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Abstract. Within the pattern mining area, skypatterns enable to express a user-

preference point of view according to a dominance relation. In this paper, we

deal with the introduction of softness in the skypattern mining problem. First, we

show how softness can provide convenient patterns that would be missed other-

wise. Then, thanks to Constraint Programming, we propose a generic and efficient

method to mine skypatterns as well as soft ones. Finally, we show the relevance

and the effectiveness of our approach through a case study in chemoinformatics.

1 Introduction

Discovering useful patterns from data is an important tool for data analysis and has

been used in a wide range of applications. Many approaches have promoted the use of

constraints to focus on the most promising knowledge according to a potential interest

given by the final user. As the process usually produces a large number of patterns, a

large effort is made to a better understanding of the fragmented information conveyed

by the patterns and to produce pattern sets i.e. sets of patterns satisfying properties on

the whole set of patterns [5].

Skyline queries [3] enable to express a user-preference point of view according to a

dominance relation. In a multidimensional space where a preference is defined for each

dimension, a point pi dominates another point p j if pi is better (i.e., more preferred)

than p j in at least one dimension, and pi is not worse than p j on every other dimension.

However, while this notion of skylines has been extensively developed and researched

for database applications, it has remained unused until recently for data mining purposes.

[17] proposes a technique to extract skyline graphs that maximize two measures (the

number of vertices and the edge connectivity). The notion of skyline queries has been

recently integrated into the constraint-based pattern discovery paradigm to mine skyline

patterns (henceforth called skypatterns) [19]. As an example, a user may prefer a pattern

with a high frequency, large length and a high confidence. In this case, we say that

a pattern xi dominates another pattern x j if f req(x j) ≥ f req(xi), size(x j) ≥ size(xi),
con f idence(x j) ≥ con f idence(xi) where at least one strict inequality holds. Given a

set of patterns, the skypattern set contains the patterns that are not dominated by any

other pattern. Skypatterns are interesting for a twofold reason: they do not require any

threshold on the measures and the notion of dominance provides a global interest with

semantics easily understood by the user.

Nevertheless, skypatterns queries, like other kinds of queries, suffer from the strin-

gent aspect of the constraint-based framework. Indeed, a pattern satisfies or does not



Fig. 1: A skyline example.

satisfy the constraints. But, what about patterns that slightly miss a constraint? The fol-

lowing example shows the interest of introducing softness. This example addresses sky-

lines in databases because it is easier to illustrate the key points of introducing softness

and to give rise the skypattern problem. Skypatterns and soft-skypatterns are formally

introduced in the following sections. There are very few works such as [2, 21] which

introduce softness into the mining process.

Consider a coach of a football team who looks for players for the next season (see

Fig. 1). Every player is depicted according to the number of goals he scored and the

number of assistances he performed during the last season. A point (here, a player) pi

dominates another point p j if pi is better than p j in at least one dimension, and pi is

not worse than p j on every other dimension. A skyline point is a point which is not

dominated by any other point. The skyline set (or skyline for short) consists of players

p1, p2, p3, p4 and p5. Indeed, players p6, p7, p8, p9 and p10 are dominated by at least

one other player, thus they cannot be part of the skyline. Nevertheless, the coach could

be interested in non-skyline players if he looks for:

– players in a forward position: the coach gives the priority to the number of scored

goals. The players p1 (skyline), p2 (skyline) are still interesting and p6 (non-skyline)

and p9 (non-skyline) become interesting.

– players in an attacking midfielder position: the coach gives the priority to the num-

ber of performed assistances. The players p4 (skyline) and p5 (skyline) are still

interesting and p7 (non-skyline) and p8 (non-skyline) become interesting.

– multipurpose players: the coach gives the priority to the trade-off between the num-

ber of scored goals and the number of performed assistances. The players p3 (sky-

line) and p4 (skyline) are still promising and p10 (non-skyline) becomes promising.

Moreover, skyline players are very sought and expensive: they might be signed by

another team or their salaries could be out of budget. So, non-skyline players, that are

close to skyline players, can be of great interest for the coach. Such promising players

can be discovered by slightly relaxing the dominance relation.



Trans. Items

t1 B E F

t2 B C D

t3 A E F

t4 A B C D E

t5 B C D E

t6 B C D E F

t7 A B C D E F

Item A B C D E F

Price 30 40 10 40 70 55

Table 1: Transactional dataset T .

The contributions of this paper are the following. First, we introduce the notion of

soft skypattern. Second, we propose a flexible and efficient approach to mine skypat-

terns as well as soft ones thanks to the Dynamic CSP (Constraint Satisfaction Problems)

framework [22]. Our proposition benefits from the recent progress on cross-fertilization

between data mining and Constraint Programming (CP) [4, 9, 7]. The common point of

all these methods is to model in a declarative way pattern mining as CSP, whose res-

olution provides the complete set of solutions satisfying all the constraints. We show

how the (soft-)skypatterns mining problem can be modeled and solved using dynamic

CSPs. A major advantage of the method is to improve the mining step during the process

thanks to constraints dynamically posted and stemming from the current set of candi-

date skypatterns. Moreover, the declarative side of the CP framework leads to a unified

framework handling softness in the skypattern problem. Finally, the relevance and the

effectiveness of our approach is highlighted through a case study in chemoinformatics

for discovering toxicophores.

This paper is organized as follows. Section 2 presents the context and defines skypat-

terns. Section 3 introduces soft skypatterns. Section 4 presents our flexible and efficient

CP approach to mine skypatterns as well as soft ones. We review some related work

in Section 5. Finally, Section 6 reports in depth a case study in chemoinformatics by

performing both a performance and a qualitative analysis.

2 The skypattern mining problem

2.1 Context and definitions

Let I be a set of distinct literals called items. An itemset (or pattern) is a non-null subset

of I . The language of itemsets corresponds to LI = 2I \ /0. A transactional dataset T

is a multiset of patterns of LI . Each pattern (or transaction) is a database entry. Table 1

(left side) presents a transactional dataset T where each transaction ti gathers articles

described by items denoted A,. . . ,F . The traditional example is a supermarket database

in which each transaction corresponds to a customer and every item in the transaction to

a product bought by the customer. An attribute (price) is associated to each product (see

Table 1, right side).

Constraint-based pattern mining aims at extracting all patterns x of LI satisfying a

query q(x) (conjunction of constraints) which is usually called theory [12]: T h(q) = {x∈
LI | q(x) is true}. A common example is the frequency measure leading to the minimal

frequency constraint. The latter provides patterns x having a number of occurrences in

the dataset exceeding a given minimal threshold min f r: freq(x)≥min f r. There are other

usual measures for a pattern x:

– size(x) is the number of items that x contains.



Fig. 2: Skypatterns extracted from the example in Table 1.

– area(x) = f req(x)× size(x).
– min(x.val) is the smallest value of the item values of x for attribute val.

– max(x.val) is the highest value of the item values of x for attribute val.

– average(x.val) is the average value of the item values of x for attribute val.

– mean(x) = (min(x.val)+max(x.val))/2.

Considering the dataset described in Table 1, we have: freq(BC)=5, size(BC)=2 and

area(BC)=10. Moreover, average(BCD.price)=30 and mean(BCD.price)=25.

In many applications, it is highly appropriated to look for contrasts between sub-

sets of transactions, such as toxic and non toxic molecules in chemoinformatics (see

Section 6). The growth rate is a well-used contrast measure [14].

Definition 1 (Growth rate). Let T be a database partitioned into two subsets D1 and

D2. The growth rate of a pattern x from D2 to D1 is:

mgr(x) =
|D2|× f req(x,D1)

|D1|× f req(x,D2)
Moreover, the user is often interested in discovering richer patterns satisfying prop-

erties involving several local patterns. These patterns define pattern sets [5] or n-ary

patterns [9]. The approach presented in this paper is able to deal with such patterns.

2.2 Skypatterns

Skypatterns have been recently introduced by [19]. Such patterns enable to express a

user-preference point of view according to a dominance relation. Given a set of patterns,

the skypattern set contains the patterns that are not dominated by any other pattern.

Given a set of measures M, if a pattern x j is dominated by another pattern xi accord-

ing to all measures of M, x j is considered as irrelevant. This idea is at the core of the

notion of skypattern.

Definition 2 (Dominance). Given a set of measures M, a pattern xi dominates another

pattern x j with respect to M (denoted by xi ≻M x j), iff ∀m ∈ M,m(xi) ≥ m(x j) and

∃m ∈M,m(xi)> m(x j).

Consider the example in Table 1 with M={ f req,area}. Pattern BCD dominates pattern

BC because f req(BCD)= f req(BC)=5 and area(BCD)>area(BC). For M={ f req,size,
average}, pattern BDE dominates pattern BCE because f req(BDE)= f req(BCE)=4,

size(BDE)=size(BCE)=3 and average(BDE.price)>average(BCE.price).



Fig. 3: Edge-skypatterns extracted from the example in Table 1.

Definition 3 (Skypattern operator). Given a pattern set P⊆LI and a set of measures

M, a skypattern of P with respect to M is a pattern not dominated in P with respect to

M. The skypattern operator Sky(P,M) returns all the skypatterns of P with respect to M:

Sky(P,M) = {xi ∈ P | 6 ∃x j ∈ P,x j ≻M xi}.

The skypattern mining problem is thus to evaluate the query Sky(LI ,M). For in-

stance, from the data set in Table 1 and with M={ f req,size}, Sky(LI ,M) = {ABCDEF,
BCDEF,ABCDE,BCDE,BCD,B,E} (see Figure 2). The shaded area is called the for-

bidden area, as it cannot contain any skypattern. The other part is called the dominance

area. The edge of the dominance area (bold line) marks the boundary between these two

zones.

The skypattern mining problem is challenging because of its NP-Completeness.

There are O(2|I |) candidate patterns and a naive enumeration would lead to compute

O(2|I |×|M|) measure values. [19] have proposed an efficient approach taking benefit of

theoretical relationships between pattern condensed representations and skypatterns and

making the process feasible when the pattern condensed representation can be extracted.

Nevertheless, this method can only use a crisp dominance relation.

3 The soft skypattern mining problem

This section presents the introduction of softness in the skypattern mining problem. The

skypatterns suffer from the stringent aspect of the constraint-based framework. In order

to introduce softness in this context, we propose two kinds of soft skypatterns: the edge-

skypatterns that belongs to the edge of the dominance area (see Section 3.1) and the

δ -skypatterns that are close to this edge (see Section 3.2).

The key idea is to strengthen the dominance relation in order to soften the notion

of non dominated patterns. The goal is to capture valuable skypatterns occurring in the

forbidden area.

3.1 Edge-skypatterns

Similarly to skypatterns, edge-skypatterns are defined according to a dominance relation

and a Sky operator. These two notions are reformulated as follows:

Definition 4 (Strict Dominance). Given a set of measures M, a pattern xi strictly dom-

inates a pattern x j with respect to M (denoted by xi≫M x j), iff ∀m ∈M, m(xi)> m(x j).



Fig. 4: δ -skypatterns (that are not edge ones) extracted from the example in Table 1.

Definition 5 (Edge-skypattern operator). Given a pattern set P ⊆ LI and a set of

measures M, an edge-skypattern of P, with respect to M, is a pattern not strictly dom-

inated in P, with respect to M. The operator Edge-Sky(P,M) returns all the edge-

skypatterns of P with respect to M: Edge-Sky(P,M) = {xi ∈ P | 6 ∃x j ∈ P,x j≫M xi}

Given a set of measures M, the edge-skypattern mining problem is thus to evaluate

the query Edge-Sky(P,M). Fig. 3 depicts the 28=7+(4+8+3+4+2) edge-skypatterns ex-

tracted from the example in Table 1 for M={ f req,size}. Obviously, all edge-skypatterns

belong to the edge of the dominance area, and seven of them are skypatterns (see Fig. 2).

Proposition 1. For two patterns xi and x j, xi≫M x j =⇒ xi ≻M x j. So, for a pattern set

P and a set of measures M, Sky(P,M) ⊆ Edge-Sky(P,M).

3.2 δ -skypatterns

In many cases the user may be interested in skypatterns expressing a trade-off between

the measures. The δ -skypatterns address this issue where δ means a percentage of re-

laxation allowed by the user. Let 0 < δ ≤ 1.

Definition 6 (δ -Dominance). Given a set of measures M, a pattern xi δ -dominates an-

other pattern x j w.r.t. M (denoted by xi ≻
δ
M x j), iff ∀m ∈M, (1−δ )×m(xi)> m(x j).

Definition 7 (δ -Skypattern operator). Given a pattern set P⊆LI and a set of mea-

sures M, a δ -skypattern of P with respect to M is a pattern not δ -dominated in P with

respect to M. The δ -skypattern operator δ -Sky(P,M) returns all the δ -skypatterns of P

with respect to M: δ -Sky(P,M) = {xi ∈ P | 6 ∃x j ∈ P : x j ≻
δ
M xi}.

The δ -skypattern mining problem is thus to evaluate the query δ -Sky(P,M). There

are 38 (28+10) δ -skypatterns extracted from the example in Table 1 for M={ f req,size}
and δ=0.25. Fig. 4 only depicts the 10 δ -skypatterns that are not edge-skypatterns. In-

tuitively, the δ -skypatterns are close to the edge of the dominance relation, the value of

δ is the maximal relative distance between a skypattern and this border.

Proposition 2. For two patterns xi and x j, xi ≻
δ
M x j =⇒ xi≫M x j. So, for a pattern set

P and a set of measures M, Edge-Sky(P,M) ⊆ δ -Sky(P,M).

To conclude, given a pattern set P ⊆ LI and a set of measures M, the following

inclusions hold: Sky(P,M)⊆ Edge-Sky(P,M)⊆ δ -Sky(P,M).



4 Mining (soft-) skypatterns using CP

This section describes how the skypattern and the soft skypattern mining problems can

be modeled and solved using Dynamic CSP [22]. A major advantage of this approach is

to improve the mining step during the process thanks to constraints dynamically posted

and stemming from the current set of the candidate skypatterns. Each time a solution is

found, we dynamically post a new constraint leading to reduce the search space. This

process stops when we cannot enlarge the forbidden area. Finally, the completeness of

our approach is insured by the completeness of the CP solver. The implementation of our

approach has been carried out in Gecode1 extending the (CP based) pattern extractor

developed by [9].

4.1 CSP and Dynamic CSP

A Constraint Satisfaction Problem (CSP) P=(X ,D ,C ) is defined by:

– a finite set of variables X = {x1,x2, . . . ,xk},
– a domain D , which maps every variable xi ∈X to a finite set of values D(xi),
– a finite set of constraints C .

Algorithm 1 [7] shows how a CSP can be solved using a depth-first search. D and C

denote respectively the current domains and the current set of constraints. In each node

of the search tree, the algorithm branches by assigning values to a variable that is unfixed

(line 7). It backtracks when a violation of constraints is found, i.e. at least one domain

is empty (line 2). The search is further optimized by carefully choosing the variable that

is fixed next (line 5); for instance, heuristics dom/deg selects the variable xi having the

smallest ratio between the size of its current domain and the number of constraints it

occurs. The main concept used to speed-up the search is Filtering (constraint propaga-

tion) (line 1). Filtering reduces the domains of variables such that the domain remains

locally consistent. A solution is obtained (line 9) when each domain D(xi) is reduced to

a singleton and all constraints are satisfied.

Algorithm 1: Constraint-Search(D,C)

D← propagate(D,C);1

if there exists xi ∈X s.t. D(xi) is empty then2

return failure;3

if there exists xi ∈X s.t. |D(xi)|> 1 then4

Select xi ∈X s.t. |D(xi)|> 1;5

forall v ∈ D(xi) do6

Constraint-Search(D∪{xi−> {v}});7

else8

output solution D;9

A Dynamic CSP [22] is a sequence P1,P2, ...,Pn of CSP, each one resulting from

some changes in the definition of the previous one. These changes may affect every

component in the problem definition: variables (addings or removals), domains (value

addings or removals), constraints (addings or removals). For our approach, changes are

only performed by adding new constraints.

1http://www.gecode.org/



Solving such dynamic CSP involves solving a single CSP with additional constraints

posted during search. Each time a new solution is found, new constraints φ(X ) are

imposed. Such constraints will survive backtracking and state that next solutions should

verify both the current set of constraints C and φ(X ). So line 9 of Algorithm 1 becomes:

Output solution D;1

C←C∪{φ(X )}2

Note that C is a variable global to all calls to procedure Constraint-Search(D,C).

4.2 Mining skypatterns using Dynamic CSP

This section describes our CP approach for mining both skypatterns and soft skypatterns.

Constraints on the dominance relation are dynamically posted during the mining process

and softness is easily introduced using such constraints.

Variable x will denote the (unknown) skypattern we are looking for. Changes are only

performed by adding new constraints (see Section 4.1). So, we consider the sequence

P1,P2, ...,Pn of CSP where each Pi = ({x},L ,qi(x)) and:

– q1(x) = closedM(x)
– qi+1(x) = qi(x)∧φi(x) where si is the first solution to query qi(x)

First, the constraint closedM(x) states that x must be a closed pattern w.r.t all the

measures of M, it allows to reduce the number of redundant patterns2. Then, the con-

straint φi(x) ≡ ¬(si ≻M x) states that the next solution (which is searched) will not be

dominated by si. Using a short induction proof, we can easily argue that query qi+1(x)
looks for a pattern x that will not be dominated by any of the patterns s1, s2, . . ., si.

Each time the first solution si to query qi(x) is found, we dynamically post a new

constraint φi(x) leading to reduce the search space. This process stops when we cannot

enlarge the forbidden area (i.e. there exits n s.t. query qn+1(x) has no solution). For

skypatterns, φi(x) states that ¬(si ≻M x) (see Definition 2):

φi(x)≡ (
∨

m∈M

m(si)< m(x))∨ (
∧

m∈M

m(si) = m(x))

But, the n extracted patterns s1, s2, . . ., sn are not necessarily all skypatterns. Some

of them can only be ”intermediate” patterns simply used to enlarge the forbidden area.

A post processing step must be performed to filter all candidate patterns si that are not

skypatterns, i.e. for which there exists s j (1≤ i < j ≤ n) s.t. s j dominates si. So mining

skypatterns is achieved in a two-steps approach:

1. Compute the set S = {s1,s2, . . . ,sn} of candidates using Dynamic CSP.

2. Filter all patterns si ∈ S that are not skypatterns.

While the number of candidates (n) could be very large (the skypattern mining prob-

lem is NP-complete), it remains reasonably-sized in practice for the experiments we

conducted (seeTable 2 for the case study in chemoinformatics.)

4.3 Mining soft skypatterns using Dynamic CSP

Soft skypatterns are processed exactly the same way. Each kind of soft skypatterns has

its own constraint φi(x) according to its relation of dominance.

2The closed constraint is used to reduce pattern redundancy. Indeed, closed skypatterns make

up an exact condensed representation of the whole set of skypatterns [19].



For edge-skypatterns, φi(x) states that ¬(si≫M x) (see Definition 4):

φi(x)≡
∨

m∈M

m(si)≤ m(x)

For δ -skypatterns, φi(x) states that ¬(si ≻
δ
M x) (see Definition 6):

φi(x)≡
∨

m∈M

(1−δ )×m(si)< m(x)

As previously, the n extracted patterns s1, s2, . . ., sn are not necessarily all soft sky-

patterns. So, a post processing is required as for skypatterns (see Section 4.2). Mining

soft skypatterns is also achieved in a two-steps approach:

1. Compute the set S = {s1,s2, . . . ,sn} of candidates using Dynamic CSP.

2. Filter all patterns si ∈ S that are not soft skypatterns.

Once again, the number of candidates (n) remains reasonably-sized in practice for

the experiments we conducted (see Table 3).

Pattern variables are set variables represented by their characteristic function with

boolean variables. [4, 7] model an unknown pattern x and its associated dataset T by

introducing two sets of boolean variables: {Xi | i ∈ I } where (Xi = 1)⇔ (i ∈ x), and

{Tt | t ∈T }where (Tt = 1)⇔ (x⊆ t). Each set of boolean variables aims at representing

the characteristic function of the unknown pattern. For a set of k unknown patterns [9],

each pattern x j is represented by its own set of boolean variables {Xi, j | i ∈ I } and

{Tt, j | t ∈T }.

5 Related Work

Computing skylines is a derivation from the maximal vector problem in computational

geometry [13], the Pareto frontier [10] and multi-objective optimization. Since its redis-

covery within the database community by [3], several methods have been developed for

answering skyline queries [15, 16, 20]. These methods assume that tuples are stored in

efficient tree data structures. Alternative approaches have also been proposed to help the

user in selecting most significant skylines. For example, [11] measures this significance

by means of the number of points dominated by a skyline.

Introducing softness for skylines. [8] have proposed thick skylines to extend the con-

cept of skyline. A thick skyline is either a skyline point pi, or a point p j dominated by

a skyline point pi and such that p j is close to pi. In this work, the idea of softness is

limited to metric semi-balls of radius ε>0 centered at points pi, where pi are skylines.

Computing skypatterns is different from computing skylines. Skyline queries focus on

the extraction of tuples of the dataset and assume that all the elements are in the dataset,

while the skypattern mining task consists in extracting patterns which are elements of

the frontier defined by the given measures. The skypattern problem is clearly harder be-

cause the search space for skypatterns is much larger than the search space for skylines:

O(2|I |) instead of O(|T |) for skylines.

To the best of our knowledge, there are only two works dealing with skypatterns.

[19] have proposed an approach taking benefit of theoretical relationships between pat-

tern condensed representations and skypatterns and making the process feasible when

the pattern condensed representation can be extracted. Nevertheless, this method can

only use a crisp dominance relation. [17] deal with skypatterns from graphs but their

technique only maximizes two measures (number of vertices and edge connectivity).



CP for computing the Pareto frontier. [6] has proposed an algorithm that provides the

Pareto frontier in a CSP. This algorithm is based on the concept of nogoods3 and uses

spatial data structures (quadtrees) to arrange the set of nogoods. This approach only deals

with non-dominated points. Moreover, it cannot be applied for mining skypatterns.

6 Case study: discovering toxicophores

A major issue in chemoinformatics is to establish relationships between chemicals and

a given activity (e.g., CL50 is the lethal concentration of a substance required to kill

half the members of a tested population after a specified test duration) in ecotoxicity.

Chemical fragments4 which cause toxicity are called toxicophores and their discovery

is at the core of prediction models in (eco)toxicity [1, 18]. The aim of this present study,

which is part of a larger research collaboration with the CERMN Lab, a laboratory of

medicinal chemistry, is to investigate the use of softness for discovering toxicophores.

6.1 Experimental protocol

The dataset is collected from the ECB web site5. For each chemical, the chemists as-

sociate it with hazard statement codes (HSC) in 3 categories: H400 (very toxic, CL50

≤ 1 mg/L), H401 (toxic, 1 mg/L < CL50 ≤ 10 mg/L), and H402 (harmful, 10 mg/L <
CL50 ≤ 100 mg/L). We focus on the H400 and H402 classes. The dataset T consists

of 567 chemicals, 372 from the H400 class and 195 from the H402 class. The chemicals

are encoded using 1,450 frequent closed subgraphs previously extracted from T 6 with

a 1% relative frequency threshold.

In order to discover patterns as candidate toxicophores, we use both measures typi-

cally used in contrast mining [14] such as the growth rate since toxicophores are linked

to a classification problem with respect to the HSC and measures expressing the back-

ground knowledge such as the aromaticity or rigidity because chemists consider that

this information may yield promising candidate toxicophores. Our method offers a nat-

ural way to simultaneously combine in a same framework these measures coming from

various origins. We briefly sketch these measures.

- Growth rate. When a pattern has a frequency which significantly increases from the

H402 class to the H400 class, then it stands a potential structural alert related to the

toxicity: if a chemical has, in its structure, fragments that are related to a toxic effect,

then it is more likely to be toxic. Emerging patterns embody this natural idea by using

the growth-rate measure (see Definition 1).

- Frequency. Real-world datasets are often noisy and patterns with low frequency may

be artefacts. The minimal frequency constraint ensures that a pattern is representative

enough (i.e., the higher the frequency, the better is).

- Aromaticity. Chemists know that the aromaticity is a chemical property that favors

toxicity since their metabolites can lead to very reactive species which can interact with

biomacromolecules in a harmful way. We compute the aromaticity of a pattern as the

mean of the aromaticity of its chemical fragments.

3A nogood is a partial or complete assignment of the variables such that there will be no (new)

solution containing it.
4A fragment denominates a connected part of a chemical structure containing at least one

chemical bond.
5European Chemicals Bureau: http://echa.europa.eu/
6A chemical Ch contains an item A if Ch supports A, and A is a frequent subgraph of T .
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M1={growth-rate, f req} 8 613 18m:34s 41,887 19m:20s

M2={growth-rate,aromaticity} 5 140 15m:32s 53,201 21m:33s

M3={ f req,aromaticity} 2 456 16m:45s 157,911 21m:16s

M4={growth-rate, f req,aromaticity} 21 869 17m:49s 12,126 21m:40s

Table 2: Skypattern mining on ECB dataset.

Redundancy is reduced by using closed skypatterns which are an exact condensed

representation of the whole set of skypatterns (see Footnote 2). We consider four sets

of measures: M1, M2, M3 and M4 (see Table 2). For δ -skypatterns, we consider two

values: δ=10% and δ=20%. The extracted skypatterns and soft skypatterns are made

of molecular fragments. To evaluate the presence of toxicophores in their description, an

expert analysis leads to the identification of well-known environmental toxicophores.

6.2 Performance analysis

This section compares our approach (noted CP+SKY) with MICMAC+SKY, which is

the only other method able to mine skypatterns [19]. As our proposal, MICMAC+SKY

proceeds in two steps. First, condensed representations of the whole set of patterns (i.e.

closed patterns according to the considered set of measures) are extracted. Then, the sky

operator is applied. Table 2 reports, for each set of measures:
– the number of skypatterns,
– for CP+SKY, the number of candidates (i.e. the number of intermediate patterns, see

Section 4.2) and the associated CPU-time,
– for MICMAC+SKY, the number of closed patterns of the condensed representation

and the associated CPU-time.

Table 3 reports, for each set of measures:
– the number of edge-skypatterns that are not (hard) skypatterns, the number of can-

didates and the required CPU-time,
– the number for δ -skypatterns that are not edge-skypatterns, the number of candi-

dates and the required CPU-time.

CP+SKY outperforms MICMAC+SKY in terms of CPU-times (see Table 2). More-

over, the number of candidates generated by our approach remains small compared to

the number of closed patterns computed by MICMAC+SKY. Thanks to dynamic con-

straints, our CP approach enables to drastically reduce the number of candidates. More-

over, increasing the number of measures leads to a larger number of (soft-)skypatterns,

particularly for high values of δ . In fact, a pattern rarely dominates all other patterns

on the whole set of measures. Nevertheless, in our experiments, the number of soft sky-

patterns remains reasonably small. For edge-skypatterns, there is a maximum of 144

patterns, while for δ -skypatterns, there is a maximum of 1,724 patterns (for δ = 20%).
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M1 24 1,746 19m:02s 25 4,204 20m:48s 87 6,253 22m:36s

M2 76 688 17m:51s 354 1,678 18m:14s 1,670 2,816 23m:44s

M3 72 1,726 16m:50s 352 4,070 19m:43s 1,654 6,699 22m:25s

M4 144 3,021 20m:27s 385 6,048 23m:36s 1,724 8,986 30m:14s

Table 3: Soft skypattern mining on ECB dataset.

6.3 Qualitative analysis

In this section, we analyse qualitatively the (soft-)skypatterns by evaluating the pres-

ence of toxicophores in their description, according to well-known environmental tox-

icophores. For M1={growth-rate, f req}, soft skypatterns enable to efficiently detect

well-known toxicophores emphasized by skypatterns, while for M2={growth-rate, aroma-

ticity} and M4={growth-rate, f req,aromaticity}, soft skypatterns enable to discover

(new) interesting toxicophores that would not be detected by skypatterns.

- Growth rate and frequency measures (M1). Only 8 skypatterns are found, and 3 well-

known toxicophores are emphasized. Two of them are aromatic compounds, namely the

chlorobenzene (p1) and the phenol rings (p2). The contamination of water and soil by

organic aromatic chemicals is widespread as a result of industrial applications ranging

from their use as pesticides, solvents to explosives and dyestuffs. Many of them may

bioaccumulate in the food chain and have the potential to be harmful to living systems

including humans, animals, and plants. The third one, the organophosphorus moiety (p3)

is a component occurring in numerous pesticides.

Soft skypatterns confirm the trends given by skypatterns. However, the chloro-substituted

aromatic rings (e.g. p4), and the organophosphorus moiety (e.g. p5) are detected by the

edge-skypatterns and by the δ -skypatterns. Indeed, several patterns containing these tox-

icophores are extracted.

- Growth rate and aromaticity measures (M2). Figure 6 only reports the distribution

of the (soft-)skypatterns for M2. Soft skypatterns lead to the discovery of several dif-

ferent aromatic rings. In fact, the nature of these chemicals can vary in function of i)

the presence/absence of heteroatoms (e.g. N, S), ii) the number of rings, and iii) the

presence/absence of substituents.

Edge-skypatterns leads to the extraction of (i) nitrogen aromatic compounds: indole

(p1) and benzoimidazole (p2), (ii) S-containing aromatic compounds: benzothiophene

(p3), (iii) aromatic oxygen compounds: benzofurane (p4), and (iv) polycyclic aromatic

hydrocarbons: naphthalene (p5). δ -skypatterns complete the list of the aromatic rings

which were not found during the extraction of the skypatterns, namely biphenyl (p6).



Fig. 5: Analysing the (soft-) skypatterns for M1.

- Growth rate, frequency and aromaticity measures (M4). The most interesting re-

sults are provided using M4 (see Figure 7). 21 skypatterns are mined, and several well-

known toxicophores are emphasized: the phenol ring (see e4), the chloro-substituted

aromatic ring (see e3), the alkyl-substituted benzene (see e2), and the organophosphorus

moiety (see P1). Besides, information dealing with nitrogen aromatic compounds are

also extracted (see e1).

Soft skypatterns enable to mine several exotic aromatic rings (previously discussed),

namely nitrogen and S-containing aromatic compounds, polycyclic aromatic hydrocar-

bons.

Moreover, edge-skypatterns enable to detect more precisely the chloro-substituted aro-

matic ring and the organophosphorus moiety which are located near P1. For δ ∈{10%,20%},
mining the δ -skypatterns leads to the extraction of new several interesting patterns, par-

ticularly substituted nitrogen aromatic rings and substituted anilines.

Fig. 6: Analysing the (soft-) skypatterns for M2.



Fig. 7: Analysing the (soft-) skypatterns for M4.

7 Conclusion

We have introduced the notion of soft skypattern and proposed a flexible and efficient

approach to mine skypatterns as well as soft ones thanks to Dynamic CSP. Finally, the

relevance and the effectiveness of our approach has been highlighted through a case

study in chemoinformatics for discovering toxicophores.

In the future, we would like to study the introduction of softness on other tasks

such as clustering, study the contribution of soft skypatterns for recommendation and

extend our approach to skycubes. Another direction is to improve the solving stage by

designing a one-step method: each time a new solution si is found, all candidates that

are dominated by si can be removed (see Section 4.2). Another idea is to hybridize our

CP approach with local search methods to improve the efficiency of the method.
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