
HAL Id: hal-01024496
https://hal.science/hal-01024496

Submitted on 17 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Time and frequency response of structures with
frequency dependent, non-proportional linear damping

Lionel Zoghaib, Pierre-Olivier Mattei

To cite this version:
Lionel Zoghaib, Pierre-Olivier Mattei. Time and frequency response of structures with frequency
dependent, non-proportional linear damping. Journal of Sound and Vibration, 2014, 333 (3), pp.887-
900. �10.1016/j.jsv.2013.09.044�. �hal-01024496�

https://hal.science/hal-01024496
https://hal.archives-ouvertes.fr


Time and frequency response of structures with1

frequency dependent, non-proportional linear damping2

L. Zoghaiba, P.-O. Matteib,∗3

aEADS, 12 rue Pasteur, 92150 Suresnes, France4

bLMA, CNRS, UPR 7051, Aix-Marseille Univ, Centrale Marseille, F-13402 Marseille5

Cedex 20, France6

Abstract7

A method to compute the non-stationary time and frequency response of

structures with a frequency-dependent non-proportional linear damping,

called the resonance modes method, is presented in this paper. It consists

of two main steps. The first step aims at spotting the structure resonance

modes, which are the solutions of the matrix non-linear eigenvalue prob-

lem obtained using the finite element method in the complex plane. This

step requires a complex eigensolver and an iterative scheme, a perturbation

technique or a combination of both. The second step uses the computed res-

onance modes and an analytical expression of the inverse Laplace transform

to deduce the time or frequency response of structures to general excitations.

The response of an aluminum plate damped with an elastomer treatment to

a point-force excitation, computed with the classical modal approach, the

direct solution and the presented method shows its precision and efficiency.

An acoustic power computation finally validates the implementation of a

fast variant, based on the perturbation technique, for vibroacoustic appli-

cations.
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1. Introduction9

The modeling of damped structures is still a very active research field.10

The main reason is that most numerical methods available today have a11

number of limitations. Time approaches are excessively costly compared12

to frequency approaches, while frequency approaches are often reduced13

to stationary excitation types or are restricted to specific damping mod-14

els. Some finite element codes can now take advantage of complex eigen-15

solvers, adapted to non-proportionally damped systems, but they do not16

offer any consistent approach to deduce the response to dynamic load-17

ings from the computed complex modes. A better handling of complex18

frequency-dependent eigenvalue problems, which stem from the viscoelastic19

constitutive equations written in the complex plane is however needed by20

the industry. In aeronautics, in particular, lighter damping treatments with21

enhanced efficiency need to be further developed. Five main types of meth-22

ods with different levels of approximation are currently available to address23

the problem of viscoelasticity in dynamics: direct solutions, methods based24

on modal strain energy, perturbation-based methods, state space methods25

and finally methods introducing dissipation coordinates.26

27

The direct solution is often the only option to model viscoelastic behavior28

in standard finite element codes with accuracy, but unfortunately at high29

numerical cost. A number of variants have been developed, though, which30

make the method become more practical over time. The Padé method, in-31

vestigated by Chazot et al [1] for instance, allows an efficient reconstruction32

of the frequency response function with a substantial speed up gain.33

34

Modal Strain Energy analysis (MSE), in its initial form, is based on the35

eigenvector basis of the undamped structure with no frequency dependence.36

It has been used by Finegan and Gibson [2], for instance, to characterize37

the damping loss factor of composite structures with coated fiber reinforce-38

ment; their approach takes the contribution of the fibers, fibers coating and39
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composite matrix damping separately to assess total damping. Using the40

MSE analysis, one needs to compute the modal strain energy of the different41

structure sub-systems in a first step; each energy is then weighted by the42

sub-system’s loss factor. Summing all weighted energies and dividing the43

result by the total modal strain energy finally yields the structure’s modal44

damping. MSE analysis requires the vectors of the undamped system to be45

very close to those of the damped system. Moreover, it is only valid when46

a uniform loss factor mean value can be associated with a sub-system. For47

this reason, non-local dissipations such as noise radiation energy loss can48

not be properly considered.49

50

Damping non-proportionality is caused by inhomogeneous damping distri-51

butions. A complex eigensolver is needed in this case to compute the struc-52

ture’s complex modes. Perturbation techniques, contrary to MSE analysis,53

can be used to handle non-proportionality, as pointed out by Woodhouse [3],54

or more recently by Cha [4] for arbitrarily damped nearly proportional sys-55

tems. If the damping is slightly non-proportional, indeed, an approximation56

of the complex eigenvectors can be deduced from the undamped structure57

modal basis. Another alternative for solving complex eigenvalue problems is58

to use the state space method (Hurty and Rubinstein [5]). The method takes59

non-proportionality into account with no limiting assumption. It therefore60

gives accurate complex eigensolutions using a real eigensolver only. The61

main drawback of the method, though, is the matrix size doubling that re-62

sults in prohibitive calculation times for large systems. The method does63

not handle frequency dependence either. Alternatively, Adhikari [6] pro-64

posed an approach that uses the undamped system normal modes obtained65

from a real eigensolver to deduce complex modes iteratively, and Cortés and66

Elejabarrieta [7] suggested an approximate method to compute them from67

the undamped solutions by finite increments using eigenvector derivatives68

and the Rayleigh quotient.69

70
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The last approach available currently uses analytical viscoelastic models to71

reshape any frequency-dependent complex problem into a real frequency-72

independent equivalent one. Dissipation coordinates that characterize an73

intermediate field need to be introduced. These coordinates are written ex-74

plicitly with respect to other coordinates and a given complex viscoelastic75

model. The GHM method (Golla Hughes Mac Tavish, Golla and Hughes76

[8], Barbosa and Farage [9]) or the ADF method (Anelastic Displacement77

Field, Lesieutre and Bianchini [10]) are different variants of this approach.78

They offer a number of advantages: damping can be frequency-dependent,79

non-proportional; numerically, only a standard real eigensolver is needed.80

The main drawback, however, is numerical: matrices become larger and un-81

symmetric; also, the use of specific damping models restricts the approach82

generality.83

84

The resonance modes method presented here, like GHM and ADF meth-85

ods, not only handle frequency dependence and non-proportional damping86

but also remediates most of their disadvantages; damping, in particular,87

can remain general. It falls in the wide category of extended modal ap-88

proaches such as the modal contribution functions superposition method89

proposed by Cortés and Elejabarrieta [11], the modal approach combined90

with fractional derivatives in the paper by Sorrentino and Fasana [12], or91

the fast frequency response analysis algorithm suggested by Kim [13], valid92

in the case of partially damped structures. Introduced initially to handle93

radiation frequency dependence in vibroacoustics (Filippi et al [14]), it is94

applied here to structural dynamics with viscoelasticity. The method is a95

mathematically founded generalization of the classical modal approach to96

frequency dependent cases. Based on the use of the inverse Laplace trans-97

form, it requires a modeling technique combined to iterative or perturbation98

techniques. The finite element method has been selected for this purpose99

but the choice, however, is not restricted; the finite difference method or100

even analytical expressions could also be used. The example of an elas-101
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tomer with strong viscoelastic characteristics has been chosen to illustrate102

the method.103

2. Problem frequency formulation104

2.1. Local equations105

Assuming that the Laplace transform given by106

L
[

f̃i (t)
]

= fi (s) =

∫ ∞

0

f̃i (t) e
−stdt (1)

is applied to the local constitutive equations of an isotropic viscoelastic107

material, the following frequency representation is obtained:108

σij (s) = E′(s)(1+ ı tan δ(s))
1+ν

[

ǫij (s) + ν
1− 2 ν

ǫkk (s) δij
]

, (2)

where σij is the stress tensor, ǫij the strain tensor, ν Poisson’s ratio and δij109

Kronecker symbol. E ′(s) is the storage modulus, while tan δ(s) is associated110

to the material energy loss. Both can be expressed as polynomial curve-111

fittings of tabular experimental data, as displayed in Figures 1 and 2. In112

these figures, a frequency stiffening typical of elastomers can be observed,113

as well as a frequency region around 60000 Hz, around which damping is114

particularly large. Poisson’s ratio is set equal to a constant but it is not a115

restriction. Anisotropic viscoelastic properties could also be handled by the116

method.117

118

The problem statement is completed by boundary conditions and the fol-119

lowing local equation of motion:120

s2ρui (s)− σij,j (s) = fi (s) + s ρ ui0 + ρu̇i0 (3)

where ui (s) is the local displacement, ρ the material density, fi (s) a volume121

force, ui0 an initial displacement and u̇i0 an initial velocity.122
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Figure 1: Elastomer frequency-dependent storage modulus.
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Figure 2: Elastomer frequency-dependent tan δ.
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2.2. Finite element formulation123

Local equations are multiplied by a conjugate weighting function and124

integrated over the structure volume (Ohayon and Soize [15]). Integrat-125

ing by part and using Bubnov-Galerkin method (Hughes [16]) with homo-126

geneous boundary conditions results in the following complex symmetric127

matrix problem:128

[

s2M + KB(s) + KA
]

u(s) = F (s) + s I0 + V0 (4)

where M is the mass matrix, u(s) the displacement solution vector, F (s)129

the excitation force vector, I0 and V0 the initial displacement and velocity130

vectors, respectively. The stiffness matrix has been split into a frequency-131

independent part KA and a frequency-dependent one KB(s). All matrices132

are generated by a 27-nodes fully quadratic solid element that gives a great133

flexibility for designing new damping treatments. A specific formulation134

with four pressure nodes per element has also been implemented to handle135

quasi-incompressibility. Bathe [17] emphasizes the good convergence qual-136

ities of this quasi-incompressible element. The main disadvantage of the137

current strategy is that it results in a bad conditioning of the matrix inver-138

sion problem that restricts the overall model size. As pointed out before,139

though, the resonance modes method is applicable to any kind of modeling140

technique.141

142

The system is defined at a given value of the Laplace parameter s asso-143

ciated to a specific angular frequency ω via s = ı ω, where ı is the complex144

imaginary number. Classical solving methods such as the direct solution,145

which inverts the left-hand side operator of Equation (4), or the modal res-146

olution, which uses a biorthonormality relationship valid at fixed s, need147

both a discretization of the frequency axis. As many matrix factorizations148

as points on the frequency axis need to be computed, which, in the case of149

broadband excitations, results in very long solving times.150
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3. Problem solution151

3.1. The classical modal approach152

The modal resolution is based on the eigenvalue problem deduced from153

the homogeneous form of Equation (4):154

[

s2k(s)M + KB(s) + KA
]

uk(s) = 0, (5)

where (sk(s), uk(s)) is the kth eigenelement. This eigenvalue problem is155

complex, nonlinear in frequency and results in complex mode shapes. Since156

matrices are symmetrical by construction, following biorthonormality rela-157

tionship holds at fixed s:158







uTi (s)M uj(s) = δij

uTi (s)
[

sKB(s) + KA
]

uj(s) = −s2j (s) δij

(6)

Equation (4) solution u(s) is sought using the combination u(s) =
∑N

i αi(s) ui(s)159

of the modes ui(s) computed at s. Multiplying the equation with the trans-160

posed eigenvector uTj (s) yields:161

uTj (s)
[

s2M + KB(s) + KA
]

N
∑

i

αi(s) ui(s) = uTj (s) [F (s) + sI0 + V0] .

(7)

The frequency dependent coefficients αj(s) are easily determined using162

biorthonormality relationships (6). The displacement is finally given with163

respect to Laplace parameter s by164

u(s) =

N
∑

i

uTi (s) [F (s) + sI0 + V0]

s2 − s2i (s)
ui(s) (8)

It is worth pointing out that using relationship (8) is numerically ineffi-165

cient. In this case, a linearized form of Equation (5) with constant system166

matrices is obtained at each point of the frequency axis by setting s. The167

corresponding eigenvalue problem can be solved in a classical way, but its168

solution is valid at this specific frequency only. A considerable amount of169
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eigenvalue problems needs thus to be solved to compute the response over170

a wide frequency band. It results in longer computation times than with171

the direct solution.172

3.2. Time solution173

The time solution can be deduced from Equation (8) with Mellin-Fourier174

inverse integral transform or Bromvitch formula expressed as following:175

L−1 [f (s)] = Y (t) f (t) =
1

2πı

∫ C+ı∞

C−ı∞

f (s) est ds (9)

where Y (t) is the Heaviside function, C the abscissa of the integration176

vertical axis. Details of similar calculations made in the Fourier domain can177

be found in the work by Filippi et al [14]. Let’s focus on the computation178

of the jth term of Equation (8) sum only, associated to the dynamic loading179

F (s), for clarity reasons. This term is given by:180

U j(s) =
uTj (s)F (s) uj(s)

s2 − s2j(s)
= Ψ(s)

uTj (s)φ uj(s)

s2 − s2j(s)
(10)

The excitation vector F (s) has been split into a frequency-dependent part181

Ψ(s) and a spatial one φ. The inversion formula can thus be written as182

following:183

Y (t) uj(t) =
1

2 π ı

∫ C+ı∞

C−ı∞

Ψ(s)
uTj (s) φ uj (s)

s2 − s2j (s)
est ds (11)

If the denominator only consists of simple poles ŝj, the residue theorem184

gives the time solution as the sum of following residues:185

Res(φ, ŝj) = lims→ŝj Ψ(s) (s − sj (s))
uT
j (s)φuj(s)

s2 − s2j (s)
est

= lims→ŝj Ψ(s)
uT
j (s)φuj(s)

s+ sj(s)
est = Ψ(ŝj)

uT
j (ŝj)φuj(ŝj)

2 ŝj
eŝjt

(12)

Determining the jth residue requires to find the jth resonance pair (ŝj , ûj)186

given by a limit calculation:187

lims→sj

[

s2j (s)M + KB(s) + KA
]

uj(s)
=

[

ŝ2j M + KB(ŝj) + KA
]

ûj = 0
(13)
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This equation, called resonance value problem equation, is different from188

the eigenvalue problem Equation (5). It is worth noting that resonance189

pairs (ŝj , ûj), contrary to eigenpairs (sj(s), uj(s)), do not depend on fre-190

quency. Resonance pairs are computed with a linear complex eigensolver191

and a perturbation or an iterative scheme, which performs the limit calcu-192

lation numerically.193

194

Since the Laplace transform of a function f is such that f (s) = f (s),195

ŝj is also solution of the resonance value problem (13). A second residue,196

simply deduced from the first one by following relationship, needs thus to197

be considered:198

Res(φ, ŝj) = Res(φ, ŝj) (14)

The part of the time response associated to the jth term of the sum is finally199

deduced by taking both residues into account:200

Y (t) uj(t) = ℜ
[

Ψ(ŝj)
uT
j (ŝj) φ uj(ŝj)

ŝj
eŝjt

]

(15)

where ℜ(z) stands for the real part of the complex number z. The complete201

time solution has following final form (for t ≥ 0):202

u(t) =
∑N

j=1ℜ
[

uT
j (ŝj) φ uj(ŝj)

ŝj
ψ(t) ∗ eŝjt + uTj (ŝj)

(

I0 +
V0

ŝj

)

uj (ŝj) e
ŝjt
]

(16)

where ψ(t) is the time representation of the excitation spectrum Ψ(s) and203

the symbol ∗ the convolution product. There are numerous advantages to204

using this analytical expression. Once resonance modes have been com-205

puted, Eq. (16) is easy to calculate and accurate. It is also valid for non-206

stationary excitation types. Any new excitation case can be considered with207

little additional computational cost compared to most transient methods.208

The resonance modes method can thus be seen as a generalization of the209

modal approach to the linear viscoelastic case. No hypothesis is made on210

the damping type; this one can be specified by a simple curve fitting of tab-211

ular data. The existence of the Laplace transform of an implicit viscoelastic212
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stiffness tensor defined in the time domain, which is however not needed in213

the calculation, is the only hypothesis.214

3.3. Frequency solution215

The frequency response is finally obtained by computing the Laplace216

transform of Equation (16). The displacement solution u(s) is given by217

following relationship:218

u(s) = 1
2

∑N

j=1

{[

uTj (ŝj)
φ Ψ(s) + ŝjI0 + V0

ŝj (s−ŝj)
uj (ŝj)

]

+

[

uTj (ŝj)
φ Ψ(s) + ŝjI0 + V0

ŝj (s−ŝj)
uj (ŝj)

]}
(17)

This expression has to be compared with the expression obtained with219

the classical modal approach in the non-proportional damping case (Equa-220

tion (8)). The classical modal approach requires one to compute an eigen-221

value problem per frequency axis point, while the resonance modes method222

requires one to solve a number of eigenvalue problems that depends on the223

selected strategy to spot resonance modes.224

4. The numerical computation of resonance modes225

Resonance modes can be computed with a linear complex eigensolver226

combined with search techniques that make repeated calls to the solver.227

Search techniques are presented in the forthcoming paragraph. The imple-228

mented complex eigensolver is then described in the following paragraph.229

4.1. Looking for the resonance modes230

Several approaches can be used to spot resonance modes. Three of them231

have been implemented and compared. The first one, based on matrix232

Equation (5), is iterative, and focuses on each resonance mode separately.233

Araújo et al [18] used a similar technique to track the modes of sandwich234

laminated plates with viscoelastic core in order to obtain enhanced damp-235

ing estimations. The authors, however, did not go forward by making use236
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of the resonance modes to compute the response and an inefficient direct237

approach is used instead.238

239

In the first step of the iterative approach, the viscoelastic matrix KB(s0) is240

constructed at a fixed parameter value s0 based on an estimation of the first241

resonance frequency. If no prior knowledge of this frequency is available,242

as it will be assumed later in the numerical examples, one can simply set243

s0 to zero, but it may deteriorate the convergence slightly. Setting a value244

for s makes the complex eigenproblem linear and solvable. Once the eigen-245

solver has been called, the eigenvalue of the mode of interest that has just246

been computed is used to create an updated viscoelastic matrix KB(s1).247

The process is then reiterated. After repeated calls to the eigensolver, the248

scheme converges toward a resonance mode as defined by Equation (13).249

The Arnoldi method, implemented in the eigensolver described in the next250

paragraph, remains efficient when many eigenvalues are extracted simulta-251

neously. This is why a few eigenvalues are actually computed to initialize252

the algorithm properly when the next resonance modes are sought.253

254

The chosen convergence criterion is based on the frequency difference ratio255

between two successive iterations. Convergence is considered to be reached256

when the ratio is lower than 10−3%. It has always been observed in all the257

numerical examples of the paper. Three iterations seem necessary to spot258

the first resonance mode, since the program may start with a poor estimate259

of the first resonance frequency, while two iterations are then required for260

each subsequent mode, since a better estimation is available. The algo-261

rithm, based on this iterative method, is given the identification label A1.262

It could further be improved by adding a mode shape identification routine263

to distinguish very closely spaced modes that might be mixed up during the264

iteration process. The structural examples that will be considered in the265

next paragraph, however, have not required this additional feature.266

267
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The second and third search approaches use a perturbation technique. This268

technique is based on an algebra theorem (Lascaux and Théodor [19]), which269

gives the analytical expression of new eigenvalues obtained when the stiff-270

ness matrix is perturbed by a matrix C and a small parameter ǫ. The theo-271

rem is formulated as following: Let λk be a simple eigenvalue of the diago-272

nalizable matrix K and λk(ǫ) the corresponding one associated to K + ǫ C, so273

that lim ǫ→ 0 λk(ǫ) = λk. For a sufficiently small ǫ, following results apply:274

275










λk(ǫ) = λk + ǫ
(

vHk C uk
)

+ O (ǫ2)

uk(ǫ) = uk + ǫ
(

∑N

i=1i 6=k

vHi C uk

λk −λi
ui

)

+ O (ǫ2)
(18)

where vHk is the hermitian transpose of the kth left eigenvector. The same276

relationships hold for generalized eigenproblems after mass-matrix orthonor-277

malization. As far as complex symmetric eigenproblems concerns, left eigen-278

vectors are simply deduced from their right counterpart uk using uk = vk.279

This theorem can be used to determine a better estimation of the next reso-280

nance mode from a first eigenvalue computation. Let’s assume for instance281

that a first resonance mode of frequency f1 associated to Laplace parame-282

ter ŝ1 has been computed. The next resonance mode associated to Laplace283

parameter ŝ2 is now targeted. An approximation s2(f1) is already available,284

since the second eigenvalue of the system constructed at frequency f1 has285

been extracted in a previous step. A perturbation matrix ∆K, which takes286

the frequency effect into account, is built as following:287

∆KB = KB(s2(f1)) − KB(ŝ1) (19)

An improved estimation of ŝ2 can then be deduced from the perturbation288

technique:289

ŝ22 ≈ s22(f1) + uT2 (f1) ∆K
B u2(f1) (20)

where u2(f1) is the second mode shape of the system constructed at fre-290

quency f1. This expression can be used to accelerate the iterative scheme.291

It has been implemented in an algorithm combining perturbation and iter-292

ation, identified by label A2. In practice, two iterations only are needed to293

13



determine the first resonance mode, instead of three with a pure iterative294

approach. Only one iteration instead of two is necessary for the next res-295

onance modes. The algorithm A2 thus needs to solve approximately one296

eigenvalue problem per resonance mode, roughly half as many as in algo-297

rithm A1.298

299

It is also possible to use the perturbation method from the results of a300

single eigenvalue problem computation. The middle of the frequency range301

is taken as reference to build up the viscoelastic matrix KV . In doing so,302

it is assumed that minimizing the maximum coefficient of all perturbation303

matrices will increase the validity domain of the local approximation. Fur-304

ther investigations in the field of perturbation analysis should be carried305

out to determine an optimal reference frequency. All modes are computed306

instead of just a few. The eigenvalues are then adjusted successively. This307

approach has been implemented in a fast algorithm identified by label A3.308

4.2. A complex eigensolver309

A symmetric complex eigensolver has been implemented using ARPACK310

library [20], based on the Implicitly Restarted Arnoldi Method. It can be311

considered as an extrapolation of Lanczos method to general structured312

matrices that have a certain degree of sparsity. ARPACK works by calling313

user-supplied routines repeatedly via a reverse communication interface.314

The user is thus free to choose any convenient data structure or matrix315

inversion algorithm. Cholesky factorization could be used to reshape the316

eigenvalue problem generalized form into a standard one, since the mass317

matrix is symmetric positive-definite. However, the shift-invert mode for318

generalized problems has been chosen. This mode is more efficient when319

only a few localized eigenvalues are sought (algorithms A1 and A2). If a320

spectral shift σ is introduced in the eigenvalue problem, following equation321

is obtained:322

(K − λM) u = (K − σM − (λ− σ) M) u = 0 (21)

14



where K is the stiffness matrix, M the mass matrix and (λ, u) an eigenpair.323

The problem can be further transformed into the following one:324

((

1

λ− σ

)

I − (K − σM)−1M

)

u =
(

ΛI − K̃
)

u = 0 (22)

The matrix K̃, defined by325

K̃ = (K − σM)−1M (23)

has been introduced. The Arnoldi method can compute the spectrum dom-326

inant eigenpairs like (Λ, u) from the transformed system (K̃, I) efficiently.327

The corresponding eigenvalue λ = 1
Λ
+ σ of the initial matrix system (K,328

M) can then be deduced. The convergence is quicker if σ is close to λ.329

The system construction frequency thus gives an appropriate shift value σ,330

which is systematically updated during the iterative process and for each331

new resonance mode.332

333

An inversion algorithm needs to be provided in order to carry out cal-334

culations such as y = K̃x, in which x is a vector given by ARPACK and335

y the vector requested by the reverse communication interface. Several336

iterative methods using Krylov-subspaces such as the Restarted Gener-337

alized Minimum Residual (RGMRES ), the Conjugate Gradient Squared338

(CGS), the Polynomial Stabilized bi-conjugate gradient (Bi-CGSTAB(l)),339

or the TFQMRmethod (Transpose-Free Quasi-minimal Residual) have been340

tested. These algorithms, available in the Numerical Algorithms Group li-341

brary (NAG [21]), can be used in combination with three preconditioners342

such as the Jacobi, SSOR (Symmetric Successive-Over-Relaxation), ILU343

(incomplete LU factorization) preconditioners. The option without pre-344

conditioning is also available. The only numerical drawback of the library345

algorithms is their non-symmetric storage scheme that requires a memory346

size doubling. Another solver computing the direct frontal solution has also347

been implemented. The program uses routines from the SPARSEPAK li-348

brary that have been modified to handle complex numbers. It also uses a349
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routine from the software METIS [22] that carries out graph partitioning350

and fill-reducing orderings of sparse matrices.351

Aluminum Young’s modulus 70 GPa
Aluminum Poisson ratio 0.3
Aluminum density 2700 kg.m−3

Aluminum damping 0
Elastomer density 1190 kg.m−3

Elastomer Poisson ratio 0.4875

Table 1: Materials characteristics.

352

Numerical tests have been conducted to compare the performances of the353

different eigensolvers. Complex symmetric matrices have been generated by354

modeling a 35 cm × 40 cm × 2 mm aluminum plate with free boundary355

conditions and a 10 cm × 10 cm damping patch located in a corner. All356

materials characteristics are summarized in Table 1. Aluminum damping357

is considered negligible here. The patch is made of a 1 mm-thick elastomer358

layer (characteristics displayed in Figures 1 and 2) constrained by a 0.5359

mm-thick aluminum layer. This type of damping treatment results in high360

levels of dissipation and is extensively used in the transportation industry.361

A unique eigenvalue problem constructed at 45 Hz, very close to the first362

structure non-rigid body mode, has been solved. This choice of frequency,363

although quite arbitrary, makes the inversion problem numerically hard to364

solve and seems well adapted to benchmark the algorithms. The whole365

procedure yields performance results in terms of CPU time and maximum366

memory usage that are useful to determine the best algorithmic option. It367

has been found, in particular, that only the ILU preconditioner makes the368

various iterative routines converge. It has also been found that all itera-369

tive routines behave in a similar way and give very close computation times370

and memory needs. Table 2 displays numerical comparisons between the371

two best solvers. The first one is the ILU/CGS iterative solver, while the372

second one computes the direct frontal solution. Each column of the table373
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represents a different system discretization and therefore a different matrix374

size. The table clearly shows that the algorithm implementing the direct

Matrix size 387 891 1971 3051 4851

CPU time ILU/CGS 0.74 6.20 31.25 101.62 348.69

(s) Direct 0.15 0.42 1.14 2.32 4.16

Max. memory ILU/CGS 0.98 0.98 59 91 150

(MB) Direct 1 1 15 23 36

Table 2: Comparison between the ILU/CGS and the direct solution complex eigensolvers
for various matrix sizes.

375

method is much more efficient than algorithms based on iterative methods.376

The reason is related to the family type of interpolation functions used in377

the finite element model. Quadratic elements yield populated matrices with378

a bad conditioning for the iterative inversion problem.379

5. Solvers comparison and validation380

5.1. Response of a damped system381

The response of a clamped plate to point-force excitation has been com-382

puted using algorithms A1, A2 and A3, which are different implemen-383

tations of the resonance modes method. All three use the direct frontal384

algorithm, the fill-reducing ordering algorithm as well as the shift-invert385

strategy for generalized eigenvalue problems described in the previous para-386

graph. A1 uses the iterative technique presented in § 4.1, A2 the hybrid387

iterative/perturbation approach andA3 the perturbation method. Two ad-388

ditional algorithms that invert the left hand side operator of Equation (4)389

have also been programmed and can be considered as reference implementa-390

tions of current standards for frequency-dependent dynamic problems. The391

first one, based on the direct frontal solution with fill-reducing ordering,392

is called Direct, while the second one, which uses the classical modal ap-393

proach (Equation (8)), is called Eigenmodes. A resolution of 1 Hz has394
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been chosen to discretize the frequency axis. This choice has a tremendous395

impact on the computation time of these last two algorithms.396

397

The modeled configuration is a 2mm-thick 35 cm × 40 cm clamped alu-398

minum plate excited by a point force (x = 28 cm, y = 20 cm) of unit value399

from 0 Hz to 1000 Hz. The displacement has been computed at a single400

location (x = 28 cm, y = 32 cm). Two different treatment configurations401

have been studied: a slightly damped configuration with a 6.9 cm × 8.9 cm402

constrained elastomer patch located at the center of the plate and a very403

damped configuration with a patch covering it. The patches are made of a 1404

mm-thick elastomer layer (characteristics displayed in Figures 1 and 2) con-405

strained by a 0.5 mm-thick aluminum layer. The materials characteristics406

are given in Table 1, while Table 3 summarizes the numerical characteristics407

of both configurations.408

409

Case Slightly damped Very damped

Plate mesh 20 × 20 20 × 20

Number of elements 480 1600

Matrix size ∼ 16000 ∼ 44000

Number of matrix coefficients ∼ 2.2 106 ∼ 7.4 106

Table 3: Numerical characteristics of the two studied plate configurations.

A number of indicators are output to analyze the performances of all410

five solvers. The CPU time has been estimated and normalized by dividing411

it to the five solvers minimum value. Other characteristics such as the max-412

imum memory required, the number of system resolutions or the number of413

factorizations have also been measured.414
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5.2. The slightly damped case415

The computation characteristics of all five algorithms are displayed in416

Table 4 for the slightly damped case. It can be noticed that the number of417

system constructions, factorizations and resolutions is equal to 999 in the418

case of the direct solution. It corresponds to the number of points on the419

frequency axis. A configuration with no frequency dependence would have420

required a unique factorization and the same number of resolutions, result-421

ing in a much smaller computation time, since factorizations are numerically422

very intensive. The classical modal solution also needs a factorization per423

frequency but a larger number of resolutions, which makes it even less appro-424

priate than the direct solution to solve problems with frequency dependent425

characteristics. Iterative versions of the resonance modes method, on the426

other hand, require a number of factorizations related to the number of427

modes located in the frequency band of interest (15 resonance modes in the428

current case). Only the implementation with perturbation needs a unique429

factorization. The observed CPU time, as shown in Table 4, are consistent430

with these figures. The hybrid iterative/perturbation solver A2 is roughly431

20 times faster than the direct resolution, while the very fast perturbation432

solver A3 is about 200 times faster.433

Resonance modes

Direct Eigenmodes A1 A2 A3

Normalized CPU time 191 295 16 10 1

Max. memory (MB) 86 91 112 112 112

Factorizations number 999 999 31 16 1

Resolutions number 999 1921 1921 976 60

Table 4: Direct solution, modal resolution and resonance-based A1, A2 and A3 algo-
rithms performance comparison. Frequency response computation of the slightly damped
plate configuration to point-force excitation.

434
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Figure 3: Plate response to point force excitation in the slightly damped case
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Figure 4: Modal characteristics discrepancy between the perturbation algorithm A3 and
the iterative/perturbation one A2, with respect to the resonance modes frequency. Slightly
damped case.
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The computed frequency response functions are displayed in Figure 3. Re-435

sults associated to the algorithm Eigenmodes based on the classical modal436

approach are not displayed, for clarity reasons. The direct resolution curve437

has been plotted instead, since it can be considered as being the reference438

in terms of accuracy. Algorithms A1 and A2 give identical results because439

the same convergence criterion is used for both routines; therefore only A2440

results are displayed. The figure shows a very good agreement between the441

resonance modes method and the direct resolution. Resonance modes algo-442

rithms A2 and A3 also show very similar results.443

444

Since algorithm A3, based on the perturbation method, yields approxi-445

mate modal quantities, it is worth comparing them with those computed446

by solver A2. The error on frequency and damping, expressed as a percent447

with respect to frequency, is displayed in Figure 4. The damping parameter448

α, expressed in Hz, is computed from the imaginary part of the complex449

resonance angular frequency Ω = ω + iα, where ω is the real angular fre-450

quency in rad.s−1. Classical measures of damping, such as the loss factor451

η or the inverse of the quality factor Q−1 can easily be deduced using the452

formula η = Q−1 = α / πf , where f is the frequency in Hz. The error453

on the resonance modes frequencies is found negligible for all modes. As454

far as damping concerns, a maximum error of 9% is observed for the very455

first mode, but it is less than 1% on the major part of the spectrum. The456

minimum error is found at 500 Hz where the reference system has been457

constructed. The error on damping has a direct impact on the maxima of458

the frequency response function, but it is barely noticeable when using a459

logarithmic scale like in Figure 3.460

5.3. The very damped case461

The numerical characteristics associated to the five algorithms are dis-462

played in Table 5 for the configuration of a constrained elastomer patch463

covering the plate entirely. Apart from the patch size, all other model char-464

acteristics (plate dimensions, materials, excitation and measurement point465
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location) remain unchanged.466

Resonance modes

Direct Eigenmodes A1 A2 A3

Normalized CPU time 404 486 32 21 1

Max. memory (MB) 413 425 454 455 457

Factorizations number 999 999 51 31 1

Resolutions number 999 26095 3289 1938 63

Table 5: Direct solution, modal resolution and resonance-based A1, A2 and A3 algo-
rithms performance comparison. Frequency response computation of the very damped
plate configuration to point-force excitation.

467

There are two main differences with previous computation. First, the sys-468

tem is heavily damped due to the large patch. Second, roughly three times469

more elements are needed to model the three layers sandwich (see Table 3).470

The eigenvalue problem is thus harder to solve, as one can notice by com-471

paring the number of resolutions required by the algorithms Eigenmodes472

and Direct. Twice as many resonance modes as before (30 in total) are473

used to compute the response on the frequency band of interest. The 17th474

resonance mode is located around 1000 Hz while the 30th is very close to475

1600 Hz. The solver A2 remains however very efficient compared to the476

direct solution with CPU times that are about 20 times smaller. Solver477

A3 is roughly 400 times faster than the direct solution solver. The fre-478

quency response functions obtained with algorithms A2, A3 and Direct479

are displayed in Figure 5. A 30 modes-basis has been selected for the first480

two algorithms and is compared with a 60 modes-basis. Results given by481

the resonance modes method are very similar and compare also well with482

the direct solution results. Maxima are consistently estimated by all three483

algorithms. A slight discrepancy between the curves can be observed at the484

responses minima, in particular around 0 Hz and 860 Hz. This is related485
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to the modal basis truncation, which alters the accuracy of the resonance486

modes method just as it is observed with the classical modal method. It487

is particularly detrimental to heavily damped structures, for which modes488

contribution to the overall response is prevailing below their resonance. One489

can notice that taking a larger modal basis constituted of 60 modes instead490

of 30 results in enhanced results.491
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Figure 5: Plate response to point force excitation in the very damped case

492

The error ratio on resonance modes frequency and damping between solvers493

A2 andA3 is displayed in Figure 6. The overall damping error ratio is small494

in the upper frequency range, close to zero at the construction frequency495

500 Hz, but increases as frequency reduces. A maximum error of 16% is496

reached for the very first mode around 115 Hz. A possible refinement of al-497

gorithmA3 could be to include an additional construction point in the lower498

frequency range, for instance around 150 Hz. The selection of additional499

points should be adapted to the material frequency dependence displayed500

in Figures 1 and 2. The figures show that both storage modulus and tan δ501
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Figure 6: Modal characteristics discrepancy between the perturbation algorithm A3 and
the iterative/perturbation one A2, with respect to the resonance modes frequency. Very
damped case.

have a linear behavior between 300 Hz and 1000 Hz. This is why solver502

A3 is very accurate for both the slightly and very damped cases within this503

frequency band.504

6. Vibroacoutic validation of the perturbation-based solver505

6.1. The vibroacoustic system506

A vibroacoustic validation of the fast perturbation-based solver A3 is507

presented now. The impact of the modal discrepancy between A2 and508

A3 on the predicted noise, indeed, is worth being estimated since damping509

treatments are often used to reduce noise. The acoustic power of the previ-510

ous clamped plate configurations with two different patch sizes is computed511

by assuming baffled conditions of radiation. In the vibroacoustic case, the512

matrix system (4) associated to the structure can be written in an energy513
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form as follows:514

wT (s)
[

s2M +KB(s) +KA
]

u(s)− P (w(s), u(s), s) = w(s)T (F (s) + sI0 + V0)

(24)

where w(s) is a displacement, P (w, u, s) a vibroacoustic coupling operator515

that takes normal stress continuity at the solid/fluid interface into account.516

In the case of a flat plate perpendicular to the vertical direction, it can be517

written as a combination of the pressure p(M, s) and the normal displace-518

ment w(M, s) on the top face S+ and bottom face S−:519

P (w, p, s) =
∫

S+
w(M, s) p(M, s) dSM

−
∫

S−

w(M, s) p(M, s) dSM (25)

Assuming baffled conditions of radiation, the acoustic pressure can be mod-520

eled using Rayleigh integral (Fahy [23]). On the top face, for instance,521

the pressure is expressed with respect to the normal velocity u(M0, s) as522

following:523

p(M, s) = ρ s2
∫

S+
G(M0,M, s) u(M0, s) dSM0

(26)

where G(M0,M, s) = −eıkMM0

4πMM0
− eıkMM1

4πMM1
is the Green kernel for the Neumann524

problem of the Helmholtz equation in a semi-infinite medium limited by the525

plane occupied by the baffled structure, M1 is the image ofM0 with respect526

to this plane; for a problem in which the only source is the radiating baffled527

structure, M1 coincide with M0 and one has G(M0,M, s) = −eıkMM0

2πMM0
. k is528

the wave number. On the bottom face, a negative sign, due to the negative529

orientation of the face, is added. The acoustic coupling operator is finally530

given by:531

P (w, u, s) = ρf s
2
(

∫

S+

∫

S+
w(M, s)G(M0,M, s) u(M0, s) dSM

dSM0

+
∫

S−

∫

S−

w(M, s)G(M0,M, s) u(M0, s) dSM
dSM0

)

(27)

This formulation takes the normal displacement of both faces into account532

and is well adapted to a solid elements model able to assess strain along533
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the thickness. Numerically, the operator is evaluated by expressing the nor-534

mal displacement from the finite element degrees of freedom and quadratic535

functions to interpolate the values. When M0 and M belong to the same536

element, the Green function can become singular. A regularization of the537

singularity is carried out over the element face by writing the displacement538

in a local cylindrical coordinates system (de Lautour [24]). The Jacobian539

of the transformation regularizes the final expression. After regularization,540

a Gauss-Legendre integration scheme is used.541

542

The vibroacoustic coupling has an impact on resonance modes: it creates543

a mass effect, lowering modal frequencies. It also causes structural dissipa-544

tion since vibration energy is extracted by acoustic radiation. These effects545

are evaluated by solving the coupled vibroacoustic problem. The selected546

method, which implements a perturbation technique, is presented in detail547

in Appendix A.1. It makes repeated calls to a subroutine that evaluates the548

coupling operator as described above. Once the vibroacoustic resonance549

problem has been solved, the structural response can be evaluated in the550

frequency domain using Equation (17) or in the time domain using Equa-551

tion (16).552

553

The acoustic power Pac is computed by assuming steady state conditions,554

for which the following time/frequency equivalence applies555

Pac = 1
T

∫ T

0

∫

S
p(t,M) v(t,M) dM dt

=
∫∞

0

∫

S
1
2
ℜ [p(ω,M)v(ω,M)] dM dω

(28)

where ω is the angular frequency associated to s by s = ı ω, p(t,M) and556

v(t,M) are the acoustic pressure and velocity at point M in the time do-557

main; p(ω,M) and v(ω,M) are their counterparts in the frequency domain.558

The conjugate velocity at point M v(ω,M) = −ıωu(ω,M) is deduced from559

the displacement u(ω,M) given by expression (17) with the resonance so-560

lutions of the complete vibroacoustic system.561

562
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Acoustic power spectral density levels can be deduced from the routine563

computing the acoustic coupling operator given by Equation (27) using fol-564

lowing expression:565

LPac
= 10 log10

1

2
Re[−sP (u,u,s)]

P
ref
ac (29)

where Pref
ac = 10−12W (Pierce [25]).566

6.2. Numerical comparison of the solvers567

Acoustic power computations carried out with the reference hybrid it-568

erative/perturbation solver A2 and the perturbation-based solver A3 are569

shown in Figure 7 for the slightly damped case and in Figure 8 for the very570

damped case. The construction frequency used by A3 remains 500 Hz as in571

the previous examples. Solvers A2 and A3 perform so similarly for either572

case that it is hard to distinguish any difference between the curves. It can573

thus be concluded that the very fast variant A3 is not only validated for574

dynamic but also for vibroacoustic cases.575

7. Conclusions576

Amethod for computing the non-stationary time and frequency response577

of viscoelastic structures, called the resonance modes method, has been578

presented. Based on the computation of the inverse Laplace transform,579

it requires a modeling technique such as the Finite Element Method, a580

complex solver able to solve linear complex eigenvalue problems and itera-581

tive/perturbation routines in order to spot the resonance modes, which are582

the free solutions of the system. The method, that can be seen as an ex-583

trapolation of the classical modal approach to complex frequency-dependent584

cases, is able to handle dissipative anisotropic materials characteristics ex-585

pressed in raw data form. The case of an aluminum plate covered by either586

a small or a large constrained elastomer patch has been used to benchmark587

various methods: the classical modal method, the direct solution method,588
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Figure 7: Comparison of the level of acoustic power using the iterative algorithm A1

(reference) and the perturbation-based algorithm A3. Slightly damped case.
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considered as the reference one, and three implementations of the resonance589

modes method. The first implementation uses an iterative approach to look590

for the resonance modes, while the second one, also iterative, is being accel-591

erated by perturbation. The third implementation is based on perturbation592

exclusively. The benchmark has shown that the resonance modes method593

results in much quicker computation times than the direct solution while594

keeping the same level of accuracy. The very quick variant, which provides595

computational times reduced by a factor of two in magnitude, has also been596

validated for vibroacoustic applications.597
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Appendix A. COMPUTATIONOF THE VIBROACOUSTIC RES-650

ONANCE MODES651

Appendix A.1. Computation of the resonance values652

A perturbation technique has been used to compute the resonance modes653

of the damped vibroacoustic system. A weighting parameter ǫ is introduced,654

the value of which varies from ǫ = 0 in the uncoupled case to ǫ = 1 in655

the fully coupled case. The resonance values problem can be expressed as656

following:657

wT
[

sk(ǫ)
2M +KB(sk(ǫ)) +KA

]

uk(ǫ) = ǫ P (w, uk(ǫ), sk(ǫ)) (A.1)

The zero-order matrix equation is obtained by setting ǫ equal to zero:658

[

sk(0)
2M +KB(sk(0)) +KA

]

uk(0) = 0, (A.2)
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where (sk(0),uk(0)) is the kth resonance couple of the damped system in659

vacuum. The first derivative of (A.1) with respect to ǫ is660

wT
[

sk(ǫ)
2M +KB(sk(ǫ)) +KA

]

∂
∂ǫ
(uk(ǫ))

+wT
[

∂
∂ǫ
(sk(ǫ)

2)M + ∂
∂ǫ

(

KB(sk(ǫ))
)]

uk(ǫ)

= P (w, uk(ǫ), sk(ǫ)) + ǫ ∂
∂ǫ
(P (w, uk(ǫ), sk(ǫ)))

(A.3)

The first-order matrix equation is obtained by letting ǫ tend to zero and661

taking Equation (A.2) into account:662

wT
[

2∂sk(0)
∂ǫ

sk(0)M + ∂sk(0)
∂ǫ

∂
∂sk(0)

(

KB(sk(0))
)

]

uk(0) = P (w, uk(0), sk(0))

(A.4)

Choosing w = uk(0) and orthonormalizing resonance vectors with the mass663

matrix yields664

∂sk(0)
∂ǫ

= P (uk(0), uk(0), sk(0)) /
[

2sk(0) + uk(0)
H
(

∂
∂sk(0)

KB(sk(0))
)

uk(0)
]

(A.5)

The first-order approximation of the perturbed Laplace parameter is given665

by sk(ǫ) = sk(0) + ǫ ∂sk(0)
∂ǫ

. When ǫ = 1,666

sk(1) = sk(0) + P (uk(0), uk(0), sk(0))

/
[

2sk(0) + uk(0)
H ∂

∂sk(0)

(

sk(0)K
B(sk(0))

)

uk(0)
]

(A.6)

Computation of the resonance vectors667

Similar developments can be written to assess the influence of the acous-668

tic coupling on resonance vectors. Using Equation (A.3) and setting ǫ equal669

to zero yields670

wT
[

sk(0)
2M +KB(sk(0)) +KA

]

∂
∂ǫ
(uk(0))

= P (w, uk(0), sk(0))− wT
[

∂
∂ǫ
(sk(0)

2)M + ∂
∂ǫ

(

KB(sk(0))
)]

uk(0)
(A.7)
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The equation left side operator spans a N-1 dimensions space to which671

vector uk(0) does not belong. A decomposition on this operator basis can672

be written as673

∂
∂ǫ
(uk(0)) =

∑N

i=1,i 6=k αiui(0), (A.8)

Equation (A.7) can thus be further transformed into the following one674

wT
[

sk(0)
2M +KB(sk(0)) +KA

]

∂
∂ǫ
(uk(0))

= wT
∑N

i=1,i 6=k αi

[

(sk(0)
2 − si(0)

2)M +KB(sk(0))−KB(si(0))
]

ui(0)

(A.9)

Coefficients αi are deduced by selecting w = ui(0) and by using the biorthonor-675

mality properties of the symmetric system:676

αi = P (ui(0), uk(0), sk(0))

/
(

sk(0)
2 − si(0)

2 + uHi (0)
[

KB(sk(0))−KB(si(0))
]

ui(0)
)

(A.10)

The first order approximation of the kth resonance vector of the damped677

vibroacoustic structure is given by setting ǫ = 1,678

uk(1) = uk(0) +
∑N

i=1,i 6=k αiui(0) (A.11)

The intermodal coupling terms of this series have been found negligible679

when the aluminum plate studied in this paper radiates in the air.680
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