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Abstract8

An analysis of the energy dissipation sources acting in a vibrating aluminum plate is pre-9

sented in this paper. In a first step, the contact-free modal analysis of a suspended plate10

is conducted using a laser vibrometer and an acoustic excitation to obtain reference data.11

The thin nylon suspension set-up guarantees a low boundary damping, which is assumed12

to be negligible. In a second step, a number of damping sources are modeled. Acoustic13

damping due to the noise radiation of the non-baffled plate is computed using the boundary14

integral method and a light fluid approximation to express the vibroacoustic coupling in15

analytical terms. The damping due to the sheared air flow along the free plate borders is16

determined on the basis of a simple two-dimensional boundary layer model. Thermoelastic17

damping is assessed using a Fourier series expression for the temperature field along with a18

perturbation technique to take thermoelastic coupling into account. Since no robust model19

is available so far to quantify viscoelastic material damping in aluminum, it is determined20

in a last step by subtracting measured values of damping to the one that have previously21

been computed. Aluminum viscoelastic damping turns out to be very small and almost22

independent of frequency.23

24
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1 Introduction28

While a broad literature exists on the subject of damping, a few authors only have per-29

formed a systematic analysis of all dissipation sources in structures. Among them, Cuesta30

and Valette (1993) have made an interesting contribution on strings damping by quantify-31

ing several dissipation sources such as thermoelastic damping, viscoelastic material damping32

and air flow damping. Lambourg and Chaigne (2001) have also published a theoretical and33

experimental study on the damping in wood and metal plates. The authors have modeled34

and identified a number of dissipation sources for the application field of sound synthesis.35

In the present paper, which focuses on the processes that most contribute to damping in36

an aluminum plate, the strategy to model rather than to identify them has been chosen37

whenever possible. The aim, indeed, is to give a better insight into the physics of dissi-38

pation. The drawback of this strategy, however, is that a complete quantification of the39

main dissipative phenomena is required to be able to validate the model predictions, since40

the only accessible quantity experimentally is the overall damping. A systematic evaluation41

of all damping components involves a number of disciplines such as tribology, acoustics or42

thermomechanics, which make a detailed analysis particularly challenging.43

44

A first step is to draw up an inventory of all dissipation sources. This has already been45

carried out some time ago by Zener (1948) as far as aluminum plates concerns. According46

to him, thermoelastic damping is the main damping component in aluminum due to the47
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material high conductivity and compressibility. Cremer et al. (1988) have also pointed out48

the existence of a damping component related to microstructural viscoelasticity. Its value is49

generally assumed to be rather small and constant in most studies. From a structural per-50

spective, the boundary area where the plate is being fixed can heavily contribute to damping.51

Physical phenomena involved in this area such as friction, thermoelasticity or energy leakage52

are particularly complex and have a great influence on the overall structural behavior. The53

first two of them require a local description of the physics at the interface, whereas energy54

leakage can only be handled properly by modeling the neighborhood and trimming it where55

the energy transmission is found negligible, for instance where the vibration energy starts56

being very low. In the present paper, a drastic simplification of the boundary modeling has57

been aimed at by suspending the plate with two thin nylon wires. These wires are poor58

thermal conductors and are also assumed to be not very dissipative. They can be idealized59

by a string model, for which the transverse stiffness is determined by the weight of the60

plate, and consequently apply a very low restoring force to the plate boundary. Boundary61

dissipation is thus taken to be negligible and the structural configuration considered as free.62

63

Apart from material damping, two additional boundary damping components involving64

the air surrounding the structure have also been investigated here. The first one, called65

acoustic damping, accounts for the vibrational energy being lost due to the noise radiation66

in the air. It requires an extension of the domain to take the exterior fluid into account.67

Boundary conditions such as Sommerfeld far field condition are also needed to trim the fluid68

domain. The second damping is due to the air flow along the structure edges. Large bending69

displacements take place at the edges of the suspended plate, since it is almost free. The70

fluid is sheared upon by flowing tangentially to the plate thickness and thus causes energy71

dissipation to occur.72

73

The paper is constructed as following. First, data from an experimental modal analysis74

of an aluminum plate is gathered and presented. The measured modal damping is consid-75

ered as a reference value of the total damping since it results from the contribution of a76

variety of dissipation sources. The rest of the paper is then aiming at understanding what77

this total damping is essentially made of. The fluid-structure interactions are first evaluated78

; air flow damping as well as acoustic radiation damping, considered as the most impor-79

tant sources, are modeled and computed. Two main sources of material damping are then80

considered in a final part: thermoelastic and viscoelastic damping. While thermoelastic81

damping can still be modeled and assessed, no satisfactory model is currently available to82

estimate the viscoelastic damping precisely. This final dissipation source, due to friction83

micromechanisms, has thus to be identified. It is deduced in a last step from all modeled84

and measured values.85

2 Measurement of the overall damping of a suspended86

plate87

The modal analysis of a 35 cm × 40 cm × 2 mm (± 0.1 mm) aluminum plate, weighting88

190.5 g, has been carried out to obtain a reference frequency and an overall value of damping89

for each mode. To be able to suspend the plate, two tiny bores have been drilled out on one90

edge; a thin nylon wire has then been embedded and bonded at each bore. A special care91

has been taken to reduce as much as possible any source of joint damping at the attach-92

ment. Since rigid modes can easily be excited in configurations of this kind, a contact-free93

set-up has been implemented with a laser vibrometer (polytech OFV 303) to measure the94

plate velocity and a loudspeaker to excite it (figure 1). Signals have been generated and95

processed by a Hewlett Packard acquisition system (paragon HP356xa). A high-pass filter96
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and an amplifier have been set between the signal generator and the loudspeaker in order97

to suitably tune the excitation signal and to remove damaging low frequency components.

Laser Polytec

OFV 350

Laser
vibrometer

Aluminum
plate

Loud- 
speaker

Figure 1: Contact-free modal analysis set-up

98

The classical decay method, particularly appropriate to make accurate measurements of99

damping in frequency dependent systems, has been used (Rao, 2010; Nashif et al., 1985).100

The method consists of two main steps. In a first step, a broadband excitation is generated101

to detect the plate resonance frequencies, which are the free solutions of the vibroacoustic102

system. A very good approximation of these frequencies can be estimated in the low fre-103

quency range where peaks appear on the spectrum, at least for low damping cases. For104

larger modal overlap configurations, the contribution of other modes can pollute the fre-105

quency identification by slightly shifting the peak location. The effect is considered to be106

negligible here due to the very low damping values and the wide gap between modal fre-107

quencies. In a second step, the damping of each low frequency resonance mode is studied108

one after the other by emitting a pure sine wave. The frequency of the sine is tuned to that109

of the considered resonance mode. After a short pause, the excitation signal is switched off110

and the velocity decay observed. Using a logarithmic scale, the signal envelope is found to111

take the form of a straight line, the slope of which is a measure of damping. No pollution112

from close modes has been observed and only clean unequivocal measurements have been113

reported. The procedure has been repeated for several measurement points without any114

noticeable change. The relation between the measured damping α (the straight line slope)115

and the complex resonance angular frequency Ω, which can be computed numerically using116

an eigenvalue solver, is simply given by Ω = ω + iα, where ω is the real angular frequency117

in rad.s−1 and α the imaginary part of the angular frequency expressed in Hz. This damping118

definition, although quite unusual, will be used throughout the article since it has a strong119

numerical and experimental meaning. It is also a direct measure of the amplitude weighting120

applied by dissipation at the resonance. Classical measures of damping, such as the loss121

factor η or the inverse of the quality factor Q−1 can easily be deduced using the formula122

η = Q−1 = α/ π f . The shape, frequency and damping of 26 out-of-plane modes ranging123

from 43.4 Hz to 839 Hz have been identified. Their main characteristics are summarized in124

table 1. This frequency domain will be considered throughout the article and sets validity125

bounds for the analysis presented here. Frequencies have been measured with a 0.125 Hz126

resolution, while shapes have been obtained by scanning the whole plate with two meshes127

of either 16 x 16 or 32 x 32 points, depending on the shape pattern complexity. Damping128

measurements are displayed in figure 2. It can be noticed that damping varies quite sig-129

nificantly from a mode to another. This modal behavior, due to the fact that some areas130

damp more than others within the structure, will be identified later as resulting from the131

plate thermoelasticity. A consequence of damping non-proportionality is the existence of132

complex modes. A complex eigensolver or any alternative technique (Adhikari, 2011; Cha,133

2005; Cortés and Elejabarrieta, 2006) such as the perturbation method used in this article134
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Mode (1,1) (0,2) (2,0) (1,2) (2,1) (0,3) (2,2)

Frequency [Hz] 43.40 62.25 93.75 111.75 124.38 191.13 218.38

Damping [Hz] 0.13 0.37 1.11 0.49 0.51 1.17 0.74

Mode (1,3) (3,0) (3,1) (2,3) (0,4) (3,2) (1,4)

Frequency [Hz] 226.13 248.13 288.00 352.25 372.00 376.50 419.50

Damping [Hz] 0.73 1.28 1.29 0.93 1.32 1.01 1.33

Mode (4,0) (4,1) (3,3) (2,4) (0,5) (4,2) (1,5)

Frequency [Hz] 487.25 518.88 530.75 538.75 619.13 624.25 654.38

Damping [Hz] 1.71 1.50 1.19 1.30 1.74 1.62 1.61

Mode (3,4) (4,3) (2,5) (5,0) (5,1)

Frequency [Hz] 727.00 765.13 795.63 809.50 839.00

Damping [Hz] 1.41 1.43 1.67 2.11 1.99

Table 1: Identified modes of the 35 cm × 40 cm × 2 mm free aluminum plate

needs thus to be implemented to properly account for the structure dynamic behavior.135

3 Fluid-structure interaction damping136

3.1 Airflow damping137

3.1.1 Introduction138

The viscosity of air causes energy to be dissipated via compression and shear. While com-139

pression dissipation is assumed to be negligible here, shear dissipation could possibly be140

important in the vicinity of the plate free edges. In this area, indeed, air flows tangentially141

to the border. Air viscosity can play a significant role in a number of situations, for instance142

in the case of wave propagation in ducts. It has also been identified as a major source of143

dissipation in strings in the low frequency range by Cuesta and Valette (1993). The au-144

thors have used Stokes formalism to model the laminar flow around a cylinder with a low145

Reynolds number hypothesis. Landau and Lifschitz’ equations (Landau and Lifschitz, 1986)146

have been used here instead, which provide with a viscous friction caused by the motion147

of a flat infinite surface in its plane. The extension to the finite surface case is considered148

by including a correction term. As opposed to Blasius solution (Cousteix, 1988), which149

describes the boundary layer created by a two-dimensional incompressible flow on a half-150

infinite plane, non-linear terms are neglected but inertial terms kept. Blasius solution gives151

a variable boundary layer thickness, whereas the present model gives a boundary layer with152

a constant thickness. Based on the hypothesis of stationary motion, it results in a linear153

viscous damping mechanism.154

3.1.2 Two-dimensional analytical flow modeling155

The method description is illustrated by the simplified geometry shown in figure 3.156

The plate edge is associated with an infinite line L that corresponds to an infinitely thick157

plate. The edge has an up-right stationary motion along L of amplitude u(s) in Laplace158

domain. Laplace parameter s is linked to the angular frequency ω via s = iω. Pressure159

p(x, y, z, s) and velocity vi(x, y, z, s) (i ∈ {x, y, z}) of an air particle are the unknowns of160

the problem. By assuming that the system is invariable with respect to any translation161

along z, that the motion in the fluid is driven by the fluid-structure coupling only, and162

incompressibility, the components of Navier-Stokes equation become:163

{

p,x (x, s) = 0
s vz (x, s) = ν vz,xx (x, s)

(1)164
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Figure 2: Aluminum plate measured damping
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Figure 3: 2-D flow model along the edge of a free plate experiencing bending motion
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where ν is the kinematic viscosity. All details of the calculation can be found in Landau and165

Lifschitz’ textbook (Landau and Lifschitz, 1986). The first equation shows that pressure is166

constant. The second one is a diffusion equation. If vz (x, s) is given the form vz (x, s) =167

ei k x u(s) and inserted in equation (1), following result is obtained:168







k = ± i
√

s
ν

vz (x, s) = e
√

s

ν
x u(s) = e

√
ω

2 ν
(1+ i) x u(s)

(2)169

The complex plane offers two solutions. The only physical one is associated to a highly170

damped shear wave that propagates in the fluid. The wave penetration depth δ =
√

2ν
ω

171

can be compared to Cuesta and Valette’s result δ =
√

ν
2ω obtained in the case of a flow172

along a cylinder. These expressions for δ are consistent in terms of kinematic viscosity and173

frequency dependence. Blasius solution, which assumes a incompressible non-linear flow174

with no inertia, gives a boundary layer thickness δ = 5
√

νz
u

that depends also on z and175

the flow constant velocity u. An illustration of the boundary layer thicknesses obtained176

with Blasius solution and the present model, based on Landau and Lifschitz equations, is177

displayed in figure 4. The following tangential shear stress results in the fluid of density ρf :

z

x
u(t)

z

x
u(t)

Figure 4: Boundary layer obtained with Blasius solution (half-plane, non-stationary flow)
and with Landau and Lifschitz’s approach (infinite plane, stationary flow)

178

σF
zx (x, s) = ρf ν vz,x (x, s) = ρf

√
νs e

√
s

ν
x u(s) (3)179

As a reaction, a transverse shear stress is generated within the solid along the interface L:180

σS
zx(z, s) = σS

zx (s) = ρf
√
νs u(s) (over L) (4)181

In the case of a half-plane oscillation, a border correction term equivalent to an increase182

of δ/2 in the area swept by the half-plane is added by Landau and Lifschitz. Cuesta and183

Valette (1993) have also made a correction of Stokes solution after noting that the boundary184

layer thickness δ is similar to the cylinder radius.185

3.1.3 Numerical results186

This analytical solution can easily be introduced into a modal analysis program based on the187

finite element method and a standard eigenvalue solver, which computes the eigenpairs (λ,u)188

of the system formed by the stiffness matrix K and the mass matrix M of the structure. A189

flow stress matrix Kflow, built up according to equation (4), can be introduced in a new190

eigenvalue problem associated to new eigenpairs (Λ, U):191

192

(

K + Kflow − ΛM
)

U = 0 (5)193
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Assuming that Kflow has only a slight influence on the overall system, it can be regarded194

as a perturbation matrix (Woodhouse, 1988). The eigenvectors of the system in vacuum195

are used as a projection basis without the need for a complex solver and a specific strategy196

to handle frequency dependence. The new resonance values are deduced from those of the197

unperturbed system by using following expression:198

Λ ∼ uT (K +KFlow)u
uT M u

= λ + uT Kflow u (6)199

where vectors have first been mass-orthonormalized. The method’s precision is not known a200

priori but it can be very high if the perturbation is small, as confirmed by results a posteriori.201

The computation has been carried out with a finite element program that implements a 27-202

nodes solid element and a Gauss full integration scheme. Convergence checks have been203

performed with various mesh densities and have shown that the selected element size is204

satisfactory for all considered modes. A summary of the model physical characteristics205

is displayed in table 2. Numerical air flow damping values expressed in Hz are given in

Dimensions 35 cm × 40 cm × 2 mm

Young’s modulus 70 GPa

Poisson ratio 0.3

aluminum density 2700 kg.m−3

Air density 1.3 kg.m−3

Sound velocity 340 m.s−1

Kinematic viscosity 1.385 10−5 m2.s−1

Table 2: Model characteristics
206

figure 5. These values have been found to be several orders lower than other damping207

sources. Although air flow damping -when expressed as a loss factor- is stronger in the low208

frequency range, in line with Cuesta and Valette’s findings for the case of strings, it can be209

said to be negligible in the current configuration.210

3.2 Acoustic radiation damping211

3.2.1 Introduction212

Bending motion can induce dissipation by transmitting vibrational energy to the surrounding213

air via noise radiation. To model this phenomenon, the finite element program described214

previously has been used to model the dynamics of the plate in vacuum in combination215

with a boundary element program. Based on the indirect integral formulation and applied216

to a thin finite screen in an infinite fluid medium, it is able to compute the dipole part of217

the acoustic radiation. Both routines have been linked via a perturbation technique that218

accounts for the vibroacoustic coupling and that eventually determines an acoustic radiation219

damping.220

3.2.2 Radiation of a non-baffled plate221

Many authors, including Laulagnet (1998), Côté et al. (1998) and Atalla et al. (1996) have222

studied the radiation of non-baffled plates, using Helmholtz equation and the associated223

Green integral formulation of the acoustic pressure. A similar computation, adapted to the224

current situation that aims at assessing damping, is presented now. Assuming that the plate225
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Figure 5: Airflow damping of a free 35 cm × 40 cm × 2 mm aluminum plate

is thin and oriented perpendicularly to the direction z, an indirect integral formulation of226

the problem can be written as following (Filippi et al., 1999):227

p (M0, s) = ρf s
2
∫

S
(u+(M, s)− u−(M, s)) G(M0,M, s) dS(M)

−
∫

S
µ(M, s) ∂z(M)G(M0,M, s) dS(M)

(7)228

where p (M0, s) is the pressure at point M0, ρf is the fluid density, s is Laplace pa-229

rameter, G(M0,M, s) Green’s elementary solution in an infinite medium, and µ(M, s) =230

p+(M, s) − p−(M, s) a double layer potential, which expresses the pressure difference be-231

tween the bottom and the top face of the plate at point M . The monopole part of the232

radiation is often neglected, since the normal velocity difference u+(M, s)−u−(M, s) caused233

by the transverse strain along the thickness is found negligible in thin plates for bending234

modes. The dipole radiation term containing the diffraction effect is computed using the235

fluid-structure boundary condition ∂zp±(M, s) = −ρf s2 u±(M, s). This requires to evaluate236

the normal derivative of equation (7) when M0 is located over the plate face:237

∂z(M0)p (M0, s) = ρfs
2
∫

S
(u+(M, s)− u−(M, s)) ∂z(M0)G(M0,M, s) dS(M)

− P.F.
∫

S
µ(M, s) ∂z(M0)∂z(M) G(M0,M, s) dS(M)

(8)238

The second integral diverges and must be calculated as the finite part of Hadamard integral239

(P.F.). The first integral, which is weakly singular, is taken in the sense of Cauchy principal240

values (Filippi et al., 1999). It can be shown that241

242

−ρfs
2 u+ (M0, s) = ρfs

2 (u−(M0, s)− u+(M0, s)) / 2
− P.F.

∫

S
µ(M, s) ∂z(M0)∂z(M) G(M0,M, s) dS(M)

(9)243

Finally,244

ρfs
2 u

−
(M0,s)+u+(M0,s)

2 = P.F.
∫

S
µ(M, s) ∂2

z G(M0,M, s) dS(M) (10)245

This equation is a Fredholm integral equation of the first kind similar to classical results246

(Laulagnet, 1998) when the bottom and top face displacement is equal. The equation has247
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been solved using a one-point collocation method. The boundary and finite element meshes248

coincide in the xy-plane so that a collocation point can be centered in each finite element.249

The displacement required by the boundary element program over each face is evaluated250

with the finite element solution and quadratic interpolation functions. In the idealized251

baffled configuration, based on the hypothesis of symmetry u+ = −u−, the left hand side252

of equation (10) is equal to zero. The double layer potential µ(M, s) is therefore also equal253

to zero and no boundary element program is needed.254

3.2.3 The vibroacoustic problem255

Continuity of normal stresses reads256







σ33 (M, s) = p (M, s) on S+

σ33 (M, s) = −p (M, s) on S−

(11)257

A vibroacoustic operator P (w, u, s) can be constructed by using the weak formulation of258

the classical finite element method. The product of the parietal pressure with a normal259

displacement w is integrated over the plate faces:260

P (w, u, s) =
∫

S+
w(M0) p (M0, s) dS −

∫

S
−

w(M0) p (M0, s) dS (12)261

When M0 belongs to the top face, the indirect integral equation (7) is given by262

p (M0, s) = −µ(M0, s) / 2

+ ρf s2
∫

S
(u+(M, s)− u−(M, s)) G(M0,M, s) dS(M)

(13)263

µ(M0, s) changes of sign if M0 belongs to the bottom face. Using (13), the vibroacoustic264

operator becomes265

P (w, u, s) =
∫

S
− (w+(M0, s) + w−(M0, s)) µ(M0, s) / 2

+ ρf s
2
∫

S

∫

S
(w+(M0, s)− w−(M0, s))

×G(M0,M, s) (u+(M, s)− u−(M, s)) dS(M) dS(M0)

(14)266

The vibroacoustic system can finally be expressed in the following matrix form267

wT
[

s2M +K
]

u(s)− P h(w, u, s) = wT (F (s) + sI0 + V0) (15)268

where P h(w, u, s) is the discrete approximation of P (w, u, s). K and M are the structure269

stiffness and mass matrices, u is displacement, F (s) the frequency dependent excitation, sI0270

and V0 the initial displacement and velocity, and w is an arbitrary displacement vector.271

3.2.4 The perturbation method272

A weighting coupling parameter ǫ that varies from 0 in the uncoupled case to 1 in the fully273

coupled case is introduced. It is comparable, to some extent, with the small parameter274

introduced in the classical formalism of the light fluid approximation (Filippi et al., 2001),275

equal to the ratio between the fluid and solid density. The resonance value problem is written276

as277

wT
[

sk(ǫ)
2M +K

]

uk(ǫ) = ǫ P h(w, uk(ǫ), sk(ǫ)), (16)278

9



It consists in searching the resonance modes uk and their associated resonance values sk.279

Deriving by ǫ yields280

wT
[

sk(ǫ)
2M +K

]

∂
∂ǫ

(uk(ǫ)) + wT
[

∂
∂ǫ

(

sk(ǫ)
2
)

M
]

uk(ǫ)

= P h(w, uk(ǫ), sk(ǫ)) + ǫ ∂
∂ǫ

(

P h(w, uk(ǫ), sk(ǫ))
)

(17)281

By setting ǫ = 0, w = uk(0) and reminding that (sk(0), uk(0)) is the solution of the resonance282

value problem in vacuum, equation (17) becomes283

uT
k (0)

[

∂
∂ǫ

(

sk(0)
2
)

M
]

uk(0) = P h(uk(0), uk(0), sk(0)) (18)284

And thus285

∂sk(0)
∂ǫ

= P h(uk(0), uk(0), sk(0)) /
[

2 sk(0)u
T
k (0)M uk(0)

]

(19)286

The first order approximation of the vibroacoustic resonance values is given by287

sk(ǫ) = sk(0) + ǫ ∂sk(0)
∂ǫ

(20)288

In the fully coupled case (ǫ = 1),289

sk(1) = sk(0) + P h(uk(0), uk(0), sk(0)) / 2sk(0) (21)290

The acoustic radiation damping α, expressed in Hz, is finally deduced by computing the real291

part of −sk(1).292

3.2.5 Numerical results293

The acoustic radiation damping of the free aluminum plate studied in this paper has been294

computed. The plate main characteristics are summarized in table 2. The numerical pro-295

cedure has consisted of several steps. The finite element program introduced before and296

based on quadratic solid elements is used in a first step with a classical solver to compute297

the eigenpairs of the plate. In a second step, the complex scalar quantity P h is calculated298

from equation (14). This involves a boundary element program and integration routines299

that handle Green kernel singularity. A regularization is carried out by using a local ele-300

ment cylindrical coordinate system instead of the cartesian one. The integration is based on301

a Gauss-Legendre scheme. In a last step, frequencies in the air and acoustic damping are302

evaluated using equation (21). Numerical results of the 26 modes are displayed in figure 6.303

It can be observed that acoustic damping is very low or even negligible for most of them.304

This behavior is expected since the coincidence frequency of the plate is close to 5970 Hz for305

the plate under consideration. However, radiation efficiency increases with frequency and306

some higher frequency modes experience damping by radiating.307

4 Material damping308

As pointed out by Cremer et al. (1988), two sources of dissipation mainly contribute to309

damping in aluminum. The first one, due to the thermoelastic behavior of the material,310

is quantified here numerically. The second one, due to friction micromechanisms that con-311

tribute to the viscoelastic behavior of the material, is then quantified by identification.312
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Figure 6: Computed acoustic damping of the 35 cm × 40 cm × 2 mm free aluminum plate

4.1 Thermoelastic damping313

4.1.1 Introduction314

Like acoustic radiation damping, thermoelastic damping is a coupling-related type of damp-315

ing. It requires the analysis of an additional physical phenomenon, acoustic or thermal for316

instance, that alters the dynamic behavior of the structure. It also requires a new definition317

or an extension of the domain just as in vibroacoustics when the fluid domain is added318

to the solid domain. In the current thermoelastic case though, temperature and dynamic319

domains are identical since thermal effects occur within the plate. Thermoelastic damping320

is associated with an irreversible process during which heat flows by conduction from the321

hottest areas to the coldest ones. In line with the second thermodynamic law, entropy is322

created and vibratory energy is converted into heat. In the field of dynamics, isothermal323

elastic constants are usually used and no local temperature variation is observed. In acous-324

tics, on the contrary, processes are regarded as adiabatic and a local temperature variation325

occurs but results in neither a heat transfer nor an irreversible process. Determining whether326

thermoelastic mechanisms can be regarded as adiabatic or isothermal is a difficult task; it is327

often somewhere in between, depending on the wave type and the geometry involved. The328

process can be considered as isothermal or relaxed when thermal relaxation occurs during329

a vibration period, while it is adiabatic if no equilibrium can be reached during this time.330

A key parameter governing the phenomenon is the distance between hot and cold regions.331

According to Lifshitz and Roukes (1999), this distance is related to the wavelength for longi-332

tudinal mechanical waves and to the thickness of the structure for flexural mechanical waves.333

Longitudinal waves are therefore associated with an adiabatic process in the lower frequency334

range and with an isothermal one in the upper frequency range, whereas the opposite is true335

for flexural waves. Shear waves are not coupled to the thermal field.336
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4.1.2 Equations337

After linearization, the classical thermoelasticity equations (CCT) of an isotropic material338

such as aluminum are given by the following expressions, in which Einstein summation339

convention is used (Nowacki, 1975):340







σij = δij λ ǫkk + 2µ ǫij − δij (3λ+ 2µ) α (T − TA) (elasticity eq.)

k T,ii = ρ cV Ṫ + α TA (3λ+ 2µ) ˙ǫkk (thermal eq.)
(22)341

where λ, µ are Lamé coefficients, T is the temperature, σij the stress tensor, ǫij the strain342

tensor, TA the ambient temperature constant, ρ the material density, k the thermal con-343

ductivity, cV the specific heat per volume unit at constant strain, α the thermal expansion344

linear coefficient and δij Kronecker symbol.345

4.1.3 Zener’s thermoelastic model346

Zener (1948) has investigated dissipation in metals in great detail in the thirties. He has347

developed a model of thermoelastic damping for simply supported Euler-Bernoulli beams.348

Many authors are still using this model that can be considered as a standard reference in349

the field. It is based on the fundamental hypothesis that dissipation is mainly due to the350

first transverse thermal mode, which accounts for heat transfers within the beam thickness351

h. The characteristic distance d between hot and cold parts is thus unique (d = h / π) and352

associated with a unique relaxation time constant τ (τ = d2 cV / k). Zener’s approximation353

therefore transforms the coupled thermoelastic system of equations into a unique equation354

of dynamics with a dissipation term. This one is characterized by Zener’s rheological model,355

written as following:356

357











Q−1 = ∆E
ωτ

1+(ωτ)2

∆E = Ea − Ei

Ea Ei
= E α2 TA

cV

(23)358

where Ea is the adiabatic or unrelaxed modulus, Ei the isothermal or relaxed modulus, and359

cV the heat capacity per unit volume. The value E is the default isothermal value (E = Ei).360

It is valid for flexural waves in the lower frequency range only. Zener’s thermoelastic model361

is proportional: the computed loss factor applies to the whole strain field without any362

distinction, whereas the equations show that it should depend on the normal strain field.363

No modal dependence can therefore be expected in the computed damping values, only364

a smooth frequency one. More sophisticated analytical models have been developed since365

then, like the one by Li et al. (2012). According to this author though, it is not able366

to handle free boundary conditions properly as required here. An interesting discussion367

about four thermoelastic models of a thin plate with various degrees of approximation of368

the temperature field, in particular, can also be found in the paper by Norris (2006). The369

free boundary conditions case is not investigated directly yet, although some of the presented370

models may handle this specific boundary type.371

4.1.4 Numerical method372

As thermoelastic coupling is weak, it has been chosen to solve the thermomechanical problem373

by dealing with the thermal and dynamic equations separately, one after another. In order374

to gain some physical insights, the thermal problem has been investigated using a modal375

approach similar to the one used by Zener to model the temperature field. As almost no376

heat flows from the plate to the air due to its very low thermal conductivity, the temperature377
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field in the plate can be expressed easily with a Fourier series. Thermoelastic coupling is378

handled using the following three steps procedure:379

380

Solve the uncoupled dynamic problem based on equation
1 σij = δijλǫkk + 2µǫij

Compute ǫkk in the form of a Fourier series (projection)
381

382

383

Solve the heat equation with a second member

2 kT,ii − ρcV
∂T
∂t

= αTA (3λ+ 2µ) ∂ǫkk

∂t

Deduce thermal stresses and build up a thermal stress matrix
σth
ij = −(3λ+ 2µ) α (T − TA) δij

384

385

386

Compute the thermoelastic strain energy Eth

3 Eth =
∫

V
ǫii σ

th
kk

Deduce the thermomechanic system resonance values λth

λth = λ+ Eth (after mass-orthonormalization, see eq. (6))

387

388

389

In step 1, the dynamic problem is solved using classical tools such as the finite element390

program based on the solid 27-nodes element presented before and a real eigenvalue solver.391

Fourier coefficients are evaluated by projecting the computed normal strain on the Fourier392

basis. It is a time-consuming operation of numerical integration that requires a modal series393

truncation. A sufficient number of modes has been selected to observe a good convergence of394

the results. Once Fourier coefficients are known, the analytical solution of step 2 is straight-395

forward to evaluate. The following non-homogeneous heat equation is solved in Laplace396

domain with homogeneous initial conditions:397

k T,ii (s) − ρ c s T (s) = αTA s (3λ+ 2µ) ǫkk (24)398

By positioning the plate normally to the z-axis so that all its coordinates are positive and399

a corner is located at point (x = 0, y = 0, z = 0), the zero heat flow boundary conditions400

result in a simple temperature field expression with cosines only:401

T (s) =

∞
∑

m,n,q

Tmnq (s) cos (mπx/l) cos (nπy/L) cos (qπz/e) (25)402

Eachmode has its own frequency dependence, as required to be able to model non-proportionality403

correctly. A proportional damping such as the one described by Zener would have been404

modeled using a single frequency function for all modes. By inserting the temperature405

expression (25) into the homogeneous form of equation (24), thermal eigenvalues can be406

obtained:407

smnq = −kπ2

ρc

(

(m

l

)2

+
(n

L

)2

+
(q

e

)2
)

(26)408

A Fourier series of the normal strain can be written as following:409

ǫkk =
∑

m,n,q

Amnq cos (mπx/l) cos (nπy/L) cos (qπz/e) (27)410

Numerical values of ǫkk, obtained during step 1, are used to compute the coefficients Amnq411

by projection. The coefficients of the temperature series can easily be deduced using412

Tmnq (s) =
αTA s (3λ+ 2µ)Amnq

ρ c (smnq − s)
(28)413
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smnq has real values, while s is imaginary. This expression has thus no pole and no reso-414

nance behavior can be observed in the temperature field. A thermal stress as well as an415

associated finite element matrix are then computed. Each resonance value is finally updated416

by projecting this matrix onto the mode subspace of the uncoupled system following the417

perturbation approach described previously (equation (6)).418

4.1.5 Numerical results419

Numerical simulations of thermoelastic damping have been carried out for the considered420

plate as well as for a number of interesting configurations. The model main characteristics421

are summarized in table 3. Figure 7 displays computed thermoelastic damping values of

Plate dimensions (x × y × z) 35 cm × 40 cm × 2 mm

Mesh (x × y × z) 30× 30× 3

Number of thermal modes (x × y × z) 10× 10× 6

Thermal expansion linear coefficient α 23.0 10−6 K−1

Ambient temperature TA 295.15 K

Heat capacity at constant pressure Cp 900.0 J/(K.kg)

Thermal conductivity k 237.0 W/(m.K)

Table 3: Thermomechanical properties of the aluminum plate model

422

about thirty modes in the clamped, simply supported and free boundary conditions cases.423

Zener’s model is also represented. It is worth noting that Zener’s damping model is accu-424

rate for clamped or simply supported boundary conditions but gives poor approximations425

of damping in the lower frequency range for free boundary conditions. The absence of link
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Figure 7: Comparison of the thermoelastic damping computed with various boundary condi-
tions. Simply supported, clamped and free 35 cm × 40 cm × 2 mm aluminum plate

426

between Zener’s model of damping and the normal strain is noteworthy, since this last one is427
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in fact directly associated to the local temperature variation. A better thermoelastic damp-428

ing model inspired from the modal strain energy analysis could probably be implemented429

from the normal strain energy knowledge. Figure 8 illustrates this possibility in the free430

boundary conditions case and displays the ratio of the normal strain to the total energy as431

well as computed thermoelastic damping values. Simply-supported and clamped boundary432

conditions give an almost constant ratio of about 17%. This is why a proportional damping433

model such as Zener’s model can be applied in these cases.
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Figure 8: Comparison between the modeled thermoelastic damping and the ratio between the
normal strain energy and the total strain energy. Free 35 cm × 40 cm × 2 mm aluminum
plate

434

435

Figure 9 shows numerical estimations of the frequency shift due to thermoelastic coupling.436

The shift increases roughly linearly with respect to the frequency for all boundary conditions437

types. Thermoelastic coupling has thus a stiffening effect on the structure as pointed out438

also by Prabhakar et al. (2009) for the case of cantilever and doubly-clamped thermoelastic439

beams. Figure 10 and 11 present the contribution in percent of the most important thermal440

modes to the damping of the first structural modes. While figure 10 focuses on the first four441

modes of the free boundary conditions case, figure 11 compares the thermal modes contribu-442

tion for various boundary conditions in the first structural mode case. The great majority of443

thermal modes have a component equal to one in the z-direction associated to a wavelength444

equal to twice the thickness. This confirms Zener’s prediction that the first thermal trans-445

verse mode is responsible for most of the thermoelastic dissipation. It is also worth noting446

that each structural mode is associated with a very specific combination of thermal modes447

that strongly varies depending on the boundary conditions. Figure 12 finally gives an illus-448

tration of the influence of the thickness h. Zener pointed out that thermoelastic damping449

has a 1 / h2 dependence by carrying out a limit calculation. The approximation is only valid450

in the upper frequency range above the characteristic frequency fc (fc = π2 k / h2 cV ). The451

numerical results confirm the approximation quality, since a damping value of about 0.2, 0.8452

and roughly 3.5 is obtained for 4-mm, 2-mm and 1-mm thick plates, respectively.453
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Figure 9: Comparison of the frequency shift due to the thermoelastic coupling for various
boundary conditions. Simply supported, clamped and free 35 cm × 40 cm × 2 mm aluminum
plate
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Figure 11: Thermal modes that most contribute to the first mode thermoelastic damping.
35 cm × 40 cm × 2 mm aluminum plate with free, simply-supported and clamped boundary
conditions. Contributions expressed as a percent of total damping

454

4.2 Viscoelastic damping455

The remaining main damping component of an aluminum plate is referred to as viscoelastic456

damping. It is is due to a local viscoelastic dissipation process caused by crystallographic457

defects or irregularities such as dislocations, interstices or grain boundaries, that essentially458

depend on the material and the manufacturing process. Despite the existence of fine mi-459

cromechanical models (Granato-Lücke model (1956)), it is still impossible to quantify this460

component correctly without making any measurement. Many references can provide with461

damping values identified experimentally in the literature. However, most of them focus on462

the effects of temperature on the aluminum in the very low frequency range rather than463

on the frequency itself, probably because measurements in higher frequency ranges are par-464

ticularly difficult to carry out. Rivière (2004) has obtained a damping of Q−1 ∼ 0.003 at465

0.01 Hz in a polycrystalline aluminum at room temperature. Wei et al. (2002) have mea-466

sured internal friction values of about Q−1 ∼ 0.001 in aluminum at 1 Hz, and Wang et al.467

(2000) a value of Q−1 ∼ 0.0036 at room temperature. In a broader frequency range, Cremer468

et al. (1988) have reported a constant frequency value ofQ−1 ∼ 0.0001 at room temperature.469

470

In order to analyze the remaining part of damping in aluminum, a direct comparison be-471

tween computed damping (thermoelastic and acoustic damping) and the measured one is472

displayed in figure 13. Since all other main dissipation sources (air flow and attachment473

dissipation) have been found or are assumed negligible, the difference between these quan-474

tities is supposed to be a good approximation of viscoelastic damping. It is confirmed, at475

least partially, by observing that the difference matches a straight line. If another damping476

unit such as the loss factor or the inverse quality factor is used, the damping is found to477

17



0 100 200 300 400 500 600 700 800 900
0

0.5

1

1.5

2

2.5

3

3.5

4

Frequency [Hz]

D
am

pi
ng

 [H
z]

 

 

1 mm
2 mm
3 mm
4 mm

Figure 12: Thermoelastic damping computed for various plate thicknesses. First 35 modes
in a free 35 cm × 40 cm × 1-2-3-4 mm aluminum plate

be a constant function of frequency equal to Q−1 = 0.00037. This value is quite consistent478

with the one given by Cremer et al. (1988), but it is below other values mentioned in the479

literature.480

481

5 Conclusions482

A detailed analysis of the dissipation sources acting in a thin suspended aluminum plate483

in the low frequency range (0-900 Hz) has been carried out in this paper. Air viscosity484

and noise radiation have been modeled to account for the fluid influence on damping. Air485

viscosity has been considered by combining Landau and Lifschitz stationary flow analysis486

to a finite element capability, while acoustic radiation has been simulated with the same487

capability and a boundary element program. A perturbation technique has finally been488

implemented to observe how modes frequency and damping are shifted by both phenomena.489

While the effect of air viscosity on the plate overall damping has been found negligible, the490

low acoustic damping values increase with frequency and become substantial for a couple of491

modes in the higher part of the considered frequency domain. Thermoelastic damping has492

been computed by using analytical Fourier series of the temperature field, the same finite493

element program and perturbation technique. Aluminum viscoelastic damping has been494

identified by subtracting the computed values of the thermoelastic and acoustic damping495

to the one measured with a contact-free modal analysis and the logarithmic decay method.496

It is found almost constant over a broad range of frequencies when damping is expressed497

as a loss factor or as the inverse of a quality factor. The general methodology proposed498

in this paper, which consists in a systematic analysis of damping sources, thus provides an499

efficient means of gaining insight into the dynamics of systems with very low damping such500

as aluminum structures.501
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