
HAL Id: hal-01024270
https://hal.science/hal-01024270

Preprint submitted on 15 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Reduction Algorithm for Packing Problems
Michaël Gabay, Hadrien Cambazard, Yohann Benchetrit

To cite this version:
Michaël Gabay, Hadrien Cambazard, Yohann Benchetrit. A Reduction Algorithm for Packing Prob-
lems. 2014. �hal-01024270�

https://hal.science/hal-01024270
https://hal.archives-ouvertes.fr

A Reduction Algorithm for Packing Problems

Michaël Gabay∗, Hadrien Cambazard∗, Yohann Benchetrit∗

July 15, 2014

Abstract: We present a reduction algorithm for packing problems. This reduction is very
generic and can be applied to almost any packing problem such as bin packing, multi-dimensional
bin packing, vector bin packing (with or without heterogeneous bins), etc. It is based on a domi-
nance applied in the compatibility graph of a partial solution and can be computed in polynomial
time in the input size and the number of bins, even on instances with high-multiplicity encoding
of the input.

Keywords: Packing, Reduction algorithm, Multi-dimensional Packing, Vector Packing, Bin
Packing, High-Multiplicity

1 Introduction

We are interested in combinatorial packing problems in general. There are usually two ways to
solve such problems. The first one is to focus on the assignment of the items: one has to decide
in which bin each item will be packed. The second one is focused on patterns: given all the
feasible packings of items in bins, which patterns are used in an optimum solution and how many
times? This second approach is the generalization of [1] approach for the cutting-stock problem.
Pattern based exact algorithms are usually more efficient when the number of patterns is limited
or there are items with large multiplicities while assignment based algorithms are usually better
for heuristics and when the number of different items is large.

In this paper, we focus on assignment based approaches and propose a reduction algorithm
based on a dominance property. In an assignment based solver for a packing problem, this prop-
erty can be used to fix the assignment of many items at once and reduce the problem to a smaller
packing problem. This is especially well suited to be integrated in branch-and-bound approaches
for packing problems.

In packing problems, Dual Feasible Functions have been extensively used to obtain lower
bounds [2, 3]. In this paper, we are interested in reduction procedures which ensure that op-
timality is preserved in the reduced problem. Such reductions have already been proposed by
authors on specific packing problems, see e.g. [4–6]. [6] introduced the notion of Identically Fea-
sible Function (IFF) to properly state the idea of reductions. The authors then propose IFF for
2-dimensional bin packing problems to remove small items and increase the size of large items.
In [7], they investigate the use of tree-decomposition techniques to identify subproblems to be
solved independently in a 2-dimensional packing problem with conflicts. Notice that reductions
procedures or problem separation techniques were proposed very early by [4].

Reduction algorithms are often critical for the success of packing algorithms, see e.g. [8, 9] for
presentation of reduction algorithms on the knapsack and the bin packing problems. In multi-
dimension or with additional constraints, it is even more critical to be able to reduce packing
problems to the smallest possible core problems. In this paper, we present a reduction algorithm

∗Laboratoire G-SCOP 46, avenue Félix Viallet - 38031 Grenoble Cedex 1 - France

1

which can be used on whole instances of packing problems and can also be applied in the course
of an assignment based algorithm for packing problems.

2 Definitions

We define a pure packing problem as a packing problem in which the capacities of the bins and
the weights of the items are non-negative and the only constraints are the capacity constraints.
The results presented in this paper are however much more general than this case. A number of
other constraints can be added to the problem and if we simply take them into account when we
compute the compatibility graph, then all the results for pure packing problems will still hold.
For instance, we can add the following types of constraints:

• Variable item weights: if the weights of an item depends on the bin it is assigned to.

• Conflict constraints between items: if there are sets of conflicting items such that two items
in a same set cannot be in a same bin.

• Incompatibility constraints between items and bins: if some items are incompatible with
some bins, for instance because the items are fragile or heavy.

Basically, the results can be generalized to most constraints which do not involve both set of bins
and set of items (for instance, spread or dependency constraints involve both set of bins and set of
items).

A partial solution of a packing problem is a solution in which some but not all the items have
been packed. Given a partial solution of a packing problem, observe that packing the remaining
items is an instance of the same packing problem but in which bins have variable sizes. Pure
packing problems have the nice property that for any feasible assignment, any subset of the bins
and of the items in these bins is a partial solution of this problem and a feasible solution to the
packing problem defined by only these bins and items. So if a partial solution is not feasible, then
there is no feasible solution of the whole instance having this partial solution as a subset.

This is not necessarily true for “non-pure” packing problems such as the Machine Reassign-
ment Problem1. In this problem, we also have to spread the items: a subset of a feasible solution
may violate the spread constraint. However, the partial solution property holds for the underlying
vector bin packing problem with heterogeneous bins.

We say that a partial solution P is feasible if it is a feasible solution to the pure packing problem
defined with only the bins and items appearing in P. We say that it is g-feasible (g stands for
globally) if P is a subset of a feasible solution to the underlying pure packing problem. Given a
bin b (resp. a subset of bins X) we denote by bP (resp. XP) the set of items contained within this
bin (resp. this subset of bins) in partial solution P.

Given a feasible partial solution, in the remaining subproblem, not all items fit into all bins.
Let b be a bin, we say that an item i < bP is compatible with or fits into the bin b if the set of items
bP ∪{i} fits into the bin b (starting from P, packing i into b gives another feasible partial solution).

Let I be the set of items and B be the set of bins. In a partial solution P, we denote by IP the
set of unpacked items and by BP the set of bins in which at least one item from IP fits. Let X ⊆ BP
be a subset of bins, we denote by Γ(X) = {i ∈ IP : ∃b ∈ X s.t. i fits into b}, the set of items which are
compatible with these bins.

We have the following property:

Property 1. Given a partial solution (possibly with no item assigned) P, for any X ⊆ BP such that there
is a feasible packing of Γ(X) into X, let PX be a partial feasible solution extending P and in which all
items from Γ(X) are assigned to X. P is g-feasible if and only if PX is g-feasible.

1http://challenge.roadef.org/2012/en/

2

Proof. If PX is g-feasible, since P is a subset of PX , P is obviously g-feasible.
Suppose P is g-feasible and consider a feasible solution S (S is a solution to the complete pure
packing problem) which is an extension of P. Notice that bins from X contain only the items
which they were assigned in P and some items from Γ(X). If we remove the items in Γ(X) from S ,
we obtain a partial solution P ′ which is clearly g-feasible. Moreover, in P ′ , the bins from X are
assigned exactly the same items as in P. So packing Γ(X) into X is feasible in P ′ . We pack these
items as in PX and obtain a feasible solution S ′ containing PX . Therefore, PX is g-feasible.

Property 1 gives a decomposition of packing problems into subproblems. It states that if we
can find a subset of bins such that there is a feasible assignment of all of their compatible items
within these bins, then we can pack these items in the bins and remove both the bins and items
from further considerations. A valid set X is illustrated Figure 1, page 5.

Hence, if we can find such a set of bins and a feasible packing, we can assign all of them at once
and reduce the problem to a smaller subproblem. However, given a set, determining whether it
verifies the property is a hard matter. For instance, for X = B and P = ∅we have the initial packing
problem and even the (single dimension) bin packing problem is strongly NP -hard and does not
have a PTAS (unless P =NP of course).

We propose a reduction algorithm based on flow-computation in the graph of items and bins
compatibilities. Given a partial or an empty solution, it finds a feasible set X and a feasible assign-
ment of the items from Γ(X) into X. In Section 5, we present the reduction algorithm with single
item assignments. It also proves that any packing problem in which the number of bins is greater
than or equal to the number of items can be reduced in polynomial time to a packing problem
with fewer bins than items. In Section 6, by using network flows, we generalize the results of Sec-
tion 5 to more complex assignments. We present preliminary results and additional definitions
in Section 4. In the next section, we expose a quick discussion explaining complexity matters
in these problems and why the results presented in this paper are holding for both decision and
optimization packing problems.

3 Discussion

We have not stated yet whether we are considering decision or optimization problems and which
are the complexity parameters. In this section, we seek to clarify these matters.

3.1 Decision or Optimization ?

The problem description may let the reader think that we are focusing on decision problems. In
decision problems, the number of bins is given. So checking bins’ and items’ compatibilities is
straightforward. Moreover, we do not have to consider adding or removing bins: B is known in
advance. In our case, we are considering both decision and optimization problems. In optimiza-
tion problems, in any assignment based algorithm, if an item does not fit in any bin, then we
have to add a new bin (the partial solution is not g-feasible with the current number of bins). So
we can modify the algorithm to immediately add a new bin and extend B with it once an item
is compatible with none of the bins. The results of the dominance properties and the reductions
applied are not modified since adding a bin neither adds nor removes any edge from the other
bins. One can argue that there are maybe several types of bins but, in this case, in exact algorithms
we “only” have to branch to select which kind of bin is added. The algorithm can be adapted by
simply branching earlier on the new bins. Moreover, in order to minimize the number of bins,
many algorithms repeatedly solve the problem with a fixed number of bin. In this case, we are
actually solving several decision problems.

In the following, we assume that the number of bins is fixed and equal to |B| but the results
can easily be generalized to optimization problems.

3

3.2 Complexity

Regarding complexity, the algorithm is polynomial in the input size and in |B|. If we have a
high-multiplicity encoding of the input, it is legitimate to expect a high-multiplicity encoding of
the output. For instance an output can be specified by giving the patterns used (each pattern
being a way to fill a bin) and for each pattern how many items of each type are contained in the
bin and how many times the pattern is used. Such an encoding is compact but not necessarily
polynomial in the input size. Indeed, |B| is not necessarily polynomial in the input size when a
high-multiplicity encoding is used. However, we are interested in algorithms here (and in solving
NP -hard problems. . .) and, above all, we are considering assignment based algorithms. Meaning
that |B| is small enough to consider such approaches. Finally, observe that even assignment based
algorithms can assign many items at once.

In the end, the algorithm may not be polynomial in the input size but it is polynomial in the
size of the space which the programmer decided to allocate to his algorithm.

In the following, we assume that given a partial solution P, an item i and a bin b, we have
access to an oracle which tells us whether i fits into b. However, we remark that for hyper-boxes
geometric packing problems (strip packing, multi-dimensional bin packing,...) this problem is
NP -hard. Yet, for algorithms which do not consider reorganizing the contents of the bins in
partial solutions, we can usually find out in polynomial time whether an item fits into a given bin.

4 Preliminaries

In the following, we use the bipartite compatibility graph of partial assignments. In this graph,
each unpacked item is a vertex in the first partition and each bin in which at least one item fits is
a vertex in the second partition. We denote this graph by GP = (IP ,BP ,EP); the set of vertices is
denoted by VP = IP∪BP . Let u ∈ IP and v ∈ BP , the edge {u,v} is in EP if the item u fits into the bin
v. Figure 1 illustrates the compatibility graph of a vector packing problem with two dimensions
and also gives a set X satisfying Property 1. We remark that if we use constraint programming,
the compatibility graph is obtained directly from the variables domains after filtering.

In a graph G = (V ,E), we denote by δ(u) = {{u,v} : v ∈ V and {u,v} ∈ E} the set of edges incident
to u ∈ V ; we denote by d(u) = |δ(u)| the degree of a vertex u ∈ V and by Γ(X) = {v ∈ V \ X :
∃u ∈ X s.t. {u,v} ∈ E} the neighbors of a set of vertices X ⊆ V . For singletons, we use Γ(v) instead
of Γ({v}). In the following we will also use directed graphs but d, δ and Γ always refer to the
(underlying) undirected graph.

In the next section, we use Hall’s theorem which is recalled below:

Theorem 1 (Hall’s Theorem). A bipartite graph G = (U,V ,E) has a matching saturating U if and only
if ∀X ⊆U , |X | ≤ |Γ(X)|.

Now, let us consider the compatibility graph GP for a given P and derive some basic properties
from this graph. Let u ∈ IP , if d(u) = 0 then the item u cannot be packed. Hence, the partial
solution P is g-infeasible. If d(u) = 1, then δ(u) = {{u,v}} for some v ∈ BP and if the number of bins
cannot be increased, the item u has to be packed into the bin v.

We said that we are only interested in bins in which at least one of the remaining item fits.
Notice that if we added the other bins to the graph their degrees would be 0 so they would be
isolated vertices which are modeling nothing useful. For a bin v ∈ BP , if d(v) = 1 then only one
item u ∈ IP can be assigned to the bin v. In any pure packing problem, it is dominant to pack this
item into v. So we can assign item u to v and remove u and v from the compatibility graph.

Observe that, when an item is assigned to a bin, we can update the compatibility graph and
ensure that all degrees are greater than or equal to 2 in linear time in the size of IP . When the
graph is updated, we only remove edges and vertices but never add others. In the following,

4

I

B3,3

2,4

3,2

1,1

1,2

2,1

3,4

5,6

2,2

1,4

2,1

The labels in the vertices from I are the requirements of the items in each dimension and the labels in the vertices from
B are the remaining capacities of the bins in each dimension. Edges are denoting compatibilities. The three vertices
{(2,2), (1,4), (2,1)} from B form a set X satisfying Property 1. Plain edges are edges from δ(X), other edges are dashed. A
maximum matching in this graph is given in red.

Figure 1: The bipartite compatibility graph of a vector packing problem.

we do not assume that all degrees are greater than 1 since it can result in loss of generality for
optimization problems (when an item u is assigned because d(u) = 1).

We first present the reduction when there are no multiplicities on the items and at most one
item is assigned to a bin. Then, we generalize the reduction algorithm to account for multiplicites
on the items and perform reductions with assignments of more than one item into a bin. In this
general case, the compatibility graph will be slightly different. We present the changes in Sec-
tion 6.

5 Matching-based reduction algorithm

In this section, we show that given the compatibility graphwe can find a setX satisfying Property 1
and which is maximum for one-to-one assignments. A one-to-one assignment is an assignment in
which each item is assigned to one bin and at most one item is assigned to a bin.

In order to find this set, we compute a maximum matching M ⊆ EP in the compatibility
graph GP . We orient the edges from GP as follows: let u ∈ IP and v ∈ BP two adjacent vertices, i.e.
e = {u,v} ∈ EP , if e ∈M we orient e from v to u, otherwise e is oriented from u to v. We denote by
DM = (IP ,BP ,AM) the new directed graph. Let UM be the set of all vertices from IP which are not
saturated byM , we denote by RM the set of vertices reachable fromUM inDM (we haveUM ⊆ RM),
and by KM = IP \RM the items which are unreachable from UM and LM = BP \RM the bins which
are unreachable from UM . Figure 2 illustrates the orientation and these sets, in the oriented graph

5

obtained from the matching Figure 1.
We have the following result:

Theorem 2. LM = BP \RM is a set satisfying Property 1 and the matchingM gives a feasible assignment
of Γ(LM) into LM .

RM ∩I RM ∩B

KM

LM

3,3

2,4

3,2

1,1

1,2

2,1

3,4

5,6

2,2

1,4

2,1

The oriented graph corresponding to the example and the matching illustrated Figure 2. The vertices are labeled as in
Figure 2. The gray vertex (3,3) is the only node in the set UM . All dashed edges are oriented from left to right and all red
edges are edges from the matching and oriented from the right to the left.

Figure 2: An oriented compatibility graph

Proof. This proof is based on the proof from König’s theorem [10]. König’s theorem states that in a
bipartite graph, the cardinality of a maximum matching is equal to the cardinality of a minimum
vertex cover.

If M saturates IP , then UM = RM = ∅ and LM = BP . Moreover, assigning each item to its
corresponding bin in the matching is clearly a feasible assignment of all items.

Otherwise, M does not saturate IP . By definition of RM , there is no arc from RM to LM . More-
over, there is no arc from LM to RM since any vertex from RM ∩IP is either not saturated byM (in
UM) or matched with a vertex in RM ∩BP . So Γ(LM) ⊆ KM .

Finally, by definition of UM and KM , all vertices in KM are saturated by M . Moreover, let
u ∈ IP and let e = {u,v} ∈ M if v ∈ RM , then by definition of RM , u ∈ RM . Hence, the matching
M saturates all vertices of KM using edges from BP \ RM = LM to KM . Therefore KM ⊆ Γ(LM)
and hence Γ(LM) = KM . Moreover, assigning each item from KM to its corresponding bin in the
matching is feasible since only one item is assigned to each bin and edges are denoting feasible
assignments.

Based on Theorem 2, we can compute a feasible set X of one-to-one assignments using Algo-
rithm 1.

6

Compute a maximum matching M in GP ;
Compute RM ;
return M , X = BP \RM ; // The matching gives the assignment

Algorithm 1: Matching-based reduction algorithm

The reduction assigns any item in KM to its bin matched by M . Then, LM and KM are taken
out of consideration. We denote by P ′ the new partial assignment. If KM was empty, then P ′ = P.
We have the following property:

Property 2. The set X returned by Algorithm 1 is maximum for one-to-one assignments.

Proof. Let Q ∈ BP be a feasible set for Property 1 with one-to-one assignments. Observe that a
one-to-one assignment is an assignment of one item into each bin, so it is a matching. Since Q is a
feasible set, there is a one-to-one assignment, hence a matching, of Γ(Q) into Q. LetW be a second
feasible set for Property 1 with one-to-one assignments. Clearly, there is a matching saturating
vertices from Γ(W) with edges from Γ(W) to W . Hence, there is a matching saturating vertices
from Γ(W ∪Q) with edges from Γ(W ∪Q) to W ∪Q and |Γ(W ∪Q)| ≤ |W ∪Q|.

Therefore, in order to show that a feasible set X with one-to-one assignments is maximum, it
is sufficient to show that it is maximal with respect to the union. Moreover, observe that for any
set W ∈ BP , disjoint from Q, if Q ∪W is a feasible set with one-to-one assignments, then there
is a matching saturating vertices from Γ(W) \ Γ(Q) with edges from W to Γ(W) \ Γ(Q). Hence,
|W | ≥ |Γ(W) \ Γ(Q)|. Therefore, it is sufficient to show that once the reduction has been applied, in
the new compatibility graph there is no set X ⊆ BP such that |X | ≥ |Γ(X)|.
Once the reduction has been performed and items fromKM have been assigned to the bins from LM ,
we denote by P ′ the extended partial assignment and we have:

Lemma 1. In GP ′ , ∀X ∈ BP ′ , |X | < |Γ(X)|.

Proof of Lemma 1. LetM ′ be the restriction ofM toGP ′ ;M
′ is a maximummatching ofGP ′ . Clearly,

M ′ is not a perfect matching and LM ′ = KM ′ = ∅.
Hence, the vertices of BP ′ = RM ′ ∩ BP ′ are saturated by M ′ . By Hall’s theorem, ∀X ⊆ BP ′ ,

|X | ≤ |Γ(X)|. Suppose there exists X ∈ BP such that |X | ≥ |Γ(X)|, then |X | = |Γ(X)| and X is saturated
by M ′ . Therefore, M ′ is a perfect matching of GP ′

|X∪Γ(X)
(the restriction of GP ′ to X ∪ Γ(X)). Hence,

Γ(X)∩UM ′ = ∅, there is no arc from BP ′ \X into Γ(X) and obviously there is no arc from IP ′ \ Γ(X)
into X. Which contradicts LM ′ = ∅ and KM ′ = ∅.

By Lemma 1, BP \ RM is maximal with respect to the union and hence, it is maximum for
one-to-one assignments.

As a consequence of Lemma 1, in a single run of the algorithm, we have proceeded to all
feasible one-to-one assignments.

The algorithm computes a maximum matching and marks the vertices of the graph in a single
pass. Therefore, the overall complexity is the complexity of the maximum matching algorithm
which is O(|I |2.5) if we use Hopcroft-Karp’s matching algorithm [11].
A second consequence is the following:

Corollary 1. For pure packing problems in which we can compute the compatibility graph in polynomial
time: any instance with more bins than items (|I | ≤ |B|) can be reduced to an instance with more items
than bins (|I | > |B|) in polynomial time.

On consecutive runs of the algorithm, the efficiency of the maximum matching algorithm can
be improved by updating the previously computed maximummatching and using it for a hot start
of the matching algorithm.

7

Observe that for the special case of the pure bin packing problem finding the set X is trivial.
Indeed, an itemwhich fits into a bin fits into all bins with smaller weight. Hence, the compatibility
graph is (doubly) convex. The maximummatching can be obtained by simply sorting the bins and
the items, or even in linear time with the algorithm from [12].

6 Generalized reduction algorithm

In this section, we extend previous results to other assignments than one-to-one assignments and
instances which are specified using a high-multiplicity encoding of the input.

First, observe that a matching in a bipartite graph G = (U,W,E) is an integer flow in the same
graph extended with a source s connected to all vertices from U and a sink t connected to all
vertices from W , and all edges from E being oriented from U to W . We now use this oriented
compatibility graph D = (V ,A) (resp. DP = (VP ,AP)) in place of the previous one. We denote by
c(u,v) (resp. cP (u,v)) the capacity of the arc (u,v) in the compatibility graph (resp. the compati-
bility graph of the partial solution P).

In order to generalize the results to high-multiplicity, we need to ensure that the size of the
graph is polynomial in the input size and |B|. In order to achieve this, we simply merge vertices
from a same item type into a single vertex. Suppose that I is now the set of different item types
and mi the multiplicity of item i ∈ I . In a partial solution P, we now consider that IP is the set of
remaining different item types and mP

i denote the residual multiplicity of the item i (the number
of items of type i which are not already packed in P). For an item i ∈ I , we set c(s, i) = mi (resp.
cP (s, i) =mP

i) and c(i,b) = +∞ ∀b ∈ B with (i,b) ∈ A.
Now, suppose you expand this graph and replicate mi times each vertex i ∈ I . Let b ∈ B and

N = {i ∈ I : (i,b) ∈ A} (since Γ is the neighborhood in the undirected graph, this is also Γ(b)∩ I).
We denote by κb the maximum number such that any subsets of items in N of size at most κb can
be packed in b; κb = max{k : ∀J ⊆ N with |J | = k, J fits into b}. We call κb the robust capacity of the
bin b. The capacity of the arc (b, t) is set to c(b, t) = κb. We denote by κ = (κ1, . . . ,κ|B|) the vector of

robust capacities of the bins. We define κP
b and capacities of the arcs similarly for partial solutions.

Similarly to one-to-one assignments, we define a κ-assignment as an assignment in which at most
κb items are assigned to the bin b.

The compatibility graph now looks like the graph Figure 3. An example of a compatibility
graph is illustrated Figure 4.

u1

u2

u3

u4

v1

v2

v3

s t

m1

m2

m3

m4

κ1

κ2

κ3

Figure 3: A generalized compatibility graph

8

3,4

2,5

2,2

1,1

0,4

0,1

5,5

2,7

3,3

0,8

s t

1

1

1

3

1

2

1

1

2

3

Figure 4: An example of a generalized compatibility graph for a 2-dimensional vector packing
problem

Observe that determining the values of κ is easy for single dimension bin packing problems:
Sort the items by decreasing order of the weights and let r be the remaining space in bin b. Let wi

be the weight of item i and j =min{k :
∑k

i=1miwi > r}. Then, κb =
∑j−1

i=1mi +max{k : k ≤mj and k ×

wj +
∑j−1

i=1miwi ≤ r}.
For vector bin packing problems, we compute κb by applying the same procedure on all di-

mensions: κb = minκ
j

b where κ
j

b is the value of κb for the bin packing problem on dimension
j .

For other packing problems, this problem can beNP -hard but as we will see, only the diversity
of combinations is depending on the values of κ’s. So setting them to 1 will simply limit solutions
to one-to-one assignments. Additionally, any heuristic giving a lower bound on the values of κ’s
will yield feasible reductions. So, for instance, in a 2-dimensional bin packing problem, if we
create a rectangle whose width is the largest width among the items compatible with b and whose
height is the largest height among the items compatible with b; then any heuristic giving a feasible
number of such rectangles which can be packed, gives a lower bound on κb. And we can set the
capacity c(b, t) to this lower bound.

Finally, we can use fixed-parameter tractability results: when the number of items is fixed, for
a set of items of the given size, we can usually determine in polynomial time whether the items
fit. One can use such results when the number of compatible items is small but the number of
combinations of a fixed number of items is quickly impracticable if we consider combinations of
more than 3 items and bins with many compatible items.
Algorithm 2 gives the generalized reduction algorithm.

The construction used for Algorithm 1 is similar to the construction used in a proof from
König’s theorem [10]. König’s theorem states that in a bipartite graph, the cardinality of a maxi-
mummatching is equal to the cardinality of a minimum vertex cover. Computing RM as we did in
Section 5 is the same as computing a minimum vertex cover from a maximum matching. In Algo-

9

Compute a maximum flow f in DP ;
Compute Rf , the set of all vertices reachable from s in the flow residual graph;

return f , X = BP \Rf ; // The flow gives the assignment

Algorithm 2: Generalized reduction algorithm

rithm 2, we compute the set of reachable vertices in the residual graph which is actually the same
as computing a minimum cut based on a maximum flow. It is very natural to compute similar dual
elements since König’s theorem is a special case of the max-flow min-cut theorem.

In Algorithm 2, we mark R, the set of all vertices which can be reached from s in the residual
graph. Clearly, R contains U , the set of unsaturated vertices from I . Observe that with unit
multiplicities, the set R is the same set as in Algorithm 1. We remark that with unit multiplicities,
if we remove s, t and the edges with infinite capacities which have a positive flow from the residual
graph, then the residual graph is exactly the directed graph defined in Section 5.

In fact, the proof of correctness of the algorithm is entirely based on Theorem 2.

Theorem 3. Algorithm 2 gives a set X satisfying Property 1 and a feasible assignment. Moreover, X is
maximum for κ-assignments.

Proof. From DP we create the following graph G′P = (I ′ ,B′ ,E): let I ′ be the set of vertices in which
each vertex i ∈ IP ∩V is replicated c(s, i) times; let B′ be the set of vertices in which each vertex b ∈
BP∩V is replicated c(b, t) times; s and t do not belong to G′P . Let E = {{u,v} : (u,v) ∈ A or (v,u) ∈ A}.
A maximum flow f in D immediately gives a maximummatchingM in G′P by dividing the flow in
units.

Clearly, if ∀b ∈ BP κb = 1, then G′P = GP , the compatibility graph defined by the same instance
in which items are replicated instead of given with multiplicities. So Theorem 2 proves the theo-
rem.

If κ is not a 1 vector, then the bins are also replicated. Since the bin b is replicated exactly κb
times and any combination of κb items, which are compatible with b, fits into b, the assignment
given by the flow is feasible and verifies Property 1. Moreover, any κ-assignment of k items can
be divided in k one-to-one assignments of one item into a bin by replicating each bin at most a
number of times equal to its robust capacity, and conversely. Moreover, the assignment obtained in
G′P is a maximum one-to-one assignment by Theorem 2 therefore it is a maximum κ-assignments
in DP .

The complexity of Algorithm 2 is equal to the complexity of computing a maximum flow in
DP . This is polynomial in the size of DP whose size is polynomial in the instance size and B. In
practical implementations, we can keep previously computed flows for a hot start of the maximum
flow algorithm.

Finally, we can generalize Corollary 1:

Corollary 2. For pure packing problems in which we can compute the compatibility graph in polynomial
time: any instance s.t.

∑
b∈B κb ≥

∑
i∈I mi can be reduced to an instance with

∑
b∈B′ κb <

∑
i∈I ′mi and

B ′ ⊂ B, I ′ ⊆ .I , in polynomial time in the input size and the number of bins, even with high-multiplicity
encoding of the input.

References

[1] Paul C Gilmore and Ralph E Gomory. A linear programming approach to the cutting-stock
problem. Operations research, 9(6):849–859, 1961.

[2] François Clautiaux, Cláudio Alves, and José Valério de Carvalho. A survey of dual-feasible
and superadditive functions. Annals of Operations Research, 179(1):317–342, 2010.

10

[3] Cláudio Alves, José Valério de Carvalho, François Clautiaux, and Jürgen Rietz. Multidimen-
sional dual-feasible functions and fast lower bounds for the vector packing problem. Euro-
pean Journal of Operational Research, 233(1):43–63, 2014.

[4] SilvanoMartello and Paolo Toth. Lower bounds and reduction procedures for the bin packing
problem. Discrete Applied Mathematics, 28(1):59–70, 1990.

[5] Peter A. Huegler and Joseph C. Hartman. Problem reduction for one-dimensional cutting
and packing problems. Technical report.

[6] Jacques Carlier, François Clautiaux, and AzizMoukrim. New reduction procedures and lower
bounds for the two-dimensional bin packing problem with fixed orientation. Computers &
Operations Research, 34(8):2223–2250, 2007.

[7] Ali Khanafer, François Clautiaux, and El-Ghazali Talbi. Tree-decomposition based heuris-
tics for the two-dimensional bin packing problem with conflicts. Computers & Operations
Research, 39(1):54–63, 2012.

[8] Silvano Martello and Paolo Toth. Knapsack problems. Wiley New York, 1990.

[9] Hans Kellerer, Ulrich Pferschy, and David Pisinger. Knapsack problems. Springer, 2004.

[10] D. König. Graphs and matrices (in hungarian). Mat Fiz Lapok 38, pages 116–119, 1931.

[11] John E Hopcroft and Richard M Karp. An nˆ5/2 algorithm for maximummatchings in bipar-
tite graphs. SIAM Journal on computing, 2(4):225–231, 1973.

[12] G Steiner and JS Yeomans. A linear time algorithm for maximum matchings in convex, bi-
partite graphs. Computers & Mathematics with Applications, 31(12):91–96, 1996.

11

	Introduction
	Definitions
	Discussion
	Decision or Optimization ?
	Complexity

	Preliminaries
	Matching-based reduction algorithm
	Generalized reduction algorithm

