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SOLVING THE CROP ALLOCATION PROBLEM

USING HARD AND SOFT CONSTRAINTS ∗
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Métivier2, Gauthier Quesnel1, Alexandre Joannon3

and Frédérick Garcia1

Abstract. Application tools for the crop allocation problem (CAP)
are required for agricultural advisors to design more efficient farming
systems. Despite the extensive treatment of this issue by agronomists
in the past, few methods tackle the crop allocation problem considering
both the spatial and the temporal aspects of the CAP. In this paper,
we precisely propose an original formulation addressing the crop al-
location planning problem while taking farmers’ management choices
into account. These choices are naturally represented by hard and soft
constraints in the Weighted CSP formalism. We illustrate our proposi-
tion by solving a medium–size virtual farm using either a WCSP solver
(toulbar2) or an ILP solver (NumberJack/SCIP). This preliminary work
foreshadows the development of a decision–aid tool for supporting farm-
ers in their crop allocation strategies.
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1. Introduction1

The design of a cropping plan is one of the first steps in the process of crop2

production and is an important decision that farmers have to take. By cropping3

plan, we mean the acreage occupied by all the different crops every year and4

their spatial allocation within a farming land. The cropping plan decision can5

be summarized as (1) the choice of crops to be grown, (2) determining of all6

crops’ acreage, and (3) their allocation to plots. Despite the apparent simplicity of7

the decision problem, the cropping plan decisions depend on multiple spatial and8

temporal factors interacting at different levels of the farm management.9

The cropping plan decision–making combines long term planning activities with10

managerial and operational activities to timely control the crop production pro-11

cess. Modeling a decision–making process supporting such farmers’ decisions there-12

fore requires the planning of crop allocation over a finite time horizon, and the13

need for replanning as the context changes (e.g., weather, prices). In this paper,14

we precisely focus on the planning task seen as a spatio–temporal crop allocation15

problem (CAP) whose relevance is assessed by a global objective function. In ad-16

dition to many approaches based on an optimization procedure, the objective of17

our work is to propose new directions addressing the crop allocation problem while18

taking farmers’ decision factors into account. These factors are formalized as hard19

and soft constraints in the WCSP framework. Our choice of physical constraints20

and farmer’s preferences is based on a survey of farmers’ processes [11].21

Nevertheless, designing cropping plans with such an approach is still an open22

question due to many other decision factors that could be taken into account to23

solve the crop allocation problem. This preliminary work foreshadows the imple-24

mentation of a spatially explicit decision–aid tool, namely CRASH (Crop Rotation25

and Allocation Simulator using Heuristics), developed for supporting farmers in26

their crop allocation strategies.27

The paper is organized as follows. In Section 2, we describe the crop allocation28

problem. We introduce some specific definitions and emphasize the problem. Sec-29

tion 3 describes some existing approaches used to design cropping plans, showing30

their main limitations. In Section 4, we introduce the Weighted CSP formalism.31

Section 5 describes a WCSP formulation of the crop allocation problem. Its re-32

formulation as an integer linear program is given in Section 6. In Section 7, we33

illustrate our approach by solving a medium–size virtual farm using either the34

direct WCSP formulation or a decomposed one, or the ILP reformulation. Finally,35

we conclude in Section 8.36

2. Crop allocation problem37

2.1. Overview of the problem38

We define the crop allocation problem as a spatio–temporal planning problem39

in which crops are assigned to plots over a finite time horizon H (Fig. 1). The40
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Figure 1. Schematic representation of the spatial and temporal
aspects of the decision–making problem (ti: year, b: block, pj : plot,
kp: preceding effect).

planning problem depends on multiple spatial and temporal factors. In space, 1

these factors are organized in many different levels (management units in Fig. 1). 2

These management units are decided by the farmer in order to organize his/her 3

work and allocate resources. In order to simplify our example, we only considered 4

the two main management units: plot (pj) and block (b). The first concerns the 5

annual management of crops. The spatial configuration of plots are adapted over 6

years in order to enforce the spatial balance of crop acreage. As shown in Figure 1, 7

blocks are subsets of plots managed in a consistent way. Blocks are characterized 8

by one cropping system defined by the same collection of crops and by the use 9

of a consistent set of production techniques applied to these crops (e.g., fertilizer, 10

irrigation water). The delimitation of blocks and plots are not reshaped in the CAP 11

considered in this work. They are mostly defined by the structural properties of 12

the farm such as the availability of resources (e.g., access to irrigation water) 13

and by the biophysical properties (e.g., soil type, accessibility, topography). These 14

biophysical properties are also used to determine if a crop could not be produced 15

in good conditions on certain soil types. 16

Over time, the repetition of the same crop on the same plot is not allowed or not 17

advisable without facing decrease in soil fertility, or increase in diseases or weeds 18

infestation. We deal with these temporal factors by summarizing the assessment 19

of crop sequence quality in two indicators: the minimum return time of a crop 20

and the preceding effect. The minimum return time of a crop v, denoted rt(v), 21

is a hard constraint defined as the minimum number of years before growing the 22

same crop v on the same plot. In Figure 1, the minimum return time of the crop 23
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produced on p8 at t1 is equal to two years. More generally let t, t′ be two different1

years (t < t′), pj a plot and v a crop, if pj(t) = pj(t
′) = v then (t′ − t) ≥ rt(v).2

The preceding effect, denoted kp, is a preference indicator representing the effect3

of the previous crop on the next one [25]. Based on kp, some crop sequences can4

be ignored for their bad effects or recommended for their beneficial effects for5

production purposes.6

Furthermore, some authors [9] have argued that the reproducibility of a cropping7

system over time is only ensured when crop allocation choices are derived from a8

finite crop sequence which can be repeated over the time. We therefore introduce9

the concept of repeatability while looking for such a crop sequence. This means10

that the proposed crop sequence can be repeated over time without breaking the11

constraint rt. We introduce this concept, known as crop rotations, because it is12

widely used by farmers. It is characterized by a cyclic sequence where the temporal13

sequence of crops is limited to the order of appearance of crops on the same plot14

during a fixed period.15

2.2. Description of the hard and soft constraints16

Solving the crop allocation problem (CAP) is to assign crops (values) to plots17

(variables) over a finite time horizon H. An assignment of crops must satisfy a18

given set of constraints. We retained as hard constraints the minimum return19

time (rt), the history of plots, and the biophysical properties (soil types, resource20

accessibility). Soft constraints are related to the preceding effects (kp) and the21

spatio–temporal balance of crop acreage such that resources are efficiently used.22

Hard and soft constraints are defined either at the:23

• plot level, by expressing the preceding effect and the compatibility of the crop24

to the biophysical properties, by enforcing the history of crop values and the25

minimum return time, and by specifying which plots can be split or combined,26

• block level, by expressing the spatial and temporal compatibility of crops for27

all the plots of a block.28

• farm level, by expressing farmer preferences or the global use of resources.29

Let us consider the crop allocation problem described in Figure 2. In this problem,30

we consider 4 blocks and 15 plots. The size of the farmland (180 ha) corresponds to31

a middle size real–world CAP. Four crops are produced over all the blocks: winter32

wheat (BH), spring barley (OP), maize (MA) and winter rape (CH). Each block33

has a fixed area (see Fig. 2). Blocks 1 and 3 have access to irrigation equipments34

eq1 and eq2. The annual quota of irrigation water over the blocks is 6000 m3
35

(respectively 4000 m3) for eq1 (respectively eq2). Only the maize must be irrigated.36

There are two different types of soil: type 1 (block 1, 3) and type 2 (block 2, 4).37

The table on Figure 2 shows the sequence of crops produced by each plot during38

the last five years.39



CROP ALLOCATION PROBLEM 5

eq1

eq2

water

water

b = 1 area = 48ha b = 2 area = 24ha

b = 3 area = 48ha

b = 4 area = 60ha

p1 p2

p3p4

p5

p6

p7

p8

p9

p10

p11 p12 p13 p14 p15

Plot/year t1 t2 t3 t4 t5
p1 MA MA BH OP MA
p2 OP MA MA BH OP
p3 BH OP MA MA BH
p4 MA BH OP MA MA
p5 BH OP BH CH BH
p6 OP BH CH BH OP
p7 MA MA MA MA MA
p8 MA MA MA MA MA
p9 MA MA MA MA MA
p10 MA MA MA MA MA
p11 BH CH BH OP BH
p12 CH BH OP BH CH
p13 BH OP BH CH BH
p14 OP BH CH BH OP
p15 BH CH BH OP BH

Figure 2. A virtual farm with 4 blocks, 15 plots (12ha per plot).
The grey blocks have their own irrigation equipment (eq1, eq2).
The table contains the historic values for each plot over the last
five years. These values may violate the minimum return time
constraint.

2.2.1. Spatio–Temporal hard constraints 1

1. h-SCC – Spatial compatibility of crops: some crops are forbidden on some 2

plots. For instance, the crop CH cannot be assigned to plots whose soil type is 3

1 (blocks 1,3). Its biophysical properties are not favorable to the crop’s growth. 4

2. h-EQU – Plot equality: for instance, on block 3, the plots p7 (respectively p9) 5

and p8 (respectively p10) must be assigned to the same crop every year. Indeed, 6

these plots are decided by the farmer to be managed in the same manner. 7

3. h-HST – Plot history: each plot has some predefined historic values (see the 8

table in Fig. 2). 9
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kp previous crop
BH OP MA CH

BH 40 10 10 0
OP 20 30 10 0
MA 0 0 30 50
CH 0 0 50 40

Figure 3. Table of preceding effects (kp).

4. h-SCA – Same crops assigned : over the time, the same collection of crops1

must be assigned to every plot of the same block.2

5. h-TSC – Temporal sequence of crops: for each plot, the minimum return time3

rt must always be enforced. In our virtual farm example, we use rt(BH) = 2,4

rt(OP ) = 3, rt(MA) = 2, and rt(CH) = 3.5

6. h-CCS – Cyclicity of crop sequences: for each plot, the crop sequence after6

the historic values must be endlessly repeatable without violating the minimum7

return time constraint. This cyclicity constraint on crop sequences, also called8

crop rotations, is a common farming practice.9

7. h-RSC – Resource constraints : a fixed amount of resources is available per10

year. The resource usage for the plots must not exceed some given capacity11

constraints. For instance, in Figure 2, we have only one irrigated crop (MA).12

Knowing that we need 165 m3 of water per hectare, the annual production of13

MA on block b = 1 cannot exceed 36.36 ha.14

2.2.2. Spatio–Temporal soft constraints15

1. s-CSQ – Crop sequence quality: each pair of temporally successive crops is16

associated to a cost kp that defines its preceding effect. Figure 3 defines all the17

kp values. A larger cost means a less desirable crop succession.18

2. s-TOP – Farm topology: plots where the same crop is assigned must be spa-19

tially grouped. By this we mean that it is preferable to group as much as20

possible the same crop on the same block. Thus, travel time can be reduced as21

well as the time spent by the farmers on operational activities that control the22

crop production process. Therefore, every plot having a direct neighbor in the23

same block assigned to a different crop is penalized by a cost δ2.24

3. s-SBC – Spatial balance of crop acreage: a defined acreage of some crops every25

year. For instance, in the CAP defined above, the acreage of MA should be26

within the range [24, 48] ha on block 1 and [12, 24] ha on block 3. These values27

are decided by the farmer according to its expected yield. Any deviation is28

penalized by a cost δ1.29

4. s-SGBC – Spatial global balance of crop acreage: it extends the previous pref-30

erence over all the blocks. For instance, the annual global acreage of MA and31

BH over all the blocks should be respectively within the range [40, 72] ha and32

[70, 100] ha. These values are decided by the farmer according to its expected33

yield. Any deviation is penalized by a cost δ1.34
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5. s-TBC – Temporal balance of crop acreage: a defined occurrence of some crops 1

on each plot over the future horizon. In the CAP defined above, between [1, 2] 2

occurrences of crop CH should appear in every crop sequence associated to 3

each plot. These values are decided by the farmer according to the desired crop 4

sequence quality. Any deviation is penalized by a cost δ3. 5

In practice, we suggest the costs kp, δ1, δ2, and δ3 take values very distant from each 6

other such that kp > δ1 > δ2 > δ3. By doing so, a simple but realistic hierarchy can 7

be introduced among the soft constraints by means of a weighted sum objective 8

function (defined in Sect. 4). Indeed, first and foremost, the preceding effects kp 9

must be minimized because of their consequences on the next crops. The spatial 10

balance of crop acreage related to cost δ1, implicitly defines the annual receipts of 11

the farmer. It must be ensured as much as possible. Afterwards the working hours 12

can be reduced by grouping the same crops together (δ2). Lastly, the additional 13

preferences related to the temporal balance of crop acreage (δ3) can be enforced. 14

3. Related work 15

Since Heady [15], the cropping plan decision was represented in most model- 16

ing approaches as the search of the best land-crop combination [19]. Objectives 17

for achieving a suitable cropping plan were often based on the complete ratio- 18

nality paradigm using a single monetary criterion optimization, multi-attribute 19

optimization [3] or assessment procedures [5]. In these approaches, the cropping 20

plan decision is mainly represented into models by one of the two concepts, i.e., 21

the cropping acreage [18, 34] or crop rotation [9, 12]. These two concepts are two 22

sides of the cropping plan decision problem, i.e., the spatial and temporal aspects. 23

As described in [11], most of the existing modeling approaches do not combine 24

explicitly the spatial and temporal aspects of the CAP. The cropping plan is not 25

spatially represented and is summarized as simple crop acreage distributions across 26

various land types. At the farm level, the heterogeneity of a farm territory is gen- 27

erally described using soil types as the only criterion. However we can notice that 28

at the farm level (respectively at the landscape level), [35] (resp. [7]) took into 29

account both dimensions, spatial and temporal, but the solutions found were not 30

optimal (using case-based reasoning (resp. simulated annealing algorithm)). 31

The originality of our approach lies on the consideration of both dimensions, i.e., 32

spatial and temporal while solving the CAP at the farm scale. Many approaches for 33

modeling and solving planning and scheduling problems exist, dealing with spatial 34

and temporal aspects in a quantitative or qualitative manner (e.g., [4]). We choose 35

a quantitative formulation of the CAP into a Weighted CSP (whereas [35] used 36

classical CSPs) and solve it using either a WCSP or an ILP solver. 37

4. Weighted CSP formalism 38

We model the crop allocation problem as a Weighted Constraint Satisfaction 39

Problem (WCSP). This formalism allows to model discrete nonlinear constraint 40
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optimization problems efficiently by giving the list of hard and soft (global) con-1

straints [28]. The WCSP formalism extends the CSP formalism by replacing con-2

straints by cost functions. A WCSP is a triplet 〈X ,D,W〉 where:3

• X = {1, · · · , n} is a set of n variables.4

• D = {D1, · · · , Dn} is a set of finite domains. Each variable i ∈ X takes a value5

in its domain Di ∈ D.6

• W = {WS1
, · · · , WSe

} is a set of e cost functions where Si ⊆ X be a subset7

of the variables (i.e., the scope). We denote l(Si) the set of tuples over Si.8

Each cost function WSi
associates an integer cost in [0, m] to every tuple in9

l(Si), where m ∈ [1, +∞] corresponds to a forbidden assignment. Thus, a hard10

constraint is modeled by a cost function returning either 0 if the constraint11

is satisfied or m if it is not. A soft constraint is modeled by a cost function12

returning either 0 if the constraint is satisfied or a specific cost depending on13

the violation measure if it is not.14

The Weighted Constraint Satisfaction Problem is to find a complete assignment15

A ∈ l(X ) that minimizes
∑

WSi
∈W WSi

(A[Si]), where A[Si] is the projection of a16

tuple on the set of variables Si. Exact methods rely on a Depth-First Branch-and-17

Bound algorithm, enforcing soft local consistencies in order to prune the search18

tree [1, 13, 21–23,33].19

5. Modeling the crop allocation problem as a WCSP20

Let us consider a spatial sampling of the farmland into landunits. A landunit is21

a piece of indivisible and homogeneous land having the same history and the same22

biophysical properties. Each landunit has the same size which defines the precision23

level of the numerical constraints. A plot is a combination of landunits.24

Considering our spatial sampling, we define a CAP as a spatio–temporal plan-25

ning problem in which crops are assigned to landunits over a finite time horizon H.26

Let B be a set of blocks and Nb the set of landunits in block b. We define the as-27

sociated WCSP problem as follow.28

X a set of variables xt
b,i that define the landunit i in block b at year t, with29

i ∈ Nb, b ∈ B, and t ∈ [1,H]. Thus, each landunit is described by H variables30

that represent the landunit occupation over the time horizon. We define [1, h]31

and [h + 1,H] respectively the past (history) and the future variable times.32

See Figure 4 for an example with five historic variables (white nodes). The33

history variables enable us to enforce the return value of crops over the future34

variables.35

D the domain Db,i of variable xt
b,i is the set of possible crops over the landunit i36

in block b. In our virtual farm example, we have Db,i ⊆ {BH, OP, MA, CH}.37

W the cost functions are divided into five different types of hard and soft con-38

straints: (1) simple table cost functions (arity up to 5), (2) same hard global39

constraint, (3) regular hard global constraint, (4) gcc hard global cardinality40
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x1

b,i
x2

b,i
x3

b,i
x4

b,i
x5

b,i
x6

b,i
x7

b,i
x8

b,i
x9

b,i

kp kp kp kp kp kp kp kp

Figure 4. A temporal sequence of 9 variables over landunit i in
block b (H = 9 and h = 5).

constraint, (5) soft-gcc soft global cardinality constraint. These cost functions 1

are precisely defined in the next sections. 2

5.1. Simple cost functions 3

The hard and soft constraints h-SCC, h-EQU, h-HST, s-CSQ, and s-TOP are 4

defined by: 5

h-SCC. ∀t ∈ [h + 1,H], ∀b ∈ B, ∀i ∈ Nb, let WSCC
xt

b,i

be a unary cost function 6

associated to the spatial compatibility of crops. 7

∀a ∈ Db,i 8

WSCC
xt

b,i
(a) =

⎧

⎨

⎩

+∞ if a is forbidden for
block b, landunit i

0 otherwise
(1) 9

h-EQU. ∀t ∈ [h+1,H], ∀b ∈ B, for all pairs of landunits (i, j) ∈ Nb ×Nb that are 10

decided by the farmer to be managed in the same manner, we define an equality 11

constraint W
EQU

xt
b,i

,xt
b,j

between the two landunits. 12

∀a ∈ Db,i, ∀a′ ∈ Db,j 13

W
EQU

xt
b,i

,xt
b,j

(a, a′) =

{
0 if a = a′

+∞ otherwise
(2) 14

h-HST. ∀t ∈ [1, h], ∀b ∈ B, ∀i ∈ Nb, let WHST
xt

b,i

be unary cost function associated 15

to the historic values of landunits. 16

∀a ∈ Db,i 17

WHST
xt

b,i
(a) =

{
0 if a = historic(xt

b,i)
+∞ otherwise

(3) 18

where historic(xt
b,i) returns the historic value of landunit i in block b at year t. 19

s-CSQ. ∀t ∈ [1,H], ∀b ∈ B, ∀i ∈ Nb , let W
CSQ

xt
b,i

,x
t+1

b,i

be a binary cost function 20

associated to the preceding effect kp. 21

Let KP(a, a′) be a function that returns the preceding effect kp of doing the 22

crop a′ after a. 23

∀a ∈ Db,i, ∀a′ ∈ Db,i 24

W
CSQ

xt
b,i

,x
t+1

b,i

(a, a′) = KP(a, a′) (4) 25



10 M. AKPLOGAN ET AL.

s-TOP. ∀t ∈ [h + 1,H], ∀b ∈ B, ∀i ∈ Nb, let WTOP
S be a 5-ary cost function1

associated to the farm land topology. Let neighbor(i) be a neighborhood function2

which returns the landunits j ∈ Nb spatially close to i. For instance, in our virtual3

farm example, we consider the 4 nearest neighbors, the so-called von Neumann4

neighborhood. Here, the scope S is equal to {xt
b,i, x

t
b,n, xt

b,s, x
t
b,e, x

t
b,w} where lan-5

dunits n, s, e, w are the 4 nearest neighbors respectively at the North, South, East6

and West of i. ∀a ∈ Db,i, ∀an ∈ Db,n, ∀as ∈ Db,s, ∀ae ∈ Db,e, ∀aw ∈ Db,w7

WTOP
S (a, an, as, ae, aw) =

⎧

⎨

⎩

0 if a = an = as =
ae = aw

δ2 otherwise
(5)8

According to the block structure and the position of the landunit i in its block,9

the arity of WTOP
S may be reduced (corner and border cases).10

5.2. Crop collection over a block using same11

h-SCA. Considering a block b, the subset of (H−h)∗|Nb| future variables xt
b,i as-12

sociated to each landunit i in b must be assigned to the same crop collection. Thus,13

∀(i, j) ∈ Nb ×Nb (with i 
= j), the set of values assigned to the temporal sequence14

of variables defining i is a permutation of those of j. By using the same constraint15

introduced in [6] we define h-SCA. For each block b, we choose a leading landunit16

i. We then define a 2 × (H − h)–ary cost function WSCA
S with the scope S equal17

to {xh+1
b,i , · · · , xH

b,i, x
h+1
b,j , · · · , xH

b,j} for every j ∈ Nb \{i}. Let A[xh+1
b,i , · · · , xH

b,i] and18

A[xh+1
b,j , · · · , xH

b,j ] denote the two sub-assignments of the variables in S. The con-19

straint WSCA
S requires that A[xh+1

b,i , · · · , xH
b,i] is a permutation of A[xh+1

b,j , · · · , xH
b,j ].20

For instance, (CH − OP − CH − BH, CH − BH − OP − CH) is a valid pair of21

crop sequences for same. Note that for a given block, h-EQU implies h-SCA.22

WSCA
S = same(xh+1

b,i , · · · , xH
b,i

︸ ︷︷ ︸

i

, xh+1
b,j , · · · , xH

b,j
︸ ︷︷ ︸

j

) (6)23

5.3. Crop sequence using regular24

The constraints h-TSC and h-CCS are related to temporal crop sequences. We25

represent them by using the regular constraint [30]. ∀b ∈ B, ∀i ∈ Nb, ∀a ∈ Db,i,26

let Ma
b,i be a finite automaton, L(Ma

b,i) the language defined by Ma
b,i, and Sb,i27

a temporal sequence of H variables that describes landunit i of block b over the28

horizon. An assignment A[Sb,i] satisfies a regular(Sb,i, M
a
b,i) constraint iff A[Sb,i] ∈29

L(Ma
b,i).30
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5

6 7432

8

10

CH

CH

CH

CH

CHCH

vv
CH

CH

v CH

CH

Figure 5. Automaton for crop a = CH with rt(CH) = 3 and
h = 5. v denotes any value in Db,i. The notation CH corresponds
to Db,i \ {CH}. The associated language accepts every pattern
over the historic variables and only the patterns that enforce the
minimum return time in the future variables taking into account
the historic values. e.g., CH-OP-CH-OP-CH-BH-OP-CH-BH is a
valid crop sequence for H = 9 and h = 5.

h-TSC. Considering each landunit xb,i, the crop sequence is enforced by defining 1

for each crop a ∈ Db,i a language L(Ma
b,i) such that the same value a is assigned 2

to xt
b,i and xt′

b,i (t′ > t) only if xt′

b,i enforces the minimum return time rt(a) i.e., 3

t′ ≥ t + rt(a). We define regular(Sb,i, M
a
b,i) where Ma

b,i is described as in Figure 5 4

for crop a = CH the minimum return time of which is rt(CH) = 3 years. Here, 5

the initial state is 0 while final states are 5, 6, 7. Arcs are labelled with crop values. 6

As shown by the automaton in Figure 5, the historic variables are used to enforce 7

the minimum return time over the future variables. We then define an H–ary cost 8

function WTSCa

Sb,i
associated to each pair of landunit i in block b and each crop a 9

such that: 10

∀b ∈ B, ∀i ∈ Nb, ∀a ∈ Db,i 11

WTSCa

Sb,i
= regular(x1

b,i, · · · , xH
b,i, M

a
b,i) (7) 12

h-CCS. Considering each landunit xb,i, we combine h-TSC with a repeatability 13

constraint also defined by a set of regular constraints. The constraint h-CCS en- 14

sures that any crop sequence assignment after the historic values can be endlessly 15

repeated without violating the minimum return time constraint h-TSC. Figure 6 16

describes a cyclic automaton for crop CH . The initial state is 0 while final states 17

are 3, 6, 9, 12. The scope of the cost function WCCSa

Sb,i
is restricted to future vari- 18

ables: 19

∀b ∈ B, ∀i ∈ Nb, ∀a ∈ Db,i 20

WCCSa

Sb,i
= regular(xh+1

b,i , · · · , xH
b,i, M

a
b,i) (8) 21

5.4. Resource capacity constraints using gcc 22

In CAP, each landunit consumes a fixed amount of resources according to some 23

qualitative (crop type) and numerical (the area of landunits, the irrigation dose) 24
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Figure 6. Cyclic automaton for crop a = CH with rt(CH) = 3
and H − h ≥ 3. e.g., OP-CH-OP is a valid cyclic sequence for
H−h = 3 future variables that can be repeated without violating
the minimum return time in order to construct a valid sequence
for a larger horizon.

requirements. For instance, the maize (MA) is an irrigated crop whereas winter1

wheat (BH) does not need irrigation. A classical approach dealing with resources2

is to solve a shortest path problem with resource constraints [17]. The problem is3

NP-hard if the path needed is elementary. Loosely, solving a resource allocation4

problem involves both sequencing and counting reasoning. We assume this problem5

can be reduced to a counting problem under hypotheses 1 and 2.6

Hypothesis 1. Resources are supposed to be usable and systematically renewed7

every year without doing anything (e.g., annual quota of irrigation water).8

This hypothesis is closed to a real CAP because farmers usually have a fixed9

quota of irrigation water. This is also the case for the working hours capacity10

constraint in a year if work regulations was taken into account.11

Hypothesis 2. ∀t ∈ [1,H], ∀(b, b′) ∈ B × B a pair of blocks, ∀(i, j) ∈ Nb × N ′
b12

a pair of landunits. The areas of landunits i of block b and j of block b′ can be13

considered equivalent according to the problem size.14

We make the assumption that the spatial sampling of the farm land into lan-15

dunits is homogeneous. Under these hypotheses the annual resource allocation is16

seen as a counting problem at every time t ∈ [h+1,H]. Thus, given annual resource17

capacities, we define for each time t ∈ [h + 1,H] a lower and an upper bound to18

the number of variables xt
i,b that are assigned to a given crop according to both19

structural and numerical requirements.20
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h-RSC. In order to enforce resource capacity constraints h-RSC, we use the global 1

cardinality constraint gcc [32] over the assignments of crops to landunits. 2

∀t ∈ [h+1,H], let WRSC
St

b

be a |Nb|–ary global constraint associated to resource 3

capacities. 4

Given St
b = (xt

b,1, · · · , xt
b,|Nb|

) the global cardinality constraint (gcc) specifies, 5

for each value a ∈
⋃

Db,i, a lower bound lb(a) and an upper bound ub(a) to the 6

number of variables in St
b that are assigned to value a. 7

WRSC
St

b
= gcc(St

b, lb, ub) (9) 8

has a solution if there exists an assignment of St
b such that 9

∀a ∈
⋃

Db,i, lb(a) ≤ |{xt
b,i ∈ St

b|x
t
b,i = a}| ≤ ub(a) 10

For instance, let us consider the block b = 1 of the virtual farm described in 11

Figure 2. Assuming that each plot is divided into 8 landunits and 165 m3 of water 12

are needed to produce one hectare of maize (MA), the minimum and maximum 13

annual area dedicated to this crop are respectively 0 and 36.36 ha. Thus, over 14

the block b = 1, the lower bound of variables xt
b,i that are assigned to maize is 15

lb(MA) = 8 × ⌈ 0 ha
12 ha

⌉ = 0. The upper bound is ub(MA) = 8 × ⌊ 36.36 ha
12 ha

⌋ = 24. 16

5.5. Spatio–Temporal balance of crops using soft-gcc 17

Preferences related to the spatio–temporal balance of crops (s-SBC, s-SGBC, 18

and s-TBC) are defined as soft global cardinality constraints (soft-gcc) that allow 19

the violation of both lower and upper bounds of the associated hard constraint 20

gcc. 21

Given a soft-gcc(S, lb, ub, δ). Let us define for all a ∈
⋃

Db,i. 22

ovf (S, a) = max (|{xt
b,i|x

t
b,i = a}| − ub(a), 0) 23

unf (S, a) = max(lb(a) − |{xt
b,i|x

t
b,i = a}|, 0) 24

where lb and ub are respectively the lower and upper bounds for each crop, 25

and δ a cost. We use the variable–based violation measure µ (see [16]) which is the 26

minimum number of variables whose values must be changed in order to satisfy the 27

associated gcc constraint. If
∑

a∈
⋃

Db,i
lb(a) ≤ |S| ≤

∑

a∈
⋃

Db,i
ub(a), the variable 28

based violation µ can be expressed by: 29

µ(S) = max

⎛

⎝
∑

a∈
⋃

Db,i

ovf (S, a),
∑

a∈
⋃

Db,i

unf (S, a)

⎞

⎠ 30

The cost function associated to each soft-gcc(S, lb, ub, δ) constraint is then W = 31

µ(S)× δ. Based on this definition the constraints s-SBC, s-SGBC, and s-TBC are 32

formalized as follow. 33
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s-SBC. ∀t ∈ [h + 1,H], ∀b ∈ B. Let WSBC
St

b

be a |Nb|–ary cost function soft-gcc1

associated to block b at time t. The scope St
b = {xt

b,i|i ∈ Nb}.2

WSBC
St

b
= soft-gcc(St

b, lb, ub, δ = δ1) (10)3

s-SGBC. ∀t ∈ [h + 1,H]. Let WSGBC
St be a

∑

b∈B |Nb|–ary cost function soft-gcc4

associated to all the landunits at time t. The scope St = {xt
b,i|i ∈ Nb, b ∈ B}.5

WSGBC
St = soft-gcc(St, lb, ub, δ = δ1) (11)6

s-TBC. ∀b ∈ B, ∀i ∈ Nb. Let WTBC
Sb,i

be a (H − h)–ary cost function soft-gcc7

associated to each landunit i. The scope Sb,i = {xh+1
b,i , · · · , xH

b,i}.8

WTBC
Sb,i

= soft-gcc(Sb,i, lb, ub, δ = δ3) (12)9

For instance, considering the temporal balance of crop acreages described in10

Section 2.2.2, between [1, 2] occurrences of winter rape (CH) should appear in11

every crop sequence associated to each plot. For each sequence of variables Sb,i12

associated to a given landunit, the minimum number of variables in Sb,i that13

should be assigned to winter rape is lb(CH) = ⌈ 12 ha
12 ha

⌉ = 1. The maximum is14

ub(CH) = ⌊ 24 ha
12 ha

⌋ = 2.15

6. Integer linear programming reformulation16

The resulting WCSP can also be represented as an integer linear programming17

problem using the encoding proposed in [20] and recently tested in [2]. For every18

landunit variable xt
b,i and crop value a, there is a boolean variable x

t,a
b,i which is19

equal to 1 iff xt
b,i = a in the WCSP. Additional constraints enforce that exactly20

one crop value is selected for each landunit variable. Additional positive integer21

variables are used to encode nonlinear hard and soft constraints. For instance, in22

the case of s-CSQ, for every pair of values (a, a′) of successive variables (xt
b,i, x

t+1
b,i )23

involved in a binary cost function, there is a boolean variable csq
t,a,a′

b,i which is24

equal to 1 iff the pair (xt
b,i = a, xt+1

b,i = a′) is used. Constraints enforce that a25

pair is used iff the corresponding values are used. Then, the CAP reduces to the26

following ILP:27

min

⎛

⎝

(
∑

t,b,i,a,a′ KP(a, a′) × csq
t,a,a′

b,i

)

+
(
∑

t,b,i,a δ2 × top
t,a
b,i

)

+
(
∑

t,b δ1 × sbct
b

)

+ (
∑

t δ1 × sgbct) +
(
∑

b,i δ3 × tbcb,i

)

⎞

⎠28

29
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s.t. 1

domain constraint
∑

a∈Db,i
x

t,a
b,i = 1 (∀t ∈ [1,H], b ∈ B, i ∈ Nb)

x
t,a
b,i = 0 (∀t ∈ [h + 1,H], b ∈ B, i ∈ Nb, a 
∈ Db,i) h-SCC

x
t,a
b,i = x

t,a
b,j (∀t ∈ [h + 1,H], b ∈ B, i, j ∈ N ′

b, a ∈ Db,i) h-EQU

x
t,historic(xt

b,i)

b,i = 1 (∀t ∈ [1, h], b ∈ B, i ∈ Nb) h-HST
∑

a′∈Db,i
csq

t,a,a′

b,i = x
t,a
b,i (∀t ∈ [1,H− 1], b ∈ B, i ∈ Nb, a ∈ Db,i) s-CSQ

∑

a∈Db,i
csq

t,a,a′

b,i = x
t+1,a′

b,i (∀t ∈ [1,H− 1], b ∈ B, i ∈ Nb, a
′ ∈ Db,i) s-CSQ

2

ni × top
t,a
b,i +

∑

j∈{i}∪neighbor(i) x
t,a
b,j ≥ ni (∀t ∈ [h + 1,H], b ∈ B, i ∈ Nb, a ∈ Db,i)

s-TOP
∑

t∈[h+1,H] x
t,a
b,i =

∑

t∈[h+1,H] x
t,a
b,j (∀b ∈ B, i, j ∈ Nb, a ∈ D)

h-SCA

x
t,a
b,i + x

t′,a
b,i ≤ 1 (∀b ∈ B, i ∈ Nb, a ∈ Db,i,

t ∈ [max(1, h + 2 − rt(a)), H − 1],
t′ ∈ [max(h + 1, t + 1),
min(H, t + rt(a) − 1)])h-TSC

x
t,a
b,i + x

t′,a
b,i ≤ 1 (∀b ∈ B, i ∈ Nb, a ∈ Db,i,

t ∈ [max(h + 1, H + 1 − rt(a)), H ],
t′ ∈ [h + 1,
min(H, h + rt(a) − 1 − H + t)])h-CCS

3

lbRSC(a) ≤
∑

i∈Nb
x

t,a
b,i ≤ ubRSC(a) (∀t ∈ [h + 1,H], b ∈ B′, a ∈ D′) h-RSC 4

sbcovf
t,a
b ≥

∑

i∈Nb
x

t,a
b,i − ubSBC(a) (∀t ∈ [h + 1,H], b ∈ B′, a ∈ D′) s-SBC

sbcunf
t,a
b ≥ lbSBC(a) −

∑

i∈Nb
x

t,a
b,i (∀t ∈ [h + 1,H], b ∈ B′, a ∈ D′) s-SBC

sbct
b ≥

∑

a∈D′ sbcovf
t,a
b (∀t ∈ [h + 1,H], b ∈ B′) s-SBC

sbct
b ≥

∑

a∈D′ sbcunf
t,a
b (∀t ∈ [h + 1,H], b ∈ B′) s-SBC

5

sgbcovf t,a ≥
∑

b∈B,i∈Nb
x

t,a
b,i − ubSGBC(a) (∀t ∈ [h + 1,H], a ∈ D′) s-SGBC

sgbcunf t,a ≥ lbSGBC(a) −
∑

b∈B,i∈Nb
x

t,a
b,i (∀t ∈ [h + 1,H], a ∈ D′) s-SGBC

sgbct ≥
∑

a∈D′ sgbcovf t,a (∀t ∈ [h + 1,H]) s-SGBC
sgbct ≥

∑

a∈D′ sgbcunf t,a (∀t ∈ [h + 1,H]) s-SGBC

6

tbcovfa
b,i ≥

∑

t∈[h+1,H] x
t,a
b,i − ubTBC(a) (∀b ∈ B′, i ∈ Nb, a ∈ D′) s-TBC

tbcunfa
b,i ≥ lbTBC(a) −

∑

t∈[h+1,H] x
t,a
b,i (∀b ∈ B′, i ∈ Nb, a ∈ D′) s-TBC

tbcb,i ≥
∑

a∈D′ tbcovfa
b,i (∀b ∈ B′, i ∈ Nb) s-TBC

tbcb,i ≥
∑

a∈D′ tbcunfa
b,i (∀b ∈ B′, i ∈ Nb) s-TBC

7

with D =
⋃

b,i Db,i, D′ ⊆ D, B′ ⊆ B, N ′
b ⊆ Nb, and ni = |neighbor(i)| + 1. 8

The continuous relaxation of this integer linear programming model is known do 9

be the dual of the LP problem encoded by Optimal Soft Arc Consistency [8]. When 10
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the upper bound m is infinite, OSAC is known to be stronger than any other soft1

arc consistency and especially stronger than the default Existential Directional2

Arc Consistency (EDAC) [13] used in the WCSP solver toulbar2. However, as3

soon as the upper bound m decreases to a finite value, soft local consistencies may4

prune values and EDAC becomes incomparable with OSAC [2].5

7. Experimental results6

7.1. CAP instances7

We performed experiments on four instances of the virtual farm presented in8

Figure 2. All the hard and soft constraints have been derived from [10, 11] who9

analyzed thirty irrigated arable farms from three different regions in France to10

study their decision–making about crop allocation. Each instance corresponds to11

a different sampling of landunits. The total number of landunits is increased from12

15 to 120 (15, 30, 60, 120). For the CAP instance denoted B1234-LU15∗ with13

15 landunits, |N1| = |N3| = 4, |N2| = 2 and |N4| = 5 where |Ni| denotes the14

number of landunits in block i. In this problem, sampling is done such that the15

plots are equal to the landunits (12 ha per landunit, see Fig. 2). These landunits16

are gradually refined by splitting them into 2, 4 and 8 smaller ones, to respectively17

build the instances B1234-LU30∗, B1234-LU60∗, and B1234-LU120∗ with 30, 60,18

and 120 landunits respectively. These samplings are chosen to be representative19

of different farm sizes. The planning horizon H = 9 . The four last years are20

dedicated to the future while the five first are historic ones (h = 5). We use the21

historic values presented in Figure 2.22

The costs associated to s-TOP, s-SBC (the same cost is used for s-SGBC), and23

s-TBC are respectively δ2 = 2, δ1 = 100 and δ3 = 10. We used the costs of24

preceding effects kp as given in Figure 3.25

All the CAP instances (in direct, decomposable, or ILP formulation) are avail-26

able in the cost function benchmark repository4.27

Computations were performed on a single core of an Intel T9600 at 2.8 GHz,28

using a laptop with 4 GB of RAM, running Linux 2.6, and a 10-hour time-out.29

7.2. Comparison between the direct and the decomposed weighted30

CSP formulations31

We compared the direct WCSP formulation given in Section 5 with a formu-32

lation where all the global cost functions have been decomposed into ternary (or33

less) cost functions by adding intermediate variables as described in [1]. For the34

regular constraint, the decomposition is done in such a way that enforcing Di-35

rectional Arc Consistency [8] on the decomposition achieves the same level of local36

4http://mulcyber.toulouse.inra.fr/scm/viewvc.php/trunk/crafted/CAP/?

root=costfunctionlib

http://mulcyber.toulouse.inra.fr/scm/viewvc.php/trunk/crafted/CAP/?root=costfunctionlib
http://mulcyber.toulouse.inra.fr/scm/viewvc.php/trunk/crafted/CAP/?root=costfunctionlib
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Table 1. Search effort for proving optimality.

n e Optimum Direct Decomposed
Time(s) Nodes Time(s) Nodes

B1234-LU15∗ 135 465 1,824 15.64 236 0.11 24
B1234-LU30∗ 270 922 3,660 103.96 759 0.40 65
B1234-LU60∗ 540 1,804 7,492 30,624 129,592 2.14 190
B1234-LU120∗ 1,080 3,568 14,800 – – 26.45 3,386

consistency on the original global cost function [1]. But for same, gcc, and soft- 1

gcc, this result is no more applicable because the decomposition is not Berge- 2

acyclic (our decomposition of these non Berge-acyclic global cost functions uses 3

one among decomposable cost function per crop value). 4

We solved the CAP instances using the WCSP solver toulbar2 version 0.9.65
5

with variable elimination of functional (intermediate) variables in preprocess- 6

ing (option -f=1), and other default options, including EDAC for binary [13], 7

ternary [33], and global cost functions, using a flow–based algorithm [21–23] for 8

the direct formulation or a built–in decomposition [1] for the decomposed formu- 9

lation. 10

Table 1 reports for each instance the number of variables n and cost functions 11

e in the direct WCSP formulation, its optimum, the CPU–time in seconds and 12

number of search nodes for proving optimality for the direct and the decomposed 13

formulations. The initial upper bound was set to the optimum value plus one in 14

order to check the results and be less dependent on the value ordering search 15

heuristics. 16

The decomposed approach was more than two orders of magnitude faster than 17

the direct approach. This can be explained by the excellent incrementality of usual 18

consistency enforcing algorithms applied to small–arity cost functions compared 19

to the monolithic flow–based algorithms used by the direct formulation. 20

7.3. Comparison between the decomposed WCSP and the integer 21

linear programming formulations 22

We compared the decomposed WCSP formulation we have just described with 23

the integer linear programming formulation given in Section 6. We used the ILP 24

solver SCIP version 1.2.06 with default options, modeling the ILP formulation us- 25

ing the Python multi-solver interface offered by NumberJack version 0.1.10-11-247. 26

toulbar2 used variable elimination of functional variables and no initial upper 27

bound. We measured the search effort for finding the optimum and proving opti- 28

mality as reported in Table 2. 29

5http://mulcyber.toulouse.inra.fr/projects/toulbar2
6http://scip.zib.de
7http://numberjack.ucc.ie/

http://mulcyber.toulouse.inra.fr/projects/toulbar2
http://scip.zib.de
http://numberjack.ucc.ie/
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Table 2. Search effort for finding the optimum and proving optimality.

n e Optimum Decomposed ILP
Time(s) Nodes Time(s) Nodes

B1234-LU15∗ 135 465 1,824 0.11 38 0.12 1
B1234-LU30∗ 270 922 3,660 0.40 92 0.79 2
B1234-LU60∗ 540 1,804 7,492 2.19 210 2.64 8
B1234-LU120∗ 1,080 3,568 14,800 23.90 3,153 7.25 9
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Figure 7. Crop allocation : Winter wheat, Spring barley,
Maize, Winter rape.

On the largest instance, SCIP was more than three times faster than toulbar21

and used 160 MB of RAM compared to 803 MB for toulbar2, showing that our2

decomposed formulation does not scale well compared to the ILP approach.3

Let us consider the optimal solutions found by the decomposed approach. Fig-4

ure 7 represents for each instance the spatio–temporal crop allocation. The min-5

imum return times of crops are enforced. The temporal balance of winter rape is6

enforced on block 2 and 4. Due to the historic values in block 3, the spatial balance7

of maize is not enforced when the year t ∈ {6, 8}.8

7.4. Finding all the optimal solutions9

We also measured the search effort done by toulbar2 on the decomposed for-10

mulation to find all the optimal solutions by setting the initial upper bound to the11
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Table 3. Search effort for finding all the optimal solutions.

n e Optimum Number of Decomposed
optimal sol. Time(s) Nodes

B1234-LU15∗ 135 465 1,824 2 0.12 58
B1234-LU30∗ 270 922 3,660 12 0.39 96
B1234-LU60∗ 540 1,804 7,492 136 2.45 678
B1234-LU120∗ 1,080 3,568 14,800 18 30.6 7,404

N
u
m

b
e
r 

o
f 
la

n
d
u
n
it
 b

y
 c

ro
p

0

2

4

6

8

0

2

4

6

8

Year 6

W
in

te
r 

w
h

e
a

t

S
p

ri
n

g
 b

a
rl

e
y

M
a

iz
e

W
in

te
r 

ra
p

e

Year 7

W
in

te
r 

w
h

e
a

t

S
p

ri
n

g
 b

a
rl

e
y

M
a

iz
e

W
in

te
r 

ra
p

e
Year 8

W
in

te
r 

w
h

e
a

t

S
p

ri
n

g
 b

a
rl

e
y

M
a

iz
e

W
in

te
r 

ra
p

e

Year 9

W
in

te
r 

w
h

e
a

t

S
p

ri
n

g
 b

a
rl

e
y

M
a

iz
e

W
in

te
r 

ra
p

e

S
o

lu
tio

n
 1

S
o

lu
tio

n
 2

Crop

Winter wheat

Spring barley

Maize

Winter rape

Figure 8. Spatial balance of crops over the years – B1234-LU15∗.

optimum plus one (options -f=1 -a -ub=Optimum+1, with variable elimination of 1

functional variables and other default options). 2

Let us consider the two optimal solutions found for the smallest instance B1234- 3

LU15∗. Figure 8 shows that while considering a year and a crop, all the optimal 4

solutions have the same number of landunits assigned to the given crop. The spatial 5

balance of winter wheat is enforced contrary to the maize ones (year t ∈ {6, 8}). 6

This is due to the historic values in block 3. 7

We also represent in Figure 9, the spatio–temporal crop allocation over the 8

blocks. The graphic shows for each solution the crop succession over the farmland. 9

The minimum return times of crops are enforced. The difference between these 10

two solutions is related to the crop allocation in block 3. The spring barley (OP) 11

can be replaced by maize (MA) when the year t ∈ {7, 9}. 12
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Figure 9. Crop allocation – B1234-LU15∗ : Winter wheat,
Spring barley, Maize, Winter rape.

8. Conclusion and future work1

In this paper, we have modeled the crop allocation problem (CAP) using the2

Weighted CSP formalism. Contrary to existing approaches for solving such a prob-3

lem, our proposition combines both the spatial and the temporal aspects of crop4

allocation. We explicitly described how the farmers’ hard and soft constraints can5

be addressed as a mono–objective optimization problem. The results showed that6

on a medium–size CAP with 120 landunits over 180 ha and 9 years, despite the7

huge improvement obtained by a decomposed WCSP formulation compared to8

the direct one, the ILP formulation was more than three times faster than the9

best WCSP formulation and used less memory. ILP delivered relevant solutions10

in reasonable computation time, offering better scalability. However, the WCSP11

formalism offers a better abstraction of the crop allocation problem thanks to its12

global cost functions, also yielding improved flexibility for modeling possible prob-13

lem changes. It suggests to develop a generic and automatic ILP reformulation of14

a WCSP as it is done in the NumberJack and MiniZinc [26] platforms for CSP.15

By doing so, it will offer the modeling flexibility of WCSP and the solving16

efficiency of ILP.17

In the future, we will investigate the soft cumulative constraint [31] for ex-18

pressing more complex resource management situations. We will look at the com-19

bination of cost functions, e.g., the minimum return time regular constraints20

with the preceding effects soft binary constraint in the spirit of [29]. Finally, we21

will perform experiments with the hybridization of WCSP and ILP solvers as22

introduced in [24].23
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