the degree
in C ′ of each of its end-vertices:

|`(e)| = (∆(G) + k)− |K(u) ∪K(v)| = (∆(G) + k)− k(u)− k(v) + |K(u) ∩K(v)|
> dC′(v) + (k − k(u)) + |K(u) ∩K(v)| > dC′(v).

(3)

We require the following statements.

Claim 21. Every vertex in C ′ has at least two neighbours.

Proof. Suppose to the contrary that the vertex u has the vertex v as its unique neighbour.
Then for the edge e = uv we have dL(C′)(e) = dC′(v)− 1 (this holds even if uv is a multi-
edge). But since |`(e)| = dL(C′)(e), this gives |`(e)| < dC′(v), contradicting (3).

Claim 22. If C ′ is a simple odd cycle, then k = 0 and G = C ′.

Proof. Suppose that C ′ is a simple odd cycle. If e = uv is an edge in C ′, then |`(e)| =
dL(C′)(e) = dC′(v) = 2. From this we can assume, by permuting the colours, that `(e) =
{1, 2} for every e ∈ L(C ′). (Indeed, the only way to assign lists of length 2 to the edges
of an odd cycle in such a way that there is no proper colouring of the cycle using colours
from the lists is by making all lists identical.) There must also be equality everywhere
in (3). Combining that with (2b) means in particular that for every edge e = uv we have
K(u)∪K(v) = { 3, 4, . . . ,∆(G) +k } and K(u)∩K(v) = ∅. By an easy parity argument,
we can see that this is only possible if all the sets K(u), u ∈ V (C ′), are empty. This
means that k = 0 (and ∆(G) = 2). Since G is connected, if there are no precoloured
edges, then G can have only one component, which must be C ′.

We continue by considering the case that C ′ is not an odd cycle. Since line graphs are
claw-free, it follows that odd cycle blocks of length at least five are impossible in L(C ′).
We deduce that all blocks of L(C ′) are cliques. The only way that a leaf block B of
L(C ′) could be part of a nontrivial block structure is if it corresponds to a set of edges
in C ′ that are all incident with a unique vertex, with one of the edges corresponding to
the cut-vertex of B. This is ruled out by Claim 21. We conclude that L(C ′) must itself
be a clique. In turn, the only way that a line graph L(C ′) of a multigraph is a clique is
if C ′ is a star or a triangle, with possibly multiple edges. The first option is ruled out by
Claim 21, so C ′ must be a triangle, possibly with multi-edges.

Let u, v, w be the vertices in C ′ and set m = |E(C ′)|. Then for all e ∈ E(C ′) we have
|`(e)| = dL(C′)(e) = m − 1. It is easy to check that with lists of this size, the only way
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that C ′ is not edge-choosable is if all the lists are the same. This also means that the sets
K(u) ∪K(v), K(u) ∪K(w) and K(v) ∪K(w) are the same.

Let A(u) be the set of colours that appear on precoloured edges incident with u, but
not with v or w; define A(v) and A(w) analogously. (In other words, these are colours
on the edges that connect C ′ to the rest of the graph G.) Let D be the set of colours
that appear on precoloured edges with end-vertices contained in {u, v, w}. From (2a)
and (2b) we deduce that |`(e)| = dL(C′)(e) for every edge e in C ′, which, applied to an
edge between u and v, implies that A(u) ∩ A(v) = ∅, A(u) ∩D = ∅ and A(v) ∩D = ∅.
By symmetry, A(v) ∩ A(w) = ∅, A(u) ∩ A(w) = ∅ and A(w) ∩D = ∅.

Now recall that all edges in C ′ must have the same list. Consequently, the disjointness
of the sets A(u), A(v) and A(w) implies that these three sets are empty. Thus we find
that there are no precoloured edges between any of u, v, w and the rest of the graph.
Since G is connected, it follows that V (G) = {u, v, w}. Let m(uv),m(uw),m(vw) be
the multiplicities of the edges of G. Then ∆(L(G)) = m(uv) + m(uw) + m(vw) − 1,
while ∆(G) = m(uv)+m(uw)+m(vw)−min{m(uv),m(uw),m(vw) }. Since ∆(L(G)) =
∆(G)+k, we have shown that part (b) of the statement of the theorem holds, completing
the proof.

5 Planar Graphs

In this section, for brevity we usually write ∆ for ∆(G).
In the next subsection we prove Conjecture 3 for planar graphs of large enough maxi-

mum degree (at least 17), which is the assertion of Theorem 10. As mentioned earlier, the
LCC is known to hold for planar graphs with maximum degree at least 12. This is yet an-
other result of Borodin, Kostochka and Woodall [11]: they indeed show that ch′(G) 6 ∆
for such graphs G. Combining this with Observation 4 gives the bounds in lines 3 and 7
of Table 1. Since the former bound will be useful for us later on, let us state it formally.

Proposition 23. Let G be a planar graph with maximum degree ∆(G) > 12. Using
the palette K = [∆(G) + 2], any precoloured matching can be extended to a proper edge-
colouring of all of G.

Borodin [10] showed that ch′(G) 6 ∆ + 1 for planar graphs G of maximum degree ∆ > 9.
Recently, Bonamy [8] extended this last statement to the case ∆ = 8. Combining this
result with Observation 4 implies that for planar graphs with maximum degree ∆ > 8 a
precoloured matching can be extended to a proper colouring of the entire graph with the
palette [∆+ 3], while a precoloured distance-2 matching can be extended with the palette
[∆ + 2].

For smaller values of ∆, we can use Theorems 7 and 8, and the result of Juvan, Mohar
and Škrekovski [21] that ch′(G) 6 ∆(G) + 1 for a planar graph G with ∆(G) 6 4, to
achieve several of the bounds in Table 1. In particular, it follows that ∆ + 4 colours
suffice for any planar graph with maximum degree ∆.

The final proof we present is of Theorem 11. As discussed in Subsection 1.2, Vizing
conjectured [38] that any planar graph with maximum degree ∆ > 6 has a ∆-edge-
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colouring. The examples in Figure 1 show that this statement is false if we allow an
adversarial precolouring of a distance-2 matching. But does it remains true with the
adversarial precolouring of any distance-3 matching? We prove that this is indeed the
case if ∆ > 23. We expect that this lower bound on ∆ can be reduced, though, as noted
before, certainly not below 6.

The proofs of Theorems 10 and 11 can be found in the next two subsections. They use
a common framework, terminology and notation, which we outline now. Note that both
adapt a nice trick of Cohen and Havet [12], which shortens the argument considerably.

Whenever considering a planar graph G, we fix a drawing of G in the plane. (So we
really should talk about a plane graph.) Because of this fixed embedding we can talk
about the faces of the graph. If G is connected, then the boundary of any face f forms a
closed walk Wf .

We adopt the following notation to classify the vertices of a graph G according to
their degree and their incidence with vertices of degree 1. Let Vi be the set of vertices of
degree i. Also, identify by Ti ⊆ Vi the set of those vertices of degree i that are adjacent
to a vertex of degree 1, and set Ui = Vi \ Ti. Write T =

⋃
i>1Ti and U = V (G) \ T . We

also adopt the shorthand notation V[i,j], U[i,j] and T[i,j] to mean, respectively, the sets of
vertices in V , U and T with degrees between i and j inclusively.

5.1 Proof of Theorem 10

If G is not connected, then we extend the edge-colouring one component at a time. The
colouring of a component C with ∆(C) 6 16 can be extended using the results on lines
1 – 3 of Table 1. Next, the statement of Theorem 10 is true for graphs with maximum
degree 17 and exactly 17 edges. We use induction on E(G), and proceed with the induction
step. So we may assume that G is connected and has at least 18 vertices, since ∆ > 17.
Let M be a precoloured matching.

We first observe that

if uv ∈ E(G) \M , then d(u) + d(v) > ∆ + 3. (4)

Indeed, suppose that the inequality does not hold for some edge uv /∈ M . Then, by
induction if ∆(G − uv) > 17 and by Proposition 23 if ∆(G − uv) = 16, there exists an
extension of M to a colouring of all G− uv using the palette K. Since at most ∆ colours
are used on the edges adjacent to uv, we can easily extend the colouring further to uv. It
follows from this observation that G has no vertices of degree 2, that every vertex with
degree 1 is incident with an edge in M and that any vertex has at most one neighbour of
degree 1. We will use these facts often without reference in the remainder of the proof.

For a face f , let V −(f) = V (f)\V1, and denote by W−
f the sequence of vertices on the

boundary walk Wf after removing vertices from V1. For a vertex v, let v1, v2, . . . , vd(v) be
the neighbours of v, listed in clockwise order according to the drawing of G. Write fi for
the face incident with v lying between the edges vvi and vvi+1 (taking addition modulo
d(v) in {1, . . . , d(v)}).
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If v ∈ T has a (unique) neighbour in V1, then we always choose v1 to be this neighbour.
In that case we have fd(v) = f1; we denote that face by f1 again. Note that it is possible
for other faces to be the same as well (if v is a cut-vertex), but we will not identify those
multiple names of the same face. So, if v ∈ U , then the faces around v in consecutive
order are f1, f2, . . . , fd(v); while, if v ∈ T , then the faces around v are f1, f2, . . . , fd(v)−1.

Claim 24. |V∆| > |V3|.

Proof. Consider the set F of edges in E(G) \M with one end-vertex in V3 and the other
in V∆. The subgraph with vertex set V3 ∪ V∆ and edge set F is bipartite; we assert it
is acyclic. For suppose there exists an (even) cycle C with E(C) ⊆ F . By induction if
∆(G−E(C)) > 17 and by Proposition 23 if ∆(G−E(C)) ∈ {15, 16}, we can extend the
precolouring of M to G−E(C) using the palette K. But then we can further extend this
colouring to the edges in C, since each edge in C is adjacent to only ∆−1 coloured edges,
and even cycles are 2-edge-choosable.

Since each vertex in V3 is incident with at least two edges in F , we have |V∆|+ |V3| >
|F | > 2|V3|. The claim follows.

We use a discharging argument to continue the proof of the theorem. First, let us assign
to each vertex v a charge

α1: α(v) = 3d(v)− 6,

and to each face f a charge

α2: α(f) = −6.

For each vertex v we define β(v) as follows.

β1: If v ∈ V∆, then β(v) = −2.

β2: If v ∈ V3, then β(v) = 2.

β3: In all other cases, β(v) = 0.

For each edge e = vu, we define γe(v) and γe(u) as follows.

γ1: If v ∈ V1, then γe(v) = −γe(u) = 3.

γ2: If v, u /∈ V1, then γe(v) = γe(u) = 0.

Finally, for each face f and vertex v ∈ W−
f we define δf (v) and δv(f) as follows.

δ1: If v ∈ T3, then δv(f) = −δf (v) = 1.

δ2: If v ∈ U3, then δv(f) = −δf (v) = 5
3
.

δ3: If v ∈ T and 4 6 d(v) 6 ∆− 2, then δv(f) = −δf (v) = 3− 6

d(v)− 1
.

δ4: If v ∈ U and 4 6 d(v) 6 ∆− 2, then δv(f) = −δf (v) = 3− 6

d(v)
.

δ5: If d(v) > ∆−1, |V −(f)| = 3, and both neighbours of v in V −(f) are vertices in U[3,8]

that are joined by an edge in M , then δv(f) = −δf (v) = 3.

δ6: If d(v) > ∆− 1, |V −(f)| = 3, and v has a neighbour in V −(f) ∩ T[3,6], then δv(f) =
−δf (v) = 5

2
.
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δ7: If d(v) > ∆ − 1, |V −(f)| = 3, none of δ5 and δ6 applies, and v has a neighbour in
V −(f) ∩ U[3,5], then δv(f) = −δf (v) = 9

4
.

δ8: If d(v) > ∆ − 1, |V −(f)| = 3, and none of δ5, δ6 and δ7 applies, then δv(f) =
−δf (v) = 2.

δ9: If d(v) > ∆− 1, |V −(f)| > 4, and v has a neighbour in V −(f) ∩ T[3,6], then δv(f) =
−δf (v) = 2.

δ10: If d(v) > ∆− 1, |V −(f)| > 4, and δ9 does not apply, then δv(f) = −δf (v) = 3
2
.

For a vertex v, write γ(v) for the sum of γe(v) over all edges e that have v as an
end-vertex. For a vertex v of degree 1 we set δ(v) = 0. For every other vertex v, write
δ(v) for the sum over the faces f around v of δf (v). Similarly, for a face f , write δ(f) for
the sum over the vertices v on the reduced walk W−

f around f of the values of δv(f).
By the definitions of γ and δ,∑

v γ(v) +
∑

v δ(v) +
∑

f δ(f) = 0.

It follows from Claim 24 that ∑
v β(v) < 0.

Finally, from Euler’s formula for simple plane graphs, we obtain∑
v α(v) +

∑
f α(f) < 0.

Thus, in order to reach a contradiction, it is enough to show that for every vertex v:

α(v) + β(v) + δ(v) + γ(v) > 0, (5)

and that for every face f :
α(f) + δ(f) > 0. (6)

Let f be a face. As G is simple, |V −(f)| > 3. Since α(f) = −6, to establish (6) it is
enough to show that δ(f) > 6. Let v be a vertex in V −(f) for which δv(f) is minimum. If
δv(f) · |V −(f)| > 6, then (6) clearly holds, and so we only need to deal with cases δ1 – δ4.
Also, if v ∈ T[7,∆−2] ∪ U[6,∆−2], then δ3 and δ4 give δv(f) > 2, and hence again (6) is
verified.

If v ∈ T[3,4], then δv(f) = 1 by δ1 or δ3 and, by (4), the neighbours u and w of v in
V −(f) have degree at least ∆ − 1. If |V −(f)| = 3, then δ6 applies to both u and w, so
δu(f) = δw(f) = 5

2
. If |V −(f)| > 4, then δ9 applies to both u and w, so δu(f) = δw(f) = 2,

while a fourth vertex z in V −(f) satisfies δz(f) > 1 by the definition of v. So (6) always
follows.

If v ∈ T[5,6], then δv(f) > 3
2
, so we may assume that |V −(f)| = 3 (as δv(f) 6 δu(f)

whenever u ∈ V −(f)). Moreover, v has neighbours u,w in V −(f) with degree at least
∆− 3 > 9 as ∆ > 12. If d(u) > ∆− 1, then δ6 gives δu(f) = 5

2
. If d(u) ∈ {∆− 3,∆− 2},

then δ3 and δ4 give δu(f) > 9
4
, as ∆ > 12. Since similar bounds hold for δw(f), we deduce

that (6) holds.
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We are left with the case where v ∈ U[3,5]. By δ2 and δ4 we find that δv(f) > 3
2
, and

hence we again only have to consider the case where |V −(f)| = 3. Rules δ3 – δ7 ensure
that any other vertex u in V −(f) with d(u) > 9 satisfies δu(f) > 9

4
. So we may suppose

that there is a vertex u ∈ V −(f) with d(u) 6 8. Since |V −(f)| = 3, we must in fact
have uv ∈ E(G). Moreover, as ∆ > 11, we know by (4) that the edge uv belongs to
the matching M . This means that u ∈ U[3,8]. Let w be the third vertex in V −(f). If
v ∈ U[3,4], then d(w) > ∆− 1 by (4), and so δw(f) = 3 by δ5, confirming (6). As the final
case, assume that v ∈ U5 and recall that δu(f) > δv(f) = 9

5
. Since also d(w) > ∆ − 2,

one of δ3 – δ5 applies to w, yielding that δw(f) > 12
5

, as ∆ > 13. So again δ(f) > 6,
confirming (6) for all faces.

Now let v be a vertex. Recall the convention that if v ∈ T , then the two consecutive
faces incident with both v and its neighbour of degree 1 are counted as one face, while all
other faces are counted separately.

If d(v) = 1, then α(v) = −3 and γ(v) = 3. Since β(v) = δ(v) = 0, we immediately
obtain (5).

Recall that G has no vertices of degree 2. If d(v) = 3, then α(v) = 3, while β(v) = 2
by β2. If v ∈ T3, then γ(v) = −3 and δ1 implies that δ(v) = −2. If v ∈ U3, then γ(v) = 0
and δ2 implies that δ(v) = −5. This confirms (5) if d(v) = 3.

Next suppose that 4 6 d(v) 6 ∆ − 2. Recall that α(v) = 3d(v) − 6, and observe
that β(v) = 0. If v ∈ T , then γ(v) = −3 by γ1. By δ3 we have δ(v) = (d(v) − 1) ·(
−3 +

6

d(v)− 1

)
= 9 − 3d(v). Similarly, if v ∈ U , then γ(v) = 0, and δ4 implies that

δ(v) = 6− 3d(v). This proves (5) for those vertices v.
Now suppose that d(v) > ∆− 1. As a next step towards proving (5), we consider the

average value of δf (v) over the faces incident with v. For convenience, set d′(v) = d(v)−1
if v ∈ T , and set d′(v) = d(v) if v ∈ U .

Claim 25. If d(v) > ∆− 1, then

d′(v)∑
i=1

δfi(v) > −5
2
· d′(v).

Proof. To obtain the desired bound, we group some of the faces around v into disjoint
consecutive triples based on how δ5 applies to them with respect to v. Let J be the set
of indices j ∈ {1, 2, . . . , d′(v)} such that δ5 applies to fj with respect to v. The definition
of δ5 precludes the possibility that δ5 applies to two consecutive faces around v. Let K
be any maximal set of indices k ∈ {1, 2, . . . , d′(v)} such that (modulo d′(v)) both k − 1
and k+ 1 are in J and neither k− 2 nor k+ 2 are in K. Let JK = J \

⋃
k∈K{k− 1, k+ 1}.

To define the triples, each face with index in K ∪ JK is grouped with the two faces
neighbouring it around v. Note that by the maximality of K these triples are all pairwise
disjoint. If a face fi around v is not in a triple, then by δ6 – δ10 we know that δfi(v) > −5

2
.

It follows that
d′(v)∑
i=1

δfi(v) >
∑

j∈K∪JK

(
δfj−1

(v) + δfj(v) + δfj+1
(v)
)
− 5

2

(
d′(v)− 3|K ∪ JK |

)
,
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where the computation of indices is modulo d′(v) in {1, . . . , d′(v)}. Observe that for every
index j ∈ K only δ10 may apply to fj with respect to v (by using (4) together with
the assumption on ∆ to exclude δ6 – δ8, as well as a brief inspection of δ9), meaning
that δfj(v) is −3

2
. Moreover, for every index j ∈ JK we see that δfj−1

(v) and δfj+1
(v) are

both at least −9
4
, since δ6 does not apply to fj−1 or fj+1 with respect to v (and the same

indeed is also the case for δ7). We conclude for every index j ∈ K ∪ JK that

δfj−1
(v) + δfj(v) + δfj+1

(v) > −15
2
.

Hence we have in total

d′(v)∑
i=1

δfi(v) > −15
2
|K ∪ JK | − 5

2

(
d′(v)− 3|K ∪ JK |

)
= −5

2
d′(v).

Claim 25 allows us to finish our analysis of the vertices.
First suppose that d(v) = ∆ − 1. Then α(v) = 3∆ − 9 and β(v) = 0. If v ∈ T , then

γ(v) = −3 and Claim 25 gives δ(v) > −5
2
(∆ − 2). Since ∆ > 14, inequality (5) follows.

If v ∈ U , then γ(v) = 0 and δ(v) > −5
2
(∆− 1). The hypothesis that ∆ > 13 guarantees

that (5) is valid again.
Finally, suppose that d(v) = ∆. Now α(v) = 3∆ − 6 and β(v) = −2. If v ∈ T , then

γ(v) = −3 and δ(v) > −5
2
∆ + 5

2
. We see that (5) holds, as ∆ > 17. If v ∈ U , then

γ(v) = 0 and δ(v) > −5
2
∆. So (5) is verified, provided that ∆ > 16.

This confirms (5) for all vertices and completes the proof of the theorem.

5.2 Proof of Theorem 11

Recall the notation and terminology given in the introduction of this section.
Also this time, if G is not connected, then we extend the edge-colouring one component

at a time. The colouring of a component C with ∆(C) 6 22 can be extended using the
results on lines 1 – 3 of Table 1. Next, the statement of Theorem 11 is true for graphs with
maximum degree 23 and exactly 23 edges. We use induction on E(G), and proceed with
the induction step. So we may assume that G is connected and has at least 24 vertices,
since ∆ > 23. Let M be a precoloured distance-3 matching.

We first observe that

if uv ∈ E(G) \M , then d(u) + d(v) > ∆ + 2. (7)

Indeed, suppose that the inequality does not hold for some uv /∈ M . Then by induction
if ∆(G− uv) > 23 and by Theorem 10 if ∆(G− uv) = 22, there exists an extension of M
to a colouring of G − uv using the palette K. Since at most ∆ − 1 colours are used on
the edges adjacent to uv, we can easily extend the colouring further to uv. From (7) it
follows that every vertex with degree 1 is incident with an edge in M and that if v has
degree 2 and uv /∈ M , then d(u) = ∆. In particular, if a vertex v with degree greater
than 1 has a neighbour in T2, then d(v) = ∆. Moreover, since edges in M are at distance
at least 4 in G, a vertex can have at most one neighbour in V1 ∪ T2.
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Let V ′2 be the set of vertices of degree 2 that are not incident with an edge of M . For
a face f , let V −(f) = V (f) \ (V1 ∪ T2), and let W−

f be the sequence of vertices on the
boundary walk Wf after removing vertices from V1∪T2. For a vertex v, let v1, v2, . . . , vd(v)

be the neighbours of v, listed in clockwise order according to the drawing of G. Write fi
for the face incident with v lying between the edges vvi and vvi+1 (taking addition modulo
d(v) in {1, . . . , d(v)}).

If a vertex v has a (unique) neighbour in V1 ∪ T2, then we always choose v1 to be this
neighbour. In that case fd(v) = f1, and that face is called f1 again. Note that it is possible
for other faces to be the same as well (if v is a cut-vertex), but we will not identify those
multiple names of the same face.

Claim 26. |V∆| > |V ′2 |.

Proof. Consider the set F of edges in E(G) with one end-vertex in V ′2 and the other in V∆.
Note that F ∩M = ∅ by the definition of V ′2 . The subgraph with vertex set V ′2 ∪ V∆ and
edge set F is bipartite; we assert it is acyclic. For suppose there exists an (even) cycle C
with E(C) ⊆ F . By induction if ∆(G−E(C)) > 23, by Theorem 10 if ∆(G−E(C)) = 22,
and by Proposition 23 if ∆(G − E(C)) = 21, we can extend the precolouring of M to
G−E(C) using the palette K. But then we can further extend this colouring to the edges
of C, since each one sees only ∆−2 coloured edges, and even cycles are 2-edge-choosable.

Since each vertex in V ′2 is incident with precisely two edges in F , we have |V∆|+ |V ′2 | >
|F | = 2|V ′2 |. The claim follows.

We use a discharging argument to complete the proof. First, let us assign to each vertex v
a charge

α1: α(v) = 3d(v)− 6,

and to each face f a charge

α2: α(f) = −6.

For each vertex v we define β(v) as follows.

β1: If v ∈ V∆, then β(v) = −2.

β2: If v ∈ V ′2 , then β(v) = 2.

β3: In all other cases, β(v) = 0.

For each edge e = vu, we define γe(v) and γe(u) as follows.

γ1: If v ∈ V1, then γe(v) = −γe(u) = 3.

γ2: If v ∈ T2 and u ∈ V∆, then γe(v) = −γe(u) = 3.

γ3: If v ∈ U2 \ V ′2 and u ∈ V∆, then γe(v) = −γe(u) = 2.

γ4: In all other cases, γe(v) = γe(u) = 0.

Finally, for each face f and vertex v ∈ W−
f we define δf (v) and δv(f) as follows.

δ1: If v ∈ U2, then δv(f) = −δf (v) = 1.

δ2: If v ∈ T and 3 6 d(v) 6 ∆− 4, then δv(f) = −δf (v) = 3− 6

d(v)− 1
.
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δ3: If v ∈ U and 3 6 d(v) 6 ∆− 4, then δv(f) = −δf (v) = 3− 6

d(v)
.

δ4: If d(v) > ∆ − 3, |V −(f)| = 3, and both neighbours of v in V −(f) are joined by an
edge in M , then δv(f) = −δf (v) = 4.

δ5: If d(v) > ∆− 3 and v has a neighbour in V −(f) ∩ T3, then δv(f) = −δf (v) = 3.

δ6: If d(v) > ∆− 3 and none of δ4 and δ5 applies, then δv(f) = −δf (v) = 5
2
.

For a vertex v and face f , let γ(v), δ(v) and δ(f) be defined as in the proof of
Theorem 10. By definition we have

∑
v γ(v) +

∑
v δ(v) +

∑
f δ(f) = 0. It follows from

Claim 26 that
∑

v β(v) < 0. From Euler’s formula we obtain
∑

v α(v) +
∑

f α(f) < 0.
Thus, in order to reach a contradiction, it is enough to show that for every vertex v:

α(v) + β(v) + δ(v) + γ(v) > 0, (8)

and that for every face f :
α(f) + δ(f) > 0. (9)

Let f be a face. As G is simple, |V −(f)| > 3. Since α(f) = −6, it follows that (9)
is verified if we can show that δ(f) > 6. Let v be a vertex in V −(f) for which δv(f) is
minimum. If δv(f) · |V −(f)| > 6, then (9) clearly holds. So, by checking δ1 – δ6, we see we
only have to consider the case where v ∈ T[3,6] ∪ U[2,5]. (Recall that vertices from V1 ∪ T2

do not appear in W−
f .)

If v ∈ U2, then let u and w be the neighbours of v. Consider first the case where
both u and w have degree ∆. Then they both belong to V −(f), so (9) follows, since
δv(f) = 1 and δu(f) > 5

2
, δw(f) > 5

2
by δ4 – δ6. Suppose now that u has degree less

than ∆, which implies by (7) that uv ∈ M and, consequently, vw /∈ M . In particular,
w ∈ V −(f) and w has degree ∆. Note also that necessarily u ∈ V −(f). If |V −(f)| = 3,
then δw(f) = 4 by δ4. As δu(f) > δv(f) = 1, it follows that (9) holds. If |V −(f)| > 4,
then u has a neighbour u′ in V −(f) \ {v, w}. We assert that δu(f) + δu′(f) > 5

2
. Indeed,

because uu′ /∈ M , we know by (7) and since ∆ > 18 that (at least) one of u and u′ has
degree at least 5. Consequently, by δ2 – δ6 we know that max{δf (u), δf (u

′)} > 3
2
. Since

min{δf (u), δf (u
′)} > δf (v) = 1 and δf (w) > 5

2
by δ5 and δ6, it follows that (9) holds.

If v ∈ T3, then δv(f) = 0, but v has two neighbours in V −(f) that have degree at least
∆− 1 each. Equation (9) then follows from δ5.

For the remaining cases we always have δv(f) > 1. Rules δ2 – δ6 ensure that any vertex
u ∈ V −(f) with d(u) > 13 satisfies δu(f) > 5

2
; hence there can be at most one such vertex

and, in particular, a neighbour u of v in V −(f) must have degree at most 12. As v itself
has degree at most 6, by (7) we have uv ∈M , which also implies that {u, v} ⊆ U . Hence
in particular v ∈ U[3,5]. Let w be the neighbour of v in V −(f) \ {u}. Since v ∈ U[3,5] and
vw /∈ M , it necessarily holds that d(w) > ∆ − 3. If |V −(f)| = 3, then (9) holds by δ4
since δu(f) > δv(f) > 1. If |V −(f)| > 4, then u has a neighbour u′ in V −(f) \ {v, w},
which has degree at least ∆ + 2− d(u) > 10. Consequently, δu′(f) > 12

5
by δ3, δ5 or δ6.

We deduce that (9) holds, as δw(f) > 5
2

by δ5 or δ6.
This confirms (9) for all faces.
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Now let v be a vertex. Recall that α(v) = 3d(v)−6. Furthermore, if v has a neighbour
in V1∪T2, then the two consecutive faces incident with that neighbour are counted as one
face; all other faces are counted separately. Finally, as noted earlier, a vertex can have at
most one neighbour in V1 ∪ T2

If d(v) = 1, then α(v) = −3 and γ(v) = 3. Since β(v) = δ(v) = 0, we immediately
obtain (8).

If d(v) = 2, then α(v) = 0. If v ∈ T2, then both γ1 and γ2 apply; hence γ(v) = 0.
Again one can check that β(v) = δ(v) = 0, confirming (8). Otherwise v ∈ U2, and δ1
implies that δ(v) > −2, as v is incident with at most two faces. If v ∈ V ′2 as well, then β2
yields that β(v) = 2 and γ(v) = 0. If v /∈ V ′2 , then γ(v) = 2 while β(v) = 0. In either
case (8) follows.

Next suppose that 3 6 d(v) 6 ∆−4. Observe that β(v) = 0. If v ∈ T , then γ(v) = −3
by γ1. Since v has a neighbour with degree one, we know that v is incident with d(v)− 1

regions, and so δ2 yields that δ(v) = (d(v)− 1) ·
(
−3 +

6

d(v)− 1

)
= 9− 3d(v). Similarly,

if v ∈ U , then γ(v) = 0, and δ3 yields that δ(v) = 6 − 3d(v). This proves (8) for those
vertices v.

Suppose now that d(v) ∈ {∆ − 3,∆ − 2,∆ − 1 }. Then β(v) = 0. If v ∈ T , then
γ(v) = −3 by γ1. Since M is distance-3, none of δ4 and δ5 applies to v, and v is incident
with d(v)−1 faces. From δ6 we deduce that δ(v) = −5

2
(d(v)−1). Since d(v) > ∆−3 > 13,

it follows that 3d(v) − 6 − 3 − 5
2
(d(v) − 1) = 1

2
d(v) − 13

2
> 0, and hence (8) is satisfied

again. Next assume that v ∈ U , and so γ(v) = 0. The fact that M is distance-3 ensures
that δ4 applies to at most one face with respect to v, and δ5 applies to at most two faces
with respect to v. Consequently, δ(v) > −

(
4 + 6 + 5

2
(d(v) − 3)

)
. Combined with the

assumption that ∆ > 17, this is always enough to satisfy (8).
Finally, suppose that d(v) = ∆. In this case β(v) = −2. If v ∈ T , then the distance

condition on M ensures that γ(v) = −3 and δ(v) = −5
2
(∆ − 1). Since ∆ > 17 this

confirms (8).
So we are left with the case where v ∈ U . Since M is a distance-3 matching, at most

one of γ2, γ3 applies and at most one of δ4, δ5 applies. Moreover, if γ2 does apply,
then γ(v) = −3 and neither δ4 nor δ5 applies. This means that the vertex v is incident
with ∆ faces, and for each of those faces f we have δf (v) = −5

2
. If γ2 does not apply,

then γ(v) > −2. The vertex v is incident with ∆ faces, and for ∆− 1 of those faces f we
have δf (v) = −5

2
. For the final face f either δ4 or δ5 may apply, so δf (v) ∈ {−4,−3,−5

2
}.

Using that ∆ > 23, we can check that (8) is satisfied in all cases.
This confirms (8) for all vertices and completes the proof of the theorem.

6 Avoiding Prescribed Colours on a Matching

In this section, we show the following statement, which directly implies Theorem 12.

Theorem 27. Let G be a multigraph with maximum degree ∆(G) and maximum multi-
plicity µ(G), and let M1 and M ′ be two disjoint matchings in G. Suppose that each edge e
of G is assigned a list L(e) ⊆ [∆(G) + µ(G)] of colours such that
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• L(e) = {1} if e ∈M1;

• L(e) = {2, . . . ,∆(G) + µ(G)} if e ∈M ′; and

• L(e) = [∆(G) + µ(G)] if e ∈ E(G) \ (M1 ∪M ′).

Then there exists a proper edge-colouring ψ of G such that ψ(e) ∈ L(e) for every e ∈ E(G).

To establish Theorem 27, we use a result mentioned just after Conjecture 3.

Theorem 28 (Berge and Fournier [7]). Let G be a multigraph with maximum degree
∆(G) and maximum multiplicity µ(G), and let M be a matching in G. Then there exists
a proper edge-colouring of G using the palette [∆(G) + µ(G)] such that every edge of M
receives the same colour.

Proof of Theorem 27. We may assume without loss of generality that M1 is a maximal
matching in G \M ′. We set

B = { e′ ∈M ′ | e′ ∩ e = ∅ for all e ∈M1 }.

Let ψ be a partial proper edge-colouring of G using colours in [∆(G) + µ(G)] such that

(i) ψ(e) = 1 for every e ∈M1;

(ii) ψ(e′) 6= 1 for every e′ ∈M ′;

(iii) every edge of E(G) \B receives a colour under ψ; and

(iv) the number of edges of B that receive a colour under ψ is maximal.

To show that ψ is well defined, we need to prove the existence of a partial proper
edge-colouring of G−B using the palette [∆(G) + µ(G)] that satisfies (i) – (iii).

To this end, let G′ = G − B. By Theorem 28, there is a proper edge-colouring φ
of G′ using colours in [∆(G) + µ(G)] such that every edge in M1 receives colour 1. By
the definition of B, each edge in M ′ \ B is incident to at least one edge in M1. Each
edge in M1 receives colour 1 under φ and therefore φ does not map any edge of M ′ \B to
colour 1. Thus φ ensures that ψ exists.

We now show that every edge of B receives a colour under ψ, which completes the
proof. Suppose, on the contrary, that xy ∈ B is an edge that is not coloured by ψ. We
start by making the following observations.

Claim 29. For every e ∈ E(G), we have ψ(e) = 1 if and only if e ∈M1.

Indeed, if e is an edge that is coloured 1, then e /∈ M ′ and e is not adjacent to an edge
in M1, since all such edges are also coloured 1. Consequently, e ∈M1, as M1 is a maximal
matching of G−M ′.

Claim 29 and the definition of B ensure the following.

Claim 30. Neither x nor y is incident with an edge that is coloured 1.

For each vertex v ∈ V (G) let Av ⊆ [∆(G)+µ(G)] be the set of colours that do not appear
on edges incident to v. Claim 30 states that Ax and Ay both contain the colour 1.
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Claim 31. If v ∈ NG(x) \ {y}, then v is incident to an edge in M1 and so Av does not
contain the colour 1.

Indeed, for if v is not incident to an edge in M1, then by Claim 30 the edge xv could be
added to M1 to form a larger matching in G−M ′, thereby contradicting the maximality
of M1.

We know that the edge xy is not yet coloured so both Ax and Ay must contain some
colour different from 1 and we shall from now on redefine Ay to be Ay \ {1}, which is not
empty. We consider the following iterative procedure.

Initially (t = 0), we set D0 = {y}. At each step t > 1, we form the set Dt as follows:

Dt =
{
v ∈ NG(x) \

t−1⋃
i=0

Di

∣∣ some edge between v and x has its colour in
⋃
w∈Dt−1

Aw
}
.

Since
⋃
i>0Di ⊆ NG(x) and Di ∩ Dj = ∅ if 0 6 i < j, there exists a least non-negative

integer t0 such that Dt0+1 = ∅. We define D =
⋃
i6t0

Di. We consider now two cases.

Case 1. Assume that there exist a vertex w ∈ D and a colour c ∈ Aw ∩ Ax. Since
the subsets D0, . . . , Dt0 are pairwise disjoint, there is precisely one integer t1 such that
w ∈ Dt1 . There exists a sequence y = w0, w1, w2, . . . , wt1 = w of vertices such that wi ∈ Di

and (at least) one edge ei between x and wi has a colour in Awi−1
, whenever 1 6 i 6 t1.

We may then define a partial proper edge-colouring ψ′ of E(G), using colours in
[∆(G) + µ(G)], with

• ψ′(e) = ψ(e) if e /∈ { ei | 1 6 i 6 t1 };
• ψ′(ei) = ψ(ei+1) for each i ∈ {0, . . . , t1 − 1}; and

• ψ′(et1) = c.

One can check that ψ′ satisfies (i) – (iii) and colours one more edge of B than ψ does,
which contradicts the choice of ψ.

For the second case, we need the following two observations.

Claim 32. For every z ∈ NG(x), it holds that µ(G) 6 |Az|.

The only case that is not trivial is when z = y, due to our redefinition of Ay. However, as
the edge xy is not coloured, the vertex y sees at most ∆(G) − 1 different colours, which
implies the statement.

Let H be the bipartite subgraph of G induced by the bipartition ({x}, D). (In par-
ticular, the edges of G between vertices in D are not in H.) The next statement follows
directly from the fact that the number of coloured edges between x and y is at most
µ(G)− 1.

Claim 33. The bipartite graph H contains fewer than |D|µ(G) coloured edges.

We can now proceed with the second case.

Case 2. For every vertex w ∈ D and every colour c ∈ Aw, there exists an edge ew
between x and a vertex z ∈ D such that ψ(ew) = c. By Claims 32 and 33, we know
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that the number of colours appearing in the bipartite graph H is less than |D| · µ(G),
which is at most

∑
w∈D |Aw|. This implies that there are two distinct vertices v1 and v2

in D ⊆ NG(x) with Av1 ∩Av2 6= ∅. Let c1 ∈ Av1 ∩Av2 and note that c1 6= 1 by Claim 31.
Let c2 ∈ Ax \ {1}. Then c2 /∈ Av1 ∪ Av2 and c1 /∈ Ax. (And hence c1 6= c2.)

For i ∈ {1, 2}, let Pi be the maximal alternating path with colours c1 and c2 beginning
at vi. Note that x cannot belong to both paths. But if x does not belong to Pi, then we
may swap c1 and c2 along the edges of Pi. This leads us back to Case 1 because then
c2 belongs to Ax ∩ Avi . (Note that such a swap affects neither the colours of the edges
inside H nor those of edges in M1.)

We have shown that in each case there exists a partial proper edge-colouring using
colours in [∆(G) + µ(G)] and satisfying (i) – (iii) that assigns colours to more edges of B
than ψ does, a contradiction.

7 Conclusion

During the preparation of this manuscript, we learned of a related work in the context of
graph limits [13], in which is proposed the following conjecture that has a similar flavour
to our Conjecture 3.

Conjecture 34 (Csóka, Lippner and Pikhurko [13]). Let G be a graph such that every
vertex is of degree at most d, except one of degree d + 1. Using the palette K = [d + 1],
suppose that at most d − 1 pendant edges are precoloured. This precolouring can be
extended to a proper edge-colouring of all of G.

The authors of Conjecture 34 proved the weaker statement with K = [d + 9
√
d] instead

of K = [d+ 1].

With respect to Question 1, rather than imposing conditions on the matching M , we
could instead constrain the precolouring. In the light of Theorem 14 and the result of
Berge and Fournier [7], the following is a natural strengthened version of Conjecture 3.

Conjecture 35. Let G be a multigraph with maximum degree ∆(G) and maximum
multiplicity µ(G). Using the palette K = [∆(G) + µ(G)], any precoloured matching such
that no two edges precoloured differently are within distance 2 can be extended to a
proper edge-colouring of all of G.

We may rephrase Theorem 12 in the language of list colouring as follows: for any multi-
graph G, any matching M in G, and any list assignment L : E(G) → 2[∆(G)+µ(G)] such
that |L(e)| = ∆(G) + µ(G) − 1 if e ∈ M and L(e) = [∆(G) + µ(G)] otherwise, there
is a proper L-edge-colouring of G. Theorem 14 still leaves open the possibility that the
following holds.

Conjecture 36. Let G be a multigraph with maximum degree ∆(G) and maximum
multiplicity µ(G) and let M be a matching in G. Let L : E(G) → 2[∆(G)+µ(G)] be a list
assignment such that |L(e)| = 2 if e ∈ M and L(e) = [∆(G) + µ(G)] otherwise. Then
there is a proper L-edge-colouring of G.
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It would also be interesting if either of Conjectures 35 and 36 could be confirmed with
the constant 2 replaced by any larger fixed integer.
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