
HAL Id: hal-01024654
https://hal.science/hal-01024654

Submitted on 16 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Knowledge base for an autonomic transport layer
Ernesto Expósito, Christophe Chassot, Michel Diaz

To cite this version:
Ernesto Expósito, Christophe Chassot, Michel Diaz. Knowledge base for an autonomic transport
layer. 9th Wired/Wireless Internet Communications (WWIC), Jun 2011, Vilanova i la Geltrú, Spain.
�10.1007/978-3-642-21560-5_15�. �hal-01024654�

https://hal.science/hal-01024654
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Knowledge base for an autonomic transport layer

Ernesto Exposito1,2, Christophe Chassot1,2, Michel Diaz1,2

1 CNRS ; LAAS ; 7 av. du Colonel Roche, F-31077 Toulouse, France

2 Université de Toulouse; UPS, INSA, INP, ISAE; LAAS; F-31077 Toulouse, France
{ernesto.exposito, christophe.chassot, michel.diaz}@laas.fr

Abstract. The accelerated development of Internet and mobile devices has lead
to new QoS-demanding distributed applications and new QoS-providing
communication services, particularly at the transport level. The diversity of
transport services and underlying networks environments asks for a novel
design of the transport layer, able to provide in a transparent and autonomous
way the most adapted service to the application. With this aim in mind, this
paper presents a methodology based on a model-driven architecture (MDA)
approach specialized using ontologies. It provides a QoS ontology model
integrating standard and QoS-oriented transport services, protocols and
mechanisms aimed at characterizing the entities, concepts and relationships
composing this complex domain. This semantic model is intended to facilitate
the integration of future mechanisms and protocols extensions. It offers the
required properties to implement the knowledge base of an autonomic manager
enabling transport service discovery, selection and composition based on
application requirements and network constraints.

Keywords: Model-driven architecture, ontology-driven architecture, transport
protocols, autonomic computing.

1 Introduction

With the accelerated development of Internet and the diversity of mobile devices
(smart-phones, tablets, netbooks and laptops), a new large family of networked
distributed applications and communication services are available today. Multi-
platform instances of a same application are available at home, at work, in our mobile
devices or more recently within the Cloud. These applications present heterogeneous
needs in terms of Quality of Service (QoS) mainly related with time, bandwidth and
reliability requirements. Moreover, networked applications are constantly changing
from high-speed and high-bandwidth networks (e.g. ADSL networks at home), to
variable bandwidth and high delay networks (e.g. when operating over WiFi or 3G
mobile wireless networks).

For traditional applications offering file transfer, web navigation or email
functionalities, a fully ordered and fully reliable transport service such as the one
offered by TCP over a Best-Effort network is well suited. However, time-constraint
applications such as multimedia and interactive applications could prefer a partially
reliable and partially ordered service able to offer a more suited lower end-to-end

delay. Likewise, current heterogeneous network environments lead to more complex
scenarios from the transport layer point of view. Even if traditional protocols such as
TCP perform well over classical wired IP networks, their performances are
suboptimal under new network technologies. Actually, current high speed, wireless
and mobile networks deeply modify the QoS characterization of the network layer by
providing more complex service models in terms of bandwidth, losses, delay or jitter.

These new models of the current heterogeneous network layer, as well as the
complex requirements demanded by the new generation application layer, have
deeply impacted the traditional transport layer. Classical TCP [1] and UDP [2]
protocols are not able to provide an optimal transport service in this new context. This
explains the trends for transport protocols creation and extensions proposals during
the last decades. Examples of the transport layer evolution are the specializations
proposed by the IETF aimed at enhancing traditional transport protocols (e.g. TCP
congestion control and error control extensions [3], TCP extensions for mobile
wireless networks [4], TCP fast retransmission and recovery strategies [5], TCP
satellite enhancements [6], UDP-lite [7], Reliable UDP [8], etc). Likewise, completely
new transport protocols such as the Stream Control Transmission Protocol or SCTP
[9] and the Datagram Congestion Control Protocol or DCCP [10] have also been
developed. Recently, a new IETF group has been created in order to propose an
important extension to TCP called MPTCP [11] in order to take advantage of the new
network capabilities of end-terminals (i.e. multi-homing and multi-paths). We believe
that the current diversity of transport services as well as the complexity resulting from
the deployment of a particular transport protocol or transport mechanism over the
different services provided by heterogeneous networks ask for a novel design of the
transport layer. The next generation transport layer must be able to cope with the
diversity and complexity of this new family of transport protocols. Moreover, current
and future applications will only be able to take advantage of the most adapted and
available transport service if they are able to efficiently interact with this advanced
transport layer.

In this paper a methodology based on a model-driven architecture (MDA)
approach aimed at guiding the design of such a new generation transport layer is
proposed. The approach proposed is based on the specialization of the MDA
paradigm by using ontologies (i.e. ontology-driven architecture or ODA approach).
The main contribution of this paper consists in a QoS ontology model integrating
standard transport services, protocols, functions and mechanisms aimed at
characterizing the entities, concepts and relationships composing this complex
domain. This semantic model is intended to facilitate the integration of future
mechanisms and protocols extensions resulting from the transport layer evolution.
This semantic model offers the required properties to implement the knowledge base
of an autonomic manager enabling transport service discovery, selection and
composition based on application requirements and network constraints. Furthermore,
this model also integrates the required knowledge to guide self-managing strategies in
order to cope with dynamic and heterogeneous environments.

This paper is structured as following. Section 2 presents the state of the art of
model-driven architecture design approaches. Section 3 presents the ontology-driven
architecture design of a knowledge base representing the different features of a QoS-
oriented transport layer. Section 4 illustrates how this knowledge base may be used to

guide self-configuring properties of an autonomic transport layer. Finally, the
conclusions and perspectives of this paper are presented.

2 Model-driven and Ontology-driven architecture

This section introduces the model-driven architecture approach aimed at guiding
the design and development of complex and evolving systems such as the transport
layer protocols. This approach guarantees the portability, the interoperability and the
reusability of the final system. A methodology based on this approach and using
semantic models will be proposed in order to design the architecture of a new
generation QoS-oriented transport layer. In the next paragraphs, the model-driven
architecture and the various models used to represent different abstract level views of
the designed system will be presented. An extension to this approach named
ontology-driven architecture will also be presented.

2.1 Model-driven architecture

The Model Driven Architecture or MDA approach is based on the separation of the
specification of a system from its implementation in any specific platform [12], [13],
[14]. Model-driven approach allows the use of models to understand, design, develop
and maintain a system architecture. The primary goals of MDA are portability,
interoperability and reusability.

The MDA approach follows a process based on abstractions by viewpoints. It
means that a system can be modeled by abstracting a set of selected architectural
concepts and structuring rules. In this way, simplified viewpoints of the system can be
constructed. MDA specifies three viewpoints on a system, a computation independent
viewpoint, a platform independent viewpoint and a platform specific viewpoint. Each
one of these viewpoints is represented or specified using models.
• Computation Independent Model: a computation independent viewpoint focuses on

the requirements of the system and its environment, hiding the details related to its
structure and internal behavior. The Computation Independent Model or CIM
represents this viewpoint. The CIM is also known as the domain model and is built
using the semantic associated to the system domain.

• Platform Independent Model: a platform independent viewpoint focuses on the
operation of the system, hiding the details related to specific platforms. This
viewpoint should be the same for different platforms. The Platform Independent
Model or PIM represents this viewpoint. Platform independence can be obtained
by representing the system as operating in a technology neutral virtual machine.

• Platform Specific Model: a platform specific viewpoint results from adapting the
platform independent viewpoint to specific details of platform. The Platform
Specific Model or PSM represents a system at this viewpoint. A PSM combines the
specifications in the PIM with the details of using a particular platform.

2.2 Ontology-driven architecture

The Ontology Driven Architecture or ODA has been proposed by the W3C in
order to promote the use of semantic models or ontologies in the framework of the
MDA methodology [15]. The use of Semantic Web technologies is intended to
naturally extend the MDA framework by defining unambiguous domain vocabularies
and by providing model consistency checking and validation capabilities [16].
Semantic web technologies are mainly based on implementations following the RDF
and OWL languages specifications.

Ontologies can be used to represent services allowing declarative functionalities to
be deployed, discovered and reused. The use of ontologies can facilitate software
development by enabling discovering and composition of existing functions to
provide a new functionality rather than construct a completely new solution.

ODA may also facilitate dynamic service composition by enabling the definition of
semantic models integrating the agreements that software components expose via
their interfaces. These semantic models should include preconditions, post-conditions,
and invariant rules aimed at specifying the behavior of components and composition
of components. ODA can be used to build semantic models aimed at supporting
specification and design phases. These models can also be integrated within the
system implementation by including components identification and descriptions and
thus enabling discovering and reuse then during design-time and runtime. These
ontology models capture semantic related to properties, relationships, and behavior of
components. As an ontology is an explicit conceptual model with formal logic-based
semantics, the descriptions of components may be queried or may be checked to
avoid inconsistent compositions.

The large set of mechanisms and services available at the transport layer, make
hard or even impossible to applications' programmers to select the most adequate
service (or composition of mechanisms) during design-time, based on application
requirements and all the possible network environments while integrating current and
future transport solutions. This paper proposes to follow model-driven and ontology-
driven architecture approaches to allow application programmers to design distributed
systems able to use a common knowledge base enabling self-configuration and self-
adaptation autonomic properties of transport services. Next section presents the CIM
and PIM level models of a QoS ontology aimed at guiding the design and
development of an autonomic transport layer.

3 QoS transport ontology for an autonomic transport layer

As previously introduced, the constant evolution of application and network layers
has produced an important impact at the transport layer. As a consequence a large
diversity of extensions and enhancements to the traditional protocols as well as the
design and implementation of new transport protocols have deeply complexified the
transport layer, making the selection of the adequate transport services a difficult task
to be programmed at the application layer. For instance, traditional hard-coded

strategies for transport socket selection (e.g. static selection of UDP or TCP service)
are not well suited anymore in this dynamic context.

A novel approach is required to easily integrate the dynamicity required for a
transport layer of next generation. This new approach should facilitate the selection of
services and could allow the dynamic deployment of the required transport
mechanisms and functions. Due to the complexity related with the diversity of
services, protocols, functions and mechanisms, an important effort of semantic
characterization and representation is required. In order to apply the Model Driven
Architecture approach, next paragraphs introduce a standard framework aimed at
providing a CIM-level model for the quality of service. Based on this referential
model, we have defined a PIM-level QoS ontology transport model integrating the
semantic of transport requirements, services, protocols, functions and mechanisms for
the next generation transport layer.

3.1 ITU-T X.641 QoS framework

The ITU-T recommendation X.641 has proposed a QoS framework intended to
develop standards related to QoS in the area of information technology [17]. The
X.641 framework provides definitions and inter-relationships between these
definitions in order to supply a common context for defining, representing and
expressing QoS. This framework introduces the concepts of service, service user,
service provider, QoS characteristic, QoS requirement, QoS parameter, QoS
management function and QoS mechanism. Figure 1 illustrates the main concepts
introduced by X.641.

Fig. 1. ITU X.641 QoS framework

• Service: in the ITU-T X.641 framework, service is a very general term that can be
applied to the provision of functions such as processing, storing, transmitting,
delivering, etc. A service is provided by a service provider to a service user.

• Service user: a service is delivered to the service user. This user may have QoS
requirements such as the maximum delay tolerated to transmit data. These QoS
requirements are expressed as QoS parameters conveyed to the service provider.

• Service provider: a service provider is the entity responsible to deliver a service to
the service user. The QoS parameters describing the QoS requirements of the

service user are conveyed to the service provider. The service provider analyzes
the service user requirements and determines the management functions and
mechanisms that are required to meet them. The QoS parameters can be conveyed
to other entities involved in providing the service. These parameters could be used
to produce more detailed QoS requirements to be conveyed to other entities.

• QoS characteristic: a QoS characteristic is defined as a quantifiable aspect of QoS
of a system, service or resource that is defined independently of the means by
which it is represented or controlled. QoS characteristics are intended to be used to
model the actual, rather than the observed, behavior of the systems that they
characterize. QoS characteristics definitions include name, description,
quantification unit and optionally statistical derivations and specializations.
Examples of QoS characteristics related to communication services are throughput,
delay, jitter, order or reliability.

• QoS requirement: a QoS requirements expresses part of or all the user requirement
expected on one or several QoS characteristics.

• QoS parameter: a QoS parameter is a vector of scalar values describing a QoS
requirement in terms of:
− A desired or target level of characteristic
− A maximum or minimum level of a characteristic
− Threshold values enabling warning or alert signals to be triggered or operations

to be executed
− A measured value, used to convey historical information
− A service level agreement concerning the parameter. The term service level

agreement is used to describe the nature of the commitment of the service
provider to deliver the service required by the service user. The agreement
nature determines the actions that the service provider and/or the service-users
agree to take to maintain agreed levels of QoS:

 Best effort is the weakest agreement indicating that there is no assurance that
the agreed QoS will be provided.

 Compulsory agreement indicates that the service must be aborted if the QoS
degrades below the agreed level.

 Guaranteed agreement indicates that the service provider must guarantee the
QoS required by the service user, and that the service will not be initiated
unless it can be maintained within the specified QoS parameters.

• QoS function: QoS management refers to the activities related to the control and
administration of QoS within a system or network. QoS management functions are
designed to assist in satisfying one or more user QoS requirements. QoS functions
are composed by one or several QoS mechanisms.

• QoS mechanism: QoS mechanisms are intended to support establishment,
monitoring, maintenance, control, or enquiry of QoS. QoS mechanisms are driven
by users' QoS requirements expressed as QoS parameters. These mechanisms
commonly operate in collaboration with other QoS mechanisms.

Based on these definitions, Figure 2 represents a CIM-level QoS ontology model

of the X.641 framework. This basic QoS ontology will be extended in order to
incorporate requirements, mechanisms, functions, protocols and service concepts
from the transport layer point of view.

Fig. 2. QoS ontology model

3.2 QoS transport semantic model

Based on the previous CIM model, a QoS transport ontology integrating
requirements, parameters, services, protocols, functions and mechanisms has been
defined. This ontology is aimed at providing consistent transport layer semantic
model aimed at enabling managing different levels of representation and validation.
This model will be presented in the next paragraphs.

3.2.1 QoS transport requirements
The expression of application requirements in terms of QoS parameters at the

transport layer is built based on the following QoS characteristics:
• Reliability: packet loss rate (PLR) tolerance
• Order: out of sequence tolerance
• Throughput: transmission capacity per time unit
• Delay: end-to-end transmission time
• Jitter: variation of the delay
Based on these characteristics, QoS requirements can be expressed in terms of QoS

parameters. For instance, for interactive video conferencing applications, examples of
parameters expressions for QoS transport requirements are:

• Minimum and target values: reliability requirements could be expressed by a
minimum value of 97% (or 3% of PRL tolerance) and a target value of 100%.

• Maximum and target values: delay requirements could be expressed by a
maximum delay of 400 ms and a target value of 150 ms.

• Service level agreements: best effort agreements could be expressed for all or part
of the requirements. For instance, best-effort agreement for reliability and compulsory
agreement for delay (e.g. the service should be stopped when the delay exceed the
maximum value).

3.2.2 QoS transport mechanisms, functions and protocols
Based on the RFC specifications of standard transport protocols, the various

mechanisms implemented by TCP, UDP, SCTP, DCCP and MPTCP protocols have
been integrated in the QoS transport ontology. Likewise, transport functions including
basic functions (e.g. connection management, multiplexing/demultiplexing, etc.),
advanced functions (e.g. multi-streaming and multi-path management), error control
functions (e.g. ARQ or FEC) and flow and congestion control functions (e.g. window-
based congestion control, TFRC, etc.) have also been integrated in this ontology.
Likewise, the various mechanisms implementing these functions have also been
incorporated. Figure 3 represents the QoS transport ontology integrating application
requirements as well as the transport mechanisms, functions and protocols.

Fig. 3. QoS transport ontology model

4 Evaluation of the ontology-based autonomic knowledge base

Based on the previous QoS transport ontology model, this section is aimed at
illustrating how a knowledge base, composed of this semantic model, can be used to
guide self-configuring properties of an autonomic transport layer.

4.1 QoS transport services characterization

Based on the main functions provided at the transport layer, the following
characterization of transport services has been defined:
• Error controlled: integrating fully reliable, partially reliable, fully ordered and
partially ordered.
• Throughput controlled: includes congestion, flow and rate controlled services.
• Time controlled services: integrates delay and jitter controlled services. This class
integrates the services implemented by QoS-oriented transport functions based on
specializations of error-control and throughput control functions.
This classification allows to characterize the service offered by the transport protocols
as following
• TCP: fully reliable, fully ordered, congestion-controlled and flow-controlled, time-
uncontrolled
• UDP: error-uncontrolled (unreliable, unordered), throughput-uncontrolled, time-
uncontrolled
• SCTP: fully reliable, fully ordered and unordered, congestion-controlled, flow-
controlled, time-uncontrolled. As SCTP offers a multi-stream transport service, it can
be considered as intra-stream fully ordered as TCP but inter-stream unordered service.
• PR-SCTP: partially reliable, fully ordered and unordered, congestion-controlled,
flow-controlled, time-uncontrolled
• MPTCP: fully reliable, fully ordered, congestion-controlled, flow-controlled, time-
uncontrolled
• DCCP-2, DCCP-3 and DCCP-4: error-uncontrolled (unreliable, unordered),
congestion-controlled, time-uncontrolled.

Figure 4 illustrates this transport service classification for error-based and
throughput-based service classifications. This service classification can largely
facilitate the dynamic selection of the adequate transport service based on application
requirements and following a service-oriented design approach. Moreover, this
selection can be performed by integrating both functional and non-functional
properties of the expected transport service. Furthermore, this semantic model can
easily be enhanced in order to integrate future mechanisms and services. In this way,
applications designed following this approach will be able to dynamically discover
and use future services.

Fig. 4. Error-based and throughput-based transport services classification

4.2 Transport components and transport composite characterization

Most of the previously presented transport protocols are based on implementations
where mechanisms offering different functionalities (i.e. error control or congestion
control) are merged within a same monolithic implementation. However a
component-based approach can be followed to characterize them. Figure 5 illustrates
this composite approach in the representation of the TCP transport protocol functions.

Fig. 5. Example of composite-based approach for the TCP transport functions

Actually, each transport protocols can be represented as the implementation of one
or several transport functions. The composition relationship between functions has
been integrated in this ontology. Likewise, transport functions can be represented as
the implementation of one or several transport mechanisms. The composition

relationship between functions and mechanisms has also been integrated in the
ontology. Figure 6 illustrates how the ARQ error control function and the TFRC
congestion control function are implemented as a composition of mechanisms. Both
functions share common transport mechanisms (i.e. error detection and error report).
However, the specificities of each function are achieved by the addition of an error
recovery mechanism for ARQ and a rate control mechanism for TFRC.

Fig. 6. Example of a component-based approach for ARQ and TFRC functions

The use of such component-based approach could widely facilitate the design and
development of new transport protocols. Indeed, new transport services could result
of the dynamic combination of pluggable components offering the services properties
required by the applications. Further information about the classes, individuals and
properties definitions of this ontology can be found in [18]. Likewise, the semantic
description of standard protocols (i.e. TCP, UDP, SCTP, DCCP and MPTCP)
including the assertions about their mechanisms and the inferences characterizing
their services and aimed at verifying the consistency of this semantic model (verified
using the Pellet reasoner) can be found in [18].

5 Conclusions and perspectives

This paper has presented a methodological approach based on model-driven and
ontology-driven architecture design principles and aimed at building a knowledge
base well suited to self-manage an autonomic transport layer.

In order to better characterize the diversity and complexity involved within the
transport layer, a Computation Independent Model (CIM) providing an abstract and
high-level service model has been presented. The QoS basis for the CIM model has
been provided by the ITU X.641 framework. Based on this abstract model, a Platform
Independent Model (PIM) of the transport layer has been elaborated and its semantic
representation based on ontologies has been presented. This PIM model is intended to
characterize and classify the large diversity of available transport services, protocols,
functions and mechanisms. Likewise, this model provides an unambiguous transport
layer vocabulary and enables model consistency checking and validation capabilities.

This ontology model offers the required semantic basis for managing different
levels of representation and for integrating current and future services to be offered by
the next generation transport layer.

The proposed methodology also provides the basis for developing a service-
oriented and component-based architecture for transport protocols. Systems designed
and developed following MDA and ODA approaches will gain major benefits in
terms of flexibility and extensibility by integrating a service oriented approach.
Indeed, Service Oriented Architecture (SOA) approach can be used for designing
applications focused on services composition and coordination which is the
specification level required by PIM models. Likewise, component-based approach
facilitates the discovery and dynamic composition of reusable components, which can
satisfy the service specification required for platform specific models. Current works
targeting the use of this semantic model to design and develop the self-adapting
functionalities of autonomic transport protocols based on the observed network
conditions and the application preferences and requirements are being carried out.

References

1 Postel Jon, Transmission Control Protocol, DARPA Internet Program Protocol
Specification, RFC 793, September, 1981

2 Postel Jon, User Datagram Protocol (UDP), RFC 768, August, 1980
3 M. Duke, R. Braden, W. Eddy, E. Blanton, A Roadmap for Transmission Control Protocol

(TCP) Specification Documents, RFC 4614, September, 2006
4 H. Inamura, G. Montenegro, R. Ludwig, A. Gurtov, F. Khafizov, TCP over Second (2.5G)

and Third (3G) Generation Wireless Networks, RFC 3481, February, 2003
5 W. Stevens, TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast Recovery

Algorithms, RFC 2001, January, 1997
6 M. Allman, D. Glover, L. Sanchez, Enhancing TCP Over Satellite Channels using Standard

Mechanisms, RFC 2488, January, 1999
7 L-A. Larzon, M. Degermark, S. Pink, L-E. Jonsson, G. Fairhurst, The Lightweight User

Datagram Protocol (UDP-Lite), RFC 3828, July, 2004
8 T. Bova, T. Krivoruchka, RELIABLE UDP PROTOCOL, INTERNET-DRAFT, February,

1999
9 R. Stewart, Ed., Stream Control Transmission Protocol, RFC 4960, September, 2007
10 E. Kohler, M. Handley, S. Floyd, Datagram congestion control protocol (DCCP), RFC 4340,

March, 2006
11 A. Ford, C. Raiciu, S. Barre, J. Iyengar, Architectural Guidelines for Multipath TCP

Development, IETF Internet-draft, June, 2010
12 MDA Guide Version 1.0.1, OMG, June, 2003
13 Stephen J. Mellor; Kendall Scott; Axel Uhl; Dirk Weise, MDA Distilled: Principles of

Model-Driven Architecture, Addison-Wesley Professional, March, 2004
14 Anneke Kleppe; Jos Warmer; Wim Bast, MDA Explained: The Model Driven Architecture:

Practice and Promise, Addison-Wesley Professional, April, 2003
15 Ontology Driven Architectures and Potential Uses of the Semantic Web in Systems and

Software Engineering, W3C Working Draft, April, 2006
16 O. Lassila, J. Hendler, T. Berners-Lee, The Semantic Web, Scientific American, May, 2001
17 ITU-T Information Technology - Quality of Service Framework, ITU-T X.641 (ISO/IEC

IS13236), December 17th, 1997
18 QoS transport ontology, http://homepages.laas.fr/eexposit/hdr/QoSTransportOntology.htm

