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ABSTRACT

We present a simple globally second order scheme inspireghbgt cell approaches to solve compressible inviscid flaljis [n

the fluid domain, away from the boundary, we use a classica&fimlume method based on an approximate Riemann solvehdo
convective fluxes. At the cells located on the boundary, ikeessmad hocRiemann problem taking into account the relevant boundary
condition for the convective fluxes by an appropriate definibf the contact discontinuity speed. To avoid pressucdlagons near

the solid we balance the boundary condition with an exti@pmi of the fluid values, as a function of the angle betweemtirmal to

the solid and the normal to the cell. Our objective is to dexdanethod that can easily be implemented in existing codg$heat is
suitable for massive parallelization.

1. Resolution in the fluid domain

1.1 Governing equations
The compressible Euler equations are:
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whereE denotes the total energy per unit volume. For a perfect gas
_ 1 5 _
E_y71+2pu andp=pRT (5)

1.2 Discretization far in the fluid domain and boundary reggetation

We focus on a two-dimensional setting. We consider a caegiid, with indexesand j and spacingby andhy in thex andy direction,
respectively. Far from the boundary with the solid, we uskassical finite-volume scheme based on an approximate Riesalver,
and a second-order Runge-Kutta scheme for the time integrat

In order to improve accuracy at the solid walls crossing theé gells we need additional geometric information. Thifoimation,

mainly the distance from the wall and the wall normal, is jided by the distance function. The level set method, intcedlby Osher
and Sethian is used to implicitly represent the interfacsotifl in the computational domain. The zero isoline of thelset function
represents the boundaEyof the immersed body. The level set function is defined here by

[ dists(x) outside of the solid
o0 = { _dists(x) inside of the solid (6)
A useful property of this level set function is:
nX =0 (x @)

wheren(x) is the outward normal vector of the isoline@passing orx. In particular, this allows to compute the values of the redrm
to the interface, represented by the isoline: 0.

2. A second order impermeability condition



The boundary condition that we have to imposeisna = 0, whereup is the speed of the fluid at the boundary, andthe outward
normal vector of the body. We want to impose the boundary itiemdon what we call the interface points: the intersectibetween
the interface ¢ = 0) and the segment connecting the two cell centers concémntrtk sign change (for example the poiAtB andC
on Fig. 1(a)). To this purpose, a fictitious state is createdristance between the celisj) and(i + 1, j) on Fig. 1(a).

(a) Geometric configuration (b) Construction of vector

Figure 1: Fig. 1(a): Example of geometric configuration at the irdeef. A is the interface point located betweénj) and(i+ 1, j).
The flux on cell interfacdi + 1/2, j) is modified to enforce the boundary condition An Fig. 1(b): Graphical illustration of the
construction of ther* vector.

According to Fig. 1(b) and considering ttie+ 1/2, j)-flux, we compute the left state primitive variables, p_, c_ relative to
the Riemann problem at the concerned numerical interfaca fyandard MUSCL reconstruction. The left state will be Bihd=
(u—, v, p—,c_) and the right stat&), = (—u_ + 2uw, Vi, Pw,Cw), Where:

Uy u Us
Vi v* \%i
° =qa +(1—a )
Pw p- ( ) pt
Cw c- Ct

® O =DNA.Ncell;

e (uf,vi, ps,Cs) is computed as a linear extrapolation of the fluid variatbethée pointle/zj using the variables and the slopes
of the closest upstream fluid cell. It plays a role when théasqaoduct between the normal to the physical boundary hed t
normal to the mesh side is close to zero, because in thislsag®mtndary condition only weakly affects the numerical.flux

We determine the value of the contact discontinuity sp€eedelative to a Riemann problem defined in the direction ndtméhe cell
side throughy 1/ ;, consistent at second order accuracy wighna = 0 in A. The vectou™ is determined as follows:

*Na = U — 1
u*.na=Uj=uana+ (3 —d)sp v W+ UL T
Upny + U T
U Ta= U =U_.Tp ny y
Whereu, is the velocity of the obstacle<(0 for a steady body)na = (nx,ny)t andta = (rx,ry)t are respectively the normal and
tangential vectors to the boundary at poiand the slopej is defined as:

1-d
s’A:uA.nAfui.nA+1+—d(uA.nAfui,l.nA). (8)

3. Numerical illustrations

The Ringleb flow

The Ringleb flow refers to an exact solution of Euler equatiorhe solution is obtained with the hodograph method. Irtestrcase,
the computational domain js-0.5; —0.1] x [0; 0.6] and we numerically solve the flow between the streamfes- 0.8 andW, = 0.9.
The inlet and outlet boundary condition are supersoniy fer0 andy = 0.6 respectively.

The convergence orders are calculatedimorm on four different grids 3R 48, 64x 96, 128x 192 and 256 384. The results for the
L, norm of our method are compared to a simple symmetry tecknte ghost-cell CCST method [3], that relies on a localrisopic
flow model at the wall, and a standard finite-volume scheme éth a body-fitted meshs in Fig. 2.

The overall results show that the classical symmetry scherfiest order accurate in thie, norm. The other schemes have overall
comparable accuracy, although the amplitude of the erramier for the present scheme compared to the ghost-cell G68&Hhod.
For the same test case, Coirier and Powell [1] observed alsovergence order between one and two in the case of theicamesian
method.

Mach 10 shock over three spheres
The computation of a planar shock reflecting over three gshisrperformed. The spheres are located at (0,0,0), (-0.451.4),
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Figure 2: Comparison of the_, accuracy of the present scheme with several methods. Ther@mce orders are detailed in the
legend.

(0,-2,0) with radii 1, 0.4, 0.3, respectively. The size af ttomain is[72.5;2.5]3. The numerical computation is performed on a®s56
mesh. Four snapshots are shown on Fig. 3. The interactiathe dfow shocks give rise to complicated flow structures inihke of
the spheres.

Figure 3: Mach 10 planar shock reflecting on a 3D sphere. 20 isopressufaces.
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