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ABSTRACT

When programming software applications, developers have to deal

with many functional and non-functional requirements. During the

last decade, especially in the augmented reality field of research,

many frameworks have been developed using a component-based

approach in order to fulfil the non-functional requirements. In this

paper, we focus on such a specific requirement: race conditions

issues in component-based systems. We present a heuristic that

analyses data flows and detects components that may be subject

to race conditions. A toy example introducing the problem and

the solution is developed and implemented under the ARCS (for

Augmented Reality Component System) framework. We also show

the results of our algorithm on real size applications using up to

70 components and compare those results with some obtained by

developers who had to make exactly the same work by hand.

Categories and Subject Descriptors

D.2.11 [SOFTWARE ENGINEERING]: Software architectures—

Domain specific architectures; D.2.13 [SOFTWARE ENGINEER-

ING]: Reusable software—Reusable libraries; D.2.m [SOFTWARE

ENGINEERING]: Miscellaneous—Rapid prototyping

Keywords

Components; Race conditions; Heuristic; Augmented Reality; Con-

crete example

1. INTRODUCTION
Augmented Reality (AR) aims at linking virtual entities with real

objects through a combination of dedicated hardware and software.

Programming such an application requires several skills. Some are

purely related to programming techniques and execution environ-

ment. They are called non-functional requirements whereas others

are related to techniques more specific to the AR field and are there-

fore called functional requirements (such as image and signal pro-

cessing, interactions in mixed reality, virtual reality and computer

graphics, content authoring, etc).

As a field of research of a growing interest, many researches have

been conducted to propose software frameworks tailored to AR

needs aiming at reducing the burden for developers to consider non

functional requirements when developing. AR is also technology

dependent and thus, piece of software piloting these technologies

should be as replaceable as the used technologies. The findings of

new algorithms and methods are also driving architectures to more

and more modularity and genericity. Over the past decade, many

software framework for AR [10] have been proposed and they use a

component-based scheme. Component based solutions are popular

in AR framework since they usually propose software architectures

that will address most of the non functional requirements of AR

such as modularity, genericity, and reusability. To these require-

ments we can also add distributed computing which is raised by

the current hype in cloud computing and multi-threaded computing

which is the target of this paper.

Multi-threading is and has been used in the past to build AR

software ([1] is an example of such use) because it can reduce the

end-to-end latency of an application in the case several input sen-

sors are needed by the system to extract characteristics from its

environment. Moreover it can profit from the multicore processor

architectures that were introduced in the consumer market since

several years ago. Inexperienced programmers usually have dif-

ficulties in mastering thread safety and concurrent access issues.

Therefore, furnishing tools that relieves programmers from the bur-

den of managing such issues may be an interesting added value.

The remainder of the paper is organised as followed. First, we

will present some related component based systems used in the AR

field and introduce our own framework named ARCS (for Aug-

mented Reality Component System). Then, in section 3, we will

focus on the problem of concurrent access management in compo-

nent systems and provide some hints about how to solve the prob-

lem. The same section will also introduce some of the general pur-

pose techniques found in the literature to detect where race condi-

tions may occur. We will also propose a heuristic that automatically

finds components for which concurrent access is an issue. Section

4 will show how such a heuristic and the associated solution can

be implemented in our framework in toy case and we will finish by

giving the future road-map on this research and conclude.

2. RELATED AND PREVIOUS WORKS

2.1 Component based AR frameworks
Modular software architectures and frameworks for AR have been

addressed during these past years by almost thirty different projects

of frameworks. The surveys written by Endres et al. and Huang et

al. [10, 17] are quite exhaustive. Therefore, we chose to cite the

most prominent component based frameworks.



Amongst these frameworks some are intend to distribute com-

ponents over a network and thus do not need to manage interfer-

ence between threads of the same program. This is the case for

the StudierStube project led by the Technical University of Vienna

[14]. Its main principle is that each user has its own workspace

that may be partly shared with other users. Similarly, the DWARF

[3] (Distributed Wearable Augmented Reality Framework) project

uses decentralised and distributed services. This framework relies

on CORBA [23] (Common Object Request Broker Architecture) to

provide services. As an example, each input sensor is associated

to a service broadcasting data to other services (that could be fil-

ters, rendering loops,...). Each service is described by XML data

and can be dynamically linked to the current application, which is

seen as a distributed data flow. At start-up, applications only need

one component manager. This last one discovers step by step other

services in order to integrate them at execution. Some other frame-

works are following the same guiding precepts such as the AMIRE

(Authoring Mixed Reality) project [8] or MORGAN [24].

Another class of component based frameworks for AR do not

rely on distribution mechanisms and thus sometimes involves multi-

threading programming. For example, Tinmith [25] is a library

written to develop mobile AR systems. This framework is based

on data-flow description and is a library of hierarchical objects. It

manages data-flow from sensors, many data filters and rendering

components. Objects written in C++ rely on a callback system and

data are serialised using XML. Communications between objects

are managed through a data-flow graph. Other frameworks from

the same category have been proposed such as VHD++ [26], MRSS

[18] (Mixed Reality Software Suite) or Avango NG [20].

An AR framework must cope with works in progress and fu-

ture works built on the present ones. It should be able to integrate

technologies of tomorrow in terms of new devices and algorithms.

Works in progress would then require flexibility, future works ex-

tensibility and future works built on top of current ones reusability.

One of the classical answers is to use a component based software

architecture because it allows to separate an application into sev-

eral components, that are, according to Szyperski [34], "a coher-

ent package of software that can be independently developed and

delivered as a unit, and that offers interfaces by which it can be

connected, unchanged, with other components to compose a larger

system". Another benefit associated to reusability is the ability to

rapidly prototype applications.

2.2 Previous work: the ARCS framework
ARCS, for Augmented Reality Component System, is a project

we started in 2006 [6, 7, 19]. As a framework, it provides several

models that should be followed in order to build AR applications.

Some choices are made concerning the application model as well

as the component model. We describe them in order to introduce

later how we will manage concurrent access in such an environment

since it is our target framework.

2.2.1 Application model

The ARCS application model describes applications as a set of

process (actually a set of threads). Each one of them is controlled

by a finite state machine. When the internal state of the state-

machine changes, it triggers changes in how components are con-

nected to each other. A set of connections as well as a set of com-

ponent invocations (in order to initialise them and launch data pro-

cessing) is called a sheet. According to this, each thread is, at

a given time, in a given state that corresponds to an active sheet.

Sheets are sharing the same components instantiated from a com-

ponent pool. Therefore, components do not belong to any thread in

particular so they may be invoked by different threads.

As we said before, each process maintains one active sheet at a

time. A sheet activation cycle follows the following steps:

• The controller (state-machine) receives a token (from a com-

ponent in the active sheet) that will trigger one of its transi-

tions and then change the controller state;

• All components from the current sheet will be disconnected

from each other;

• The controller new state corresponds to another sheet. First,

some invocations, called pre-connection invocations, are per-

formed on the components to properly initialise them;

• Then connections are established according to the new sheet

description;

• Post-connection invocations are finally performed in order to

launch the actual processing of data.

2.2.2 Component model

ARCS describes components as entities having signals (outputs)

and slots (inputs). The signal/slot mechanism is well known since

it is commonly used in graphical user interface libraries such as Qt

for instance. It is also deriving from the observer design pattern

[15]. Thus, the communication through a signal/slot connection

is synchronous. Composition of components can be performed in

two different ways: the first one is through connection composition,

where a component emits a signal that is processed by a slot from

another component. The second one is through invocation compo-

sition: a component is passed as a parameter to a slot of another

component.

Amongst its specifics, ARCS provides an abstract component

model that allows to introduce new component types or new com-

ponent behavior as long as they respect the signal/slot scheme.

This abstract model includes the following functionalities:

• Instantiation and destruction of the actual component;

• Signal/slot and connection management;

• Serialisation/deserialisation: this is mainly used at the instan-

tiation of the actual components. Deserialisation allows to

configure the component according to string contents passed

through an XML description of the application.

In order to complete the integration of other component fami-

lies, the framework has also abstract type factories that parse XML

descriptions and instantiate directly objects of the considered type

that can be used as parameters of components invocations in order

to initialise the latter ones.

These functionalities are also exposed in the dynamic libraries

the ARCS engine can load at runtime by parsing XML descriptions

of an application. They usually contain:

• Type factories, in order to extend ARCS with new types when

needed and serialise them;

• Native component factories that instantiate components han-

dled by the previous version of the engine and that are the

privileged components in the framework;

• Family component factories in order to make ARCS compat-

ible with other component systems.

To finish, in technical terms, ARCS is written in C++ language

for performance reasons and depends on the Qt library [29].



2.2.3 Handling other non-functional requirements

In ARCS , we decided to develop an engine that is as lightweight

as possible. Therefore, the engine in itself does not implement all

the non-functional requirements that would be necessary to make

all kinds of applications. Nevertheless, it is possible to explore

other ways to add non-functional requirements when they are really

needed. As an example, we already propose in the framework a

mechanism to create distributed applications over a network [5].

As defined here, the ARCS engine is able to create threads and

perform different tasks inside these threads but there is no concur-

rent access management developed in component model. We will

now see how it is possible to design and implement such a mecha-

nism in a component based system behaving like ARCS.

3. MANAGING CONCURRENT ACCESS IN

COMPONENT BASED SYSTEMS
Managing concurrent access in component based systems de-

pends on the characteristics of components that are used and their

environment. For example, in an environment using CORBA com-

ponents, concurrent access is managed transparently due to the se-

rialisation mechanisms that occur when the CORBA bus is used.

Therefore, we will first outline the main characteristics of the com-

ponent system on which we will work as a basis for our hypotheses.

3.1 Component system main characteristics
We are considering components as stated by Szyperski [34]. To

sum it up, component are pieces of software that are reusable and

subject to composition in order to produce the final software.

Here, we will restrain the kind of components we are using. We

are interested in components having the following characteristics:

• Components have separated inputs and outputs;

• Even if components are black boxes (i.e. we do not know

how it is implemented inside), they adhere to the following

internal behaviour: if one an input is triggered, it will trig-

ger outputs synchronously (none to all outputs could be trig-

gered). We call this property internal synchronicity. How-

ever, without a thorough analysis of the behaviour of the

black box, we do not known which output is triggered by

which input. Therefore, we will consider that when an input

is triggered, every output is triggered;

• Components are communicating synchronously: outputs from

a component trigger inputs from another component. Out-

puts then trigger function calls. This property is the external

synchronicity;

• Communications are supposed unidirectional: data are flow-

ing from outputs to inputs;

• Components are configured by passing arguments to some

of their inputs. Inputs may also be used to start processing

functions;

• Components are black boxes but communication channels

(or connections) between components are known and static,

that is to say, persistent in time or at least for a known dura-

tion.

Such components are also working in a specific execution en-

vironment. Concerning this execution environment, we make the

following suppositions:

• It is multi-threaded;

• Component configuration and initialisation may be performed

by different threads;

:Monitor :Mutex :Component

slot()

lock()

slot()

unlock()

Figure 1: Behaviour of a monitor component wrapping the

original component in a mutual exclusion.

3.2 Problem statement: concurrent access
Now that we have described the main characteristics of our com-

ponent system and its execution environment, we can deduce some

problems that will rapidly arise: how can we process issues con-

cerning concurrent access or, more generally, thread-safety ?

There are at least three solutions in order to give a thread-safety

property to such a system:

1. We can systematically implement thread safety mechanisms

inside components. However, it is generally costly, espe-

cially if the component, in its execution context, does not

require it;

2. We can implement it by hand in components that may be

subject to concurrent access. The weak point here is that a

component is a piece of reusable software and therefore it

may be put in a situation that was not planned during the

design phase of the component;

3. We implement a specific heuristic inside the execution envi-

ronment that will ensure that components that are subject to

concurrent access in their execution context will be guaran-

teed thread safe. This third way is the one we would like to

investigate further in this paper.

Restated in other terms, we would like to give a thread-safe be-

haviour to components (that do not possess it) by analysing their

execution context. We believe it has other strong advantages, one

of them being that component developers would not have to worry

about thread safety. This is also interesting because inexperienced

programmers usually have difficulties in mastering thread safety

and concurrent access issues.

3.3 Outline of our solution
The idea we will express here is just an intermediate solution

that will give some hints on how the problem could be solved. We

intend to give a simple, but practical solution. The main idea is to

construct a wrapper component that will regulate concurrent access

to the component it shelters. To achieve this, we apply the monitor

object design pattern [31] as it is done, for instance, in java with the

synchronized keyword. Components prone to concurrent ac-

cess are then considered as a resource that will be properly framed

inside a mutual exclusion (mutex) as represented in figure 1. For

each component to protect from concurrent access, a Monitor will

be generated, associated to an object managing a mutual exclusion

(Mutex). Therefore, each call performed on Component is rerouted

to Monitor.

Mutual exclusion are known to solve partly the problem of race

conditions but they are known to be sensitive to other problems

such as deadlocking (where two components are waiting for each



other and thus are locking each other, therefore the application can-

not perform its intended task) or resource starvation (it occurs when

two components are competing for the same resource and one of

them is perpetually favoured over the other, thus tasks that were

intended to be performed never happen). It would require another

detailed analysis that we do not intend to present in this paper.

Our problem is then transformed into how to determine which

component should be monitored? Before proposing a heuristic in

order to solve it, we will briefly review some techniques used to

solve such a problem.

3.4 Concurrent access in literature
In the literature, two complementary problems are addressed: the

race detection in itself and the minimal number of places where

mutual exclusion should be placed.

Race detections are detected using different approaches. The

static approach enforce type systems [?], directly analyse the source

code of the application [33, 28, 35] or analyse dataflow [11]. Such

approach is not directly usable since we do not have access to the

source code of components in every situation. The dynamic ap-

proach analyse actual execution traces. Algorithms and tools [30,

2, 27, 13] developed mainly rely on Lamport’s happens-before re-

lation [21] or use lockset analysis (a lock set is the set of locks that

protect access to a shared variable). The tools have complete ac-

cess to program context but will also reduce the performances of

the program actually analysed and adds to the overhead of running

components. Other techniques are also used such as post-mortem

analysis but they are not suitable in our case.

Finding the minimal number of places where mutual exclusion

should be placed is often called the Minimum Lock Assignment

(MLA) problem. Many solutions have been proposed so far to de-

termine where to put mutual exclusions. However, they usually

concern parts of the software code (the potential critical sections)

and not components as defined by Szyperski as we can see in [32,

16, 9, 37]. In such methods, critical parts of the code are anno-

tated. Then a special compiler will determine where to put mutual

exclusion by using special heuristics. MLA is known to be a NP-

hard problem so other methods rely on a different approach: the

idea is to determine specific use cases and associated use case sce-

narios and assess the behaviour of the software with respect to this

scenario [12, 22]. If an interference is detected, then a mutual ex-

clusion will be put where it occurred. Using use-case scenarios is

not a solution that suited our needs since it needs some prepara-

tions. Determining MLA is also not our primary concern: the idea

is not to be optimal but to relieve the developer from the burden to

review his code in order to determine where to put mutual exclu-

sions. The method must also be lightweight, since it should be run

on the fly when the description of the application is loaded by our

framework’s engine. Fortunately, one of the conclusions in [16] is

that "high accuracy in program analysis is not always necessary to

achieve generally good performance". Therefore, we will provide

a heuristic at component level that determines which components

might be subject to interference.

3.5 A heuristic to find components subject to
race conditions

To determine the solution of our problem, we construct a direct

graph. Each vertex of the graph represents a component to which

is associated a set of labels (the different threads in the applica-

tion are also considered as components). Each time components

are communicating together, a directed edge between the vertices

associated to the components is drawn. The direction of the edge

matches the direction of the communication.

We will now expose a heuristic that will determine what are the

candidate components subject to monitoring.

3.5.1 Notations

• Let C be the set of components in the system. This set is also

the set of vertices in the directed graph;

• LetM = ∅ be the set of components that will be candidates

to mutual exclusion monitoring;

• Let L be a set of labels. At initialisation, there are as much

labels as threads in our system. L is very likely to grow, so

the easiest way is to define L as a subset of N where L =

J1;nK where n is the number of threads;

• Let E be the set of edges of the directed graph;

• Each component c of C has a property named labels which

will be noted c.labels . It is the set of labels associated to the

component c. c.labels is therefore a subset of L;

• Each edge e of E has two properties: e.head is the head of

the edge and e.tail is the tail of the edge. Note that e.head
and e.tail are elements of C;

• |S| is the cardinal number of the set S;

3.5.2 An algorithm to find components to monitor

Our heuristic is exposed in algorithm 1. Apart from its initialisa-

tion, the heuristic is a loop iterating over three phases:

1. The propagation of labels along the edges (lines 14 to 20);

2. The marking, where candidate components subject to moni-

toring are marked (lines 22 to 24);

3. The pruning and label generation where some of the compo-

nents are discarded because they do not need to be monitored

with a mutual exclusion. Additional labels are created and

labels associated to vertices are reinitialised (lines 25 to 35).

These steps are reiterated until the set of components to monitor is

computed.

The initialisation consists in generating the first set of labels

(noted L in the algorithm) and attach them with components con-

sidered as threads. Each component that is a thread is initialised

with its own label and all other components are associated to an

empty set of labels.

The propagation propagates labels along the edges until the label

sets associated to each vertex is stabilised. Therefore, we know

which thread can access to which component. It corresponds to the

internal and external synchronicity hypothesis: if a thread accesses

to an input, therefore it accesses to all corresponding outputs of the

same components and inputs that are connected to these outputs.

The marking step creates a temporary set of components (noted

Mc) and puts into it components that are very likely to monitor.

To find such components, we look at the incoming edges. If the

originating component of such an edge is not accessed by the same

threads than the target component of the same edge, then it means

the component is subject to concurrent accesses and is to be added

to the list of components to monitor.

The pruning step removes from study the set of components that

are accessed by at most one thread since they are not concerned

by concurrent access issues and the edges that come along. Each

component that was marked to be monitored is generating a new

label (it means we consider the data sent by it thread-safe since it is

monitored and therefore it behaves as the data was sent by another

thread) and all other components associated labels are reset.

Then we reiterate until there is not any component left to process.



Algorithm 1: Heuristic to determine components to monitor

Data: C – set of components, E – set of edges

Result:M – the set of components to monitor

// Initialization

1 M← ∅;

2 L ← ∅;

3 l← 1;

4 foreach c ∈ C do

5 if c represents a thread then

6 l← l + 1;

7 L ← L ∪ {l};
8 c.labels ← {l};

9 else c.labels ← ∅;

10 end

11 repeat

// Propagation

12 repeat

13 applied ← false;

14 foreach e ∈ E do

15 if e.head .labels 6= e.head .labels ∪ e.tail .labels
then

16 e.head .labels ←
e.head .labels ∪ e.tail .labels;

17 applied ← true;

18 end

19 end

20 until applied = false;

// Marking

21 Mc ← ∅;

22 foreach e ∈ E do

23 if e.head .labels 6= e.tail .labels then

Mc ←Mc ∪ {e.head};

24 end

// Pruning and label generation

25 foreach c ∈ C do

26 if |c.labels| ≤ 1 then C ← C \ {c};
27 else

28 if c ∈Mc then

29 c.labels ← {|L|+ 1};
30 L ← L ∪ c.labels;

31 else c.labels = ∅;

32 end

33 end

34 foreach e ∈ E do if e.head /∈ C or e.tail /∈ C then

E ← E \ {e};
35 M←M∪Mc;

36 until C = ∅;

3.5.3 Applying the heuristic: an abstract example

Figure 2 is illustrating how our heuristic is run. At first, we

consider the set of components displayed in 2(a). We introduce

in figure 2(b) two new components T1 and T2 that are actually the

threads that start the application by performing invocations on com-

ponents A and B. The label set associated to each component is

noted between braces. Therefore, components T1 and T2 are as-

sociated to labels 1 and 2 and other components are associated to

an empty label set. According to our heuristic, we then perform a

first propagation and marking step (see figure 2(c)). Two compo-

nents are noted as being subjects to monitoring, here C and D (they

are noted with a star ∗). They are marked because preceding com-

ponents do not share the same set of labels. Then, in the pruning

phase (figure 2(d)), the components T1, T2, A and B are discarded

since they all have only one label associated to them (it means they

do not need to be monitored). New labels are generated for C and

D that are respectively 3 and 4 whereas other components are as-

sociated to empty label sets. We then reiterate through the same

steps a second (figure 2(e)) and a third time (figure 2(f)). At the

end of the third iteration, since we had a cycle in the graph, all

components are associated to empty label sets (figure 2(g)), there-

fore the algorithm completes in the next step. If we look at the set

of components to monitor computed by the algorithm, we will find

M = {C,D,E}. This result is consistent since components C
and D can be accessed through A and B that are invoked by two

different threads. The outputs of C and D can come from the first

or the second thread, therefore E needs to be monitored too.

Another side effect illustrated in this example is that mutual ex-

clusions should be re-entrant. That is to say, a thread that has locked

a mutual exclusion should still be able to enter in the component it

has locked a second time. If this condition is not respected, it could

lead to a lock in our abstract example since we have a communica-

tion cycle between D,E,G and F . Therefore, D can be locked by

a thread and the same thread may access to D later through E,G
and F .

4. CONCURRENCY MANAGEMENT

APPLIED IN ARCS

4.1 A toy case introducing a race condition
In order to understand how it works, we will not consider a real

AR application but rather a toy case implementing a race condition.

It is organised around three main components: two components

(named loop1 and loop2), each in a separate thread, iterate from

0 to 9, and one component (named sum) adds all iteration values

received from the two other components. The components are, by

default, developed without any code that synchronises them (Fig.

3 is showing their pseudo-code). Therefore, our sum component,

which should reach a total of 90 (2×
∑

9

i=0
i), does not necessarily

reach the right sum in a multi-threading context (the counting slot

is called from two different threads and therefore tmp and sum are

in a race condition situation).

The ARCS framework strictly adheres to the component system

and environment characteristics we presented in section 3.1. But,

as a practical framework, it will require some adjustments and ad-

ditional components in order to conform to its application model.

Figure 4 represents the simplified connection graph of the toy case

(as implemented using ARCS – see also figure 5) where we can find

the main components as well as thread controllers (state-machines

s, s1 and s2 which are mandatory in the application model1. Here

1One can notice difference between the abstract data flow and the
one presented in the screen capture. This is due to the fact the
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(b) Initialization step of the heuristic
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tion)
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(e) Propagation and

marking (2nd iteration)
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marking (3rd iteration)
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(g) Pruning and label

generation (3rd itera-
tion)

Figure 2: Iterations of our heuristic from initialization to the

last step before completion

For i from 0 to 9

RandomSleep()

Emit i

EndFor

Emit "end"

(a) Loop pseudo-code

tmp <- i

RandomSleep()

sum <- sum + tmp

(b) Sum pseudo-code

Figure 3: loop and sum components pseudo-code.

Loop1

Loop2

End

Sum

Display s1

s

s2

Figure 4: Simplified connection graph of components in the toy

case.

s,s1 and s2 are only composed of two states: one initial and one

final state in order to shut down the application). Some logical glue

components are also used: end which triggers the end of the appli-

cation when loop1 and loop2 have finished iterating, and display

which displays the final result. s, s1 and s2 are controllers that may

be accessed by different threads. A first thread triggers loop1 and a

second thread triggers loop2. Therefore, if we apply our heuristic,

components end, sum should be monitored. To this set, we will add

s, s1 and s2 since they may be accessed bu different threads.

The result of the implementation of the components without any

management of concurrent accesses is shown in figure 6(a). As we

can observe, the two threads are sleeping a random duration and

wake up in order to send data to the sum component. In the end, it

displays 92 as a result of the sum whereas it should have been 90 if

there was not any race condition.

In order to implement concurrency access management, ARCS

also requires some other components that are not shown: a Monitor

component that acts as a wrapper component for the actual compo-

nents that have been marked as to be monitored and a Concurren-

cyManager component that accesses to the application structure,

analyses it and compute the set of components to monitor. The

application has been modified to import the ConcurrencyManager

component (it results in modifying one line in the application de-

scription file).

We can verify in figure 6(b) that Monitors have been put around

the right components and that the race condition was suppressed

by such modifications. Indeed, the first lines of the screenshot

shows the resulting list of components that should be monitored as

planned by our heuristic. The last lines indicate that the resulting

sum is 90 which means the race condition has been suppressed.

None of the components of the application has specific code

for handling mutual exclusion, therefore the ConcurrencyManager

seems viable in order to manage concurrency on components that

were not specifically designed to handle it. We then have built a

first step towards automated concurrency management for compo-

nents in software applications.

heuristic takes into account all connections in all application sheets
(in ARCS terms) whereas the screen capture represents one of those
sheets, therefore a subset of the connections between components.



Figure 5: Toy case in development stage using ARCS graphical

editor

4.2 Real case study: the RAXENV project
In the past, we developed for the RAXENV project [4, 36] a

multisensor system that relied on multi-threading capabilities. This

project aimed at demonstrating the practical use of an outdoor AR

system for environmental sciences and techniques, both in terms of

technology development as well as end-user adoption.

The overall software architecture is depicted in figure 7. The ap-

plication used data provided by three different sensors: a camera,

an inertial unit and a GPS. Data sources were fused to provide a

robust localisation of the system in its environment. During the de-

velopment of such a system, we encountered some difficulties with

multi-threading (each sensor provided data in a separate thread)

and concurrency management that was implemented by hand. We

would like to run our present solution over the RAXENV software

in order to assess if concurrency management was implemented at

the right place and see if it could eventually be performed in less

components than we did and maybe raise some issues we did not

see.

The RAXENV software had three nominal states (correspond-

ing to three sheets) where multi-threading capabilities had been en-

abled. This means our algorithm should then be applied to these

three sheets in order to determine which components should be

monitored. Moreover, some of the components were composite

components (components made of an assembly of components).

So we ran our algorithm against two series of tests: one with com-

posite components considered as blackbox components (annotated

BB) and another one where composite components are considered

as whiteboxes (annotated WB – therefore we consider that we can

monitor subcomponents of composite components). The numeri-

cal results are gathered in table 1 where we also included our algo-

rithm’s result concerning the abstract example and the toy case we

presented earlier. The table contains the number of components,

the number of edges of the generated graph as well as the final

size of the label set, the number of iterations and finally either the

size of the component set to monitor or the component set itself.

We also represented in Fig. 8 one of the component set (the one

annotated MIBB) using the dot utility from graphviz software 2.

It also shows the composite components and components that are

to be monitored. One can notice that these first results show that

few iterations are in fact needed in order to determine the set of

components to be monitored even for datasets containing up to 70

components and 140 edges.

2http://www.graphviz.org

(a) Execution of the toy case without concurrency access
management

(b) Execution of the toy case with concurrency access man-
agement

Figure 6: Toy case implemented and executed using the ARCS

framework

In table 2, we regrouped the results obtained from our algo-

rithm, especially the list of components subject to monitoring, for

the three datasets RIBB, MIBB and VPBB coming from the actual

implementation of the RAXENV software application. For each

component, the table states if it should be monitored (Yes) or not

(No) or if it was not used in the dataset (marked with a cross). It

exhibits for three components in the list that they should be mon-

itored in some datasets but not in all datasets. It means the very

same instance of a component can be subject to monitoring or not

depending on the actual state of the application. This is interesting

because it is an actual example of a situation where an implementa-

tion by hand to make a component thread-safe would lead to a sit-

uation where the code written to solve concurrency problems may

be useless therefore consuming memory and computation time for

nothing.

Interestingly, we compared these results to what was really im-

plemented at that time by developers. Data were only available for

the MIBB, RIBB and VPBB dataset and we recorded the differ-



Dataset Components Edges |L| Iterations Duration M / |M|

Abstract example 9 12 6 7 3 ms C,D,E
Toy case 11 15 11 3 3 ms End, Sum, s, s1, s2
Raxenv: reinitialisation (BB) – RIBB 28 34 14 4 4 ms ss_d,widget, iBuf, gm, tc
Raxenv: manual initialisation (BB) – MIBB 40 62 27 5 4 ms 9

Raxenv: vision predominance (BB) – VPBB 38 53 29 5 4 ms 10

Raxenv: reinitialisation (WB) 35 50 14 4 4 ms ss_d,widget, iBuf, gm, tc
Raxenv: manual initialisation (WB) 72 145 71 7 20 ms 21

Raxenv: vision predominance (WB) 59 112 44 7 12 ms 19

Table 1: Results gathered from our algorithm ran on different data sets

Component libraries
(registration)

ARCS engine
Elkano

(main loop,rendering)

XML description

GPS
Camera
Inertial

Sensors

RAXENV Software

ARCS thread Main thread

Figure 7: Global interaction between ARCS and RAXENV

software modules

ences we found out into the implementation and the results pro-

vided by our algorithm (see table 3). We counted the number of

unprotected components, that is to say components our algorithm

marked as subject to be monitored whereas developers did not im-

plemented any thread-safe mechanism, the number of overprotected

components (components for which developers have implemented

unneeded thread-safe mechanisms) and computed the ratio of the

total of such differences to the number of components used in each

dataset. One of the most striking result is that we obtained a dif-

ference ratio of 25%. This may seem quite high but it does not

mean that developers had made mistakes in all situations : one of

the prominent problem is that, at that time, mechanisms to monitor

composite components were not available whereas it was the kind

of components we needed to monitor in this application (It also

means that developers did not have, at that time, means to write

completely thread safe applications). Another thing to take into

consideration is the fact that developers have access to the inter-

nals of components and consider them as whiteboxes. Therefore,

their analysis may slightly differ than the one from our algorithm

because some components may not need to be monitored due to

their internal structure. However, overprotected components can

be considered as avoidable mistakes.

4.3 Discussion and further work
Concerning our algorithm many things may be subject to discus-

sion. For example, a lot of formal work is still needed in order to

assess the complexity of our algorithm as well as proving that it

converges in all situations.

Another thing to keep in mind is that our algorithm is only in-

dicating which components are assumed to be monitored. It raises

Name InMRIBB InMMIBB InMVPBB

ss_d Yes Yes Yes

widget Yes Yes Yes

iBuf Yes No Yes

gm Yes Yes Yes

tc Yes Yes Yes

tmp1 × Yes Yes

visP × Yes Yes

isa × Yes ×
gm2 × Yes ×
rinit No Yes Yes

gm3 × × Yes

alP No No Yes

chrono × × Yes

Table 2: Recurring components to monitor in RIBB, MIBB and

VPBB datasets.

Dataset RIBB MIBB VPBB

Components unprotected 2 5 6

Components overprotected 2 5 2

Differences: total 4 10 8

Differences ratio 14% 25% 21%

Table 3: Comparison with implementation by hand

then several other issues. The first one is about the automation of

a solution to build monitors at runtime for these components. In

some situations, especially if we use the monitor design pattern,

we may reach a deadlock situation (when two thread lock compo-

nents that are needed by each other), therefore a further analysis is

needed to detect these situations or we should cast away the mon-

itor paradigm and use another one. However, even if the tool is

not fully automated at the execution, the results it produces are in-

teresting for developers since the obtained component set indicates

where developers have to focus in order to detect race conditions in

their software application.

The last thing we would like to keep in mind is that it may also

be interesting to adapt our algorithm in case we may have finer

indications of the behaviour of components (i.e. when components

are considered as white boxes instead of black boxes). We may

then need to write a specific parser and decompose components in

several independent vertices in order to build the graph needed by

our algorithm.

5. CONCLUSION
We introduced in an actual component based AR framework

some automated concurrency management mechanism. To achieve

this, we rely on the monitor object design pattern as well as a
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Figure 8: Components configuration in dataset labelled MIBB

heuristic that computesš the components that must be monitored.

Applied on a toy case in the ARCS framework, it gave satisfactory

result. Therefore we believe that it could be implemented in a larger

scale on an actual complex AR application or, more generally, for

any component based software using a similar model to the one we

presented.

The algorithm was also used on actual data coming from a con-

crete application and exhibited some differences with the actual im-

plementation made by developers, providing hints about the places

where race conditions may occur.

In the future some loose ends associated to concurrency should

also be addressed such the problem of deadlock or resource starva-

tion in order to bring out a complete automated concurrency man-

agement system that would relieve the developer to determine it

and implement it by hand. Therefore, he can focus and spend more

time on the functional requirements of software applications.
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