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Résumé :

Nous présentons un schéma de type volumes-finis d’ordre deux pour la résolution des équations d’Fuler
compressible dans des géométries complexes. La discrétisation est faite sur une grille cartésienne, qui
en général ne coincide pas avec la géométrie considérée. Dans le domaine fluide, nous utilisons une
méthode de volumes-finis classique. Sur les cellules situées preés de la frontiére avec le solide, nous
résolvons un probléme de Riemann ad hoc qui tient compte des conditions aux limites a imposer. Pour
éviter les oscillations de pression prés du solide, nous effectuons une pondération de la condition aux
limites avec une extrapolation des valeurs du fluide, selon [’angle entre la normale au solide et celle
a la cellule de la grille cartésienne. Le schéma est simple a implémenter et précis a l'ordre 2. Nous
présentons une étude de la convergence de [’erreur, des comparaisons avec d’autres méthodes de la
littérature, et des exemples d’écoulements en une, deux et trois dimensions.

Abstract :

We present a second-order finite-volume scheme for the resolution of Euler compressible equations in
complex geometries. The discretization is performed on a Cartesian grid, which in general does fit with
the considered geometry. In the fluid domain we use a classical finite-volume method. On the cells
located near the boundary with the solid, we solve an ah hoc Riemann problem taking into account the
boundary conditions that we want to impose. To avoid pressure oscillations near the solid we balance
the boundary condition with an extrapolation of the fluid values, as a function of the angle between the
normal to the solid and the normal to the cell. The scheme is straightforward to implement and second-
order accurate. We present a convergence study, comparisons with other methods of the literature, and
examples of flows simulations in one, two and three dimensions.

Mots clefs : Euler equations; complex geometries ; cartesian grids

1 Introduction

The computation of flows in complex unsteady geometries is a crucial issue to perform realistic simu-
lations of physical or biological applications like for instance biolocomotion (fish swimming or insect
flight), turbomachines, windmills... To this end several class of methods exist. Here we are concerned
with immersed boundary methods, i.e., integration schemes where the grid does not fit the geometry.
These methods have been widely developed in the last 15 years, though the first methods were designed
earlier (see for example [4], [1], [2]). The general idea behind immersed boundary methods is to take
into account the boundary conditions by a modification of the equations to solve, either at the conti-
nuous level or at the discrete one, rather than by the use of an adapted mesh. The main advantages
of using these approaches, compared to methods using body-conforming grids, are that they are easily
parallelizable and allow the use of powerful line-iterative techniques. They also avoid to deal with grid
generation and grid adaptation, a prohibitive task when the boundaries are moving. A recent through
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review of immersed boundary methods is provided by Mittal and Iaccarino [8].

In this paper we present a simple globally second order scheme inspired by ghost cell approaches to
solve compressible inviscid flows |7]. In the fluid domain, away from the boundary, we use a classical
finite-volume method based on an approximate Riemann solver for the convective fluxes. At the cells
located on the boundary, we solve an ad hoc Riemann problem taking into account the relevant boun-
dary condition for the convective fluxes by an appropriate definition of the contact discontinuity speed.
To avoid pressure oscillations near the solid we balance the boundary condition with an extrapolation
of the fluid values, as a function of the angle between the normal to the solid and the normal to the
cell. Our objective is to device a method that can easily be implemented in existing codes and that is
suitable for massive parallelization.

In section 2 we describe the finite volume scheme used in the fluid domain, away from the interface. In
section 3 we introduce our method for solving the compressible Euler equations near the solid. Finally,
in section 4 we present numerical tests to validate the expected order of convergence and to discuss
performance compared to others immersed boundary or body fitted methods.

2 Resolution in the fluid domain

2.1 Governing equations

The compressible Euler equations are :

dp

a—i—V-pu:O (1)
0
%—FV-(pu@u—i—pn):O (2)
OF
E—FV-((E—#—p)u):O (3)

where E denotes the total energy per unit volume. For a perfect gas

1
E = %—i—iqu and p = pRT (5)

2.2 Discretization

We focus on a two-dimensional setting. Let ¢ and j be integers and consider the rectangular lattice
generated by i and j, with spacing h, and h, in the x and y direction, respectively.

Let W be the conservative variables, F*(W), FY(W)) the convective flux vectors in the x and y
directions, respectively. By averaging the governing equations over any cell of the rectangular lattice
we have

dW ; 1, . . 1
gt Py = Fricazg) + g itz = Fijap) =0 (6)
where W; ; is the average value of the conservative variables on the cell considered, 77, /2 the average

flux in the z direction taken on the right cell side, and similarly for the other sides. The average
convective fluxes at cell interfaces are approximated using the Osher numerical flux function. A second
order Runge-Kutta scheme is used for the time integration.

3 A second order impermeability condition

For Euler equations, the boundary condition on the interface is the impermeability assumption, i.e.,
given normal velocity to the boundary (zero for a static wall, but non-zero for a moving solid). We are
concerned with recovering second order accuracy on the impermeability condition.
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3.1 Level set method

In order to improve accuracy at the solid walls crossing the grid cells we need additional geometric
information. This information, mainly the distance from the wall and the wall normal, is provided by
the distance function. The level set method, introduced by Osher and Sethian [9], is used to implicitly
represent the interface of solid in the computational domain. The zero isoline of the level set function
represents the boundary ¥ of the immersed body. The level set function is defined here by :

[ disty,(z) outside of the solid
w(r) = { —disty(z) inside of the solid (7)

A useful property of this level set function is :

n(z) = Vp(x) (8)

where n(z) is the outward normal vector of the isoline of ¢ passing on z. In particular, this allows to
compute the values of the normal to the interface, represented by the isoline ¢ = 0.

3.2 The impermeability condition in one dimension

The typical situation in one dimension for a grid that does not fit the body is shown in Fig. 1. For a
fixed body, we want to impose u, = u(xp) = 0 at the boundary point x;, where p(z) = 0.

FIGURE 1 — Mesh near the solid. Red line is ¢ = 0. The interface lies between the center of cell ¢ (fluid)
and the center of cell i + 1 (solid). The flux in 7 4+ 1/2 has to be modified in order to account for the
boundary conditions.

Let u* be the contact discontinuity speed resulting from the solution of the Riemann problem defined
at the interface between cell i and cell ¢ + 1. We define a fictitious fluid state to the right of i + 1/2
such that u* takes into account, at the desired degree of accuracy, the boundary condition u; in x3. In
particular, the value of u* at ;o is determined by the following formula :

1
u*:ub+(§—d)sb7 9)
where d = %, uyp is the velocity of the obstacle (= 0 for a steady body) and sy is a slope defined by :
x
sp=ds1 + (1 —d)sa, (10)
where s1 = o — thi and sy = % are the slopes represented in Fig. 1. This formulation has been
chosen to avoid stability issues in the slope computation when x is close to x; since

1-4d
1+d
If a slope limiter is needed, the limited slope is defined by sé = minmod(sy, $3), where s3 = u; — u;_.

An higher polynomial reconstruction to retrieve s; does not significantly modify the convergence rates
shown in the following.

Sp = Up — U; + (ub —ui_l). (11)

At @iy q/p the left fluid state of the Riemann problem U_ = (u—,p—,c_) is computed as usual with
the MUSCL reconstruction. The right state is Uy = (—u_ + 2u*,p_,c_), so that u* is the contact
discontinuity speed of the resulting Riemann problem. The left and right states of the variables p and
c are identical in order to impose the correct wave reflection.

The scheme is non conservative at the numerical interface x; /5. However, the loss of conservativity
at this point is negligible compared to all the other points and the shocks are correctly resolved as
shown in the following.
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3.3 The impermeability condition in two dimensions

In two dimensions the flow equations are solved by computing independently the flux in each direction,
so we want to apply in each direction the same kind of ideas as in one dimension. The interface
points are the intersections between the interface (¢ = 0) and the segment connecting the two cell
centers concerned by the sign change (for example the points A, B and C on Fig. 2(a)). For the flux
computation, a fictitious state is created for instance between the cells (7, j) and (i + 1,7) on Fig. 2(a).
The boundary condition that we have to impose now is ug.n4 = 0, where uy is the speed of the fluid
at the boundary, and n4 the outward normal vector of the body.

| | / | ¢=0
| . Q@) o, . 7 u
) ‘,\. ,,,,, oo (u, v, / (u.1)T,= u;
. . LA (LD ' K
' ' ' T" ; L Qs N N
. . . el A NN N (i+1, ))

1 : : : Ly € Yo
0 IR S R AR - 2 IS (u,ny)n,

(a) Geometric configuration (b) Construction of vector

FIGURE 2 — Fig. 2(a) : Example of geometric configuration at the interface. A is the interface point
located between (i,7) and (i + 1, 7). The flux on cell interface (i + 1/2,7) is modified to enforce the
boundary condition on A. Fig. 2(b) : Graphical illustration of the construction of the u* vector.

When n, is parallel to the cell side normal n..; we recover the one-dimensional case. However, when
the scalar product between the normal to the physical boundary and the normal to the mesh side is
close to zero, we assume that the boundary condition only weakly affects the numerical flux, as it would
happen for a body fitted mesh. The state corresponding to a cell in the solid is therefore modified in
order to take into account this requirement thanks to a convex interpolation.

We compute as before the left state primitive variables u_, p_, c_ relative to the Riemann problem at
the concerned numerical interface by a standard MUSCL reconstruction. According to Fig. 2(b) and
considering the (i + 1/2, j)-flux, the right state will be U} = (—u— + 2uy, Uy, P Cw ), Where :

Uy u ug
*
e =el D |ra=a | Y
Pu - Py
Cuw c_ cy

- @ =1A1¢e]
— (uf,vf,pf,cr) is an extrapolated fluid state detailed hereafter.
and U_ = (u_, vy, p_,c_).

The speeds v* and v* : The normal component of the contact discontinuity speed u* is calculated
as in the one-dimensional case. We determine the value of the contact discontinuity speed u*, relative
to a Riemann problem defined in the direction normal to the cell side through x; /5 ;, consistent at
second order accuracy with ug -n4 = 0 in A. The vector u* is determined as follows :

* *
Up Mg + ULTy

* ok 1 n
u.nA—un—uA.nA+(§—d)sA (
= u* = * *
unny“'uﬂ'y

) Where uy is the velocity of the
ut. Ty =ul =u_.m4

obstacle (= 0 for a steady body), ngq = (nm,ny)t and T4 = (Tx,Ty)t are respectively the normal and

tangential vectors to the boundary at point A and the slope s% is defined as in 1D :

1 —
s;‘l:uA.nA—ui.nA—i—m(uA.nA—ui_l.nA). (12)

If a slope limiter is needed, the limited slope is defined by sj’l = minmod(s%, s¥), where s} = u;.ng —
u;—1.n4.
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Extrapolated fluid state : (uy,vy,ps,cy) is computed as a linear extrapolation of the fluid variables
to the point ;12 using the variables and the slopes of the closest upstream fluid cell.

4 Numerical illustrations

The Ringleb flow

The Ringleb flow refers to an exact solution of Euler equations. The solution is obtained with the
hodograph method. In our test case, the computational domain is [—0.5; —0.1] x [0; 0.6] and we nume-
rically solve the flow between the streamlines ¥y = 0.8 and W5 = 0.9. The inlet and outlet boundary
condition are supersonic for y = 0 and y = 0.6 respectively.

The convergence orders are calculated in Lo norm on four different grids 32 x 48, 64 x 96, 128 x 192 and
256 x 384. The results for the Ly norm of our method are compared to a simple symmetry technique,
the ghost-cell CCST method [6], that relies on a local isoentropic flow model at the wall, and a standard
finite-volume scheme case with a body-fitted meshs in Fig. 3.

0.01 0.001
0.001 q 0.0001 q
X
0.0001 | 1 1e-05 | x
X 8
- %
- . X -
1e-05 | ///x e B 1e-06 | BT 4
“
X a7 15}
* .
1e-06 - B B 1e-07 - o B
x7 B o
L - Symmetry ; order 1.1 —+— Symmetry ; order 1.1 —+—
* - Ghost cell CCST ; order 1.9 ---x--- Ghost cell CCST ; order 2.0 ---x---
o Present scheme ; order 2.0 ------ Present scheme ; order 2.0 ------
Body fitted mesh ; order 2.0 & Body fitted mesh ; order 2.0 &
1e-07 L 1e-08 L
0.01 0.01
(a) Pressure (b) Sound speed

F1GURE 3 — Comparison of the Lo accuracy of the present scheme with several methods. The conver-
gence orders are detailed in the legend.

The overall results show that the classical symmetry scheme is first order accurate in the Lo norm. The
other schemes have overall comparable accuracy, although the amplitude of the error is lower for the
present scheme compared to the ghost-cell CCST method. For the same test case, Coirier and Powell
[3] observed also a convergence order between one and two in the case of their own cartesian method.

Mach 10 shock over three spheres

The computation of a planar shock reflecting over three spheres is performed. The spheres are located at
(0,0,0), (-0.75, 1.4,-1.4), (0,-2,0) with radii 1, 0.4, 0.3, respectively. The size of the domain is [—2.5; 2.5].
The numerical computation is performed on a 256 mesh. Four snapshots are shown on Fig. 4. The
interactions of the bow shocks give rise to complicated flow structures in the wake of the spheres.

5 Conclusion

We have presented a new cartesian method to solve compressible flows in complex domains. This
method is based on a classical finite volume approach, but the values used to compute the fluxes at
the cell interfaces near the solid boundary are determined so to satisfy the boundary conditions with a
second order accuracy. Several numerical validations have been presented to assess its accuracy. This
method is particularly simple to implement, as it doesn’t require any special cell reconstruction at the
solid-wall interface.
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FIGURE 4 — Mach 10 planar shock reflecting on a 3D sphere. 20 isopressure surfaces.
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