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Abstract—A hybrid model is proposed in order to exploit the 

idea of compensating SOA’s nonlinearity by adjusting cavity 
dispersion in a SOA-fiber ring mode-locked laser. The model is 
checked by analytical as well as experimental results. Excellent 
agreement is obtained in both cases. It is predicted that, once the 
cavity dispersion is correctly adjusted, the mode-locked pulses of 
~10ps width will become distortion-free Gaussians, with its time-
bandwidth product (TB) very close to the fundamental Gaussian 
limit (TB=1/2) using root-mean-square definition. We will show 
evidence and explain why other waveforms, notably soliton, are 
highly unlikely in such a system. Some interesting effects related 
to band-pass filter are revealed. Our results highlight the 
ambiguity of TB using full-width at half-maximum (F WHM) 
definition. As a consequence, the widely adopted “Transform- 
limited Pulse” in its FWHM version might be misleading. 
 

Index Terms—Optical pulses, pulse generation, semiconductor 
fiber ring laser, transform-limited pulse, ultrafast optics.  
 

I. INTRODUCTION 

PTICAL pulses as clean as possible, i.e. distortion-free and 
containing few chirp in both its time waveform and 

spectrum, are highly important everywhere they appear. In 
theoretical studies, notably in mode-locked lasers, models are 
built assuming ideal waveforms such as Gaussian [1] and 
soliton [2]. In optical communication networks using time- or 
wavelength-division multiplexing (TDM or WDM), a clean 
pulse train increases data transmission capacity by reducing 
the time slot per bit at a given bandwidth (TDM), or reducing 
its bandwidth per channel at a given bit-rate (WDM). 
Therefore, how to obtain a clean optical pulse train fast 
enough for such applications, and how to measure it, are of 
remarkable importance and vast implications.    
 The cleanness of an optical pulse is most objectively and 
quantitatively measured by its time-bandwidth product (TB) 
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using root-mean-square (RMS) definition, i.e. the standard 
deviation of energy densities of a signal in the time- and 
frequency domain. The Uncertainty Principle states that 
TB≥1/2, the equality being uniquely obtained with an ideal 
(chirp-free) Gaussian [1], [3]. For an ideal hyperbolic secant 
(first-order soliton), we calculated TB=0.5236. Therefore, if 
one obtains for sure 0.5≤TB<0.5236 for an optical pulse, it 
cannot be a soliton but might be a chirped Gaussian. In this 
paper, we will use this method to distinguish a soliton and a 
Gaussian. In the following we call TB=1/2 as the Gaussian 
limit, and a pulse with TB~0.5 as a Gaussian-limited pulse, in 
contrast to a transform-limited pulse [1]. This last one 
routinely applies to a pulse with ∆f∆t~0.5, ∆f and ∆t being 
intensity full-width at half-maximum (FWHM) in the 
frequency- and time domain, respectively. As will be shown 
and discussed later, it turns out that ∆f∆t, and hence the notion 
of Transform-limited Pulse in FWHM version, are ambiguous 
and might be misleading. The situation could be even worse if 
∆t is obtained using autocorrelation technique [4].  
 In our attempt to achieve clean pulses, we have carried out 
an experiment using a semiconductor optical amplifier (SOA) 
and dispersion-compensating fiber (DCF) to form a ring laser 
[5]. As has been explained in [5], the objective is to 
compensate SOA’s nonlinearity, mainly caused by carrier 
dynamics, by an appropriate amount of negative dispersion 
[6]. The resulting actively mode-locked pulses at 10GHz 
repetition rate are indeed transform-limited, with ∆f∆t=0.46. In 
this experiment, noticeably, the pulse’s shape is not estimated 
by autocorrelation plus curve-fitting, but directly observed 
with a fast optical sampling oscilloscope; the spectrum is 
obtained using a high-resolution optical spectrum analyzer. 
This provides an excellent opportunity to test a theoretical 
model about mode locking which, once validated, could reply 
to some interesting questions: 1) What these transform-limited 
pulses really are? Could they reasonably be approximated by 
Gaussians or solitons? 2) How close these pulses could be to 
the fundamental Gaussian limit, once relevant parameters are 
optimized?  
 Keeping these questions in mind, we propose and develop 
the present hybrid model, based on the experiment in [5]. In 
this model, the SOA’s behavior is described and then resolved 
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in the time domain, results are checked by analytical formulas; 
the transmission out of SOA is calculated in the frequency 
domain. The overall precision is estimated to be ~10-4 in the 
evaluation of TB, which is good enough for addressing the 
above questions.     
 In Section II, the experiment in [5] and relevant results are 
briefly reminded for consistency. The hybrid model and the 
algorithm are developed in Section III, together with 
comparisons between the model’s predictions and available 
analytical results. In Section IV, the experimental condition is 
applied to the model so as to directly check its output, 
followed by detailed inspection of optical pulses’ properties in 
similar conditions. Our conclusions are presented in Section V.      

II. EXPERIMENT 

The experimental setup is shown in Fig. 1. 
 
 
 
 
 
 
 
 
 
 
          
 
   
 
 

Fig. 1.  Experimental setup. MZ: Mach-Zehnder amplitude modulator; PC: 
polarization controller; DL: delay line; EDFA: erbium doped fiber amplifier; 
DCF: dispersion compensating fiber; OSO: optical sampling oscilloscope; 
OSA: optical spectrum analyzer.  

 
In this experiment, the SOA (by CIP, ref. SOA-NL-OEC) as 

the gain medium exhibits 1dB polarization gain dependence. It 
has a multi-quantum-well (10 wells) structure with a length 
LSOA=1.5mm, shows its peak gain at 1555nm, and provides 
28dB small-signal optical gain at 290mA DC drive. Its optical 
gain is periodically modulated at 10GHz by an optical back-
injection. The noise in the ring will circulate clockwise, and 
eventually grow into mode-locked pulses if conditions are 
propitious. The band-pass filter serves to locate the carrier 
frequency, as well as to limit the noise level in the ring cavity. 
The length of DCF is estimated using a model in [7]. The 
characteristics of all these components are either provided by 
their producers, or measured by ourselves [5]. All of them are 
commercially available. The modulation and the filter 
functions are also measured and will be given in Section III. 
The parameters adopted are given in Table 1.  

The average power of the extracted pulse train is ~0.3mW 
(with an average back injection power of ~9mW), its spectral 
width is less than 1nm. This pulse train is first boosted by an 
EDFA with +9dB gain. Compared to EDFA’s saturation power 
(~10mW) and its amplification bandwidth (>35nm) [8], the 

differences are 1~2 orders of magnitude for both values. 
Therefore, the pulse’s original shape and spectrum are 
preserved after EDFA. The amplified pulse train is then 
analyzed simultaneously by an optical sampling oscilloscope 
(OSO, Ando AQ7750), with its input bandwidth of 500GHz 
and a resolution of 0.6ps in time, and by an optical spectrum 
analyzer (OSA, Apex AP2440A), with its spectral resolution 
of 0.16pm or 20MHz between λ=1520 ~1567nm. The peak 
power in the ring cavity, just before the output coupler, is 
estimated to be ≈12mW.  

The oscilloscope trace of the output pulse train is shown in 
Fig. 2. These pulses have a FWHM width of ∆t≅ 12ps. Notice 
that there are some slight fluctuations around the peaks. The 
spectrum has been shown in Fig. 2(d) in [5], together with a 
Gaussian fit. The fitting quality there is excellent. The product 
∆f∆t=0.46 is thus obtained. Therefore, these pulses are indeed 
transform-limited (always in FWHM version).  

 

 
 

Fig. 2.  Oscilloscope trace of the output pulse train. 

 
It should be noticed that the insertion of DCF into the ring 

cavity is not easy [9], due to structure and material differences 
between DCF and single-mode fiber (SMF) used for linking 
different elements. The insertion loss per facet of DCF could 
be as low as -2dB in our experiment, but that value is far from 
regularly obtainable. This is the reason why it is difficult, at 
least for now, to insert a designed length of DCF into the ring 
laser while maintaining an acceptable insertion loss.   

 

III.  MODEL AND ALGORITHM 

A. Hybrid Model  

The schematic of the model is depicted in Fig. 3.  
Recognizing that pulse width ∆t≥6ps in general in SOA-

related lasers excluding external pulse compression, it is not 
necessary in the present model to include the effect of gain 
dispersion, since its time constant is ~0.1ps [10]. Other 
ultrafast effects, notably two-photon absorption, are also 
neglected for the same reason and the fact that optical power 
level is moderate here [11]. In this regime, the dominant 
physical effects inside SOA are carrier recovery and gain 
saturation. Assuming slowly-varying envelops, the electrical 
field in SOA is  
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Fig. 3.  Schematic of the model 

 

0 0( , ) [ ( , ) exp( ) ( , )exp( )]E z t A z t i z B z t i zβ β= + −       

      
0exp( )i tω× −              (1) 

 Here, A and B are the forward (+z) and the backward (-z) 
field envelops, �0 and �0 are the free-space propagation 
constant and the carrier frequency, respectively. Lateral and 
polarization effects are ignored. Notice that the carrier 
frequencies for A and B are independent, but this makes no 
difference in the model. The propagation for A, B is described 
by [6], [7]: 
 

1
int

1
(1 )

2z g t HA v A g i Aα α−  ∂ + ∂ = − − 
  (2) 

1
int

1
(1 )

2z g t HB v B g i Bα α−  −∂ + ∂ = − − 
   (3) 

 
Together with the rate equation for the optical gain g(z, t): 
 

  ( )2 2

0
t

sat

A Bg g
g g

Eτ

+−∂ = −         (4) 

 
 In the above equations, vg is the group velocity in SOA, αH 

is the Henry’s factor, αint is SOA’s internal loss coefficient, g0 
is the small-signal optical gain, τ is the carrier lifetime, Esat is 
the saturation energy. Due to a narrow frequency bandwidth 
involved, these parameters are assumed to be constant. Notice 
that the noise term is not explicitly present in (2)-(4), it will be 
included as an additional input afterward.   

The SOA’s output envelop (Aout in Fig. 3) makes a roundtrip 
through the ring, and emerges as a renewed input Ain. The 
transmission of the pulse train in the fiber link of ~200m could 
be considered as linear, since with a peak intensity of ~10mW, 
the nonlinear length LNL will be ~50km for a typical SMF [12]. 
Therefore, nonlinear effects in the fiber link are not a concern, 
even though relevant fiber parameters in our experiment differ 
from those in [12].  Consequently, the transmission through the 
fiber link could be described by a transfer function in the 
frequency domain, 
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       (5) 

 
Here, Ãin

N+1 and Ãout
N are the frequency-domain 

presentations of Ain
N+1 and Aout

N, respectively, with the integer 
N denoting the number of roundtrip; η is the total amplitude 
attenuation, including the loss from the output coupler; BPB is 
the bandpass filter’s 3dB bandwidth, its flat-top form is 
checked by us and is well-fitted by the first exponent above. 
For simplicity, we assume that the filter is centered at ω0. The 
consequence of this assumption will be discussed later. The 
second exponent depicts the effect of group velocity dispersion 
(GVD) in the fiber link, β2 is the GVD parameter averaged 
throughout the link, and L is the total length of the ring. In the 
following, we replace β2 by the dispersion parameter D 
through the relation D=-2πcβ2/λ2, with λ=1.55µm. Higher-
order dispersion is neglected due to relatively long pulse 
widths and the high value of β2 involved [12], in consistency 
with the rest of the model.  
 Some other components are also implicitly contained in (5). 
These include a polarization controller, whose attenuation is 
accounted for by η, and an optical delay for synchronization. It 
is assumed that harmonic mode-locking is achieved, i.e. the 
roundtrip delay corresponds to an exact multiple of modulation 
period. This explains the absence of β1 (the inverse of the 
group velocity in the fiber) in (5). In effect, the optical delay in 
Fig. 1 is already included in the total fiber length L. Mode-
locking is achieved if with a big enough N (~102), 
|Ain

N+1|=|Ain
N|. The hybrid model is thus complete. 

 

B. Algorithm  

Since (5) is essentially error-free, the resolution of (2)-(4) 
determines the precision of the model. In order to achieve high 
precision, we have upgraded the algorithm in [7] to a higher 
order. The detailed formulation is available in [13], which 
adopts a predictor-corrector strategy [14], and is equivalent to 
the well-known 4th-order Runge-Kutta algorithm in terms of 
convergence [15]. Notice that the effect of gain dispersion is 
included in [13] as well, in order to take on optical pulses as 
short as ~1ps in future studies.  

To adapt the above algorithm to the experiment in Fig. 1, 
the modulation period is divided into 2M equal intervals (256 
to begin with, up to 4096 to ensure convergence and 
precision). For a 10GHz signal, this corresponds to a stepsize 
of δt=100/2M [ps]. The SOA is divided accordingly, with a 
space division δz=vgδt.  

At t=0, a trigger signal Ain
0(t) at the front facet, and the back 

injection (modulation) signal B(t) at the rear facet, are 
simultaneously injected into SOA. The trigger Ain

0 could be a 
random signal emulating a noise, or simply a sinus 
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Ain
0=asin(bt) with arbitrary (a, b), or a combination of both. As 

a matter of fact, we observed that the final outcomes are 
independent of the choice of Ain

0, as long as this last one has 
reasonable peak power (at -40dBm, say). Meanwhile, the 
modulation signal can be written as [1] 

  

0( ) exp[ (1 cos )]m mB t B tω= −∆ −       (6)  

where B0 is the peak amplitude of the modulation envelop, 2∆m 

is the modulation index, and ωm=2π×1010 is the modulation 
frequency. This function has been verified in [5]. The output 
envelop Aout

0(t) is then calculated using the algorithm 
mentioned above. It is converted to Ãout

0(ω) by Fourier 
transform (FT). The next input Ain

1(t)  is obtained from 
 

1 1 0( ) ( ) ( )in outA t FT H Aω ω−  =  
ɶ         (7) 

  
A complete roundtrip is thus accomplished. A random noise 

emulating spontaneous emissions in SOA could be added to 
Ain

1, as well as to the following roundtrips. It is observed, 
however, that the final outcomes are insensitive to such a 
noise, as long as its power level is realistic (-40dBm is applied 
in our simulations). The only perceptible consequence is a 
slight fluctuation (~10-4) of TB. This observation might be 
explained by the permanent presence of a large number of 
coherent photons in SOA. In effect, even at its intensity 
trough, |B|2min≈7.4mW (using B0

2=30mW and ∆m=0.7), which 
is far more intense than any possible noise. Therefore, 
spontaneous emissions could not grow perceptibly (except 
those photons joining mode-locked pulses) and remain weak 
enough to be neglected. Consequently, all noises are ignored 
after the trigger Ain

0. 
The new input Ain

1(t) is synchronized to B(t) to obtain 
Aout

1(t), while the optical gain g(z,t) in the SOA remains what it 
is after the precedent passage of A and B, as described in the 
algorithms in [7] and [13], i.e. g(z,t) is not reset to its initial 
state g=g0. This simply reflects the fact that every time slot is 
occupied by a pulse in harmonic mode-locking. After N~100 
roundtrips in favorable conditions, two consecutive inputs will 
have the same amplitude distribution, |Ain

N+1|=|Ain
N|, the steady 

state is thus achieved; otherwise |Ain
N+1|≠|Ain

N| whatever N is, 
the mode locking will not happen. The results presented in the 
next section are obtained with N=200.  

   

C. Theoretical verification   

Recall that for an arbitrary signal A(t), 
  

tTB ωσ σ= ⋅            
22

x x xσ = −      (x=t, ω)     

 1
( )n nx x I x dx

E

∞

−∞

= ∫         (8) 

( )E I x dx
∞

−∞

= ∫  

 where I(t)=|A|2 and I(ω)=|Ã|2 are the intensities in the time- and 
frequency domain, respectively. The integration limits (-∞,∞) 
are replaced by (0,T) for a periodic signal, and E is the signal’s 
energy in one period. The integrations in (8), as well as in the 
following, are carried out using the 6th-order Bode’s rule [14].  

For an ideal Gaussian, TB=1/2 and ∆f∆t=2ln(2)/π [1]. 
These two reference values could test the precision of the 
chain of calculation, including integration, FT, sampling rate, 
speed of convergence, and so on. We calculated that for an 
ideal Gaussian, A1=exp[-(t-t0)

2/τ0
2],  

 
TB=0.5±0.0002,   ∆f∆t=0.44127±0.00005  (Gaussian) 

 

where τ0 and t0 are arbitrary parameters. Compared with the 
exact values, the relative errors are ~10-4. For a chirp-free 
soliton, A2=sech[(t-t0)/τ0], the results are 
    

TB=0.5236±0.0002,   ∆f∆t=0.327±0.002    (soliton) 
 
The larger fluctuation (~10-3) of a soliton’s ∆f∆t is because 
there is no analytical function to estimate its spectral FWHM 
using least-squares fitting [14].  The method of interpolation 
has to be used, resulting in some uncertainty at 10-3 level. 
However, a less accurate estimate of ∆f∆t does not degrade the 
precision of the calculated pulse itself. Notice also that a chirp-
free soliton’s TB is higher than that of a chirp-free Gaussian, 
but the opposite is true for ∆f∆t. This discordance between TB 
and ∆f∆t reveals the important fact that ∆f∆t is not a good 
enough measure for judging the overall cleanness of a signal.   
 

  
  

         4(a)            4(b) 
 

Fig. 4.  Amplification of a 3ps Gaussian pulse by SOA.  4(a): The input and 
the output pulses’ (theory and calculation) intensities in a linear scale, output 
pulse’s phase in radian, and its chirp in THz. Notice that t is traced in a 
moving coordinate at the group velocity. 4(b): Spectrum of the output pulse.  
 

The precision of the model in nonlinear regime could be 
tested by launching an ideal Gaussian into SOA, and then 
comparing the amplified pulse with the analytical result in [6]. 
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Fig. 4(a) shows the result using a Gaussian of ∆t=3ps and 
E=Esat. Other parameters are indicated in the figure. Fig. 4(b) 
is the spectrum of the output pulse.  As can be seen in Fig. 
4(a), the shape of the calculated output pulse is seamlessly 
superposed with the theoretical curve. The calculation error of 
the algorithm in this nonlinear regime is difficult to estimate, 
since the theoretical curve itself involves integrations [6]. It is 
reasonable, however, to assume that the relative error in Fig. 
4(a) is of the same order as in the evaluation of (8), since the 
method of integration is the same. Consequently, we will adopt 
4 digits for TB and 3 digits for ∆f∆t in the following results.  

The optical phase φ(t) of the output envelop has a “S” form, 
resulting in a nonlinear negative chirp, defined by δf=-(2π)-1∂tφ 
in THz. The spectrum of this output pulse is highly distorted, 
as shown in Fig. 4(b). This output pulse has TB=2.677, which 
is far higher than the Gaussian limit. Due to its multi-peak 
spectrum, its ∆f∆t is hardly meaningful and is not estimated.      
  It could be said, therefore, that the numerical procedures 
used in this paper are trustworthy; its predictions are in 
excellent agreement with available theoretical results.   
 

IV.  PROPERTIES OF MODE-LOCKED PULSES 

The above algorithm is then applied to the experiment of 
Fig. 1, where the total fiber dispersion is estimated to be DL=-
25ps/nm; the filter bandwidth is BBP=6nm; the average optical 
power injected into the rear facet is measured to be 9mW, its 
peak intensity is therefore B0

2
≈23.5mW according to (6) with 

∆m=0.7. Substituting these values in the algorithm, mode-
locking is obtained with 0.145≤η≤0.185, which corresponds to 
a total transmission loss of 20log10η=-16.8~-14.7dB outside 
SOA. With η<0.145, the peak intensity of the output pulse will 
drop quickly below the noise level; if η>0.185, the SOA 
output will be chaotic and there will be no mode locking. Fig. 
5 shows the result obtained with η=0.152, which corresponds 
most likely to the experimental observation of Fig. 2.  

As can be seen in Fig 5(a), the peak intensity of the output 
pulse |Aout|

2
max=12.5mW. After passing through an output 

coupler (80:20), an EDFA amplifier (9dB) and a 50:50 power 
splitter, the peak intensity at the OSO in Fig. 1 should be 
12.5×(0.2×109/10×0.5)=9.93mW. Taking into account some 
uncertainties, such as mode conversion loss between SOA and 
SMF, this value is in good agreement with the experimental 
result of 9.2mW in Fig. 2. The calculated ∆f∆t=0.459, which is 
the same as experimental result (=0.46). Moreover, the 
calculated pulse’s waveform and spectrum are both well fitted 
by Gaussians, as shown in Fig. 5. This is also the case for 
experimental results in [5]. Furthermore, the slight fluctuation 
around the output pulse’s peak in Fig. 5(a) is indeed observed 
in Fig. 2, confirming once again the precision of the model and 
the algorithm, as well as the high resolution of the fast OSO. 
Notice also that the main peak in the spectrum is red-shifted of 
about -0.1THz relative to the carrier frequency (at f=0). 

TABLE I 
PARAMETERS USED IN THE SIMULATION 

Symbol Quantity Value or relation 

αH 

α int 

β0 

Henry’s factor 
SOA’s internal loss 
wavenumber  

6.0 
8.86 cm-1 

2π/λ 
BBP 

Esat 

Filter bandwidth  
SOA’s saturation 
energy 

variable, 5~6nm  
0.5 pJ 

2∆m modulation index  1.4 
D 
 
g0 

LSOA 

L 

dispersion parameter 
 
small-signal gain  
SOA’s length  
total length of the ring 

-139.2 ps/(nm⋅km) for DCF 
(to be averaged with SMF) 
51.84 cm-1      (G0=28dB net gain) 
1500 µm 
variable (DL=-10~-25 ps/nm)  

λ 
ω0 

ωm 

wavelength 
carrier frequency 
modulation frequency 

1.55 µm 
2πc/λ  s-1 (c=3×108 m/s) 
2π×1010 s-1 

vg group velocity in SOA c/4 m/s 
τ carrier lifetime 16 ps 

 

 

       
            5(a)  

             
                   5(b) 
   

Fig. 5.  Mode-locked pulse at η=0.152. 5(a): Intensities of input pulses (2 
consecutive inputs totally superposed) measured at the front facet (z=0), 
output pulse (with a Gaussian fit) and back injection intensities measured at 
the rear facet (z=LSOA). The time shift between the input and the output pulses 
corresponds to the transmission delay in SOA. 5(b): Spectrum of output pulse 
with a Gaussian fit. 
 

With its ∆f∆t=0.459, this output pulse is well qualified as 
transform-limited, even though some fluctuations can be 
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observed in both its waveform and spectrum. However, it has 
TB=2.526. This value is comparable to that obtained in Fig. 4, 
where severe distortions are clearly observed in both amplified 
pulse’s waveform and spectrum. 

As a matter of fact, the output pulse’s waveform in Fig. 5(a) 
and its spectrum in Fig. 5(b) stretch widely below their half-
maximum levels, resulting in the poor TB value above. These 
low-level fluctuations cannot be filtered out, however. By 
using a narrow-band filter (0.5~1nm) around the pulse’s 
spectrum in Fig. 5(b), the pulse will change substantially its 
shape and spectrum, or simply collapse. This behavior is not 
revealed by its ∆f∆t value, in contrast to its TB. This issue will 
be further illustrated and discussed in the following examples. 

 

 
 
Fig. 6.  Properties of mode-locked pulse at different cavity attenuation η. 
Pulse’s width is divided by 10, its peak power is normalized to B0

2=23.5mW.    
 

The output pulse’s ∆t, ∆f∆t, TB, as well as its normalized 
peak power |Aout|

2
max/B0

2 within the mode-locking range, are 
traced in Fig. 6. As can be seen in Fig. 6, the values of ∆f∆t 
within the entire locking range remain very close to 0.5 and, 
therefore, the output pulse is always transform-limited. In 
contrast, its TB values vary strongly, with the minimum point 
TB=0.5551 obtained at η=0.172. At this point, the pulse has 
similar properties as those in Fig. 7 in terms of phase and 
chirp, and will be discussed together there. The fundamental 
Gaussian limit is thus still some distance away. It is not 
obvious to experimentally localize this minimum TB point 
using other, more measureable quantities as background. 
Notice also that, by adjusting the cavity loss, it is possible to 
obtain transform-limited pulses with a width ∆t=10~25ps and a 
peak power of a few mW after the output coupler.      

With DL=-25ps/nm, as well as with other DL values used in 
the following, it is possible to obtain mode-locked pulses using 
other sets of parameters. In the above case of DL=-25ps/nm, 
for example, the model predicts that mode-locking can happen 
with B0

2 varying from a few tens of mW up to well beyond 
100mW, if G0=28dB and BBP=6nm are maintained. However, 
an increasing B0

2 reduces the effective SOA gain for mode-
locked pulses, the cavity loss has to be reduced (η increased) 
to compensate the effect, as the model correctly predicts in 

agreement with physical insight. The problem of DCF-SMF 
link, mentioned in Section II, might then become a hurdle.  

In order to further reduce the minimum value of TB=0.5551 
obtained with DL=-25ps/nm, DL and B0

2 are allowed to change 
in the simulation, while other parameters in Table 1 are kept 
unchanged. Fig. 7 shows the result obtained with DL=-23.4 
ps/nm, B0

2=36.8mW and η=0.182. 
           

  
7(a) 

     
7(b) 

                                     
7(c) 

 
Fig. 7.  Pulses obtained with DL=-23.4, B0

2=36.8mW and η=0.182.  
7(a): Input and output pulses’ shapes and their Gaussian fits;  
7(b): Correspondent optical phases (/100) in radian and chirps in THz;  
7(c): Output spectrum with a Gaussian fit.  
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The output pulse in Fig. 7 has TB=0.5086, which is very 
close to the fundamental Gaussian limit. It is even below that 
of an ideal hyperbolic secant (0.5236). The difference between 
the two values is well beyond the error margin in the 
calculation of TB. As a consequence, this pulse cannot be a 
soliton. Notice that this remark is based on TB, not on curve 
fitting or ∆f∆t.   

From a theoretical point of view, only in the limit of slowly 
saturating gain, the master equation in [2] could become the 
nonlinear Schrödinger equation (NSE), whose solution is a 
soliton. This assumption is acceptable for erbium doped fibers, 
where the carrier lifetime of ~10ms is far longer than the pulse 
widths [2]. In the case of SOA, however, the carrier lifetime is 
comparable to the pulse widths, this assumption is not true. In 
contrast, the master equation in [1] does not require the above 
condition. Instead, it applies the quadratic approximation, 
cos(ωmt)≈1-(ωmt)2/2 around t=0 in (7), which is usually 
acceptable around the trough of the modulation function (see 
Fig. 5(a)). Unsurprisingly, therefore, SOA-related lasers, such 
as this one, would most likely support Gaussian pulses, if 
cavity dispersion is correctly adjusted.  

Interestingly, the pulse in Fig. 7 is hardly transform-limited 
(∆f∆t=0.634), even though both its waveform and spectrum 
are remarkably well fitted by Gaussians. Here, once again, TB 

and ∆f∆t deliver contradictory signals about the cleanness of a 
pulse. 

The optical phases and chirps illustrated in Fig. 7(b) could 
help understand why this pulse has such a low TB. Contrary to 
the nonlinear “S” shape of the phase in Fig. 4(a), both input 
and output pulses in Fig. 7(b) have nearly linear phases during 
the time slots where the pulses’ intensities are significant. As a 
consequence, their instantaneous frequencies (chirps) are 
nearly constant during the corresponding time slots. According 
to Fourier Shift Theorem, therefore, their spectra are simply 
red-shifted, as confirmed by Fig. 7(c). In effect, it is this nearly 
constant chirp which explains the cleanness of this pulse. 
Furthermore, a careful inspection of Fig. 7(b) reveals that the 
input and the output chirps have opposite slopes (upward for 
the input, downward for the output). This is the result of the 
dispersion management with DCF. In effect, the role of DCF 
in this ring laser is not to eliminate the spectral red-shift 
associated with SOA’s amplification, but to smooth the pulse’s 
phase so that the red-shift becomes nearly constant and 
therefore harmless regarding the cleanness of the pulse.   

It is probable that the above TB=0.5086 could be further 
reduced if G0 and ∆m are allowed to change as well. The 
interest of doing this seems limited, however, since it would 
not help gain more insight into the system.  

Notice that the pulses in Figs. 5-7 are essentially unchanged 
to a varying BBP between 5~8nm in the simulation, implying 
that the initial assumption of carrier frequency ω0 being at the 
center of the filter is acceptable for these pulses, whose 
spectral spans are narrow compared to BBP. Our simulation 

also shows that clean pulses (TB<0.6 and ∆f∆t~0.5, say) can 
be expected in a range DL=-23±3ps/nm by adjusting B0

2 and η 
only (similar to Fig. 6). All these provide some margins for 
practical applications. 

 

 
8(a) 

 

   
  8(b) 

 

      
8(c) 

 
Fig. 8.  Pulse obtained with DL=-10ps/nm and BBP=5nm.  
8(a): Input and output pulses’ waveforms and the back injection;  
8(b): Output pulse’s spectrum and the filter function; 
8(c): Calculated intensity autocorrelation trace of the output pulse. 
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If the cavity dispersion DL deviates substantially from the 
above equilibrium point (DL~-23ps/nm), however, the pulse’s 
phase and chirp will become erratic, resulting in poor TB and 
misleading ∆f∆t values. A typical example is shown in Fig. 8, 
which is obtained with DL=-10ps/nm, B0

2=27.9mW, η=0.206 
and, noticeably, BBP=5nm, which differs from previous cases 
(BBP=6nm).  

The output pulse in Fig. 8(a) has a peak power of 24.8mW 
and a relatively narrow width of ∆t=6.90ps. It has complicated 
waveform and spectrum, resulting in TB=10.31, a very poor 
value indeed. Meanwhile, its ∆f∆t=0.426, which paradoxically 
qualifies the pulse as transform-limited. 

As shown in Fig. 8(b), the spectrum of this pulse is far more 
extended than previous cases of Figs. 5-7. As a result, the 
interaction of this pulse with the filter becomes important. In 
effect, the mode-locking cannot happen with BBP=6nm if other 
parameters are roughly the same as before. With the help of a 
narrower filter of 5nm, the lower (red) end of the pulse’s 
spectrum will be re-shaped and limited, as can be seen 
between f=-0.5~-0.25THz in Fig. 8(b). Since the spectral 
energy is near zero on the other (bleu) side of the filter, a 
narrower filter is effectively equivalent to a red-shift of the 
carrier frequency ω0 from the center of a wider filter. In other 
words, it is the spectral distance between ω0 and the red-end of 
the filter that matters, as long as BBP is wide enough. As a 
consequence of this interaction between the pulse and the 
filter, the filter bandwidth BBP should be allowed to change or, 
alternatively, the carrier frequency ω0 needs to be shifted, in 
order to obtain mode-locked pulses in the condition of 
unbalanced dispersion. To the authors’ best knowledge, this 
“red-wall” effect, i.e. the spectral re-shaping by the filter’s red-
end to stop pulses’ excessive red-shift so as to maintain mode-
locking, is not predicted before this study. 

The second-order autocorrelation trace of the output pulse, 
calculated using Wiener-Khinchin Theorem, is shown in Fig. 
8(c). It is remarkably clean, with the FWHM width t0=10.5ps. 
This corresponds to ∆t=7.42ps if the initial pulse is supposed 
to be a Gaussian, or ∆t=6.77ps if a soliton is assumed [16]. 
Both values are in good agreement with the original one. 
Meanwhile, all details of the original pulse are washed out. 
Were this pulse indeed produced in an experiment, and then 
measured by the usual autocorrelation technique, it would not 
be difficult to fit the autocorrelation trace approximately with 
both assumptions. As a consequence, conclusions or theories 
that follow might be unrealistic. Therefore, independent of 
theoretical models or laser systems which may produce such a 
pulse, its potential existence should not be ignored.      

 

V. CONCLUSION 

The model presented in this paper demonstrates its capability 
of predicting and analyzing the behaviors of mode-locked 
optical pulses in a SOA-fiber ring laser. The associated 
algorithm is shown to be accurate enough to address the 
questions asked at the beginning of the paper.   

In the condition of adequate cavity dispersion, nearly perfect 
Gaussian pulses can be expected. Its time-bandwidth product 
using RMS definition could be very close to the fundamental 
Gaussian limit. These pulses would have a slight and linear 
chirp as a result of the dispersion management. Thanks to their 
narrow spectral widths, these pulses are resilient to parameter 
variations, including filter bandwidth change. If the cavity 
dispersion is not correctly adjusted, the cleanness of mode-
locked pulses will degrade, as measured by their energy 
spreads in both time- and frequency domain. These pulses will 
then have rather complicated waveforms and spectra, and are 
consequently more sensitive to parameter variations.  

It is also demonstrated that this SOA-fiber ring laser does not 
support optical solitons. The method and arguments developed 
in this paper could be applied to other similar laser systems 
using SOA as active devices.  

The results obtained in this study highlight the inadequacy of 
∆f∆t, the time-bandwidth product using FWHM definition, as 
an objective criterion for judging the overall cleanness of a 
pulse. The correlation between the cleanness of a pulse and its 
∆f∆t value is not as strong as usually expected. As a 
consequence, the tacit significance of Transform-limited Pulse 
seems questionable, as well as its widespread use today.  

The above results and observations are inseparable with a 
careful evaluation of optical phase. It is not obvious how to 
reveal the details of these pulses using intensity-based 
approaches such as autocorrelation. Indeed, some questions 
might be asked as to what extent an autocorrelation trace could 
be used, and whether the curve-fitting is trustworthy enough to 
serve beyond a pure illustrative propose. 
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