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Abstract

In this paper, we revisit the original ideas of Stein and propose an estimator
of the intensity parameter of a homogeneous Poisson point process defined on
R? and observed on a bounded window. The procedure is based on a new
integration by parts formula for Poisson point processes. We show that our
Stein estimator outperforms the maximum likelihood estimator in terms of
mean squared error. In many practical situations, we obtain a gain larger

than 30%.

Keywords: Stein formula; Malliavin calculus; superefficient estimator; inten-
sity estimation; spatial point process.

1 Introduction

Spatial point processes are stochastic processes modeling points at random locations
in arbitrary domains. General references on this topic are [Daley and Vere-Jones
(2008); IStoyan et all (1995); Moller and Waagepetersen (2004) who cover theoretical
as well as practical aspects. Among all models, the reference is the Poisson point
process, which models points without any interaction. When the Poisson point
process has a probability measure invariant under translation, we say that it is
stationary or homogeneous. In this paper, we consider a homogeneous Poisson point
process defined on R? and observed through a bounded window W C R¢. This point
process is characterized by the single intensity parameter # > 0, which is the mean
number of points per volume unit. It is well-known that the maximum likelihood
estimator of the parameter 6, defined as the ratio of the number of points lying in
W divided by its volume, is unbiased and efficient. In this work, we explain how
to build superefficient and therefore biased estimators of 6 by revisiting the original
ideas of Stein.

Based on the pioneering works [Stein (1956) and James and Stein (1961), |Stein
(1981) explained how to design a whole collection of estimators for the mean p of
a p-dimensional Gaussian random vector X by using the famous Stein formula for



Normal random variables: for any differentiable function g : R? — R such that
E||Vg(X)| < 400, the following integration by parts formula holds

E(Vy(X)) = E((X — p)g(X)). (1.1)

Stein suggested to consider estimators of the form X + Vlog f(X) for positive and
sufficiently smooth functions f. For this class of estimators, he showed using (L))

that the mean squared error is related to the expectation of V2(/f(X)/\/f(X) thus
providing an easy construction of estimators achieving a mean squared error smaller
than the one of the maximum likelihood estimator.

A close look at the methodology developed by Stein reveals the key role played
by the integration by parts formula (L)), in which the involved differential operator
is the classical notion of derivative. This remark proved to be of prime importance
as these computations rely on the standard chain rule for the derivative operator
related to the integration by parts formula. Hence, to extend this methodology to
other frameworks, one first needs a derivative operator satisfying the classical chain
rule and second an integration by parts formula for this operator. In the case of
Gaussian processes, these objects are defined by the Malliavin calculus and Stein
estimators have been proposed by [Privault and Réveillad (2006, 2008).

Let us focus on the Poisson case. An integration by parts formula already exists
for functions of Poisson random variables. Let Y be a Poisson random variable with
parameter A and f a sufficiently integrable real valued function, then it is known
from |Chen (1975) that E(Y f(Y)) = AE(f(Y + 1)). However, this formula involves
a discrete derivative operator which does not satisfy the standard chain rule and
which, therefore, cannot be used as the basement for designing new estimators.

Integration by parts formulae for Poisson processes have a long history, see Privault
(2009), Murr (2012) for a recent review. The differences are explained by the use
of different concepts of differential operators. As already outlined, we ruled out
results based on the finite difference operator since it does not satisfy the chain
rule property. Two other classes of differential operators exist. The first one
was developed by |Albeverio et al. (1996) and was further investigated in differ-
ent contexts, see |Albeverio et all (1998); [Rockner and Schied (1999) or more re-
cently [Decreusefond et al. (2010). The second class is based on the damped gra-
dient, first introduced in the one-dimensional case by (Carlen and Pardoux (1990);
Elliott and Tsoi (1993) and further developed by |[Fang and Malliavin (1993); Prat and Privault
(1999); Privaultl (2009). The main difference between these two classes is the space
of Poisson functionals used to derive the integration by parts formula (see Sec-
tion B.3 after our main result for more details). Note that links between these
gradient operators exist, see e.g. [Prat and Privault (1999). The key—ingredient to
develop a Stein estimator is to obtain an integration by parts formula of the form
E(VF) = E(F(N(W) — 0|W|)) where F is a Poisson functional, V is a gradient
operator, N(W) measures the number of points falling into a bounded domain W
of R, |W| = [ du and @ is the intensity parameter of a homogeneous Poisson
point process. Before 2009, none of the integration by parts formula available in
the literature could be directly applied to get the required equation (see again Sec-
tion B.3)). [Privault and Réveillad (2009) reworked the differential operator proposed
by (Carlen and Pardoux (1990) and managed to derive the desired equation in the
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one-dimensional case, but their differential operator could not be extended to spatial
Poisson point processes. We aim at filling this gap in the present paper.

In Section[2, we design a differential operator for functionals of a spatial homoge-
neous Poisson point process, which satisfies the classical chain rule and further leads
to an integration by parts formula in Section [3l Sections 2l and [3] heavily rely on the
theory of closable and adjoint operators, which makes some of the proofs become
technical. We have decided to gather all these technicalities in Appendix to avoid
being diverted from our main objective, namely devising superefficient estimators
on the Poisson space. Based on this integration by parts formula and its related
derivative operator, we propose in Section 4l a wide class of Stein estimators and
study their mean squared errors. In Section B we lead a detailed numerical study
of our Stein estimator in several realistic examples. In particular, we explain how
to pick in practice the estimator with minimum mean squared error within a given
class and in the one—dimensional case, we compare it to the estimator proposed by
Privault and Réveillad (2009).

2 Background and notation

2.1 Some notation

Elements of R? are encoded as column vectors, i.e. if v € R? o = (zy,...,14)" and
we denote their Euclidean norms by ||z||> = 272 = %, #2. Let W be a bounded
open set of R%. For any k € N, the set C*(W,RP) (resp. C*¥(W,RP)) denotes the
class of k-times continuously differentiable functions defined on W with values in
RP (resp. in a compact subset of R?). Let f : W — R be a locally integrable
function. A function h is said to be the weak derivative on W of f w.r.t. z; if for
any ¢ € CH(W,R), we have

/W h(z)p(z)dr = — /W f(zx) agfj)dx

When such a function h exists, it is unique a.e. and we denote it by df/dz; in the
sequel. When d = 1, we use the classical notation f’ to denote the weak derivative
of the function f. When all the weak partial derivatives of a real-valued and locally
integrable function f defined on W exist, we can define its weak gradient on W as

Vf(x):<ﬁ(x) ﬁ@:)) , VzeRY (2.1)

61’1 "”’&cd

For a locally integrable vector field V = (V;,...,Vy) T defined from W into R such
that for all 7, V; admits a weak partial derivative w.r.t. to z;, we define the weak
divergence of V on W as

4 oV, J
V-V(z)=> e (x), VzeR" (2.2)
i=1 (




2.2 Poisson point processes on R

For a countable subset x of R? we denote by n(x) the number of elements in x.
For any bounded Borel set B of R? xp stands for x N B and |B| stands for the
Lebesgue measure of B. We define the set of locally finite configurations of points
by Niy = {x C R?: n(xp) < oo for all bounded sets B C R?}. We equip N;; with
the o-algebra Ny = a({x € Niy = n(xp) = m} : B € By,m e N\ {O}) where B
is the class of bounded Borel sets of RY. Then, a spatial point process X on R?
is simply a measurable mapping on some probability space (€2, F,P) with values in
(Nig, Nig).-

Let W C R? be a compact set with positive Lebesgue measure || playing the
role of the observation window of X. We assume that W has a C? boundary, so
that the function z — d(z, W¢) is also C? in a neighborhood of 9W. We denote
the number of points in W by N(W) = n(Xy); a realization of Xy is of the
form x = {xy,...,2,} C W, for some 0 < n < oo. If n = 0, then x = () is
the empty point pattern in W. For further background material and theoretical
details on spatial point process, see e.g. [Daley and Vere-Joned (2003, 2008) and
Moller and Waagepetersen (2004). Given N(W) = n, we denote by X1,..., X,, € W
the n location points.

In this paper, X is a homogeneous Poisson point process, defined on R?, observed
in W and with intensity parameter § > 0. Remember that the distribution of X
is entirely characterized by the void probabilities P(X N B = ) = e %5l for any
bounded B C R?. The more standard properties are: (i) N(B) follows a Poisson dis-
tribution with parameter | B| for any bounded B. (ii) For By, By, . .. disjoint sets of
R N(By), N(By),... are independent random variables. Another characterization
can be made using the generating function of X (see e.g. Moller and Waagepetersen
(2004)): for any function h : RY — [0, 1] setting exp(—oo) = 0

E ] h(u) = exp (—0 /Rd(l — h(u))du> :

ueX

Let Fy be the o—field on §2 generated by the points of X on W. In the following,
we work on (Q, Fyy, P) and write L2(Q) = L?(Q, Fw, P).

2.3 Poisson functionals and Malliavin derivative

We introduce the following space

n>1
vn > 1 f, € LY(W" R) is a symmetric function}. (2.3)

The functions f, are called the form functions of F. Since X is a Poisson point
process, we have

E[F] = e WIfy + 70T %/ falzr, . zn)dzy . dz,. (2.4)
LJWn

n>1
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Note that with the choice of the o—field Fy, L*(Q) = {F € S : E[F?] < co}. For
any F' € L*(Q), we denote the norm || - || z2() by

1/2
| F |l 2 = E[F2]1/2 = ( *9‘W|f2 Pk Z o / (21, z0)d2y .dzn> )

n>1

In view of the expression of the norm, the convergence in L?*(f2) is linked to the
convergence of the form functions.

Lemma 2.1. Let ¢ > 1, F, F, € L*(Q) and (frn) (resp fn) be the form functions of
the Poisson functionals Fy (resp F'). We have Fy — F in L*(Q) iff

_ _ o"
6|W‘|f40—f0|2+e oW Z / | fon( (21, s 20) = ful21, - 20)[Pd2y . d2, — 0
n>1
as { — oo.

The following subspace §” of S plays a crucial role in the sequel

S§={FeS§:3C>0st ¥n>1,f €C'(W"R)and
1 Fallzoeqwn gy + D 1V, Fall oo e ey < C™ .
=1

In particular, the definition of & ensures that F'G € S’ whenever F,G € §’. We
fix a real-valued function 7 : W2 — RY, referred to as the weight function in the
sequel. We assume that 7 is bounded and that for a.e. x € W, z — (2, x) belongs
to CL(W,R9). For any € W, we denote by DT the following differential operator
defined for any F € &' by

DIF ==Y 1(N n) > (Vi [o)( X1, ..., Xo)7(X;, 2) (2.5)
n>1 i=1
where V,, f,, stands for the gradient vector of x; — fu(z1,...,Zi—1, iy Tit1, ..., Tn).

The operator D™ is a Malliavin derivative operator satisfies the classical differenti-
ation rules.

Lemma 2.2. Let F,G € §' and g € C/(R,R). Then FG € §' and g(F) € 8" and
for any x € W

DI(FG) = (DIF)G + F(DIG) and DIg(F)= g(F)DIF.

To have such rules, we had to consider a bespoke differential operator, which
differs from the standard Malliavin derivative on the Poisson space (see e.g. [Privault
(1994)). Before establishing an integration by parts formula, we define the subset
Dom(D™) of &' as

Dom(D") :{F €S :Vn>1andz,...,2, €R?

ot a1 e) = o Ry ()= o 20

Zn+1€8W
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The notation D™F stands for the random field x € W +— DI F'. The operator D" is
defined from Dom(D™) C & on L*(Q, L*(W, R)), where L*(Q2, L*(W,R)) is the space
of random fields Y defined on W such that [|Y|| 20, r2wr)) = (E [fy [Y () |2da:])1/2 <
0.

The link between Dom(D™) and L?(2) is presented in the next result and proved
in Appendix

Lemma 2.3. The set Dom(D™) defined by (2.6) is dense in L*(£2).

3 Integration by parts formula

3.1 Duality formula

In this section, we aim at extending the Malliavin derivative D™ to a larger class
of Poisson functionals by using density arguments. We also prove an integration
by parts formula for the Malliavin derivative, involving the extension D" of the
operator D™ and its adjoint. We start with basic definitions of closable operators —
i.e. operators which can be extended by density — and of the adjoint of a densely
defined operator.

Definition 3.1. Let Hy, Hy be two Hilbert spaces and T be a linear operator defined
from Dom(T) C Hy — Hy. The operator T is said to be closable if and only if for
any sequence (fy) C Dom(T') such that fo — 0 (in Hy) and T fo — g (in Hs) then
g=0.

The main point is that any closable operator 7" from Dom(7T) C H; — H,

can be extended by density. Set Dom(7T") = {f € Hy, 3(fr) € Dom(T), fr —
fin Hy and (T'f,) converges in H,} and define for any f = lim f, € Dom(T) with
(fo) € Dom(T), Tf = limy_,o, Tf;. Then, the operator T is called the closure of
T'. By the closability of T, the above limit does not depend on the chosen sequence
(fe)-

If we are given a linear operator 7" such that Dom(7") = H;, an element g of Hy
is said to belong to Dom(7™), where T is the adjoint of T', if for any f € Dom(T),
there exists some h € H; such that < T'f, g >p,=< f,h >g,. When such an h
exists, the assumption Dom(7') = H; ensures it is unique and given by h = T*g.
The following duality relation between 7" and T™ holds:

<Tf,g>m=<[f,T"g>u Y(f,g) € Dom(T) x Dom(T™). (3.1)

In the case of the Malliavin derivative, this duality relation leads to an integration
by parts formula.

Theorem 3.2 (Duality relation). The operator D™ is closable and admits a closable
adjoint 6™ from L*(Q, L*(W,R%)) into L*(Q) and the following duality relation holds:

E [ /W DT F - V(2)dz| = E[F§™(V)], VF € Dom(D™), ¥V € Dom(6).  (3.2)



In particular, [32) extends to the case F € Dom(D7), V € Dom(d"). Let V €
L*(W,R), we define V™ : W — R by

V7 (u) = / V(z)m(u, zr)dx (3.3)
w
which is an element of C1(W,R%). We have the following explicit expression for 0™ :

= 3 VVT(u) -0 / V-V (u (3.4)

ueXpy

The proof of this result relies on the standard trace Theorem (see e.g. [Evans and Gariepy
(1991)), recalled hereafter.

Theorem 3.3. Let B be a bounded subset of R with Lipschitz boundary and closure
W =B. Lt V= V,..., V)" € CL(R? RY) be a vector field and g € C1(R%, R) be

a real-valued function. Then,

| (Vo)@) - Via)de = = | g@)(V-V)(@)de+ [ g@V(a)-vida)  (35)

where v stands for the outer normal to 0B. When g = 1, we get

/W V- V(zr)dx = /E)W V(z) - v(dx). (3.6)

Proof of Theorem[32. Step 1: weak duality relation. Assume that F' € Dom(D™)
and V € L®(W,R%). Let us prove that (32) holds. Using standard results on
Poisson processes, which are in particular justified by the fact that F' € Dom(D™),
we get

E[/ DTF -V (2)de
ey O Z/(/ Vot 2) - Vi) (e, )dx)dzl...dzn

n>1 TL

7€|W‘ Z ol - Z /Wn ) e dzifldzi+1 e dZn /W Vzl,fn(zl, Cey Zn> . VW(Zi)dZi.

n>1

Since m, V' are both bounded on W and since for a.e. z € W, z — m(z,x) belongs
to C*(W,R), then V™ € C*(W,R). Hence, we can apply Theorem B3l Using the
compatibility conditions (Z.0]), we deduce that fori=1,...,n

—/ Veifa(z1y ooy zn) - V(2i)dz
w
—/ folz1, oo 20)V - VT (2)dz; — / falz1s oy 20) VT (2)dvy,

_/ folz1, ooy 20)V VT (2)dz — foo1(21, -0y 20m1) /WV V™ (u)du



The last equation comes from (3.6) and the symmetry of the functions f,,. Therefore,

E [ /WD;;F : V(x)dx]

o" "
:ei€|W‘ — X Z/ fn(zl, cey Zn)v . Vﬂ<zi)dzl cee dzn
=17 W"

|
!

en
_ oW v o
e 2 o X n/Wnil foo1(z1,. 00y 2nm1) (/W V-V (U)du>dz1 s
=E[F Y V- V"(u)]

ueEX

enfl
_ eIV </W V- V”(u)du) Z m /ann,l(zl, ooy Zne1)dzy L dz .

n>1

The last equality ensues from the invariance of the functions f,, and the stability of
the domain W"~! by exchanging the coordinates. Then, we deduce the result.

Step 2: Extension of 6™ on a dense subset of L*(Q, L*(W,R%)). Validity of [3.2) on
this dense subset. Remember that L*(Q, L>(W,RY)) = L2(Q) ® L2(W,R4). Since by
Lemma Dom(D™) is a dense subset of L2(2) and L>®(W,R?) is a dense subset
of L2 (W, R%), we deduce that L?(Q, L2(W,R%)) = Dom(D7) @ L>(W,R4). Now, we
extend the operator 6™ on Dom(D™)® L (W, R?) and then prove (3.2) on this dense
subset of L2(2, L2(W,R%)). To this end, we consider G € Dom(D"™), V € L>(W,R%)
and set

FT(GV) = G™(V) — /R DG V(x)de.

Using the product rule, which is valid for any F, G € Dom(D™), we deduce that

E [G /W D*F . V(2)dz

_E [/W DF(FG) -V (z)dx — F/W DTG -V (z)da

_E {FG&”(V) _F /W DTG - V(x)dx}
_E[F5(GV))].

The second equality comes from the duality relation (3.2]) applied to F'G as an el-
ement of Dom(D™) and V as an element of L>®(W,R%), whereas the last equality
comes from the definition of our extension of 6™ to Dom(D™) @ L (W, R%).

Step 3: closability of the operator D™ and extension of ([3.2) to L*(Q, L*(W,R%)). We
extend (3.2) from Dom(D™) @ L°(W,R%) to L?(Q, L*(W,R9)) by proving that the
operator D™ is closable. Since Dom(D™) @ L>®(W,R%) is dense in L?(Q2, L?(W,R%)),
Theorem [B4 justifies the extension of the duality relation ([3.2) to Dom(D") x
Dom(4") as stated in Theorem 3.2

To prove that D™ is closable, we consider a sequence of elements (Fy) € Dom(D™)
such that F, — 0 in L*(Q2). Assume also that D"F, — U for some U in
L*(Q, L*(W,R%)). We need to prove that U = 0, which is done using the following



computations for any G € Dom(D™) and any V € L>°(W,R%)

‘E [ /W U(:c)GV(:c)dx]

‘E [F,57(GV)] — E [ /R Ul ] [Fed™(GV)]]

’E{ /D“Fg V(z)dz [ /U(:c)V(:z:)d:c
<Gl [ (DIF = U@) - Vi@)da , ) + 1Filla167(GV) |2y
< [Gllzz IV 220 | DEF: = U@l 2wy + 1 Foll o 67(GV) oy

The conclusion ensues from Theorem 7 of Chapter 2 of Birman and Solomjak (1987),
which is rephrased in Theorem B4 for the sake of completeness. Equation (32 is
recovered by applying Theorem B4 with T* = 6™, T = D™, H, = L*(Q, L*(W,R))
and Hy = L?(Q). O

+ [E[F0(GV)]]

Theorem 3.4. Let Hy, Hy be two Hilbert spaces and T be a linear operator defined
from Dom(T') C Hy — Hy. Assume that Dom(T) = H;. Then, Dom(T*) = Hy
if and only if T is closable. In this case, T** exists and coincides with T. Then,
(31) can be extended as follows: < f,T*q >p,=<Tf, g >u,, V(f,g) € Dom(T) x
Dom(T™).

For any F' € Dom(D™) and any V € L?(Q, L>(W,R%)), we define the operator
V™V : Dom(D™) — R by

VoY E = /W DTF . V(z)dz = — S 1(N(W) = n) Z Vo fo(X0s o X)) - VT(XD).

n>1
(3.7)
Note that the closability of D™ implies the one of the operator V™. For the reader’s
convenience, we will use the same notation to denote the operators V™V, §™ and
their closures.

3.2 A specific choice for m and V

In this section, we focus on a specific choice of functions = and V leading to a
specific definition of the gradient of a Poisson functional. This choice is guided by
two important remarks. First, Lemma will underline that the key-ingredient to
derive a superefficient estimator is to define a gradient V™V such that

E[V™YF] =E[F(N(W) - 0|W|)]. (3.8)

From (B71) and Theorem B2, this is achieved if V - V™ = 1. Second, to agree
with the isotropic nature of the homogeneous Poisson point process, it is natural
to define a Stein estimator being also isotropic. As pointed out by Proposition [£.2]
this can be achieved by defining a Malliavin derivative which transforms an isotropic
Poisson functional into an isotropic Poisson functional at any point. We do not want
to go into these details right now but Lemma [4.4] suggests to require that both m
and V be isotropic. Now, we detail a pair of functions (7, V') satisfying the above
requirements.



Proposition 3.5. Let (V,,,)1<m<a be an orthonormal family of bounded functions of
LX(W,R). For any z,y € R?, set V(z) = dV2(Vi(x),...,Vy(x))" and n(y,x) =
y"V(x). Then, V™ (y) = y/d, which implies that V - V™ = 1. With the above choices,
we simply denote V = V™, D = D™, V = V™. From [3.1), we deduce that

_ - Z =n) ivxifn(xl, LX) X (3.9)

n>1
Finally, for any F € Dom(D), (B.8) holds.
Proof. By definition, we have for any y = (y1,...,74)" € R? and any m € {1,...,d}

Vin(y) = /Rd Vin(2)7(y, 2)de = d™* /W <Z ym/Vm/(:c)> Vi (2)dz
=d / (Zym,v )) de =d~ / Y V2 (z)dz = yp/d.

Plugging this result in Equation (3.7) yields (8.9). Equation (8.8) can be extended
to Dom(D) using the closability of the operator V, which follows from the one of
V™V in the general case. O

Again, we want to stress the fact that other choices of pairs of functions (m, V)
may lead to (B.8) like the simple choice V(z) = (d|W|])~"2(1,...,1)T1(x € W) and
m(y,z) = y'V(x). However, the gradient derived from this ch01ce would not preserve
the isotropy of an isotropic Poisson functional anymore and would lead to technical
difficulties especially in the formulation of (£I3) in Lemma 4], which should take
into account the jumps induced by the discontinuity of the form functions.

3.3 Comparison with alternative version of the Malliavin
derivative

To finish this section, we give some insights into an alternative version of the Malli-
avin derivative also leading to an integration by parts formula of the form (3:2)) but
with unfortunately more restrictive assumptions on the possible functions V. We re-
fer tolAlbeverio et all (1996, 1998) and [Prat and Privault (1999, Section 8) for more
details on what follows. We briefly summarize their approach for a Poisson point
process lying in R?. The authors consider the class of smooth cylindrical Poisson
functionals of the form

:f( ; (pl(u)a"'v ; Qop(u))

where p is an integer, f is an infinitely differentiable and bounded function on
W and ¢1,- -+, ¢, are infinitely differentiable on W, all compactly supported with

supp(p;) C W for any i = 1,--- | p.
Then, for any v € W, the Malliavin derivative of F' at u is defined by

Equilazf< Z 901(@)7"'7 Z ¢p<v>) VQPZ(QO

veEX veXw
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Let V : W — R? be an infinitely differentiable function with supp(V) C W, Then,
the following formula holds (see [Prat and Privaultl (1999, equation (8.5.6)))

E[VF|=E

F( SV V() —H/WV~V(u)du>] (3.10)

with VF = Y yex,, DuF - V().

The two integration by parts formulae (3.2)) and ([3I0) look very similar although
the gradient operators are completely different. However, the constraint on V to
obtain (3.I0) prevents us from taking V such that V-V =1 on W, which is crucial

to get (B.8).

4 Stein estimator

4.1 Main results

The maximum likelihood estimator of the intensity 6 of the spatial Poisson point pro-
cess X observed on W is given by Oy, = N(W)/|W| (see e.g. Moller and Waagepetersen
(2004)). In this section, we propose a Stein estimator derived from the maximum
likelihood estimator of the form

~ 1 1

é\: QMLE + —C = W

W (N(W) +) (1)

where the choice of the isotropic Poisson functional ( is discussed below. We aim at
building an estimator with smaller mean squared error than the maximum likelihood
estimator. By applying Proposition 3.5 we can link the mean squared errors of these
two estimators.

Lemma 4.1. Let ¢ € Dom(D). Consider 6 defined by @1). Then,

-~

MSE(6) = MSE(f,,,,) + R (E(¢?) +2E[V(]). (4.2)

Proof. By definition,

N N 1 2
MSE(#) =E || Oy + —C — 0
)= (s 76 -0) ]
~ 1
= MSE(Buw) + 7 (BIC) + 2ELCVOV) = 6.
Since ¢ € Dom(D), we can apply ([B.8) with F' = ¢ to deduce (£2). O

Now, we consider a random variable ¢ written as ¢ = (p1(N(W) = 0)+ V log(F)
where (y is a constant (possibly zero) and F' an almost surely positive Poisson

functional belonging to S. Both {, and F' are adjusted such that { € Dom(D).
Using Lemma [2.2] we can follow the initial calculations of [Stein (1981), also used
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in Privault and Réveillad (2009), to deduce that Vleg F = VF/F and VVF =
VF/(2VF). Using Lemma 22, we establish the key relations

— 2 _ 2
TV log F — FVVF — (VF) and VVVE — 2VFVVF — (VF)*/\F
F? 4F
leading to
VF VVVF
2VVlog F+ (<5 ) —4 . 13
og = = (4.3)

By combining (£2) and (43)), we obtain the following result.

Proposition 4.2. Let (, € R and F' be an almost surely positive Poisson functional
such that F, VF and { = (1(N(W) = 0) + Vlog(F) € Dom(D). Then, the
estimator 0 defined from ¢ by (A1) satisfies

MSE(0) = MSE(0,,,) + |W|2 (c e WL 4R (V\V/Fﬁ» . (4.4)

Proposition gives a similar result to [Privault and Réveillad (2009, Proposi-
tion 4.1) for one-dimensional Poisson point processes. As a consequence of Proposi-
tion 2] the Stein estimator given by (4.1]) will be more efficient than the maximum
likelihood estimator if we manage to find F' and (, satisfying the conditions of Propo-
sition and such that (Ze !Vl 4 4E(VVVF/VF) < 0. This is investigated in
the next section.

4.2 A class of Stein estimators on the d—dimensional
Euclidean ball

In this section, we focus on the case where W is the d—dimensional Euclidean closed
ball with center 0 and radius w, denoted B(0,w) in the following. Without loss of
generality, we can restrict to the case w = 1. We combine Proposition and the
isotropic Malliavin derivative defined in Section 2 to build a large class of isotropic
Stein estimators. We need some additional notation. Let n > 1, 1 < k < n and let
Ty,...,o, € W, we define z),, by induction as follows

T(1);n = argmlnue{ml Tn, }HUH

.....

T(k),n, = argmin

The point (), is the k—th closest point of {xl, . .,xn} to zero. Similarly, we
denote by X() the k—th closest point of X to zero. Note that, the point X, may
lie outside W depending on the value of N(W) for the given realization. We are
also given some function ¢ € C*([0, 1], R") satisfying the two following additional

properties
inf ©(t) >0 and ¢'(1) = 0. (P)

t€[0,1]

Then, the Poisson functional involved in the definition of our Stein estimator writes
VFL =Y 1(NW) = n)grn(X1, ..., Xn) + (1) 1IN(W) < k) (4.5)

n>k

12



where for z1,..., 2z, € Wandn >k >1

(@1, 7n) = (|2 w).a1%) (4.6)

for a function ¢ satisfying (P). In other words, we focus on functionals F' € & such
that

VEr =3 1NW) = n)o(| Xwall?) + o(1N (W) < k) (4.7)

n>k
from which we build our main result.

Proposition 4.3. Let k > 1. Let ¢ € C*([0,1],R") satisfying (P). Define Fy
from ¢ as in [ET). Then ¢ = Vlog Fy, is an element of Dom(D). Moreover, the
Stein estimator, its mean squared error and its gain with respect to the maximum

likelihood estimator are given by

;A4 Y (V)

01, = Oy 4.8
k AW~ ¢ (V) )
_ _ 16
MSE(6),) = MSE(fyy) — FE E[G(Y))] (4.9)
_~  MSE(Ays) — MSE(6y) 16
Op) = _ = E [G(Y, 4.1
Gain(6y) MSE(Boy) 6| {g( (k))} (4.10)
where
Xwll? if | Xl <1

Voo = 1+ (Xl - DX <= { POl FIXel<t )

and G(t) = —t(¢'(t) + 1" (1)) /(1)

Proposition reveals the interest of the Poisson functional Fj, given by (4.1).
We obtain isotropic estimators of 6 depending only on || X)||?. It is worth men-
tioning that the distribution of || X4)||* is well-known for a homogeneous Poisson
point process (see Lemma [5.T]). This allows us to derive efficient and fast estimates
of E[G(Y(x))] which can then be optimized w.r.t. the different parameters. This is
studied in more details in Section

The proof of Proposition [4.3] requires first to compute the gradient of the func-
tions gy, given by (&6 and second to ensure that /F belongs to Dom(D). To this
end, we use the following lemma.

Lemma 4.4. Let H'([0,1],R) be the Sobolev space defined by (A and let ¥ €
H'([0,1],R). Then,

G = z;gl(N(W) = n)\I/(HX(k),nH2) + () 1(N(W) < k) € Dom(D) (4.12)
and

VGr === Y 1UNW) = n) [ Xl PY (| Xk0l*)- (4.13)
n>k

2
d
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The proof of Lemma [£4] being quite technical, we postpone it to Appendix [Bl
Here, we only present the key ideas sustaining it.

Sketch of the proof of Lemma[{.4 Let n > k and x,41 € OW, ie. |[z,41]| = 1,
we have Z(p)ni1 = T)n and V(|zwni1l]?) = C(||lz@)n]?), which is exactly the
compatibility condition which has to be satisfied for n > k by the form functions
of Poisson functionals belonging to &’ When n = k — 1 and x,4; = xx € OW,
ie. |lzxl| = 1, we still have zgy ), = x5 and ¥(||zgx]/*) = ¥(1). Since for n < k,
the forms functions are all equal to the constant function W(1), the compatibility
conditions also hold forn =k —1and n < k — 1.

At any point (z1,...,x,) such that (z,...,2,) — ||zw).[* is differentiable, the
definition of the Malliavin derivative and the usual chain rule easily lead to (EI3]).
Note that that even if ¥ € C!'(W,R), the functional G}, may not belong to Dom(D)
since its form functions are not differentiable everywhere. Indeed for any n > 1,
(z1,..., @) = ||z n* is not differentiable at any point (z1,...,x,) such that for
some i # j, ||z = ||2;|| = [[x@)nl]- In Lemma B4l we prove a weaker assertion,
namely that Gy € Dom(D), which means that Gy can be obtained as the limit of
Poisson functionals of Dom(D). Then, the proof of Lemma 4] relies on the density
results stated in Appendix [Cl

Proof of Proposition[{.3 By definition,
log Fr = 2 Y 1(N(W) = n)log o([|[ X)nll*) +log (1N (W) < k).

n>k
Since ¢ is a continuously differentiable function, we can easily check that ¥ &
H([0,1]). So Lemma 4 can be applied to ¥ = log ¢ and Gy = log(F}). Hence,

log F, € Dom(D) and

4 ¢ (X l?)
o =ViogF,=—=Y 1(NW) =n)|| Xl 2000
12 O Ryl

Then, we derive the explicit expression of 6, given by (Z8]). We also deduce that
(. = Vlog I, € Dom(D) by applying once more Lemma LAl with W(¢) = ¢/ (t) /o (t),
which also satisfies the required properties thanks to the smoothness of ¢’. In
view of Proposition 2, we estimate VVVF,/VF}, to derive (@&Y). From (@3]
and ([@8), VF}, also satisfies the assumptions of Lemma B4 with ¥ = ¢. Hence

VF} € Dom(D) and

2
VVE = —2 S AN = 0l Xl (1 X0
n>k
The conclusion ensues by applying Lemma@ Al to Gj, = Vv F}, with U(t) = —2t¢/(t)/d
and we obtain the following formulae.

4
VVVE, = =5 S 1N W) = 0) (11Xl (1 X 010%) + 11Xyl " (1 X 00.011%)|

n>k
VVVF, 4 S U(NOV) = ) [1X 09012 (1X 1) + 11X 00,10 (1 X 00.112)]
VE, P P X w)nll?) '
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Then ([@Y) follows from the last equality, while (ZI0) is directly deduced from (3.
U

5 Numerical experiments

We underline that it is impossible to find a function ¢ satisfying (P) and such that
G(t) defined by (AI0) is positive for any ¢ € [0, 1]. In this section, we analyze two
examples for which we can obtain positive gain even though G is not positive every-
where. Then, we conduct a numerical and simulation study where, in particular, we
show that in many practical situations we can get a gain larger than 30%.

Before this, we should notice that the mean squared error and the gain of our
new estimators 6, only depend on the distribution of | X |I?. The following result
shows that expectations involving this random variable can be computed directly
without sampling a Poisson point process, which speeds up the simulations a lot.

Lemma 5.1. Let k > 1, the density of || X ||* is given by

k—1
MM,; > O)

d —1 vy 0td/2
f||X(k)||2<t) = §Ud9t e (k’ — 1)' =

where vy = 7?1 (d/2 + 1)w? is the volume of B(0,w). Moreover, for any positive
measurable function h : RT™ — RT, we have E (h(HX(k)HQ)) =E (h(ZQ/d)) where Z
s a real valued random variable following a Gamma distribution with shape k and
rate v40.

5.1 First example

Let k > 0 and v € (0,1/2), we define for ¢ € [0, 1]

p(t) = (1 =) (X1 *¥)(1) +r (5.1)

where, for any measurable set A, x4 = 1(t € A) denotes the characteristic function
of the set A and the star x stands for the convolution product. The Schwarz function
(see e.g. Hormander (2003)) ¢ : [—1,1] — R™", defined by

W(t) = cexp (— ) with ¢ such that /01 Y(t)dt =1

1— ¢

satisfies 1/ > 0 and (™ (41) = 0 for any m > 0, which implies that ¢ satisfies (P).
The main interest of this function is that for any t € [0,1 — 27|, ¢(t) =1 — t + &,
¢'(t) = —1 and ¢"(t) = 0 which leads to G(t) = t/(1—t+r) > 0 for any t € [0, 1—27].
Figure [l illustrates this function ¢ with x = 0.5 and v = 0.05. We can observe that
G(t) > 0 for t < 0.9 but G(t) can be highly negative for ¢ > 0.9. Note also that
the smaller v, the more negative G. This highlights the danger of Example 1. From
a practical point of view, the best choice would be to tune the integer k such that
| X || often lies in a region in which G is high, however this region is quite small
and the function G decreases quickly outside of it and takes highly negative values,
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which may yield to negative gains in the end. On the contrary, if reasonable values
are chosen for vy and k is small then there is hardly no chance that || X)||* > 1 —2y
but the corresponding gain value remains very small. This first example shares some
similarities with the estimator proposed by [Privault and Réveillad (2009) in the case
d =1, see Section [5.4l

o4 — ¢
,,,,, o' ; .
" = 7 /
~ i o 4 ———
L | |
o ~

|

-40
|

L S B -+ Gain®)

T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure 1: Plots of ¢, ¢, ¢"” and G for the function ¢ defined by (G.I) with x = 0.5 and
v = 0.05. The vertical line indicates the value 1 — 2y = 0.9 before which the function ¢ is
linear.

5.2 Second example

Let k > 2 and v € R, we define for ¢t € [0, 1]

p(t) = exp (y(1 = 1)"). (5.2)

We can easily check that the property (P) holds for any x > 2. The main advantage
of this function is that the gain function has a “power” shape. For instance, when
k=2 G(t) =2yt (1 -2t —29t(1 — t)?). For any value of k, we can show that there
exists a unique o € (0,1) such that G(¢y) = 0 and such that sign(G) = sign(vy) for
t € [0,ty) and sign(G) = sign(—~) for ¢t € (ty, 1]. Figure 2 illustrates this function.
The top-right figure reveals the interest of Example 2. It shows that when k is
chosen large enough, then || X)||* > to very often and therefore G(t) is quite large.

The latter comment is the main reason why among these two examples (and
many others we have tried) the exponential function (5.2)) produces the best and
the most stable empirical results. Thus, we only focus on this case in the following.
With this choice for the function ¢, the Stein estimator writes

~ A 4d
9k = GMLE + Wf}/"i}/(kxl - Yr(k)yiil (53)

where Y{y is given by (&I1]).
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5.3 Optimization of the gain and a first simulation study

Gain (%)

B2
40

-2
|

4
|

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

™ — L — ¢ Gain (%)
S R R ¢/l o /

/

-15 -10

-2
|
-20
|

0.0 0.2 0.4 0.6 0.8 10 0.0 02 0.4 056 058 10
Figure 2: Plots of ¢, ¢’ ¢"” and G for the function ¢ defined by (5.2)). The parameters
k and v are equal to 3 and —3 for the top figures and to 2 and 0.5 respectively for the
bottom figures.

Before optimizing the parameters k, x and 7, we first want to check the integra-
tion by parts formula. For & = 10,20, 50 and 80 (and for specific parameters x and -y
we do not comment upon for now), we represent in Figure B] the empirical and theo-
retical gains computed by the Monte-Carlo approximation of (£I0) based on 50000
replications of Poisson point processes in the 2-dimensional Euclidean ball. We
clearly observe that the empirical gain perfectly fits the one computed from (ZI0).
The second observation is that k, x and v need appropriate tuning, otherwise the
gain can become highly negative. For instance, when k = 20 and 6 = 20 (and &,
chosen as specified in the caption of Figure [3)) the gain reaches the value -200%.

For the exponential function ¢ given by (5.2)), the gain function writes

G(t: k) = yrt(1 — )" 1 — 222 (1 — )25 D — 2qk(k — 1) (1 — )2
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Figure 3: Empirical and Monte-Carlo approximations of the theoretical gain in terms of 8
for the exponential family (5.2)). For k = 10, 20, 50, 80, the parameters x and v are chosen
to optimize the theoretical gain for 8 = 5,10,25,40 respectively. The results are based
on m = 50000 replications of Poisson point processes in the 2-dimensional euclidean ball

B(0,1). The Monte-Carlo approximation of (&.4)) is also based on m = 500000 samples.

Now, we explain how we can compute argmax ) E(G(Ys; x;y)). First, note that
solving the equation a%g (t; ;) = 0 leads to an explicit formula for the optimal
choice of the parameter ~

E (Yo (1= Yin)™™" = Y3y (s — 1)(1 = Yipy)"?)
E (2/‘{,}/(k,)2(1 — }/(k))Q(H—l)) :

V=

Plugging this value back in the formula of the gain leads to

E (Yo (1 — Yir)™2(1 — 6Y(r)) )

E(G(Yiwy; k:77)) = E (Y(k)2(1 _ Y‘(k))Z(n—l))

(5.4)

Second, we compute numerically arg max,, = E(G(Yx; #;7*)). To do so, we rely on
deterministic optimization techniques after replacing the expectation by a sample
average; we refer the reader to|Rubinstein and Shapira (1993) for a review on sample
average approximation. Note that the random variable Y{;) can be sampled very
efficiently by using Lemma 5.1 and (ZI1]).

In Figure @, we chose different values of k and optimized, w.r.t x and ~ for every
value of 6, the theoretical gain (ZI0) computed by Monte-Carlo approximations.
The plots are presented in terms of 6 (when d = 2). For a fixed value of k, we
observe that when v and k are correctly adjusted the gain is always positive for
any 6. Still, the choice of k is very sensitive to the value of 6 and also needs to be
optimized to reach the highest gain. This has been done in Table [Il in which we
present a first simulation study. We investigate the gains for different values of d
and 6. For any 6 and d, we chose

(kK*, v, k") = argmax(k,%n)Gain(gk).
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Our experience is that interesting choices for k are values close to the number of
points, say n. Therefore, the optimization has been done for k € {|.75n|,...,[1.2n]}.
Such an optimization is extremely fast. Using 50000 samples to approximate (ZI0)
with the help of Lemma [b.1], it takes less than two seconds to find the optimal param-
eters when d = 3 and # = 40. The empirical results presented in Table [I] are based
on 50000 replications. We report the empirical means, standard deviations, MSE for
both the MLE and the "optimized" Stein estimator and finally the empirical gain.
The average number of points in B(0, 1) equals to |W| with |[W| = 2,3.14,4.19
approximately. The first three columns allow us to recover that the MLE is un-
biased with variance (and thus MSE) equal to 6/|W|. Then, we observe that our
Stein estimator is always negatively biased. This can be seen from (B.3)) since the
optimal value v* is always negative. We point out that the standard deviation is
considerably reduced which enables us to obtain empirical gain between 43% and
48% for the cases considered in the simulation.

k=10 - Theoretical gain
k=20
k=50
k=80

Gain(%)

10
|

0 10 20 30 40 50

Figure 4: Monte-Carlo approximation of the theoretical gain for the exponential fam-
ily (&2). For each value of k and 6, the parameters xk and « are chosen to optimize
the theoretical gain. The Monte-Carlo approximations of (5.4]) are based on m = 50000
replications of Poisson point processes in the 2-dimensional euclidean ball B(0,1).

5.4 Comparison with Privault-Réveillac’s estimator in the
case d =1

In this section, we focus on the case d = 1 and we aim at comparing the performance
of our estimator with the one proposed by [Privault and Réveillad (2009) and denoted
Oy, for the sake of conciseness. As underlined previously, 6, shares some similari-
ties with our first example. The main difference comes from the fact that, even in
the case d = 1, the integration by parts formula obtained by [Privault and Réveillac
(2009, Proposition 3.3) differs from ours (see Theorem [B.2)). Since our framework
was to work with d—dimensional Poisson point processes for any d > 1, we had to
impose different compatibility conditions. To ease the comparison with our estima-

tor based on X defined on R and observed on W = [—1, 1], we define fpr based on
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MLE STEIN Gain (%)

mean sd mse| k¥ mean sd  mse
=5 d=1 5 1.6 252 11 44 1.0 144 43.0
d=2 5 1.3 158 | 18 46 0.8 0.86 45.6
d=3 5 1.1 119 22 46 0.7 0.64 46.1
0=10,d=1 10 22 503 | 22 9.2 14 273 45.8
d=2 10 1.8 3.18| 34 94 12 1.72 46.0
d=3 10 1.5 237| 44 95 1.0 1.27 46.3
0=20,d=1 20 3.1 991| 42 188 2.0 5.31 46.4
d=2 20 25 6.38| 66 19.1 1.6 341 46.5
d=3 20 2.2 4.72| 8 19.1 1.3 247 47.5
0=40,d=1 40 4.5 20.09| 8 385 29 10.61 47.2
d=2 40 3.6 1279|125 386 2.2 6.78 46.9
d=3 40 3.1 9581169 388 1.9 495 48.3

Table 1: Empirical means, standard deviations (sd), mean squared errors (mse) of MLE
estimators and STEIN estimators of the intensity parameter of Poisson point processes
observed in the d-dimensional euclidean ball B(0,1). The results are based on m = 50000
replications. The Stein estimator is based on the exponential function. For each 6 and
d, the parameters x, v and the k—th nearest—neighbor are optimized to maximize the
theoretical gain. The column k* reports the optimal nearest-neighbour. Finally, the last
column reports the gain of mse in percentage of the Stein estimator with respect to the
MLE.

the observation of X on W = [0,2]. Note that by stationarity, (X + 1) < X 80

both estimators are based on the same amount of information. Let X; be the point
of X closest to 0, then 6,y is defined for some x > 0 by

N ~ 2 — 2X,

Opr = 0, —1(N = —1 X; <2).
PR MLE+/{( (W) 0)+ 2(1+KJ)—X1 (0< 1 < )

The mean squared error and the corresponding gain are given by

~ ~ 1 X
= _ — — - 0000-=- @@ <
P 2 2 X1
br) = —= —20) — - E| ——1(X; <2)]. .
Gain(0py) 0.3 exp(—20) 7 (2(1 - 1(X, )) (5.5)

Note that X; ~ £(0). We took the same point of view as in the previous section
and optimized the gain w.r.t. k. The optimal gain reached by Opy, is presented in
Figure Bl As a summary of this curve, the optimal gain for § = 5,10,20 and 40
is equal to 4.4%,1.1%,0.2% and 0.06% respectively. The results are clear. Our
Stein estimator, based on the exponential function and on the idea of picking the
k-th closest point to 0 instead of just the first one, considerably outperforms the
estimator proposed by [Privault and Réveillad (2009).
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Figure 5: Monte-Carlo approximation of the theoretical gain (5.5) optimized in terms
of k of the Stein estimator 6,y in terms of 6.

5.5 Data-driven Stein estimator

Table [I] is somehow a theoretical table since the optimal parameters k*, v* and
k* are searched for given the value of 6, which is useless in practice since @ is
unknown. A natural idea consists in first estimating the MLE and then look for
the optimal parameters given Orrie- Preliminary experiments have shown us that
this procedure can be quite varying when d or 6 are large. We think that this is
essentially due to the high variance of the MLE. To explain how we can reduce this,
let frq,x(0) = 16 EG(Yy))/(0d*|W]). Instead of maximizing Frmn(Brin), we suggest
to maximize the average gain for a range of values of # and we fix this range as a
factor of the standard deviation of the MLE. More specifically, let

0(6.p) = |0 = p\JO/IW].6 + /617

When p =1 (resp. p = 1.6449, p = 1.96), @(éMLE, p) corresponds to the confidence
interval of # based on 6, with confidence level 68.3% (resp. 90% and 95%). Then,

we suggest to maximize

16 G(Viw)
_ L(0)d0 = Ef do. 5.6
/@(GMLEHP) fkm ( ) d2|W| O(OMLEP) 0 ( )
In the following, we may write Y(;)(f) to emphasize that the distribution of the
random variable Y(;) depends on the parameter 6. Thus, we can rewrite (5.6) as

16, /3 G(Yi(U))
(6)do = 20\ O/ |W | E ,
/@(é\MLEyp) fk‘m ( ) d2|” | P /| | < U

where U is a random variable independent of Y() with uniform distribution over
@@MLE, p). Sampling Y(3)(U) is performed in two steps: first, sample U and second
sample a Gamma distributed random variable as explained in Lemma [5.1] in which
the value of # is replaced by the current sample of U. Hence, optimizing this new
criteria basically boils down to the same kind of computations as for a fixed value
of 6 without bringing in any extra computations.
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Table [2 reports the empirical results regarding this suggestion. As the optimiza-
tion procedure needs to be conducted for each replication, we only considered 5000
replications. We report the results of the empirical gains of the previous proce-
dure for p = 0,1,1.6449 and 1.96, the value 0 meaning that we simply maximize
fk,%n(gmm)- Globally, the empirical gains are slightly smaller than the ones obtained
in Table [Il Yet, the results remain pretty impressive. When 6 is equal to 5 or 10,
optimizing (5.0 with p = 1 leads to similar results as the previous ones. The value
p = 1 seems again to be a good choice when 6§ = 20 while p = 1.6449 is a good

compromise when 6 = 40.

Gain (%)
p=0 p=1 p=16449 p=1.96
0=5d=1| 488 479 36.4 30.1
d= 38.6 424 37.1 31.4
d= 39.4 426 37.0 31.7
0=10,d=1| 403 438 36.7 30.1
d=21] 36.2 388 33.7 27.9
d=3] 316 36.6 32.0 28.3
0=20,d=1| 373 386 34.5 28.0
d= 2713 331 31.0 26.5
d= 20.8  28.6 28.1 23.8
0=40,d=1| 223 308 29.2 23.9
d= 16.3  24.0 28.2 24.4
d=3] 127 190 24.5 22.0

Table 2: Empirical gain of Stein estimators of the intensity parameter of Poisson point
processes observed in the d-dimensional euclidean ball B(0,1). The results are based on
m = 5000 replications. The Stein estimator is based on the exponential function. For
each replication, the parameters k,~ and x maximize (5.6 for different values of p.

A Notation

We introduce some additional notation required in the proofs. Let m be a fixed
integer. We denote by D(O,R) the space of compactly supported functions which
are infinitely differentiable on an open subset O of R™. If O is a closed subset of
R™, we define

D(O,R) = {g : 33 € D(R™, R) such that g = §|5}'
The Sobolev spaces on an open subset O of R™ are defined by

H'(O,R) = {fe L*(O,R): V1 <i<m, gf

€ LQ(O,R)}

7
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with the norm defined for any g € H*(O,R) by

m 2

lgllaror) = N9l 20m) + | D
=1

Jg
31’@-

L2(O,R)

where the partial derivatives have to be understood in the weak sense. The Sobolev
spaces can also be defined on a closed subset O of R™ as

H'(O,R) = {f € L*(O,R) : 3g € H'(R™,R) such that g5 = f}. (A1)

B Proof of Lemma 4.4

B.1 An explicit formula for the weak gradient of
U (|| w)nll?)

In this section, we consider form functions defined by

fn(xla cey $n) = \I](”x(k‘),n’P)'

Even if ¥ € C(R,R), the function f, may not differentiable everywhere since the
function (21, ..., 2,) > ||Z@)»||* is non differentiable at points (z1, .. ., x,) for which
|zi|| = lla;]] = ||z@w)nll for some i # j. Nevertheless, (21,...,2,) — ||z@).]* is
continuous on (R%)™ and so is f,. Then, we deduce in this section that f, admits
partial weak derivatives (see Lemma [B.3)). Our result is based on the following
classical result concerning the existence of weak derivatives for continuous functions
(see e.g/Zuily (2002, Proposition 2.4 of Chapter 3)).

Lemma B.1. Let (a,)nen be an increasing sequence of real numbers such that a, —
00 asn — 00. Set ag = —oo. For any j > 0, let f; : [aj,a;41] — R be such that
f; € C'(az,a501),R), 1 € LX((aj,a501),R) and define f by f = ¥ yen filay apmn)-
If the function f is continuous on R, then it admits a weak derivative, denoted f,
defined as the locally integrable function " =32; fil(a;.a;,1)-
Remark B.2. The continuity assumption on f is crucial since if f were discontinu-
ous at some points a;, f would not admit a weak derivative. Indeed, in this case the
usual jump discontinuity formula (see again |[Zuily (2002, Proposition 2.4 of Chapter
3)) would imply that the derivative of f, in the sense of distributions, would be the
sum of a locally integrable function and some Dirac masses.

We deduce the following result from Lemma [B.1l

Lemma B.3. Letn > k > 1 and let ¥ : R — R be a continuously differentiable
function defined on R. For any j, f, admits a weak gradient V, f (21, ..., 2,) w.r.t.
x; and the following equality holds

Y Vo fal@r, o wn) - 2 = 20w PV (|20 wl?), a-e. (B.1)
j=1

In addition, if V is compactly supported in [—+/a, /a] for some a > 0, the function f,
belongs to H'(B(0, a))", B) and satisfies sup, (| full 1 ey - 51 [V ol ) < 00,
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Proof. Define for any j € {1,...,n}, the following set

A ={(z1,...,2,) € (Rd)" D Ty = o5 and x| # ||a;|| for j # i}

Observe that on U; 4;

folzy, .. x,) = Z‘I’(H%HQ)lAJ- (T1,. .., Tp).

Hence, the everywhere differentiability of ¥ implies that the function f,, is differen-
tiable on U; A;. In addition, the usual differentiability rules lead to

V:vifn(xla---v Zv H.T]” 1A (.Tl,...,xn)]

:Vmi[ (il *)1a, (@1, - -, @)
= Qxi\I/'(HxiHQ)lAi (T1,...,7p)

for any ¢ € {1,...,n}. By using Lemma [B.Il we prove that f, admits a weak
gradient w.r.t. x;. In the following, we denote the coordinates of elements z; € R?
by z; = (SL’EI), e Ed)) For any ¢ =1,...,d, define

fZ(Q(:L’Z(Z)) = f(z1,..., 21, (xgl), . ,xgé), . ,xgd)), ey Tp)-

Then, we deduce from the differentiability of f, on U; A; that the function fz(zn) is
differentiable at any point xlw € R, such that ||z;|| # ||z;|| for all j # 4. Since

in addition fl(i) is continuous on R, we can apply Lemma [B.1l to deduce that fz(zn)
admits a weak derivative defined as

0

4
SVl a @) = 2200 (el 1a (o)

(@) =

which also means that for any (7, ¢), f, admits a weak partial derivative w.r.t. SL’Z(-Z)

defined by

Ofn
or'? o2

7

S (|2, (@, ) = 208

W (||2]2) 1, (21, 20). (B.2)

We also deduce that

d
8fn
S gt — S O (a2, (1, s 2) = 2 [P (D), (2 ),

=1 590 =1

which, once combined with the definition of V. f,,, yields

n n d n

8fn l
E V:mfn<xlaaxn)xz = E E axg) 5) :2§ :”sz2\11/<”sz2)1142('rlu7xn>
i=1 i=1

i=1/¢=1

24



For any i and any (21, .-, 2) € A, |70, (l79al?) = [l P¥ (]2, So on
U,;A; (which is a set of full measure)

)l (e g,all®) = D Nl @ (lwil*)1a, (21, - 20).

=1

Equation (B.) of Lemma [B.3 follows from the last equation and from (B.3). Fur-
thermore, if ¥ is compactly supported in [—\/a,+/a] then f, coincides with

falTy, . ) = U(||z@w)nl)u(z, ..., 2,) on (B(0,a))" where u is a compactly sup-

ported and infinitely differentiable function such that v = 1 on (B(0,a))" and
u =0 on (RY)"\ (B(0,2a))". Using the smoothness of u and the continuity of f,,

we deduce that f, is also continuous on (RY)™. Then, we get in particular that
fn € L2((RY)™ R). In addition, ¥’ is also compactly supported and by the smooth-
ness of u, we have for any i, ¢

of, of ou
8:@@) - u&c@) ik &m@

)

in the sense of weak partial derivatives. Using once more (B.2)), we deduce that for

any (i, (), aﬁ% also belongs to L*((R%)"). Hence f, € H'((R4)™).
Since on (B(0,a))” f, coincides with the function f,, which belongs to
H'((R%)",R), we deduce that f,, € H'((B(0,a))", R). The fact that sup,, || fu || o)+

> IV, full Loe(rny < 00 also comes from (B.2). O

B.2 A density result for the form functions considered in
Lemma (4.4

In the following lemma, we state a useful density result to approximate the form
functions f,, defined in Lemma (4l

Lemma B.4. Let £ > 1 be a fixed integer and let U be a function belonging to
H'([0,1],R). Define W, (z1,...,x,) = ¥(1)1(n < k) +V(|zwnl*)1(n > k). Then,
there exists a sequence (fy,) of symmetric functions of C*(W",R) such that

(Z) For any TL,E Z 0; fé,n-‘rl = fé,n-
mn+1€aW

(ii) There exists some C' > 1 such that for any n, £ >0, || frn — VYo mrwnry < C"/L.
(1ii)For each £, there exists some C; > 1 such that for any n > 0

1 fenllzoovn gy + 2N Va, fomllLoeqwnz) < (C9)"
Remark B.5. The notation ¥(1) makes sense if ¥ € H'([0,1],R) since the usual
Sobolev injection yields that H'([0, 1], R) < C°([0, 1], R).

Proof. The case d = 1 would deserve a particular treatment, but as it can be easily
adapted from the case d > 2, we only handle the latter one. For any n > 1, and any
(ri,...,m,) € (0,1)" define by induction

Ty, = Min(ry, ..., 7r,)

T(k)n = min{r € {ry,...,r,}\ {7”(1)7m o ,T(k_l)m}} for 2 <k <n.
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Then fix £ > 1 and define the following functions ®,, on [0, 1]" for any n > 0 by
O (11, .. 1n) = (Y(r@ym) —¥(1)) 1(n > k). In particular &, = 0. We observe that

U, (z1,...,2,) = (Pn(||x1||2, e ||xn||2) + ¥(1) on W™

If we approximate ®,, by density using Proposition [C.7, Lemma [B.4] will be deduced
using a change of variables in polar coordinates justified in the sequel.

Since Proposition applies to a sequence of functions defined on R", we need
at first to extend each function ®,, on R into a function ®,, belonging to H'(R", R)
and satisfying ||®, |z @n gy < B" for some B > 1. This will be possible since for

any n, ®, € H'((0,1)",R). Hereafter, we prove that the new sequence (®,,) satisfies
the assumptions (a)—(c) of Proposition with a = 1.

Step 1: we prove that for any n, ®, € H'((0,1)",R). We focus on the case n > k
as the case n < k is obvious. Since ¥ € H'((0,1),R) C L?((0,1),R)

/ |(I>n(r1,...,Tn)|2d7“1...drn:/ () — W(1)[2dr, ... dr,
(0,1)" (0,1)"

- Z/(Tl rn)€(0,1)" |\II(T@) - \I’(l)|2d7“1 ...dry,

.....

i=1 Ti=T(k),n
noo.l
<2\ [(we)P + e P,

X d’l"l R dTi_ldTi+1 e d’l"n
(7"17---7Ti_17Ti+1,...T’n)e(071)n_1

< 2n(||\11||%2((0,1),]R) +P1)P) < 00

whereby we deduce that @, € L*((0,1)",R) for any n > 0.

To deduce that each @, belongs to H'((0,1)",R), we prove that for any n > 0,
®,, € L*((0,1)", R) admits partial derivatives w.r.t. r; for any 7 and that these partial
derivatives are all square integrable. Since ¥ € H'((0,1),R), ¥ is continuous on
[0,1] as well as (r1,...,7r,) = T4, Hence, ®, is continuous on W". By applying
Lemma [B.] to the functions @g) sy = Du(ry, ..., 7. .., 1), we deduce that for
any (n,i), ¢, admits a weak derivative w.r.t. r; and that for a.e. (ry,...,7,)

0V, (r1,...,7m0)
8ri

= 27y 0 W (7)) Ly =i (P15 T0).

Since ¥ € H'((0,1),R) we have for any i € {1,...,n}

0D, (r1, ..., r)|? |90 () [
o)l g, < / .dr;
/(0,1)n or; Tl " _izzl 0 or; e ardr
n 1|9 () |
<2 / dr; < o0,
- ; 0 or; =0

which shows that ®, € H'((0,1)",R) and satisfies || Py 1 (0,1)2,r) < nA for some
A>0
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Step 2: extension of ®,, and properties. Let us define the sequence ®,, as follows

- {@nm, o) = By fral) A (re ) € (<1, 1)0

®,(r1,...,mn) =0 otherwise.

We prove that this sequence satisfies the assumptions of Proposition [C.7l. First,
Assumption (a) is clearly satisfied. Second, since by Step 1, ®,, € H'((0,1)",R) for
any n and is symmetric, it is also clear from the definition of the sequence ®,, that
these functions all belong to H!(R", R) with ||§n||H1(Rn’R) = ||| a1 ((0,1)n, ) and are
also symmetric. This proves Assumption (b). Third, we can check that Assump-
tion (c) is satisfied for the functions (®,). If 7,47 = 1 and (ry,...,7r,) € (0,1)",

T(k);n+1 = T(k),n, Which implies that for any n @, ) =&,. Thecasen < k—1
Tn+1=

is also clear. When n =%k — 1, r, = 150 rgyp = 1 and ¥(rgy ) — (1) = 0. Then,
we deduce that Assumption (c) is satisfied by the sequence (®,). By definition of
the sequence ®,,, it is obvious that Assumption (c) is also satisfied for the functions
D,.

Step 3: construction of the sequences (fy,) to approxzimate the functions ®,. By
Step 2, Proposition [C.7 can be applied to the sequence (@n) with a = 1. We deduce
the existence of a sequence g, of symmetric functions on R" satisfying (A)-(D) of
Proposition [C.7l To conclude, we define the sequence of symmetric functions fy,, on
W™ by fon(@,. .. 20) = gen(llz1)?, .- [|2all?) + ¥(1) and check that the desired
result holds. The compatibility relations are clearly satisfied. Furthermore, since
for any (¢,n), gr, € C*(R™,R), then fy,, € C'(W™ R). In addition

| fenllLooqwnr) = |gemllLoc(0,1)m R)

|V fenll oo own ®)y = [127:0i90m | oo (0,07 1) < 2[|05Ge,n || oo ((0,1)7 R)-

Then, we easily deduce (iii) from property (B) satisfied by the sequence gy,

To achieve the proof of Lemma [B.4, we prove that ||f,,, — W, ||g1qwnr) < C"/0
for some C' > 1. For any i and any x; € W, let r; = ||z;||, ©; = z;/||zi||, us = r? and
STt = {z € RY, ||z|| = 1}. We have

/W" |ff,n(x17 e ,ZL‘n) - \IIn(l’l, .. .,ZL'n)|2dZL‘1 .. dxn

=[s¢H" [/(0 o Gen(ur, s ty) — @ (un, ..o up)? H(ui)(d_l)/Q_l/Qdul cooduy, | .

i=1
Since d > 2 and H'((0,1)",R) — L*((0,1)",R),

/(0 Iyn lgen(ur, ... un) — @p(ug, ... U ) |2 ]:[(ui)(d—l)/Q—lﬂdu1 . du,
’ i=1

— o Gen(ur, .y y) — @ (un, ..o up)|? H(Ui)d/Q_ldul o du,
’ =1

- /(0 1 |g£v”(u17 s 7un) - %(ul, . ,un)|2du1 e dun



the last display coming from the fact that d/2 —1 > 0. It implies that || fr, —
Ul zwn gy < ISTH™ | gem — Pullr2(0,1)n,r). We also note that for any ¢ and any

(1, ) € W™, Vo f(z1, ... 20) = 2z - g(J|z1]|% - - -, |xn|?). The same change
of variables as above yields that ||V, fon — Vi, Unllzove gy < [STH V), 000 —
Vi@l 2((0,1)n r)- The point (ii) is therefore deduced. O

B.3 Proof of Lemma [4.4

Following Section Bl we extend the closable operator V : Dom(D) — L*(9) to
Dom(D) = {F € L*(Q) : 3(F,) € Dom(D), VF, converges in L*(2)}.

Now, we apply Lemma [B:4l and choose a sequence (fy,,) € C'(W", R) satisfying the
compatibility relations and point (ii),(iii) of Lemma [B.4l Let us define (F}), the
sequence of elements in L*(Q2), which admit (f,,) as form functions. We check that
this sequence satisfies the following properties: (i) For any ¢, F;, € Dom(D); (ii)
F, — F in L*(Q); (iii) VF, converges in L*(€2) to some Gy.

The property (i) is deduced from the compatibility relations since
(fen) € CHW™ R) and point (iii) of Lemma [B.4] holds. (ii) Since the functions
(fen) are given by Lemma [B.4, we have for any n,¢ > 0, || fon — Vol 2qwn r) < C™/€
and ||V, fon — Ve, Vol r2ogwn gy < C™/C for some C' > 1. Since for any C' > 1,
71y, C"/n! — 0 as £ — oo, Lemma 1] yields the result.

Using the definition of VF,, we also have that F, — F in L*(Q2) and VF, —
Gy in L*(Q2) where

Gy =23 1(N(W) =n) ivwifbn-xi.

From Lemma [4.1] we have the explicit expression of GG depending only on W:

Gr=2> 1NW) =n) |20V (|2l (B.4)

n>k

The results (i)-(iii) combined with (B.4]) precisely ensure that F' € Dom(D) and
that VF = G,

C Auxiliary density results

C.1 Proof of Lemma

Observe that since C'(W",R) is dense in L*(WW", R), & is also dense in L*(2) from
Lemma 211 Then, let us fix F € L?(Q) and choose (F}), € &' such that F;, — F
in L?(Q2). Denote for any ¢, (f;,) the form functions of the functional Fy. Since for
any ¢ Iy, € §', there exist some Cy > 1 for each ¢ such that for any n

| fenllzoeqwn gy + D | Ve fenll Loy mey < CF- (C.1)

i=1
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We modify each form function fy, on Wn=1 x OW to get new form functions P
related to some functional H, € S’ also converging to F in L*(2). Since the topology
involved in the convergence in L?(2) is the L*(WW") convergence, to do so we will
modify the functions x,, — fi,(-,2,) in a neighborhood of the boundary of oW
without changing the convergence properties.

Since W has a C? boundary, the function g : z € W + d(z, W¢) is also C? for
d(x,W°) < gy for some €9 > 0. In particular, for some M > 1

9llLeowr) + [V oo(wray < M. (C.2)

Now, we define the sequences (hg,,), by induction on n > 0. At first, we set hyo =
fro- Then, for each ¢, consider €,1 € (0, &) such that

1
h 2 2 dz < — (/ 2d ) 3
S Mol + a2 < 5 ([ @R as)  (€3)

and define hy,; on W by

hea(s) = 411 itz W) 2 e
01 d(z,WC)f&l(z) (1 M)hm otherwise.

€r1 €r,1

Since d(z, W¢) = 0 for z € OW, we have hy|ow = he for each ¢. Using (C3), we

also check that ||hey — forllrzawr) < [ferllr2owr) /€. Furthermore, (C2) and (CI)
imply that for any ¢

1heallewry + O (I Ve hea |l oo qwray < MC.

i=1
Assume that we have defined the sequences of functions (hs1),- -, (hey) such that

e (H1) foreach ¢ >1and 0 <n < N —1, hypi1 = hyy if 2,41 € OW.
H2) for each £ > 1 and 0 < n < N, |\hey — fonllc2zovnry < || fonllL2zovnry/C-

H3) foreach £ > 1and 0 < n < N, || hgp||zocwn my+2im | Ve, henl| Lo may <
MCy)".

(
(
° (
(
Let T'y v 41 denote the set Ty yi1 = {(21, -+, 2ne1) € WV 2 d(zn 1, W) < epnia}

To define the sequence (hy 1), we consider, for each ¢, some ¢, y11 € (0,&0) such
that

/ WU,N(ZL ce ,ZN)\Z + |f£,N+1(217 T 7ZN+1)|2] dz - - -danga
Te,nt1
1
< 52 /WN+1 |fong1 (21, 7ZN+1)|2 dzp - - - dayga. (C4)

Then, we define hy y1 on W by

henia (21, 2N41) =
fe7N+1(21, T, 2N+1) on FZ,N-H
d we d we .
%ﬁwﬂ(zl, ez + (1= %)hw(zl, -+ ,2y) otherwise

29



and check that (H1)-(H3) hold. By construction (H1) is valid. Regarding (H2),
from (C.4)

1Pent1 = fonallZegraey = / hnir = foneal*dzr - danp
Te,nt1
d(zns1, W)\
< (1 - M) |h£,N(21> Tt 7ZN) - fz7N+1(21, Tt ,ZN+1)|2d2’1 e 'dZN+1
Tenia E¢,N+1

< 2/ |foni1(z1, -, 2ngn) Pz - - days

Lo Ny

d(z we

_|_2 <1_M> |hg,N(Zl,"' 7ZN)|2d21"'dZN+1

ToN+1 E¢N+1

1
< 6_2 (/WN+1 |fz,N+1(21, T 72N+1)|2 dzp -+ 'dZN+1) .

To check (H3), note that from (CIJ) and (H3) we have

n

| Pe, i1l oo wvn my + Z |V he N1l oo (wne ey
i=1

< max (nfe,mnm(ww,m T S L TN PR

(2

AUl + S IVl o))
< (MCy)N*,

To conclude, let H, be the functional with form functions hy,. Since (H1) and
(H3) are satisfied, H, € Dom(D7™) for each ¢. Finally from (H2), we obtain that
| He—=Fyl|r20) < || Fellr2(o) /¢, which combined with the convergence of Fy to F yields
that H, — F in L*(Q).

C.2 Density results used in the proof of Lemma 4.4

In this section, we state some density results used in the proof of Lemma [4.4] and
more precisely in the proof of Lemma B4l TLet p € (1,400) and p’ such that
1/p+1/p’ = 1. We introduce the so—called Bessel-potential spaces defined for s > 0
by

Hy(R™,R) = {u € S'(R",R), (1 +[¢[*)**a € L (R",R)}

endowed with the norm |[ullps®nr) = [[(1 + |§|2)s/2ﬁ||Lp/(Rn,R). When p = 2, we
recover the usual Sobolev spaces H*(R",R). We also introduce the integrals

Ay = (/Ru +§2)md§)1/2 (C.5)

and denote by B™ the Euclidean ball in dimension n with radius 1 for which we
recall that |B"| = 7"/2/T'(n/2 + 1) < 5.3.
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Lemma C.1. The sequence (A,,) is non—increasing for m > 1/2 and for any m > 1
andn >1

1
———d¢ < [B” A2 (n— C.6
Proof. By a change of variable in polar coordinates we get that
rmidr
B" / B AZ
Lo e = B e < By
O

Now, we make precise a result established by [H.Triebel (1983, Section 3.3.1).

Lemma C.2. Letp € (1,+00), € >0 and s > 1+e+n/p. For anyu € Hy(R",R),
u € CH(R™,R) and for some C > 1 depending only on &

[ull oo ®n r) + |Vl Lo @n r) < Cllull s @n r)- (C.7)

Proof. We use the density of the Schwartz class in H,;(R",R) and first prove the
inequality for u belonging to this class. We use that

62‘5-:1:
u(r) = [ a@esmag= [ [0+16P)" 0] g emnde

From Cauchy Schwartz inequality

1/p
1 n 2
e < (L g o < BT s (€3

Let £ € {1, - ,n},

£ete

g = [ ate)eas = [ [0+ 16a(6)) 5 e

Then, from Lemma we get
ou

0:@

‘§£|p n 2
< llell e m) /]R el sIB Ay e[l 30 ) (C.9)

By combining (C.8)), (C9) and since the function m +— A,, is non-increasing, we
deduce that

n 2
[l oo n ) + V| oo en my < 2[B[VPA (/Sp Dp—(n—1))/2 1l 3 n R)-
Since

n 2 n
sup  sup  sup2[B"|VPAYY 0 < 2sup [BYVPAY s < oo
n s>14e+n/p p>1 n

(C) is deduced for any function u of the Schwartz class which leads to the result
since this class is dense in H;(R", R). O
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Now, we recall some basic properties of the trace operator, see Adams and Fournier
(1975).

Lemma C.3. Fiz a € R and 0 > 1/p. The mapping Yn. : ¢ € DR R) C
Hg(RnJrl’R) =@ = fR”‘H 6 ve (gla ' 7£n7§n+1)dfld§n+l € Hgil/pORnJR) is

Tn4+1=

continuous with norm less than A2/p.

The trace operator fy(p is defined as its continuous extension from H"*(R™*' R)
to H"~'/P(R™, R). Since it is defined by density on D(R™™, R) C ), 11/, Ha(R",R),
for p; # po the two operators 'yr(fé) and 77(53) coincide. For the sake of simplicity, we
drop the index p, and always denote by v, .f the trace of a function f belonging to
some space H;(R"“,]R) for some s > 1/p and p > 1.

In addition, we give an explicit expression of the extension operator to the
Schwartz class, see [Zuily (2002, Lemma 1.17, Chapter 11)). The following result
is a slight modification adapted to our framework.

Lemma C.4. Let a € R, M > 0, p > 2, s € (0,2M) and g belonging to the
Schwartz class. Then, the function f defined from g on R™*! in the Fourier domain

by

1 H2\M (¢! ) .

is an element of H*TV/P(R"1 R) and satisfies

F€ &) =

2
[ HETYP(Rnt1 RY = < AM2+1/2A]\//II])2+p/2—1/2+8p/2||g||Hf,(R",R) (C.11)
and Vnof = g. Moreover, if g is symmetric, so is f.

Remark C.5. The function f is not unique (it depends on M) since the trace
operator is only a surjective operator. The main point is that we can extend the
function ¢ so that inequalities are valid for a large range of values of (p, s) and
for the same functions f.

Proof. All the conclusions of Lemma [C.4] are stated and proved in [Zuily (2002,
Lemma 1.17 of Chapter 11), except (C.11), which we now focus on. To prove (C.11J),
observe that since p > 2

19(&)IP

| )Mp+p/27sp/271/2
5 lg(&")P

< Mg (LH €)Y (14 [€[2)Mp+1/2=sp/2"

L IEPYPPRIEF = Mty p(+ P g

Since M > s/2, 2Mp + 1 — sp > 1 which implies &, + (1 + |£[?)~(Mp+1/2=5p/2) g
integrable. Hence

/R (L+ £ D2 FE) A =A377 ( /R<1 + |§|2><Mp“/“p/2>d§n+1)
X (1+ €)M |G ).
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Denote &,.1 = (1 + [¢'|*)Y2n, then

(1+ ¢
(]_ + |€/|2)Mp+1/2—sp/2
% /<1+ |n|2)f(Mp+1/2fsp/2)dn
R

_ (1+ )"
- Mp+1/2fsp/2(14r |&7|2) Mp+1/2=5p/2

/]R(l 4 ‘§‘2)*(Mp+l/2fsp/2)d£n+l _

whereby we deduce that

/Ln+1<1-%\€W2>@p+l”?|f1£>vyd£n+1

. Af2p A2 (1 +| l|2)Mp. (1 + |€I|2)1/2 ‘A< /)|pd !
T UMA1/20 Mp+1/2-sp/2 [, § (1 + [€/[2)Mp+1/2=sp/2 9(& §

= 2 oMo [ (L IE)72G(E) g’

-2
= AMﬁl/QA?Wp+1/2fsp/2”g|

P
H5(R"R)"

Based on the previous lemma, we can state the following one.

Lemma C.6. Let a € R, M >0, p > 2, s € (0,2M) and g € H;(R",R). Then,
there exists some function f belonging to H;“/p(R"“,R) such that v,of = g. In
addition,

H3(R™,R) (C.12)

where Ky > 0 depends only on M. Moreover, if g is symmetric, f can also be
chosen symmetric.

1l oim sy < Kelol

Proof. We consider a sequence (g¢) of functions of belonging to the Schwartz calss
converging to g in H:(R",R). We fix some M > s/2. For any /, we define an
extension (fy) of the function (g,) using (C.I0). Since (gr) is a Cauchy sequence in
H3(R™,R), we deduce from (C.II)) applied with o = s that

_ 2
||f€ - fm||H;+1/p(Rn+l7R) S AM2+1/2A]\//[I;)+p/2—1/2+5p/2||g€ - gmHH;(R”,R) —0

as {,m — oo. The sequence (f;) is a Cauchy sequence in H;H/p(R”“,R) and
converges to some function f in H;“/p(R”“,R). This convergence also holds in
H:t/p(R™ R). Hence, we can let ¢ — oo in the inequality

_9 2
< AM+1/2AJ\//IZ+p/2—1/2+sp/2||9£|

||f€||H;+l/p(Rn+l7R) Hj3(R",R)

to get

/1

-2 2/p
HEPYP(Rn+1 R) < AM+1/2AMp+p/271/2+sp/2”gHHg(R"yR)'
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To deduce (CI2), we observe that, since (A,,) is a non-decreasing sequence,
2/p 2/p
SUp,,>o AMp+p/271/2+sp/2 < Sup,sy A2M+1/2 < 400. Therefore, we can set

_ 2/
Ky = AM2+1/2 <i1ilf2) AMZ+p/21/2+sp/2> .

If g is symmetric, we can replace the sequence (g) by its symmetric part. There-
fore, the functions (f;) are symmetric and so is f. O

From this result, we can deduce the next proposition used in the proof of
Lemma 4.4

Proposition C.7. Let a € R and k € N\ {0}. Let ($,,),>0 be a sequence satisfying:
(a) ®, =0 ifn < k. (b) For any n > k, ®, is a symmetric function belonging
to H'(R™,R) such that ||®,| g1y < B" for some B > 1. (c) For any n > 0,
VnaPni1 = @pn. Then, there exists a sequence (gen)n>0e Such that

(A) For any £ and any n < k, grn = 0.

(B) Foranyn >k and {, g, are symmetric functions belonging to C*(R™ R) such
that for any £, ||genll e r) + | VGen | Lo e ry < MJ* for some My > 1.

(C) For any € and n, ||gen — Pull g e gy < C"/L for some C' > 1 independent on
¢ and n.

(D) For any {, the sequence gy, also satisfies the relation Yn oGon+1 = Gon-

Proof. Up to a translation, we can assume that a = 0. We can also assume that
k =1 and we denote 7,, = Vy.0.

Step 1: Approximation of functions ®,, by smooth functions (he,). Set for any ¢,
geo = heo = 0. Let £ a fixed integer. There exists n, such that for any n > ny,
B"™ > (. For n > ny, we set hy, = 0. Since ||, || g1 (rrr) < B", we deduce that for
n > ny,

e — Pull g Ry = |Pnll i @eg) < B" = BB~ < B>*/( (C.13)

by definition of n,. Hereafter, we define (hy,,) for n < n, — 1. To do so, we apply
classical density results and consider a sequence (hy,) € D(R",R), such that for
any /¢ inequality (C.13) is satisfied for any 1 < n < ny.

Since the functions hy, are both smooth and compactly supported and hy, =0
for n > ny, the constant

Crp = Slilg 1henll 2 R0 R (C.14)

is finite.

We can replace the sequence (hy,,) by the symmetric part of each function and
since each ®,, is symmetric, we can assume that all the functions (hy,,) are symmet-
ric. We modify by induction the sequence (hy,,) in order to define a new sequence
(gen) satistying the compatibility relations (D).

Step 2: Definition of the sequences (gon) for n > 0. For n = 0, we set go0 = 0
for any ¢ > 1. When n = 1, the continuity of the trace of functions of H'(R,R)
yields |y1he1 — @1(0)] = |he1(0) — @] = |he1(0)] < A/C for some A > 0. Let ¢
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be a symmetric function belonging to D(R,R) such that ¢(0) = 1 and set g1 =
he1 — he1(0)p. This sequence clearly belongs to (ﬂp>1 H2(R, R)) N HY(R,R), and
all functions gy, are symmetric. First, we can check that for any ¢, g,1(1) =0 = gy
and so (D) is satisfied for n = 0. Second, since |hy;(0)] < A/¢ for some A > 0 and
|he—P1 || rr) < B?/C as stated in (C13), we deduce that ||ge1—P1 || rr) < C/C
for some C' > 1 with C = B2+ A > 1.

Assume that we have defined for any ¢ by induction some symmetric functions
ge N, belonging respectively to (ﬂp>N Hg(RN,R)) N HY(RY R), satisfying (D) for
n=1,...,N and for any ¢, p > N

9enll H2R0 R) < D, (C.15)
for some Dy, > max(A3*Cy, Cr, 2Kz + 1, | g1 || (e ) and

lgen — Ynhntrel mrrn ) < cN /e (C.16)

for some C' > 1. Now, we define for any ¢ the functions g, y4+1. The function g, n41
will be of the form g, ny+1 = hent1 + hg N+1, Where h,g ~N+1 1s a function depending
on ggn and hy ny1. N

Let us explain how the functions hy 41 are defined. Since we require that

YNgeN+1 = Gen, We have necessarily yvheni1 = Ingen+1 — INheNt1 = gen —
Ynhent1. Then to define the function hyni1, we have to extend the function
gen — YNhen+1 to R™ which is possible in view of Lemma We now use

induction assumptions (C.15), (C.14)

lge.n — ywhe vl 2@y &) < N|genllH2@y &) + [V he N1 || 2N R)

< DY, + APy | mzn my < DPY, + AYPCy < 2D,

where the last inequality comes from the bound Dy, > Ag/ PCy.

Now, we apply Lemma [C.6] to g = gun — YNheN+1, With M = 2 and suc-
cessively for s = 2,p > N +1, s = 1,p = 2. Then, we get the existence of
hZ,N-i—l c (ﬂp>N+1 H2+1/p(RN+1 R)) N H1+1/2(RN+1 R) C (ﬂp>N HE(RNJA’R)) N

HY(RN*! R) such that 'yNhngH = go.N — YNnhe,n+1, Which satisfies
® ||E€,N+1”H§(RN,]R) S QKQDéYp Wlthp > N+1 In view of JeN+1 = hg7N+1 +?Lg7N+1

and Dgp > maX<Cg, 2K2 + 1) it 1mphes |V~I’Z,N+1HH£(RN,R) < ”h[7N+1HHg(RN,R) +

||, villmzey ry < Cot+2K,Dp), < D! which means that (CI5) is satisfied
forn =N + 1.

o [|he sl @ r) < Kallgen—yvhensallm/zgn g)- By (CI6) we can replaced
C by max(C, K3) and deduce

eyl e gy < Cllgey — Yvhevall gz s g
< CN”gg,o — "}/Nth”H1/2(Rn,R) < CN/E (Cl?)

which means that (C.16]) holds for n = N + 1.
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We then define a sequence (gy,n) which satisfies the two induction assumptions for
n=N+41.

Step 3: Proof of Properties (A)-(D) for ge n+1 = hent1 +7L47N+1. Property (A) is ob-
vious by definition of (g¢0). By construction, we have that, for any ¢, ?LA N+1 1S asym-
metric function belonging to M~y Hy(R", R) € C'(R"*!, R) (see Lemma [C.2),
and so is gg n41. Further, applying once more Lemma with p = p, > 3/2n and
property (C.15) of the sequence (gr,,) we get

1 genllLoo @) + (| Vel Lo @ r)y < 5?

with 54 = Aij2Dyp,. Hence (B) is satisfied. The relation yngrni1 = gen di-
rectly ensues from their definitions and yields Property (D). Since g n11 — Pni1 =
(hens1 — Pni1) + heny1, combining ((CI3) and (CI7) implies that (C) is satisfied
forn =N + 1. O
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