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ABSTRACT

We present a simple globally second order scheme inspired byghost cell approaches to solve compressible inviscid flows [4]. In
the fluid domain, away from the boundary, we use a classical finite-volume method based on an approximate Riemann solver for the
convective fluxes. At the cells located on the boundary, we solve anad hocRiemann problem taking into account the relevant boundary
condition for the convective fluxes by an appropriate definition of the contact discontinuity speed. To avoid pressure oscillations near
the solid we balance the boundary condition with an extrapolation of the fluid values, as a function of the angle between the normal to
the solid and the normal to the cell. Our objective is to device a method that can easily be implemented in existing codes and that is
suitable for massive parallelization.

1. Resolution in the fluid domain

1.1 Governing equations

The compressible Euler equations are:

∂ρ
∂t

+ ∇ ·ρu = 0 (1)

∂ρu
∂t

+ ∇ · (ρu⊗u+ pn) = 0 (2)

∂E
∂t

+ ∇ · ((E + p)u) = 0 (3)

(4)

whereE denotes the total energy per unit volume. For a perfect gas

E =
p

γ−1
+

1
2

ρu2 andp = ρRT (5)

1.2 Discretization far in the fluid domain and boundary representation

We focus on a two-dimensional setting. We consider a cartesian grid, with indexesi and j and spacingshx andhy in thex andy direction,
respectively. Far from the boundary with the solid, we use a classical finite-volume scheme based on an approximate Riemann solver,
and a second-order Runge-Kutta scheme for the time integration.

In order to improve accuracy at the solid walls crossing the grid cells we need additional geometric information. This information,
mainly the distance from the wall and the wall normal, is provided by the distance function. The level set method, introduced by Osher
and Sethian is used to implicitly represent the interface ofsolid in the computational domain. The zero isoline of the level set function
represents the boundaryΣ of the immersed body. The level set function is defined here by:

ϕ(x) =

{

distΣ(x) outside of the solid
−distΣ(x) inside of the solid

(6)

A useful property of this level set function is:
n(x) = ∇ϕ (x) (7)

wheren(x) is the outward normal vector of the isoline ofφpassing onx. In particular, this allows to compute the values of the normal
to the interface, represented by the isolineϕ = 0.

2. A second order impermeability condition



The boundary condition that we have to impose isuA.nA = 0, whereuA is the speed of the fluid at the boundary, andnA the outward
normal vector of the body. We want to impose the boundary condition on what we call the interface points: the intersections between
the interface (ϕ = 0) and the segment connecting the two cell centers concernedby the sign change (for example the pointsA, B andC
on Fig. 1(a)). To this purpose, a fictitious state is created for instance between the cells(i, j) and(i +1, j) on Fig. 1(a).
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Figure 1 : Fig. 1(a): Example of geometric configuration at the interface.A is the interface point located between(i, j) and(i +1, j).
The flux on cell interface(i + 1/2, j) is modified to enforce the boundary condition onA. Fig. 1(b): Graphical illustration of the
construction of theu∗ vector.

According to Fig. 1(b) and considering the(i + 1/2, j)-flux, we compute the left state primitive variablesu−, p−, c− relative to
the Riemann problem at the concerned numerical interface bya standard MUSCL reconstruction. The left state will be andU− =
(u−,vw, p−,c−) and the right stateU+ = (−u− +2uw,vw, pw,cw), where:

•







uw
vw
pw
cw






= α







u∗

v∗

p−
c−






+(1−α)







uf
vf
pf
cf






;

• α = nA.ncell;

• (uf ,vf , pf ,cf ) is computed as a linear extrapolation of the fluid variables to the pointxi+1/2 j using the variables and the slopes
of the closest upstream fluid cell. It plays a role when the scalar product between the normal to the physical boundary and the
normal to the mesh side is close to zero, because in this case the boundary condition only weakly affects the numerical flux.

We determine the value of the contact discontinuity speedu∗, relative to a Riemann problem defined in the direction normal to the cell
side throughxi+1/2, j , consistent at second order accuracy withuA ·nA = 0 in A. The vectoru∗ is determined as follows:

u∗.nA = u∗n = uA.nA +
( 1

2 −d
)

sn
A

u∗.τA = u∗τ = u−.τA







⇒ u∗ =

(

u∗nnx +u∗τ τx
u∗nny +u∗τ τy

)

WhereuA is the velocity of the obstacle (= 0 for a steady body),nA =
(

nx,ny
)t and τA =

(

τx,τy
)t are respectively the normal and

tangential vectors to the boundary at pointA and the slopesn
A is defined as:

sn
A = uA.nA−ui .nA+

1−d
1+d

(uA.nA−ui−1.nA) . (8)

3. Numerical illustrations

The Ringleb flow
The Ringleb flow refers to an exact solution of Euler equations. The solution is obtained with the hodograph method. In ourtest case,
the computational domain is[−0.5;−0.1]× [0; 0.6] and we numerically solve the flow between the streamlinesΨ1 = 0.8 andΨ2 = 0.9.
The inlet and outlet boundary condition are supersonic fory = 0 andy = 0.6 respectively.

The convergence orders are calculated inL2 norm on four different grids 32×48, 64×96, 128×192 and 256×384. The results for the
L2 norm of our method are compared to a simple symmetry technique, the ghost-cell CCST method [3], that relies on a local isoentropic
flow model at the wall, and a standard finite-volume scheme case with a body-fitted meshs in Fig. 2.

The overall results show that the classical symmetry schemeis first order accurate in theL2 norm. The other schemes have overall
comparable accuracy, although the amplitude of the error islower for the present scheme compared to the ghost-cell CCSTmethod.
For the same test case, Coirier and Powell [1] observed also aconvergence order between one and two in the case of their owncartesian
method.

Mach 10 shock over three spheres
The computation of a planar shock reflecting over three spheres is performed. The spheres are located at (0,0,0), (-0.75,1.4,-1.4),
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(b) Sound speed

Figure 2 : Comparison of theL2 accuracy of the present scheme with several methods. The convergence orders are detailed in the
legend.

(0,-2,0) with radii 1, 0.4, 0.3, respectively. The size of the domain is[−2.5;2.5]3. The numerical computation is performed on a 2563

mesh. Four snapshots are shown on Fig. 3. The interactions ofthe bow shocks give rise to complicated flow structures in thewake of
the spheres.

Figure 3 : Mach 10 planar shock reflecting on a 3D sphere. 20 isopressure surfaces.
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