
HAL Id: hal-01024673
https://hal.science/hal-01024673v1

Preprint submitted on 16 Jul 2014 (v1), last revised 10 Mar 2022 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Online Asynchronous Distributed Regression
Gérard Biau, Ryad Zenine

To cite this version:

Gérard Biau, Ryad Zenine. Online Asynchronous Distributed Regression. 2014. �hal-01024673v1�

https://hal.science/hal-01024673v1
https://hal.archives-ouvertes.fr

Online Asynchronous Distributed Regression

Gérard Biau1

Sorbonne Universités, UPMC Univ Paris 06, F-75005, Paris, France
& Institut universitaire de France
gerard.biau@upmc.fr

Ryad Zenine
Sorbonne Universités, UPMC Univ Paris 06, F-75005, Paris, France
r.zenine@gmail.com

Abstract

Distributed computing offers a high degree of flexibility to accom-
modate modern learning constraints and the ever increasing size of
datasets involved in massive data issues. Drawing inspiration from the
theory of distributed computation models developed in the context of
gradient-type optimization algorithms, we present a consensus-based
asynchronous distributed approach for nonparametric online regres-
sion and analyze some of its asymptotic properties. Substantial nu-
merical evidence involving up to 28 parallel processors is provided on
synthetic datasets to assess the excellent performance of our method,
both in terms of computation time and prediction accuracy.

Index Terms — Online regression estimation, distributed computing,
asynchronism, message passing.

2010 Mathematics Subject Classification: 62G08, 62G20, 68W15.

1 Introduction

Parallel and distributed computation is currently an area of intense research
activity, motivated by a variety of factors. Examples of such factors include,
but are not restricted to:

(i) Massive data challenges, where the sample size is too large to fit into a
single computer or to operate with standard computing resources (see,
e.g., the discussion in Jordan, 2013);

(ii) An increasing necessity of robustness and fault tolerance, that enables
a system to continue operating properly in the event of a failure;

1Research carried out within the INRIA project “CLASSIC” hosted by Ecole Normale
Supérieure and CNRS.

1

mailto:gerard.biau@upmc.fr
mailto:r.zenine@gmail.com

(iii) Advent of sensor, wireless and peer-to-peer networks, which obtain in-
formation on the state of the environment and must process it cooper-
atively.

Moreover, in a growing number of distributed organizations, data are ac-
quired sequentially and must be efficiently processed in real-time, thus avoid-
ing batch requests or communication with a fusion center. In this sequential
context, a promising way is to deal with decentralized distributed systems,
in which a communication to a central processing unit is unnecessary. Yet,
designing and analyzing such distributed online learning algorithms that can
quickly and efficiently process large amounts of data poses several mathe-
matical and computational challenges and, as such, is one of the exciting
questions asked to the statistics and machine learning fields.

In the present paper, we elaborate on the theory of distributed and asyn-
chronous computation models developed in the context of deterministic and
stochastic gradient-type optimization algorithms by Tsitsiklis et al. (1986),
Bertsekas and Tsitsiklis (1997), and Blondel et al. (2005). Equipped with
this theory, we present a consensus-based asynchronous distributed approach
for nonparametric online regression and analyze some of its asymptotic prop-
erties. In the model that we consider, there is a number of computing entities
(also called processors, agents, or workers hereafter) which perform online re-
gression estimation by regularly updating an estimate stored in their memory.
In the meanwhile, they exchange messages, thus informing each other about
the results of their latest computations. Processors which receive messages
use them to update directly the value in their memory by forming a convex
combination. Weak assumptions are made about the frequency and relative
timing of computations or message transmissions by the agents.

The general framework is that of nonparametric regression estimation, in
which an input random vector X ∈ (Rd, ‖ · ‖) is considered, and the goal is
to predict the integrable random response Y ∈ R by assessing the regres-
sion function r(x) = E[Y |X = x]. In the classical, offline setup (see, e.g.,
Györfi et al., 2002), one is given a batch sample Dt = (X1, Y1), . . . , (Xt, Yt)
of i.i.d. random variables, distributed as (and independent of) the proto-
type pair (X, Y). The objective, then, is to use the entire dataset Dt to
construct an estimate rt : R

d → R of the regression function r. However,
in many contemporary learning tasks, data arrive sequentially, and possibly
asynchronously. In such cases, estimation has to be carried out online, by pro-
cessing each observation one at a time and updating recursively the estimate
step by step. Extending ideas from stochastic approximation (Robbins and
Monro, 1951; Kiefer and Wolfowitz, 1952), Révész (1973, 1977) introduced

2

a kernel-type online estimate of r and demonstrated some of its appealing
properties.

In a word, our architecture parallelizes several executions of Révész’s method
concurrently on a set {1, . . . ,M} of processors that try to reach agreement on
the estimation of r(x) by asynchronously exchanging tentative values and fus-
ing them via convex combinations. The data are sequentially allocated to the
memories of these machines, so that agent i sequentially receives the i.i.d. se-
quence of observations (Xi

1, Y
i
1), (X

i
2, Y

i
2), . . . , (X

i
t, Y

i
t), (X

i
t+1, Y

i
t+1), . . ., and

use them to compute its estimate rit(x) of r(x). In addition, at time t ≥ 1,
any agent j in the network may transmit its current estimate rjt (x) to some
(possibly all or none) of the other processors. If a message from processor j is
received by processor i (i 6= j) at time t, let τ ijt be the time that this message
was sent. Therefore, the content of such a message is precisely rj

τ ijt
(x), which

is simpler denoted by rj(x, τ ijt). Thus, omitting details for the moment, the
estimated value held by agent i is updated according to the equation

{

ri1(x) = Y i
1

rit+1(x) =
∑M

j=1 a
ij
t r

j(x, τ ijt) + sit for t ≥ 1,

where the coefficients aijt are (deterministic) nonnegative real numbers satis-
fying the constraint

∑M
j=1 a

ij
t = 1. The term sit ≡ sit(X

i
t+1, Y

i
t+1, r

i
t(x)), which

will be made precise later, is a local Révész-type computation step, to be
used in evaluating the new estimate rit+1(x). The model can be interpreted
as follows: At any time t, processor i receives messages from other proces-
sors containing the rj(x, τ ijt)’s ; it incorporates this information by forming
a convex combination and adding the scalar sit resulting from its own local
computations. The time instants (τ ijt)t≥1 are deterministic but unknown and
the families (aijt)t≥1 define the weights of convex combinations.

Under weak assumptions on the network architecture and the communication
delays, we establish in Theorem 3.1 that our distributed algorithm guarantees
asymptotic consensus, in the sense that, for all i ∈ {1, . . . ,M},

E

[
∫

Rd

∣

∣rit(x)− r(x)
∣

∣

2
µ(dx)

]

→ 0 as t → ∞,

where µ is the distribution of X and Y is assumed to be bounded. From a
practical point of view, an important feature of the presented procedure is
its ability to process, for a given time span, much more data than a single
processor execution. A similar architecture has been used successfully in the
context of vector quantization by Patra (2011). It has also some proximity
with the so-called gossip algorithms (see, e.g., Boyd et al., 2006; Bianchi

3

et al., 2011a,b, 2013). However, the primary benefit of our strategy is that
it is asynchronous, which means that local processes do not have to wait at
preset points for messages to become available. This allows some processors
to compute faster and execute more iterations than others—a major speed
advantage over synchronous executions in networks where communication
delays can be substantial and unpredictable. In fact, message passing and
asynchronism offer a high degree of flexibility and would make it easier to
include tolerance to system failures and uncertainty. Let us finally stress
that, by its online nature, the algorithm is also able to manage time-varying
data loads. Online approaches avoid costly and non-scalable batch requests
on the whole dataset, and offers the opportunity to incorporate new data
while the algorithm is already running.

The paper is organized as follows. We present our asynchronous distributed
regression estimation strategy in Section 2, and prove its convergence in
Section 3. Section 4 is devoted to numerical experiments and simulated tests
which illustrate the performance of the approach. For ease of exposition,
proofs are collected in Section 5.

2 A model for distributed regression

Let (Xt, Yt)t≥1 be a sequence of i.i.d. random variables, distributed as (and
independent of) the generic pair (X, Y). Assume that E|Y | < ∞ and let
r(x) = E[Y |X = x] be the regression function of Y on X. In its more general
form, Révész’s recursive estimate of r(x) (Révész, 1973, 1977) takes the form

{

r1(x) = Y1
rt+1(x) = rt(x) (1− εt+1Kt+1(x,Xt+1)) + εt+1Yt+1Kt+1(x,Xt+1) for t ≥ 1,

where (Kt(·, ·))t≥1 is a sequence of measurable, symmetric and nonnegative-
valued functions on R

d × R
d, and (εt)t≥1 are positive real parameters (by

convention, K1(·, ·) ≡ 1 and ε1 = 1). A major computational advantage of
this definition is that the (t+1)-th estimate rt+1(x) can be evaluated on the
basis of the (t+1)-th observation (Xt+1, Yt+1) and from the t-th estimate rt(x)
only, without remembering the previous elements of the sample. It should
also be noted that rt+1(x) is obtained as a linear combination of the estimates
rt(x) and Yt+1, with weights 1 − εt+1Kt+1(x,Xt+1) and εt+1Kt+1(x,Xt+1),
respectively. In a more compact form, we write

{

r1(x) = Y1

rt+1(x) = rt(x)− εt+1H (Zt+1, rt(x)) for t ≥ 1,

4

where Zt = (Xt, Yt) and, by definition,H(Zt+1, rt(x)) = rt(x)Kt+1(x,Xt+1)−
Yt+1Kt+1(x,Xt+1). We note that time starts at 1, and that the data acquired
at time t is Zt+1 along with an updated estimate equal to rt+1(x).

Various choices are possible for the function Kt, each leading to a different
type of estimate. Letting for example

Kt(x, z) =
1

hd
t

K

(

x− z

ht

)

, x, z ∈ R
d,

where K : Rd → R+ is a symmetric kernel and (ht)t≥1 a sequence of positive
smoothing parameters, results in the recursive kernel estimate, originally
studied by Révész. However, other options are possible for Kt, giving rise to
diverse procedures such as the recursive partitioning, series and binary tree
estimates. Asymptotic properties of Révész-type recursive estimates have
been established for diverse choices of Kt by Györfi (1981), Györfi and Walk
(1996, 1997), Walk (2001), and Mokkadem et al. (2009), just to cite a few
examples (see also Györfi et al., 2002, Chapter 25).

Returning to our distributed model, consider now a set {1, . . . ,M} of com-
puting entities that participate in the estimation of r(x). In this construc-
tion, the data are spread over the agents, so that processor i sequentially
receives the i.i.d. sequence (Xi

1, Y
i
1), (X

i
2, Y

i
2), . . . , (X

i
t, Y

i
t), (X

i
t+1, Y

i
t+1), . . .,

distributed as the prototype pair (X, Y). Processor i is initialized with
ri1(x) = Y i

1 . At time t ≥ 1, it receives measurement (Xi
t+1, Y

i
t+1) and may

calculate the new estimate rit+1(x) by executing a local Révész-type step.
Moreover, besides its own measurements and computations, each agent may
also receive messages from other processors and combine this information
with its own conclusions. The computation/combining process is assumed to
be as follows:

{

ri1(x) = Y i
1

rit+1(x) =
∑M

j=1 a
ij
t r

j(x, τ ijt) + sit for t ≥ 1,
(2.1)

where the aijt ’s are nonnegative real coefficients satisfying the constraint
∑M

j=1 a
ij
t = 1, for all i ∈ {1, . . . ,M} and all t ≥ 1. As in the introduc-

tion, the notation rj(x, τ ijt) stands for rj
τ ijt
(x). This is the value received at

time t by agent i from agent j, which is thus not necessarily the most recent
one. Naturally, it is assumed that the deterministic time instants (τ ijt)t≥1

satisfy 1 ≤ τ ijt ≤ t: The difference t − τ ijt represents communication and
possibly other types of delay, such as latency and bandwidth finiteness. As
for the term sit, it is a Révész-type computation step, which takes the form:

sit =

{

−εit+1H
(

Zi
t+1, r

i
t(x)

)

if t ∈ T i

0 otherwise.

5

In this definition, the set T i contains all time instants where processor i
updates its current estimate by performing an effective estimation (accord-
ingly, processor i is called computing). Since the combining coefficients aijt
depend on t, the network communication topology is sometimes referred to
as time-varying.

Noteworthy, the sequences (τ ijt)t≥1 need not to be known in advance by any
agent. In fact, their knowledge is not required to execute iterations. Thus,
there is no need to dispose of a shared global clock or synchronized local
clocks at the processors. The time variable t we refer to corresponds to an
iteration counter that is needed only for analysis purposes. In particular, the
computing operations may not take the same time for all processors, which
is a major advantage of asynchronous algorithms.

3 Assumptions and main results

We establish in this section that the architecture (2.1) guarantees L2 asymp-
totic consensus, i.e., for all i ∈ {1, . . . ,M},

E

[
∫

Rd

∣

∣rit(x)− r(x)
∣

∣

2
µ(dx)

]

→ 0 as t → ∞,

where µ is the distribution of X and Y is assumed to be bounded. However,
this powerful result comes at the price of assumptions on the transmission
network, which essentially demand that the time between consecutive com-
munications of processors plus communication delays are not too large.

We start with some basic requirements on the coefficient sequences (aijt)t≥1

and the communication delays (τ ijt)t≥1, which are adapted from Blondel et al.
(2005).

Assumption 1 (Convex combinations). There exists a constant α ∈ (0, 1]
such that:

(a)
∑M

j=1 a
ij
t = 1, for all i ∈ {1, . . . ,M} and t ≥ 1.

(b) aiit ≥ α, for all i ∈ {1, . . . ,M} and t ≥ 1.

(c) aijt ∈ {0} ∪ [α, 1], for all (i, j) ∈ {1, . . . ,M}2 and t ≥ 1.

Assumption 1(a) means that the combination operated by agent i at time
t is a weighted average of its own value and the values that it has just
received from other agents. Parts (b) and (c) avoid degenerate situations and

6

guarantee that messages have a lasting effect on the states of computation
of their recipients. Various special cases of interest are discussed in Blondel
et al. (2005). For example, in the so-called equal neighbor model, one has

aijt =

{

1/♯N i
t if j ∈ N i

t

0 otherwise,

where
N i

t =
{

j ∈ {1, . . . ,M} : aijt > 0
}

is the set of agents whose value is taken into account by processor i at time
t (the symbol ♯ stands for cardinality). Note that here the constant α of
Assumption 1(b) is equal to 1/M .

Assumption 2 (Bounded communication delays).

(a) One has aijt = 1[i 6=j], for all (i, j) ∈ {1, . . . ,M}2 and t ∈ T i.

(b) If aijt = 0, then τ ijt = t, for all (i, j) ∈ {1, . . . ,M}2 and t ≥ 1.

(c) One has τ iit = t, for all i ∈ {1, . . . ,M} and t ≥ 1.

(d) There exists some constant B1 ≥ 0 such that t − B1 ≤ τ ijt ≤ t, for all
(i, j) ∈ {1, . . . ,M}2 and t ≥ 1.

Assumption 2(a) means that no combining operation is performed by pro-
cessor i while a Révész-type computation is effectively performed. This re-
quirement is not particularly restrictive and makes sense for practical imple-
mentations. Assumption 2(b) is just a convention: When aijt = 0, the value
of τ ijt has no effect on the update. Assumption 2(c) is quite natural, since
an agent generally has access to its own most recent value. Finally, Assump-
tion 2(d) requires the communication delays t− τ ijt to be bounded by some
constant B1. In particular, this assumption prevents a processor from taking
into account some arbitrarily old values computed by other agents.

Denote by M = {1, . . . ,M} the set of processors. The communication pat-
terns at each time step, sometimes referred to as the network communication
topology, can be described in terms of a directed graph (M, Et), with vertices
M and edges Et describing links, where (i, j) ∈ Et if and only if aijt > 0. A
minimal assumption, which is necessary for consensus to be reached, entails
that following an arbitrary time t, and for any pair of agents (i, j), there is
a sequence of communications through which agent i will influence (directly
or indirectly) the future value held by agent j.

7

Assumption 3 (Graph connectivity). The graph (M,∪s≥tEs) is strongly
connected (i.e., every vertex is reachable from every other vertex) for all
t ≥ 1.

We also require Assumption 4 below, which complements Assumption 3 by
demanding that there is a finite upper bound on the length of communicating
paths.

Assumption 4 (Bounded intercommunication intervals). There is some
constant B2 ≥ 0 such that if agent i communicates to j an infinite num-
ber of times (that is, if (i, j) ∈ Et infinitely often), then, for all t ≥ 1,
(i, j) ∈ Et ∪ Et+1 ∪ · · · ∪ Et+B2

.

Our last assumption is of a more technical nature. Part (a) requires that, at
any time, there is at least one processor i satisfying sit 6= 0. Thus, there are no
time instants where all processors are idle. Part (b) is mainly to simplify the
presentation and could easily be refined. Notice that this latter requirement
does not necessarily imply that each processor has knowledge of t, i.e., access
to a global clock. Assuming that the time span between consecutive updates
is bounded, it is for example satisfied by taking εit proportional to ni

t =
♯(T i∩{1, . . . , t})—that is, the number of times that processor i has performed
a computation up to time t.

Assumption 5 (Idle processors and learning rate).

(a) For all t ≥ 1, one has
∑M

j=1 1[t∈T j] ≥ 1.

(b) There exist two constants C1 > 0 and C2 > 0 such that, for all i ∈
{1, . . . ,M} and all t ≥ 1,

C1

t
≤ εit ≤

C2

t
.

We are now in a position to state our main result.

Theorem 3.1. Assume that Assumptions 1-5 are satisfied. Assume that
there exist a sequence (ht)t≥1 of positive real numbers and a nonnegative,
nonincreasing function L on [0,∞) such that ht → 0 (as t → ∞), rdL(r) → 0
(as r → ∞) and, for all x, z ∈ R

d and all t ≥ 2,

hd
tKt(x, z) ≤ L

(

‖x− z‖

ht

)

.

Assume, in addition, that Y is bounded, that

sup
t,x,z

εitKt(x, z) ≤ 1 for all i ∈ {1, . . . ,M},

8

and that

lim inf
t→∞

∫

Rd

Kt(x, z)µ(dz) > 0 at µ-almost all x ∈ R
d.

Then, provided (thd
t)t≥1 is nondecreasing and

∑

t≥1
1

t2h2d
t

< ∞, one has, for

all i ∈ {1, . . . ,M},

E

[
∫

Rd

∣

∣rit(x)− r(x)
∣

∣

2
µ(dx)

]

→ 0 as t → ∞.

Remark 3.1. To avoid ambiguity, it is assumed by convention that K1(·, ·) ≡
1 and hd

1 ≤ L(0).

A few comments are in order. We note that apart the boundedness assump-
tion on Y , this convergence is universal, in the sense that it is true for all
distributions of (X, Y). Moreover, the requirements on the function Kt are
mild and typically satisfied for the kernel-type choice

Kt(x, z) =
1

hd
t

1[‖x−z‖/ht≤1]

(naive kernel—see, e.g., Györfi and Walk, 1997), or for the choice

Kt(x, z) =
1

hd
t

e−‖x−z‖2/h2
t

(Gaussian kernel—see, e.g., Stein, 1970) as soon as the distribution of X has
a density. In fact, the main message of Theorem 3.1 is that the distributed
and asynchronous procedure (2.1) retains the nice consistency properties of
its centralized counterpart (Györfi et al., 2002), while allowing to handle a
much larger volume of data in a reasonable time. This important feature is
illustrated in the next section, where a smart implementation of the method
with 28 agents allows to reduce the processing of n = 106 observations from
more than 10 hours to less than 30 minutes. Section 4 will also reveal that
distributing the calculations has no dramatic effect in terms of estimation ac-
curacy. Indeed, numerical evidence shows that the collaboration mechanism
does not degrade the convergence rate of a single processor execution—this
is a nice feature, especially in situations where the distributed architecture
is imposed by physical or geographical constraint.

4 Implementation and numerical studies

This section is devoted to the practical analysis and performance assess-
ment of our consensus-based asynchronous distributed regression solution.

9

To this aim, we wrote a software in Go, an open source native concurrent
programming language developed at Google Inc. We exclusively relied on
the standard library shipped by the language, thus avoiding any external
dependency. The code is available under an open source license at the url
http://github.com/ryadzenine/dolphin. We stress that our goal with
this software is not to deliver a turnkey solution for distributed computing,
but rather to illustrate/simulate some of the essential features and issues
encountered in the analysis of distributed systems.

We start by introducing the software general architecture and the algorithms
we used. Next, we describe the experiments that were carried out and discuss
the numerical results.

4.1 Software architecture

The implementation of the procedure carries some challenges. To begin with,
for the method to scale, one needs to manage the communication overhead.
More precisely, if too many messages are exchanged during the execution of
the procedure, the available network bandwidth will quickly be consumed.
If this happens, the number of agents (more appropriately called workers
in this section) M that the procedure can effectively run in parallel will be
limited, which is clearly not the desired objective. Thus, some care needs
to be taken when choosing the shape of the graph (M,∪s≥tEs). Moreover,
the asynchronous nature of the model must be preserved, which forbids the
use of any synchronization mechanism in the implementation. In particular,
the general software design and the underlying algorithms must ensure that
concurrent writes—in a single memory space—do not happen.

As illustrated in Figure 1, our software is built on top of several workers
and a messaging system. In this architecture, each worker is a software
component that handles the numerical computations, while the messaging
system is a distributed component that allows the workers to communicate.
The messaging system is composed of several queues, where each queue keeps
track of the estimate values of all workers (possibly outdated). In our setup,
each queue serves two twin workers by giving them the ability to either
broadcast their local estimate value or get values from the other workers. In
addition, the queues are connected in a so-called ring topology to form the
messaging system. In this cyclic organization, each queue is only connected
to two other queues of the system: It sends data to one of them and receives
information from the other, in the direction of the arrow.

The algorithm of a given worker component is easy. The worker just listens
on a channel for new data to arrive, performs an iteration (2.1), and then im-

10

Figure 1: Software architecture

mediately broadcast his updated estimate value to the other workers through
its serving queue. Besides, when the worker needs to perform an averaging
step, it just asks its serving queue for the latest known estimate values of
all the other workers, and then average only those values that were not used
before. It should be noted that one worker and its twin perform iterations at
the same rate, so that the averaging step of a given worker always involve at
least the value transmitted by its twin to the queue. In turn, this averaging
mechanism defines the families (aijt)t≥1 of weights.

Let us now describe the way queues perform and communicate. A given
queue, say Q, keeps in its memory the values of all the workers, possibly out-
dated (in our implementation, this is achieved by using a so-called associative
container, or hash-map). The queue Q constantly listens for a message arriv-
ing from the preceding queue in the ring, and updates its local memory once
such a message is received. When this happens, Q immediately sends its
content to the next queue in the ring, and so on. In parallel, Q listens to its
twin workers and instantly updates the corresponding values each time these
workers send information. At the software startup, the distributed messag-
ing system is initialized by choosing one queue at random. This queue then
sends its local memory content to the next queue in the ring, and the process

11

starts.

Thus, in this decentralized architecture, the workers perform at their own
paces, independently of one another, and asynchronously exchange informa-
tion via the messaging system. The implementation verifies Assumptions
1 to 4. More precisely, the graph (M,∪s≥tEs) is strongly connected as
required by Assumption 2, and the constant B2 of Assumption 4 is guar-
anteed to be finite. Note however that B2 cannot be set by hand. In fact,
it depends on the performance of the underlying physical network. In ad-
dition, the initialization policy of the distributed messaging system gives us
the guarantee that, at any time t, only two queues of the messaging system
are communicating. As a consequence, only one queue is partially updating
its associative container. Therefore, concurrent writes never happen in the
distributed messaging system.

The software was benchmarked on a computer with 16 Intel R© Xeon E5-4620
(2.2 GHz) processors, with four cores each. The computer is also equipped of
256 GB of RAM. Noteworthy, each worker and each queue where launched
on their own thread of execution.

4.2 Numerical results

We had to fix some parameters of the estimate (2.1) to carry out the numer-
ical experimentations. To begin with, we consider a constant τ (which we
call the metronome) whose aim is to regulate the behavior of the workers.
More precisely, every worker does an averaging step for each τ − 1 computa-
tion steps. Precisely, for a worker i ∈ {1, . . . ,M}, the set T i containing the
time instants where the worker performs a computation is just defined as the
complementary set of {k ∈ N

⋆ : k ≡ 0 (mod τ)}.

As for the estimate itself, we used a Gaussian kernel, of the form

Kt(x, z) =
1

hd
t

e−‖x−z‖2/h2
t , x, z ∈ R

d,

where ‖ · ‖ is the Euclidean norm. The smoothing parameter ht was set to

t−
d

d+4 (this choice is in line with the results of Mokkadem et al., 2009, in
dimension d = 1). Finally, we let the constants C1 and C2 of Assumption 3
be equal to 1. We realize that other, eventually data-dependent, parameter
choices are possible. However, our goal in this section is more to highlight
the scaling capabilities of the algorithm (that is, its ability to deal with a
large amount of data) rather than assessing its statistical performance.

12

The procedure was benchmarked on three synthetic datasets generated by the
following models (we set X = (X1, . . . , Xd) and let N (µ, σ2) be a Gaussian
random variable with mean µ and variance σ2):

Model 1: d = 2, Y = X2
1 + exp(−X2

2).

Model 2: d = 4, Y = X1X2 +X2
3 −X4 +N (0, 0.05).

Model 3: d = 4, Y = 1[X1>0] + 1[X4−X2>1+X3] +X3
2 + exp(−X2

2)

+N (0, 0.05).

In order to keep Y bounded, all values of |Y | above 1 were discarded. For
each model, two designs were considered: Uniform over (0, 1)d and Gaussian
with mean 0 and covariance matrix Σ with Σij = 2−|i−j|. In addition, the
benchmarks were carried out with a number of workers M ranging from
1 to 28. Since a typical workstation has between 4 and 8 processors, it
should be noted that these experimental values of M cover a wide range of
practical cases. In order to assess the impact of the averaging step, two values
were tested for the metronome: τ= 2 (high frequency message passing) and
τ = M2 (low frequency message passing).

Each simulated dataset contains 106 observations and is split into M training
sets Ai, i ∈ {1, . . . ,M}, and a test set T . The test set contains 20% of
the data and the remaining examples are uniformly distributed between the
training sets Ai. For every pair (x, y) in T , and for every worker i, we train
the estimate ri(x) on the data sequentially acquired from Ai, and finally
evaluate the L2 error of i via the formula

erri =
∑

(x,y)∈T

(

y − ri(x)
)2

.

For each experiment and each i, erri was measured every 5 seconds by
stopping the corresponding worker, which was then immediately resumed.

Figure 2 shows the computing time with different values of M and τ for
Model 1 and the uniform design. This figure also contains a bar labeled
“Optimal” which corresponds to the time a parallelized procedure with no
communication overhead would take to process the entire dataset. It is de-
fined as the time the estimate with one single worker takes to process the
entire dataset divided by the number of workers. We notice that the comput-
ing time significantly decreases when more workers are available. In fact, the
procedure can shrink the computing time by an order of magnitude, pass-
ing from 10:30 hours of calculation with 1 processor to less than 30 minutes
with 28 workers! We also see that the decrease of computing time is close to
the best one could get by adding more computing power when M is small.

13

Figure 2: Relative computing times (Model 1, uniform design)

However, this is no more true when M gets larger, because of the overhead
introduced by the averaging step, which grows linearly with M . Finally, we
also observe the low impact of the different values of τ on the final comput-
ing time. This set of remarks also holds for Model 2, Model 3, and the
Gaussian design (not shown). This is coherent, since the model choice has
in fact no impact on the scaling properties of the algorithm.

Figure 3 depicts a typical temporal evolution of the empirical L2 error (aver-
aged over all workers) forModel 1 and the uniform design (the same patterns
are observed for the other models). As predicted by the theory, consensus
and convergence happen for every value of M . Figures 4-6 show with more
details the relative effects of our model when compared to a basic Révész-type
estimate (obtained by taking M = 1). Denoting by err the empirical error
of this basic online estimate and by err1, . . . , errM the respective errors of
the M workers of the asynchronous distributed solution, we computed every
5 seconds the quantity

relative gain =
err− 1

M

∑M
i=1 erri

err

.

(A small negative value of the relative gain means that the distributed
model performs almost as well as the non-distributed one in terms of esti-
mation accuracy). The main message here is that our distributed procedure
does not seem to deteriorate the Révész-type estimate (M = 1) convergence

14

Figure 3: A typical evolution of the empirical error (Model 1, uniform
design)

rate—the degradation is typically negligible, of the order of 2% with some
peaks around 5% in Model 1.

Figure 4: relative gain (Model 1, uniform design)

5 Proof of Theorem 3.1

5.1 Some preliminary results

Procedure (2.1) falls in the general model for distributed and asynchronous
computation presented by Tsitsiklis et al. (1986), and analyzed by these au-
thors in the context of deterministic and stochastic gradient-type algorithms

15

Figure 5: relative gain (Model 2, Gaussian design)

Figure 6: relative gain (Model 3, Gaussian design)

(see also Tsitsiklis, 1984; Bertsekas and Tsitsiklis, 1997). This model has the
following format:

zit+1 =
M
∑

j=1

aijt z
j(τ ijt) + sit, for all i ∈ {1, . . . ,M} and all t ≥ 1, (5.1)

where the value zit is held by agent i at time t, starting with some initial zi1
(as before, we let zj(τ ijt) = zj

τ ijt
). The term sit is a general computation step,

whose form is not specified in this subsection.

Equation (5.1), which defines the structure of the algorithm, is a linear system
driven by the steps (sit)t≥1. In the special case where communication delays
are zero, we have τ ijt = t, and (5.1) becomes a linear system with state
vector (z1t , . . . , z

M
t). In general, however, the presence of communication

delays necessitates a more involved analysis. Exploiting linearity, it is easy
to conclude that, for each t ≥ 1, there exist scalars φij(t, 0), . . . , φij(t, t− 1)

16

such that

zit =
M
∑

j=1

φij(t, 0)zj1 +
t−1
∑

τ=1

M
∑

j=1

φij(t, τ)sjτ . (5.2)

The coefficients (φij(t, τ))t≥1,0≤τ≤t−1 do not depend upon the values taken by
the computation terms sit. They are determined by the sequence of transmis-
sion and reception times and the combining coefficients. Consequently, they
are unknown, in general. Nevertheless, they have the following qualitative
properties:

Lemma 5.1 (Tsitsiklis et al., 1986). Let the arrays (φij(t, τ))t≥1,0≤τ≤t−1 be
defined as in (5.2). Then:

1. If Assumption 1 is satisfied, then φij(t, τ) ≥ 0 and 0 ≤
∑M

j=1 φ
ij(t, τ) ≤

1, for all (i, j) ∈ {1, . . . ,M}2 and all 0 ≤ τ ≤ t− 1.

2. Assume that Assumptions 1-4 are satisfied. Then the following state-
ments are true:

(a) For all (i, j) ∈ {1, . . . ,M}2 and all τ ≥ 0, the limit of φij(t, τ)
as t tends to infinity exists. This limit is independent of i and is
denoted by φj

τ .

(b) There exists a constant η > 0 such that φj
τ ≥ η, for all j ∈

{1, . . . ,M} and all τ ≥ 0.

(c) There exists a constant A > 0 and ρ ∈ (0, 1) such that, for all
(i, j) ∈ {1, . . . ,M}2 and all 0 ≤ τ ≤ t− 1,

∣

∣φij(t, τ)− φj
τ

∣

∣ ≤ Aρt−τ .

Remark 5.1. It is a simple but useful exercise to prove that
∑M

j=1 φ
ij(t, 0) =

1, for all i ∈ {1, . . . ,M} and all t ≥ 1. Consequently, letting t → ∞, we see
that

∑M
j=1 φ

j
0 = 1. Also, for all τ ≥ 0, 0 ≤

∑M
j=1 φ

j
τ ≤ 1.

The pioneering ideas of Tsitsiklis et al. (1986) have been further explored
by Blondel et al. (2005) in the simplified context of a so-called agreement
algorithm of the form

zit+1 =
M
∑

j=1

aijt z
j(τ ijt), for all i ∈ {1, . . . ,M} and all t ≥ 1. (5.3)

The following result expresses the fact that Assumptions 1-4 are sufficient
for the agents of model (5.3) to reach an asymptotic consensus.

17

Theorem 5.1 (Blondel et al., 2005). Consider the agreement model (5.3),
and assume that Assumptions 1-4 are satisfied. Then there exists a consensus
value z⋆ (independent of i) such that, for all i ∈ {1, . . . ,M},

zit → z⋆ as t → ∞.

Let us consider again the general model (5.1). Fix a time instant t0 ≥ 1,
and assume that the processors stop computing after time t0 (that is, s

i
t = 0

for all t ≥ t0), but keep communicating and combining. Then equation (5.1)
takes the form

zit+1 =
M
∑

j=1

aijt z
j(τ ijt), for all i ∈ {1, . . . ,M} and all t ≥ t0.

Thus, in that case, Theorem 5.1 shows that the iterative process asymptoti-
cally reaches a consensus value, depending upon t0. Call this limiting scalar
z⋆t0 . Thus, according to Lemma 5.1, taking the limit in t on both sides of
identity (5.2), we have

z⋆t =
M
∑

j=1

φj
0z

j
1 +

t−1
∑

τ=1

M
∑

j=1

φj
τs

j
τ , for all t ≥ 1. (5.4)

We note that the definition of z⋆t does not imply any assumption on the
computation terms. Also, one easily verifies that the agreement sequence
(z⋆t)t≥1 satisfies the following recursion formula:

{

z⋆1 =
∑M

j=1 φ
j
0z

j
1

z⋆t+1 = z⋆t +
∑M

j=1 φ
j
ts

j
t for t ≥ 1.

(5.5)

The scalar z⋆t is the value at which all processors would asymptotically agree
if they were to stop computing (but keep communicating and combining)
at a time t. It may be viewed as a concise global summary of the state of
computation at time t, in contrast to the zit’s, which are the local states of
computation.

5.2 Proof of Theorem 3.1

The proof of Theorem 3.1 starts with the observation that the distributed
architecture (2.1) under study is but a special case of model (5.1), with

sit =

{

−εit+1H
(

Zi
t+1, r

i
t(x)

)

if t ∈ T i

0 otherwise,

18

where we recall that Zi
t = (Xi

t, Y
i
t) andH(Zi

t+1, r
i
t(x)) = rit(x)Kt+1(x,X

i
t+1)−

Y i
t+1Kt+1(x,X

i
t+1). The set T

i contains all time instants where processor i is
effectively computing. In particular, identity (5.5) guarantees the existence
of an agreement sequence (r⋆t (x))t≥1 satisfying the recursion

{

r⋆1(x) =
∑M

j=1 φ
j
0Y

j
1

r⋆t+1(x) = r⋆t (x)−
∑M

j=1 1[t∈T j]φ
j
tε

j
t+1H

(

Zj
t+1, r

j
t (x)

)

for t ≥ 1,

(5.6)
where the [0, 1]-valued functions φj

t are defined in Lemma 5.1. The limiting
sequence (r⋆t (x))t≥1 plays a central role in the proof of Theorem 3.1.

The following lemma ensures that whenever Y is bounded, then so are the
sequences (rit(x))t≥1 and (r⋆t (x))t≥1.

Lemma 5.2. Assume that Assumptions 1-4 are satisfied. Assume, in addi-
tion, that |Y | ≤ γ, and that

sup
t,x,z

εitKt(x, z) ≤ 1, for all i ∈ {1, . . . ,M}. (5.7)

Then sup
x∈Rd |rit(x)| ≤ γ, for all i ∈ {1, . . . ,M} and all t ≥ 1. Moreover,

sup
x∈Rd |r⋆t (x)| ≤ γ, for all t ≥ 1.

Proof of Lemma 5.2. We know, by definition of the set T i, that sit = 0 when-
ever t 6∈ T i. Furthermore, according to Assumption 2(a), aijt = 1[i 6=j] for
t ∈ T i. Thus,
{

rit+1(x) = rit(x)
[

1− εit+1Kt+1(x,X
i
t+1)

]

+ εit+1Y
i
t+1Kt+1(x,X

i
t+1) if t ∈ T i

rit+1(x) =
∑M

j=1 a
ij
t r

j(x, τ ijt) otherwise.

The first statement follows easily from the boundedness of Y and inequality
(5.7). The second claim is then an immediate consequence of the definition
of r⋆t0(x) as the limit of any of the rit(x)’s if the processors stop computing
after time t0.

The main idea of the proof is to establish an equivalent of Theorem 3.1 with
r⋆t in place of rit. To this aim, we start by rewriting iteration (5.6) in the
following form:
{

r⋆1(x) =
∑M

j=1 φ
j
0Y

j
1

r⋆t+1(x)= r⋆t (x)−
∑M

j=1 1[t∈T j]φ
j
tε

j
t+1H

(

Zj
t+1, r

⋆
t (x)

)

+∆t+1(x) for t ≥ 1,

where

∆t+1(x)
def

=
M
∑

j=1

1[t∈T j]φ
j
tε

j
t+1

[

H
(

Zj
t+1, r

⋆
t (x)

)

−H
(

Zj
t+1, r

j
t (x)

)]

.

19

The crucial step is to observe that, for all t ≥ 1,

r⋆t (x) = m⋆
t (x) +Mt(x), (5.8)

where m⋆
t (x) obeys the recursion

{

m⋆
1(x) =

∑M
j=1 φ

j
0Y

j
1

m⋆
t+1(x) = m⋆

t (x)−
∑M

j=1 1[t∈T j]φ
j
tε

j
t+1H

(

Zj
t+1,m

⋆
t (x)

)

for t ≥ 1,

(5.9)
and

Mt(x) =
t

∑

τ=2

[

∆τ (x)
t

∏

ℓ=τ+1

(

1−
M
∑

j=1

1[ℓ−1∈T j]φ
j
ℓ−1ε

j
ℓKℓ(x,X

j
ℓ)
)

]

(5.10)

(by convention, an empty sum is 0 and a void product is 1). In view of
decomposition (5.8), the rest of the proof is naturally divided into two steps:
Firstly we establish L2 consistency of the intermediary estimate m⋆

t (x) to-
wards r(x) (Proposition 5.1), and secondly we show that the reminder term
Mt(x) tends to zero in L2 (Proposition 5.2).

An easy induction reveals that the intermediary estimate m⋆
t (x) is

m⋆
t (x) =

M
∑

i=1

t
∑

τ=1

W i
t,τ (x)Y

i
τ ,

where, for any processor i ∈ {1, . . . ,M}, any time instant t ≥ 1, and all
1 ≤ τ ≤ t,

W i
t,τ (x) = 1[τ−1∈T i]φ

i
τ−1ε

i
τKτ (x,X

i
τ)

t
∏

ℓ=τ+1

(

1−
M
∑

j=1

1[ℓ−1∈T j]φ
j
ℓ−1ε

j
ℓKℓ(x,X

j
ℓ)
)

(by convention, 1[0∈T i] = 1, εi1 = 1, and K1(·, ·) ≡ 1). The weights W i
t,τ (x)

are nonnegative random variables which do not depend upon the values of the
Yt’s. Moreover, it is easy to check that they satisfy the normalizing condition

M
∑

i=1

t
∑

τ=1

W i
t,τ (x) = 1.

(Recall that
∑M

j=1 φ
j
0 = 1 and 0 ≤

∑M
j=1 φ

j
τ ≤ 1 for τ ≥ 0 ; see Remark 5.1.)

Thus, the good news is that the estimate m⋆(x) is but a special form of a
locally weighted average estimate (see, e.g., Györfi et al., 2002, Chapter 2).
According to Stone’s theorem (Stone, 1977, and Chapter 4 in Györfi et al.,
2002), L2 consistency of m⋆(x) holds if the following three conditions are
satisfied:

20

(i) There is a constant c such that, for every nonnegative Borel measurable
function f : Rd → R satisfying Ef(X) < ∞,

E

[

M
∑

i=1

t
∑

τ=1

W i
t,τ (X)f(Xi

τ)

]

≤ cEf(X), for all t ≥ 1.

(ii) For all a > 0,

E

[M
∑

i=1

t
∑

τ=1

W i
t,τ (X)1[‖Xi

τ−X‖>a]

]

→ 0 as t → ∞.

(iii) One has

E

[M
∑

i=1

t
∑

τ=1

(

W i
t,τ (X)

)2
]

→ 0 as t → ∞.

Proposition 5.1. Assume that there exist a sequence (ht)t≥1 of positive real
numbers and a nonnegative, nonincreasing function L on [0,∞) such that
ht → 0 (as t → ∞), rdL(r) → 0 (as r → ∞) and, for all x, z ∈ R

d and all
t ≥ 2,

hd
tKt(x, z) ≤ L

(

‖x− z‖

ht

)

. (5.11)

Assume, in addition, that

sup
t,x,z

εitKt(x, z) ≤ 1 for all i ∈ {1, . . . ,M},

and that

lim inf
t→∞

∫

Rd

Kt(x, z)µ(dz) > 0 at µ-almost all x ∈ R
d. (5.12)

Then, provided thd
t → ∞, one has, for all i ∈ {1, . . . ,M},

E

[
∫

Rd

|m⋆
t (x)− r(x)|2 µ(dx)

]

→ 0 as t → ∞.

Proof of Proposition 5.1. The arguments are adapted from the proof of The-
orem 25.1 in Györfi et al. (2002), which offers a similar result for the cen-
tralized version. We proceed by checking Stone’s conditions (i)-(iii) of con-
sistency.

21

To show (i), fix f a nonnegative integrable function on R
d, and define m̄⋆

t (x)
by iteration (5.9), with m̄⋆

1(x) =
∑M

j=1 φ
j
0f(X

j
1) in place of

∑M
j=1 φ

j
0Y

j
1 , and

(Xj
t+1, f(X

j
t+1)) in place of (Xj

t+1, Y
j
t+1). We shall prove that

Em̄⋆
t (X) = Ef(X), (5.13)

which implies (i) with c = 1. To establish (5.13), denote by Ft the σ-algebra
generated by (X1, Y1), . . . , (Xt, Yt). Then

E
[

m̄⋆
t+1(X)|Ft

]

= E [m̄⋆
t (X)|Ft]

+
M
∑

j=1

1[t∈T j]φ
j
tε

j
t+1E

[(

f(Xj
t+1)− m̄⋆

t (X)
)

Kt+1(X,Xj
t+1)|Ft

]

= E [m̄⋆
t (X)|Ft]

+ ε⋆t+1

∫

Rd

∫

Rd

(f(x)− m̄⋆
t (z))Kt+1(z,x)µ(dx)µ(dz),

where, to lighten notation a bit, we set

ε⋆t+1 =
M
∑

j=1

1[t∈T j]φ
j
tε

j
t+1.

Thus,

E
[

m̄⋆
t+1(X)|Ft

]

= E [m̄⋆
t (X)|Ft] + ε⋆t+1

∫

Rd

∫

Rd

(f(x)− m̄⋆
t (x))Kt+1(x, z)µ(dx)µ(dz)

(by symmetry of Kt(·, ·))

= E [m̄⋆
t (X)|Ft] + ε⋆t+1E

[

(f(X)− m̄⋆
t (X))Kt+1(X,X1

t+1)
]

.

Therefore, taking expectation on both sides of the equality, and noting that
Em̄⋆

1(X) = Ef(X), we see that
{

Em̄⋆
1(X) = Ef(X)

Em̄⋆
t+1(X) = Em̄⋆

t (X) + ε⋆t+1E
[

(f(Xt+1)− m̄⋆
t (X))Kt+1(X,X1

t+1)
]

for t ≥ 1.

Next, let the sequence (f ⋆
t (x))t≥1 be defined by the iteration

{

f ⋆
1 (x) = f(x)
f ⋆
t+1(x) = f ⋆

t (x) + ε⋆t+1 (f(x)− f ⋆
t (x))Kt+1(x,X

1
t+1) for t ≥ 1.

Clearly, f ⋆
t (x) = f(x) for all t ≥ 1, and

Ef ⋆
t+1(X) = Ef ⋆

t (X) + ε⋆t+1E
[

(f(X)− f ⋆
t (X))Kt+1(X,X1

t+1)
]

.

22

Consequently, the sequences (Em̄⋆
t (X))t≥1 and (Ef ⋆

t (X))t≥1 satisfy the same
iteration, and thus

Em̄⋆
t (X) = Ef ⋆

t (X) = Ef(X).

This proves (5.13).

Secondly, for (iii), we set

pt(x) =

∫

Rd

Kt(x, z)µ(dz).

For each i ∈ {1, . . . ,M}, each 1 ≤ τ ≤ t, and all x ∈ R
d, we have, using the

properties of Kt(·, ·) and Assumption 5(b),

W i
t,τ (x) ≤

C2L(0)

τhd
τ

.

Also, recalling that η is the positive constant of Lemma 5.1,

EW i
t,τ (x) ≤

C2L(0)

τhd
τ

exp

[

−C1η
t

∑

ℓ=τ+1

1

ℓ

(

EKℓ(x,X)
M
∑

j=1

1[ℓ−1∈T j]

)

]

≤
C2L(0)

τhd
τ

exp

[

−C1η
t

∑

ℓ=τ+1

pℓ(x)

ℓ

]

.

In the second inequality, we used Assumption 5(a). Hence, evoking condition
(5.12), we deduce that, for each i ∈ {1, . . . ,M} and τ ≥ 1, and for µ-almost
all x ∈ R

d,
EW i

t,τ (x) → 0 as t → ∞. (5.14)

Since EW i
t,τ (x) ≤ 1, this implies, by the Lebesgue dominated convergence

theorem, that EW i
t,τ (X) → 0 as well. Thus, putting all the pieces together,

we conclude that

E

[M
∑

i=1

t
∑

τ=1

(

W i
t,τ (X)

)2
]

≤ C2L(0)
M
∑

i=1

t
∑

τ=1

EW i
t,τ (X)

τhd
τ

→ 0

by the condition thd
t → ∞ and the Toeplitz lemma (see, e.g., Problem A.5

in Györfi et al., 2002).

To prove Stone’s condition (ii), it is enough to establish that for all i ∈
{1, . . . ,M}, all a > 0, and µ-almost all x ∈ R

d,

E

[t
∑

τ=1

W i
t,τ (x)1[‖Xi

τ−x‖>a]

]

→ 0 as t → ∞.

23

To this aim, first observe that by condition (5.12), for µ-almost all x, there
exists p(x) > 0 and a large enough time t0(x) such that, for all t ≥ t0(x),
pt(x) ≥ p(x). Thus, using (5.14), we see that it is enough to show that, for
these x,

E





t
∑

τ=t0(x)

W i
t,τ (x)1[‖Xi

τ−x‖>a]



 → 0.

But

E





t
∑

τ=t0(x)

W i
t,τ (x)1[‖Xi

τ−x‖>a]





=
t

∑

τ=t0(x)

EW i
t,τ (x)×

E
[

Kτ (x,X
i
τ)1[‖Xi

τ−x‖>a]

]

EKτ (x,Xi
τ)

≤
t

∑

τ=t0(x)

EW i
t,τ (x)×

h−d
τ L(a/hτ)

pτ (x)

≤
t

∑

τ=t0(x)

EW i
t,τ (x)×

h−d
τ L(a/hτ)

p(x)

→ 0,

by the fact that h−d
t L(a/ht) → 0 and the Toeplitz lemma. This completes

the proof of the proposition.

The next step in the proof of Theorem 3.1 is to control the term Mt(x) of
identity (5.8). To reach this goal, we first need a lemma. (In the sequel,
the letter C denotes a generic constant whose value may change from line to
line.)

Lemma 5.3. Assume that Assumptions 1-5 are satisfied. Assume, in addi-
tion, that |Y | ≤ γ, that (5.11) is satisfied, and that

sup
t,x,z

εitKt(x, z) ≤ 1, for all i ∈ {1, . . . ,M}.

Let ρ ∈ (0, 1) be the constant of Lemma 5.1. Then, for all i ∈ {1, . . . ,M}
and all t ≥ 1,

sup
x∈Rd

∣

∣rit(x)− r⋆t (x)
∣

∣ ≤ Cξt,

where C ≥ 0 is a universal constant independent of i, and

ξt =
t−1
∑

τ=0

ρt−τ

(τ + 1)hd
τ+1

.

24

Proof of Lemma 5.3. Observe to start with that, for all i ∈ {1, . . . ,M} and
all t ≥ 1,

sup
x∈Rd

∣

∣H
(

Zi
t+1, r

i
t(x)

)∣

∣ ≤ 2γL(0)h−d
t+1. (5.15)

Here we used the fact that |Y |, the |rit(x)|’s and |r⋆t (x)| are bounded by
γ—see Lemma 5.2. Now, according to identity (5.2) and (5.4), we may write

∣

∣rit(x)− r⋆t (x)
∣

∣ =

∣

∣

∣

∣

∣

M
∑

j=1

(

φij(t, 0)− φj
0

)

Y j
1 +

t−1
∑

τ=1

M
∑

j=1

(

φij(t, τ)− φj
τ

)

sjτ

∣

∣

∣

∣

∣

≤
M
∑

j=1

∣

∣φij(t, 0)− φj
0

∣

∣

∣

∣Y j
1

∣

∣+
t−1
∑

τ=1

M
∑

j=1

∣

∣φij(t, τ)− φj
τ

∣

∣

∣

∣sjτ
∣

∣

≤ (M.γ.A)ρt + A

t−1
∑

τ=1

M
∑

j=1

ρt−τ |sjτ |,

where A and ρ are the constants of Lemma 5.1. Thus,

∣

∣rit(x)− r⋆t (x)
∣

∣ ≤ (M.γ.A)ρt + A

t−1
∑

τ=1

M
∑

j=1

ρt−τ1[τ∈T j]ε
j
τ+1

∣

∣H
(

Zj
τ+1, r

j
τ (x)

)∣

∣

≤ (M.γ.A)ρt + (2γL(0).M.A.C2)
t−1
∑

τ=1

ρt−τ

(τ + 1)hd
τ+1

(by inequality (5.15)).

As desired, we conclude that, for some constant C ≥ 0 independent of i,

sup
x∈Rd

∣

∣rit(x)− r⋆t (x)
∣

∣ ≤ C
t−1
∑

τ=0

ρt−τ

(τ + 1)hd
τ+1

.

In accordance with our proof plan, the next proposition ensures that the
(random) series (Mt(x))t≥2 defined in (5.10) vanishes in a L2 sense as t → ∞.

Proposition 5.2. Assume that the assumptions of Theorem 3.1 are satisfied.
Then, provided (thd

t)t≥1 is nondecreasing and
∑

t≥1
1

t2h2d
t

< ∞, one has

E

∫

Rd

M2
t (x)µ(dx) → 0 as t → ∞.

25

Proof of Proposition 5.2. Clearly, for all i ∈ {1, . . . ,M} and all t ≥ 1,
∣

∣H
(

Zi
t+1, r

i
t(x)

)

−H
(

Zi
t+1, r

⋆
t (x)

)∣

∣ ≤ L(0)h−d
t+1 sup

x∈Rd

∣

∣rit(x)− r⋆t (x)
∣

∣ .

On the other hand, for all x ∈ R
d and all t ≥ 2,

Mt(x) ≤
t

∑

τ=2

∆τ (x)

≤ (L(0).C2)
t

∑

τ=2

(τhd
τ)

−1

M
∑

j=1

sup
x∈Rd

∣

∣rjτ−1(x)− r⋆τ−1(x)
∣

∣ .

Thus, according to Lemma 5.3, we deduce that for some constant C ≥ 0,

Mt(x) ≤ C

t
∑

τ=2

ξτ−1

τhd
τ

,

where

ξt =
t−1
∑

τ=0

ρt−τ

(τ + 1)hd
τ+1

.

By applying technical Lemma 5.4 at the end of the section, we conclude that
there exists a nonnegative universal constant C ′ such that supt,x Mt(x) ≤ C ′.
Therefore, invoking the Lebesgue dominated convergence theorem, we see
that it is enough to prove that, for µ-almost all x ∈ R

d, EMt(x) → 0 as
t → ∞.

To this aim, let

pt(x) =

∫

Rd

Kt(x, z)µ(dz),

and recall—by condition (5.12)—that for µ-almost all x, there exists p(x) > 0
and a large enough time t0(x) such that, for all t ≥ t0(x), pt(x) ≥ p(x). Using
similar arguments as in the first part of the proof, we may write

Mt(x) ≤ C
t

∑

τ=2

[

ξτ−1

τhd
τ

t
∏

ℓ=τ+1

(

1−
M
∑

j=1

1[ℓ−1∈T j]φ
j
ℓ−1ε

j
ℓKℓ(x,X

j
ℓ)
)

]

.

Consequently, for µ-almost all x and all t large enough (where the “large
enough” depends upon x),

EMt(x) ≤ C

t0(x)−2
∑

τ=2

ξτ−1

τhd
τ

exp



−C1η

t
∑

ℓ=t0(x)

p(x)

ℓ





+ C

t
∑

τ=t0(x)−1

ξτ−1

τhd
τ

exp

[

−C1η

t
∑

ℓ=τ+1

p(x)

ℓ

]

.

26

The first term can be made arbitrarily small as t → ∞. To control the second
term, recall that

t
∑

ℓ=1

1

ℓ
= ln t+ γ + o(1) as ℓ → ∞

(where γ is the Euler-Mascheroni constant). Hence, for some positive con-
stants α and C (both depending upon x),

t
∑

τ=t0(x)−1

ξτ−1

τhd
τ

exp

[

−C1η

t
∑

ℓ=τ+1

p(x)

ℓ

]

≤
C

tα

t
∑

τ=2

ταξτ−1

τhd
τ

.

According to Lemma 5.4, the upper bound tends to zero as t → ∞.

We are now ready to finalize the proof of Theorem 3.1. For each i ∈
{1, . . . ,M}, we write

E

[
∫

Rd

∣

∣rit(x)− r(x)
∣

∣

2
µ(dx)

]

≤ 2E

[

sup
x∈Rd

∣

∣rit(x)− r⋆(x)
∣

∣

2
]

+ 2E

[
∫

Rd

|r⋆t (x)− r(x)|2 µ(dx)

]

≤ Cξ2t + 2E

[
∫

Rd

|r⋆t (x)− r(x)|2 µ(dx)

]

(by Lemma 5.3).

The first term on the right-hand side tends to zero by technical Lemma 5.4.
To prove that the second one vanishes as well, just note that

E

[
∫

Rd

|r⋆t (x)− r(x)|2 µ(dx)

]

≤ 2E

[
∫

Rd

|m⋆
t (x)− r(x)|2 µ(dx)

]

+ 2

∫

Rd

EM2
t (x)µ(dx)

and apply Proposition 5.1 and Proposition 5.2.

Lemma 5.4 (A technical lemma). Let ρ ∈ (0, 1) and let

ξt =
t−1
∑

τ=0

ρt−τ

(τ + 1)hd
τ+1

, for all t ≥ 1.

27

If thd
t → ∞, then ξt → 0 as t → ∞. If, in addition, (thd

t)t≥1 is nondecreasing
and

∑

t≥1
1

t2h2d
t

< ∞, then

∑

τ≥2

ξτ−1

τhd
τ

< ∞ and
1

tα

t
∑

τ=2

ταξτ−1

τhd
τ

→ 0 as t → ∞,

for all α > 0.

Proof of Lemma 5.4. The first statement is an immediate consequence of
Toeplitz lemma. To prove the second point, fix t ≥ 2 and note that

t
∑

τ=2

ξτ−1

τhd
τ

=
t

∑

τ=2

1

τhd
τ

τ−2
∑

ℓ=0

ρτ−1−ℓ

(ℓ+ 1)hd
ℓ+1

=
t−2
∑

τ=0

1

(τ + 1)hd
τ+1

t
∑

ℓ=τ+2

ρℓ−τ−1

ℓhd
ℓ

≤
t−2
∑

τ=0

1

(τ + 1)hd
τ+1(τ + 2)hd

τ+2

t
∑

ℓ=τ+2

ρℓ−τ−1

≤
ρ

1− ρ

∑

τ≥1

1

τ 2h2d
τ

< ∞.

Similarly, the third statement follows by writing

1

tα

t
∑

τ=2

ταξτ−1

τhd
τ

=
1

tα

t
∑

τ=2

τα

τhd
τ

τ−2
∑

ℓ=0

ρτ−1−ℓ

(ℓ+ 1)hd
ℓ+1

=
1

tα

t−2
∑

τ=0

1

(τ + 1)hd
τ+1

t
∑

ℓ=τ+2

ℓαρℓ−τ−1

ℓhd
ℓ

≤
1

tα

t−2
∑

τ=0

(τ + 2)α

(τ + 1)hd
τ+1(τ + 2)hd

τ+2

t−τ−1
∑

k=1

(

k + τ + 1

τ + 2

)α

ρk

≤
1

tα

t−2
∑

τ=0

(τ + 2)α

(τ + 1)hd
τ+1(τ + 2)hd

τ+2

t−τ−1
∑

k=1

kαρk

≤
C

tα

t−1
∑

τ=1

(τ + 1)α

τ 2h2d
τ

,

for some positive constant C. Now, fix ε > 0 and choose T0 large enough so
that

∑

τ≥T0

1

τ 2h2d
τ

≤ ε.

28

Then, for all t large enough,

1

tα

t−1
∑

τ=1

(τ + 1)α

τ 2h2d
τ

=
1

tα

T0−1
∑

τ=1

(τ + 1)α

τ 2h2d
τ

+
1

tα

t−1
∑

τ=T0

(τ + 1)α

τ 2h2d
τ

≤
1

tα

T0−1
∑

τ=1

(τ + 1)α

τ 2h2d
τ

+ ε.

The conclusion follows by letting t grow to infinity.

References

D.P. Bertsekas and J.N. Tsitsiklis. Parallel and Distributed Computation:
Numerical Methods. Athena Scientific, Nashua, 1997.

P. Bianchi, G. Fort, W. Hachem, and J. Jakubowicz. Convergence of a
distributed parameter estimator for sensor networks with local averaging
of the estimates. In Proceedings of the 36th IEEE International Conference
on Acoustics, Speech and Signal Processing, 2011a.

P. Bianchi, G. Fort, W. Hachem, and J. Jakubowicz. Performance analysis of
a distributed Robbins-Monro algorithm for sensor networks. In Proceedings
of the 19th European Signal Processing Conference, 2011b.

P. Bianchi, S. Clémençon, J. Jakubowicz, and G. Morra Adel. On-line learn-
ing gossip algorithm in multi-agent systems with local decision rules. In
Proceedings of the 2013 IEEE International Conference on Big Data, 2013.

V.D. Blondel, J.M. Hendrickx, A. Olshevsky, and J.N. Tsitsiklis. Convergent
in multiagent coordination, consensus, and flocking. In Proceedings of
the Joint 44th IEEE Conference on Decision and Control and European
Control Conference, 2005.

S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. Randomized gossip algo-
rithms. IEEE Transactions on Information Theory, 52:2508–2530, 2006.

L. Györfi. Recent results on nonparametric regression estimate and multi-
ple classification. Problems of Control and Information Theory, 10:43–52,
1981.

L. Györfi and H. Walk. On the strong universal consistency of a series type
regression estimate. Mathematical Methods of Statistics, 5:332–342, 1996.

29

L. Györfi and H. Walk. On the strong universal consistency of a recursive
regression estimate by Pál Révész. Statistics & Probability Letters, 31:
177–183, 1997.

L. Györfi, M. Kohler, A. Krzyżak, and H. Walk. A Distribution-Free Theory
of Nonparametric Regression. Springer, New York, 2002.

M.I. Jordan. On statistics, computation and scalability. Bernoulli, 19:1378–
1390, 2013.

J. Kiefer and J. Wolfowitz. Stochastic estimation of the maximum of a
regression function. The Annals of Mathematical Statistics, 23:462–466,
1952.

A. Mokkadem, M. Pelletier, and Y. Slaoui. Revisiting Révész stochastic
approximation method for the estimation of a regression function. ALEA,
6:63–114, 2009.

B. Patra. Convergence of distributed asynchronous learning vector quanti-
zation algorithms. Journal of Machine Learning Research, 12:3431–3466,
2011.

P. Révész. Robbins-Monro procedure in a Hilbert space and its application
in the theory of learning processes I. Studia Scientiarum Mathematicarum
Hungarica, 8:391–398, 1973.

P. Révész. How to apply the method of stochastic approximation in the
non-parametric estimation of a regression function. Series Statistics, 8:
119–126, 1977.

H. Robbins and S. Monro. A stochastic approximation method. The Annals
of Mathematical Statistics, 22:400–407, 1951.

E.M. Stein. Singular Integrals and Differentiability Properties of Functions.
Princeton University Press, Princeton, 1970.

C.J. Stone. Consistent nonparametric regression (with discussion). The An-
nals of Statistics, 5:595–645, 1977.

J.N. Tsitsiklis. Problems in decentralized decision making and computation.
Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, 1984.

J.N. Tsitsiklis, D.P. Bertsekas, and M. Athans. Distributed asynchronous de-
terministic and stochastic gradient optimization algorithms. IEEE Trans-
actions on Automatic Control, 31:803–812, 1986.

30

H. Walk. Strong universal pointwise consistency of recursive regression es-
timates. Annals of the Institute of Statistical Mathematics, 53:691–707,
2001.

31

	Introduction
	A model for distributed regression
	Assumptions and main results
	Implementation and numerical studies
	Software architecture
	 Numerical results

	Proof of Theorem 3.1
	Some preliminary results
	Proof of Theorem 3.1

