
HAL Id: hal-01024654
https://hal.science/hal-01024654

Submitted on 16 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Knowledge base for an autonomic transport layer
Ernesto Expósito, Christophe Chassot, Michel Diaz

To cite this version:
Ernesto Expósito, Christophe Chassot, Michel Diaz. Knowledge base for an autonomic transport
layer. 9th Wired/Wireless Internet Communications (WWIC), Jun 2011, Vilanova i la Geltrú, Spain.
�10.1007/978-3-642-21560-5_15�. �hal-01024654�

https://hal.science/hal-01024654
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Knowledge base for an autonomic transport layer 

Ernesto Exposito1,2, Christophe Chassot1,2, Michel Diaz1,2 

 
1 CNRS ; LAAS ; 7 av. du Colonel Roche, F-31077 Toulouse, France 

2 Université de Toulouse; UPS, INSA, INP, ISAE; LAAS; F-31077 Toulouse, France 
{ernesto.exposito, christophe.chassot, michel.diaz}@laas.fr  

Abstract. The accelerated development of Internet and mobile devices has lead 
to new QoS-demanding distributed applications and new QoS-providing 
communication services, particularly at the transport level. The diversity of 
transport services and underlying networks environments asks for a novel 
design of the transport layer, able to provide in a transparent and autonomous 
way the most adapted service to the application. With this aim in mind, this 
paper presents a methodology based on a model-driven architecture (MDA) 
approach specialized using ontologies. It provides a QoS ontology model 
integrating standard and QoS-oriented transport services, protocols and 
mechanisms aimed at characterizing the entities, concepts and relationships 
composing this complex domain. This semantic model is intended to facilitate 
the integration of future mechanisms and protocols extensions. It offers the 
required properties to implement the knowledge base of an autonomic manager 
enabling transport service discovery, selection and composition based on 
application requirements and network constraints. 

Keywords: Model-driven architecture, ontology-driven architecture, transport 
protocols, autonomic computing. 

1 Introduction 

With the accelerated development of Internet and the diversity of mobile devices 
(smart-phones, tablets, netbooks and laptops), a new large family of networked 
distributed applications and communication services are available today. Multi-
platform instances of a same application are available at home, at work, in our mobile 
devices or more recently within the Cloud. These applications present heterogeneous 
needs in terms of Quality of Service (QoS) mainly related with time, bandwidth and 
reliability requirements. Moreover, networked applications are constantly changing 
from high-speed and high-bandwidth networks (e.g. ADSL networks at home), to 
variable bandwidth and high delay networks (e.g. when operating over WiFi or 3G 
mobile wireless networks).  

For traditional applications offering file transfer, web navigation or email 
functionalities, a fully ordered and fully reliable transport service such as the one 
offered by TCP over a Best-Effort network is well suited. However, time-constraint 
applications such as multimedia and interactive applications could prefer a partially 
reliable and partially ordered service able to offer a more suited lower end-to-end 



delay. Likewise, current heterogeneous network environments lead to more complex 
scenarios from the transport layer point of view. Even if traditional protocols such as 
TCP perform well over classical wired IP networks, their performances are 
suboptimal under new network technologies. Actually, current high speed, wireless 
and mobile networks deeply modify the QoS characterization of the network layer by 
providing more complex service models in terms of bandwidth, losses, delay or jitter.  

These new models of the current heterogeneous network layer, as well as the 
complex requirements demanded by the new generation application layer, have 
deeply impacted the traditional transport layer. Classical TCP [1] and UDP [2] 
protocols are not able to provide an optimal transport service in this new context. This 
explains the trends for transport protocols creation and extensions proposals during 
the last decades. Examples of the transport layer evolution are the specializations 
proposed by the IETF aimed at enhancing traditional transport protocols (e.g. TCP 
congestion control and error control extensions [3], TCP extensions for mobile 
wireless networks [4], TCP fast retransmission and recovery strategies [5], TCP 
satellite enhancements [6], UDP-lite [7], Reliable UDP [8], etc). Likewise, completely 
new transport protocols such as the Stream Control Transmission Protocol or SCTP 
[9] and the Datagram Congestion Control Protocol or DCCP [10] have also been 
developed. Recently, a new IETF group has been created in order to propose an 
important extension to TCP called MPTCP [11] in order to take advantage of the new 
network capabilities of end-terminals (i.e. multi-homing and multi-paths). We believe 
that the current diversity of transport services as well as the complexity resulting from 
the deployment of a particular transport protocol or transport mechanism over the 
different services provided by heterogeneous networks ask for a novel design of the 
transport layer. The next generation transport layer must be able to cope with the 
diversity and complexity of this new family of transport protocols. Moreover, current 
and future applications will only be able to take advantage of the most adapted and 
available transport service if they are able to efficiently interact with this advanced 
transport layer. 

In this paper a methodology based on a model-driven architecture (MDA) 
approach aimed at guiding the design of such a new generation transport layer is 
proposed. The approach proposed is based on the specialization of the MDA 
paradigm by using ontologies (i.e. ontology-driven architecture or ODA approach). 
The main contribution of this paper consists in a QoS ontology model integrating 
standard transport services, protocols, functions and mechanisms aimed at 
characterizing the entities, concepts and relationships composing this complex 
domain. This semantic model is intended to facilitate the integration of future 
mechanisms and protocols extensions resulting from the transport layer evolution. 
This semantic model offers the required properties to implement the knowledge base 
of an autonomic manager enabling transport service discovery, selection and 
composition based on application requirements and network constraints. Furthermore, 
this model also integrates the required knowledge to guide self-managing strategies in 
order to cope with dynamic and heterogeneous environments. 

This paper is structured as following. Section 2 presents the state of the art of 
model-driven architecture design approaches. Section 3 presents the ontology-driven 
architecture design of a knowledge base representing the different features of a QoS-
oriented transport layer. Section 4 illustrates how this knowledge base may be used to 



guide self-configuring properties of an autonomic transport layer. Finally, the 
conclusions and perspectives of this paper are presented. 

2 Model-driven and Ontology-driven architecture 

This section introduces the model-driven architecture approach aimed at guiding 
the design and development of complex and evolving systems such as the transport 
layer protocols. This approach guarantees the portability, the interoperability and the 
reusability of the final system. A methodology based on this approach and using 
semantic models will be proposed in order to design the architecture of a new 
generation QoS-oriented transport layer. In the next paragraphs, the model-driven 
architecture and the various models used to represent different abstract level views of 
the designed system will be presented. An extension to this approach named 
ontology-driven architecture will also be presented. 

2.1   Model-driven architecture 

The Model Driven Architecture or MDA approach is based on the separation of the 
specification of a system from its implementation in any specific platform [12], [13], 
[14]. Model-driven approach allows the use of models to understand, design, develop 
and maintain a system architecture. The primary goals of MDA are portability, 
interoperability and reusability.  

The MDA approach follows a process based on abstractions by viewpoints. It 
means that a system can be modeled by abstracting a set of selected architectural 
concepts and structuring rules. In this way, simplified viewpoints of the system can be 
constructed. MDA specifies three viewpoints on a system, a computation independent 
viewpoint, a platform independent viewpoint and a platform specific viewpoint. Each 
one of these viewpoints is represented or specified using models. 
• Computation Independent Model: a computation independent viewpoint focuses on 

the requirements of the system and its environment, hiding the details related to its 
structure and internal behavior. The Computation Independent Model or CIM 
represents this viewpoint. The CIM is also known as the domain model and is built 
using the semantic associated to the system domain. 

• Platform Independent Model: a platform independent viewpoint focuses on the 
operation of the system, hiding the details related to specific platforms. This 
viewpoint should be the same for different platforms. The Platform Independent 
Model or PIM represents this viewpoint. Platform independence can be obtained 
by representing the system as operating in a technology neutral virtual machine. 

• Platform Specific Model: a platform specific viewpoint results from adapting the 
platform independent viewpoint to specific details of platform. The Platform 
Specific Model or PSM represents a system at this viewpoint. A PSM combines the 
specifications in the PIM with the details of using a particular platform. 



2.2   Ontology-driven architecture 

The Ontology Driven Architecture or ODA has been proposed by the W3C in 
order to promote the use of semantic models or ontologies in the framework of the 
MDA methodology [15]. The use of Semantic Web technologies is intended to 
naturally extend the MDA framework by defining unambiguous domain vocabularies 
and by providing model consistency checking and validation capabilities [16]. 
Semantic web technologies are mainly based on implementations following the RDF 
and OWL languages specifications. 

Ontologies can be used to represent services allowing declarative functionalities to 
be deployed, discovered and reused. The use of ontologies can facilitate software 
development by enabling discovering and composition of existing functions to 
provide a new functionality rather than construct a completely new solution. 

ODA may also facilitate dynamic service composition by enabling the definition of 
semantic models integrating the agreements that software components expose via 
their interfaces. These semantic models should include preconditions, post-conditions, 
and invariant rules aimed at specifying the behavior of components and composition 
of components. ODA can be used to build semantic models aimed at supporting 
specification and design phases. These models can also be integrated within the 
system implementation by including components identification and descriptions and 
thus enabling discovering and reuse then during design-time and runtime. These 
ontology models capture semantic related to properties, relationships, and behavior of 
components. As an ontology is an explicit conceptual model with formal logic-based 
semantics, the descriptions of components may be queried or may be checked to 
avoid inconsistent compositions. 

The large set of mechanisms and services available at the transport layer, make 
hard or even impossible to applications' programmers to select the most adequate 
service (or composition of mechanisms) during design-time, based on application 
requirements and all the possible network environments while integrating current and 
future transport solutions. This paper proposes to follow model-driven and ontology-
driven architecture approaches to allow application programmers to design distributed 
systems able to use a common knowledge base enabling self-configuration and self-
adaptation autonomic properties of transport services. Next section presents the CIM 
and PIM level models of a QoS ontology aimed at guiding the design and 
development of an autonomic transport layer. 

3   QoS transport ontology for an autonomic transport layer 

As previously introduced, the constant evolution of application and network layers 
has produced an important impact at the transport layer. As a consequence a large 
diversity of extensions and enhancements to the traditional protocols as well as the 
design and implementation of new transport protocols have deeply complexified the 
transport layer, making the selection of the adequate transport services a difficult task 
to be programmed at the application layer. For instance, traditional hard-coded 



strategies for transport socket selection (e.g. static selection of UDP or TCP service) 
are not well suited anymore in this dynamic context. 

A novel approach is required to easily integrate the dynamicity required for a 
transport layer of next generation. This new approach should facilitate the selection of 
services and could allow the dynamic deployment of the required transport 
mechanisms and functions. Due to the complexity related with the diversity of 
services, protocols, functions and mechanisms, an important effort of semantic 
characterization and representation is required. In order to apply the Model Driven 
Architecture approach, next paragraphs introduce a standard framework aimed at 
providing a CIM-level model for the quality of service. Based on this referential 
model, we have defined a PIM-level QoS ontology transport model integrating the 
semantic of transport requirements, services, protocols, functions and mechanisms for 
the next generation transport layer. 

3.1 ITU-T X.641 QoS framework  

The ITU-T recommendation X.641 has proposed a QoS framework intended to 
develop standards related to QoS in the area of information technology [17]. The 
X.641 framework provides definitions and inter-relationships between these 
definitions in order to supply a common context for defining, representing and 
expressing QoS. This framework introduces the concepts of service, service user, 
service provider, QoS characteristic, QoS requirement, QoS parameter, QoS 
management function and QoS mechanism. Figure 1 illustrates the main concepts 
introduced by X.641. 

 

Fig. 1. ITU X.641 QoS framework 

• Service: in the ITU-T X.641 framework, service is a very general term that can be 
applied to the provision of functions such as processing, storing, transmitting, 
delivering, etc. A service is provided by a service provider to a service user. 

• Service user: a service is delivered to the service user. This user may have QoS 
requirements such as the maximum delay tolerated to transmit data. These QoS 
requirements are expressed as QoS parameters conveyed to the service provider. 

• Service provider: a service provider is the entity responsible to deliver a service to 
the service user. The QoS parameters describing the QoS requirements of the 



service user are conveyed to the service provider. The service provider analyzes 
the service user requirements and determines the management functions and 
mechanisms that are required to meet them. The QoS parameters can be conveyed 
to other entities involved in providing the service. These parameters could be used 
to produce more detailed QoS requirements to be conveyed to other entities. 

• QoS characteristic: a QoS characteristic is defined as a quantifiable aspect of QoS 
of a system, service or resource that is defined independently of the means by 
which it is represented or controlled. QoS characteristics are intended to be used to 
model the actual, rather than the observed, behavior of the systems that they 
characterize. QoS characteristics definitions include name, description, 
quantification unit and optionally statistical derivations and specializations. 
Examples of QoS characteristics related to communication services are throughput, 
delay, jitter, order or reliability. 

• QoS requirement: a QoS requirements expresses part of or all the user requirement 
expected on one or several QoS characteristics. 

• QoS parameter: a QoS parameter is a vector of scalar values describing a QoS 
requirement in terms of: 
− A desired or target level of characteristic 
− A maximum or minimum level of a characteristic 
− Threshold values enabling warning or alert signals to be triggered or operations 

to be executed 
− A measured value, used to convey historical information 
− A service level agreement concerning the parameter. The term service level 

agreement is used to describe the nature of the commitment of the service 
provider to deliver the service required by the service user. The agreement 
nature determines the actions that the service provider and/or the service-users 
agree to take to maintain agreed levels of QoS: 

  Best effort is the weakest agreement indicating that there is no assurance that 
the agreed QoS will be provided.  

  Compulsory agreement indicates that the service must be aborted if the QoS 
degrades below the agreed level.  

  Guaranteed agreement indicates that the service provider must guarantee the 
QoS required by the service user, and that the service will not be initiated 
unless it can be maintained within the specified QoS parameters. 

• QoS function: QoS management refers to the activities related to the control and 
administration of QoS within a system or network. QoS management functions are 
designed to assist in satisfying one or more user QoS requirements. QoS functions 
are composed by one or several QoS mechanisms. 

• QoS mechanism: QoS mechanisms are intended to support establishment, 
monitoring, maintenance, control, or enquiry of QoS. QoS mechanisms are driven 
by users' QoS requirements expressed as QoS parameters. These mechanisms 
commonly operate in collaboration with other QoS mechanisms. 

 
Based on these definitions, Figure 2 represents a CIM-level QoS ontology model 

of the X.641 framework. This basic QoS ontology will be extended in order to 
incorporate requirements, mechanisms, functions, protocols and service concepts 
from the transport layer point of view.  



 

 
Fig. 2. QoS ontology model 

3.2 QoS transport semantic model 

Based on the previous CIM model, a QoS transport ontology integrating 
requirements, parameters, services, protocols, functions and mechanisms has been 
defined. This ontology is aimed at providing consistent transport layer semantic 
model aimed at enabling managing different levels of representation and validation. 
This model will be presented in the next paragraphs. 

3.2.1 QoS transport requirements 
The expression of application requirements in terms of QoS parameters at the 

transport layer is built based on the following QoS characteristics: 
• Reliability: packet loss rate (PLR) tolerance 
• Order: out of sequence tolerance 
• Throughput: transmission capacity per time unit 
• Delay: end-to-end transmission time 
• Jitter: variation of the delay 
Based on these characteristics, QoS requirements can be expressed in terms of QoS 

parameters. For instance, for interactive video conferencing applications, examples of 
parameters expressions for QoS transport requirements are: 

• Minimum and target values: reliability requirements could be expressed by a 
minimum value of 97% (or 3% of PRL tolerance) and a target value of 100%. 

• Maximum and target values: delay requirements could be expressed by a 
maximum delay of 400 ms and a target value of 150 ms. 



• Service level agreements: best effort agreements could be expressed for all or part 
of the requirements. For instance, best-effort agreement for reliability and compulsory 
agreement for delay (e.g. the service should be stopped when the delay exceed the 
maximum value). 

3.2.2 QoS transport mechanisms, functions and protocols 
Based on the RFC specifications of standard transport protocols, the various 

mechanisms implemented by TCP, UDP, SCTP, DCCP and MPTCP protocols have 
been integrated in the QoS transport ontology. Likewise, transport functions including 
basic functions (e.g. connection management, multiplexing/demultiplexing, etc.), 
advanced functions (e.g. multi-streaming and multi-path management), error control 
functions (e.g. ARQ or FEC) and flow and congestion control functions (e.g. window-
based congestion control, TFRC, etc.) have also been integrated in this ontology. 
Likewise, the various mechanisms implementing these functions have also been 
incorporated. Figure 3 represents the QoS transport ontology integrating application 
requirements as well as the transport mechanisms, functions and protocols. 

 
Fig. 3. QoS transport ontology model 



4   Evaluation of the ontology-based autonomic knowledge base 

Based on the previous QoS transport ontology model, this section is aimed at 
illustrating how a knowledge base, composed of this semantic model, can be used to 
guide self-configuring properties of an autonomic transport layer. 

4.1 QoS transport services characterization 

Based on the main functions provided at the transport layer, the following 
characterization of transport services has been defined: 
• Error controlled: integrating fully reliable, partially reliable, fully ordered and 
partially ordered. 
• Throughput controlled: includes congestion, flow and rate controlled services. 
• Time controlled services: integrates delay and jitter controlled services. This class 
integrates the services implemented by QoS-oriented transport functions based on 
specializations of error-control and throughput control functions. 
This classification allows to characterize the service offered by the transport protocols 
as following 
• TCP: fully reliable, fully ordered, congestion-controlled and flow-controlled, time-
uncontrolled 
• UDP: error-uncontrolled (unreliable, unordered), throughput-uncontrolled, time-
uncontrolled 
• SCTP: fully reliable, fully ordered and unordered, congestion-controlled, flow-
controlled, time-uncontrolled. As SCTP offers a multi-stream transport service, it can 
be considered as intra-stream fully ordered as TCP but inter-stream unordered service. 
• PR-SCTP: partially reliable, fully ordered and unordered, congestion-controlled, 
flow-controlled, time-uncontrolled 
• MPTCP: fully reliable, fully ordered, congestion-controlled, flow-controlled, time-
uncontrolled 
• DCCP-2, DCCP-3 and DCCP-4: error-uncontrolled (unreliable, unordered), 
congestion-controlled, time-uncontrolled. 
 

Figure 4 illustrates this transport service classification for error-based and 
throughput-based service classifications. This service classification can largely 
facilitate the dynamic selection of the adequate transport service based on application 
requirements and following a service-oriented design approach. Moreover, this 
selection can be performed by integrating both functional and non-functional 
properties of the expected transport service. Furthermore, this semantic model can 
easily be enhanced in order to integrate future mechanisms and services. In this way, 
applications designed following this approach will be able to dynamically discover 
and use future services. 
 



 
Fig. 4. Error-based and throughput-based transport services classification 

4.2 Transport components and transport composite characterization 

Most of the previously presented transport protocols are based on implementations 
where mechanisms offering different functionalities (i.e. error control or congestion 
control) are merged within a same monolithic implementation. However a 
component-based approach can be followed to characterize them. Figure 5 illustrates 
this composite approach in the representation of the TCP transport protocol functions.  

 
Fig. 5. Example of composite-based approach for the TCP transport functions 

Actually, each transport protocols can be represented as the implementation of one 
or several transport functions. The composition relationship between functions has 
been integrated in this ontology.  Likewise, transport functions can be represented as 
the implementation of one or several transport mechanisms. The composition 



relationship between functions and mechanisms has also been integrated in the 
ontology. Figure 6 illustrates how the ARQ error control function and the TFRC 
congestion control function are implemented as a composition of mechanisms. Both 
functions share common transport mechanisms (i.e. error detection and error report). 
However, the specificities of each function are achieved by the addition of an error 
recovery mechanism for ARQ and a rate control mechanism for TFRC. 

 
Fig. 6. Example of a component-based approach for ARQ and TFRC functions 

The use of such component-based approach could widely facilitate the design and 
development of new transport protocols. Indeed, new transport services could result 
of the dynamic combination of pluggable components offering the services properties 
required by the applications. Further information about the classes, individuals and 
properties definitions of this ontology can be found in [18]. Likewise, the semantic 
description of standard protocols (i.e. TCP, UDP, SCTP, DCCP and MPTCP) 
including the assertions about their mechanisms and the inferences characterizing 
their services and aimed at verifying the consistency of this semantic model (verified 
using the Pellet reasoner) can be found in [18]. 

5   Conclusions and perspectives 

This paper has presented a methodological approach based on model-driven and 
ontology-driven architecture design principles and aimed at building a knowledge 
base well suited to self-manage an autonomic transport layer. 

In order to better characterize the diversity and complexity involved within the 
transport layer, a Computation Independent Model (CIM) providing an abstract and 
high-level service model has been presented. The QoS basis for the CIM model has 
been provided by the ITU X.641 framework. Based on this abstract model, a Platform 
Independent Model (PIM) of the transport layer has been elaborated and its semantic 
representation based on ontologies has been presented. This PIM model is intended to 
characterize and classify the large diversity of available transport services, protocols, 
functions and mechanisms. Likewise, this model provides an unambiguous transport 
layer vocabulary and enables model consistency checking and validation capabilities. 

This ontology model offers the required semantic basis for managing different 
levels of representation and for integrating current and future services to be offered by 
the next generation transport layer.  



The proposed methodology also provides the basis for developing a service-
oriented and component-based architecture for transport protocols. Systems designed 
and developed following MDA and ODA approaches will gain major benefits in 
terms of flexibility and extensibility by integrating a service oriented approach. 
Indeed, Service Oriented Architecture (SOA) approach can be used for designing 
applications focused on services composition and coordination which is the 
specification level required by PIM models. Likewise, component-based approach 
facilitates the discovery and dynamic composition of reusable components, which can 
satisfy the service specification required for platform specific models. Current works 
targeting the use of this semantic model to design and develop the self-adapting 
functionalities of autonomic transport protocols based on the observed network 
conditions and the application preferences and requirements are being carried out. 
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