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Abstract: In many problems of geophysical interest, when trying to segment images (i.e.

to locate interfaces between different regions on the images), one has to deal with data

that exhibit very complex structures. This occurs for instance when describing complex

geophysical images (with layers, faults...), in that case, segmentation is very difficult.

Moreover, the segmentation process requires to take into account well data to interpolate,

which implies to integrate interpolation condition in the mathematical model.

More precisely, let I : Ω→ < be a given bounded image function, where Ω is an open

and bounded domain which belongs to <n. Let S = {xi}i ∈ Ω be a finite set of given
points (well data). The aim is to find a contour Γ ⊂ Ω, such that Γ is an object boundary
interpolating the points from S. To do that, we combine the ideas of the geodesic active

contour ( [8]) and of interpolation of points ([34]) in a Level Set approach developed by

Osher and Sethian [27]. We present modelling of the proposed method, both theoretical

results (viscosity solution) and numerical results (on a velocity model for a real seismic

line) are given.

Key words: Geodesic Active Contour, Level Set Method, viscosity solution, interpo-

lation of points.
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1 Introduction

From geophysical data, the general purpose of this paper is to design segmentation

models integrating geometrical constraints while satisfying the classical criteria of detec-

tion, with the regularity needed on the contour (see Le Guyader [19] for more details). The

segmentation process has to locate layers and/or faults, but it also needs to approximate

interpolation conditions which correspond to well data (see Figures 1 and 2).

Figure 1. In geophysics (oil reservoir), it is necessary to determine layers accurately for

post-processing, moreover, some interpolation conditions can be integrated in the model

(well data). (Image: USGS, www.usgs.gov/)

Figure 2. A 2D view of a velocity seismic model (without fault). The white points

correspond to interpolation conditions. The horizontal segment is the initial guess. At

the end of the segmentation process, one wants to both segment the image (i.e. find the

interface between 2 regions) and interpolate the well data (curve).
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This kind of problems is of crucial interest in Geosciences as it consitutes an important

exploration gap for reservoir characterization. Morevoer, it is well known that interpre-

tation of faults in seismic data is today a time consuming manual task... and reducing

time from exploration to production of an oil field has great economical benefits. In the

exploration phase, the geological interpretation of seismic data is one of the most time

consuming tasks. This is usually done manually by interpreters, and much time could be

saved by an automatization of these tasks using a segmentation process (see for instance

Monsen et al. [24], Randen et al. [28]). More precisely, the fault extraction from 3D data

is of key importance in reservoir characterization: detailed knowledge of the fault system

may provide valuable information for production.

Let us note that in this work, we only focus on the segmentation process, and not in

the reconstruction of extracted surfaces (as done in Apprato et al. [2], Gout [16], Gout

and Komatitsch [18]) or inverse problems ([32])

We now introduce some classical tools used for segmentation processes. Parametric

deformable models, originating from the active contour model introduced by Kass et al.

[25], explicitly represent the interface as parameterized contours in a Lagrangian frame-

work. Active contour models use an energy-minimizing spline that is guided by internal

and external energies in such a way that the spline is deformed by geometric shape forces

and influenced by image forces. By optimizing the weights used in the internal energy

and choosing the proper image forces (edges), one can use active contour models to evolve

the curve toward the boundary of objects being segmented. Geodesic active contours ba-

sically consist in deforming an initial contour towards the boundary of the object to be

detected. The deformation is obtained trying to minimize a functional defined so that

its local minimum is obtained at the boundary of the object. This energy like functional

minimization problem has led to many contributions ever since. Caselles et al. [8] (see

also Kichenassamy et al. [23] ) have shown for instance, that by setting one of the reg-

ularization parameters to zero in the classical active contour model, one gets a problem

equivalent to finding a geodesic curve in a Riemann space. The issue was then no longer

seen as an energy-like minimization problem but as a curve evolution one.

With the introduction of the level set method developed by Osher and Sethian [27],

geometric deformable models allow automatic topological changes without using any other

procedures. The technique of level set methods is to adopt an Eulerian approach to

implicitly model the propagating interface using a level set function Φ, whose zero-level

set always corresponds to the position of the interface Γ. The evolution of this propagating

interface is governed by a partial differential equation in a higher dimensional space. The

level set function can be constructed with high accuracy in space and time. The position

of the zero-level set is evolved using a speed function that consists of a constant term

and a curvature deformation in its normal direction (see [27], [29], [30] and [1] for more

details). Image stopping terms, such as regional and gradient forces, are incorporated into

this speed function for segmentation purposes. This representation is intrinsic, parameter

free, topology free and allows for splits and merges.

The idea that governs the following model consists in seeking a geodesic curve in a

Riemann space whose metric depends both on the image contents and on the geometrical

constraints.

Constraints will be mathematically defined by a set of distinct points belonging to

the edge and the goal will be defined as follows: “Localize the contour Γ at the points of
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maximum gradient while fitting the model on the given data points”. This work will be

done in the context of the Level Set method

In a first step (part 2), we define the shape optimization problem and give its level

set formulation. The Euler-Lagrange theorem enables us to determine the PDE that the

3D function Φ must satisfy if it minimizes the above functional. The evolution equation

is then given. We establish the existence and uniqueness of the viscosity solution of

the associated parabolic problem.The discretization is given in Section 3 and numerical

examples illustrate the matter in Section 4. Conclusions are given in Section 5.

2 Mathematical formulation

2.1 Model

Let I : Ω −→ < be a given bounded image function (for instance, I can be the at-

tribut “seismic wave propagation velocity”, or just the grey level pixel values on other

applications...), with Ω an open bounded subset of <n. Let us consider n = 2 for the

purpose of illustration. As mentioned in the introduction, we plan to introduce a ge-

ometrical approach in this new method by adding interpolation constraints. Thus let

S = (xi, yi)i ∈ Ω be a finite set of given points which correspond the the interpolation
condition (well data). We would like to find a contour Γ ⊂ Ω such that Γ is the boundary
of the object under consideration, interpolating the points from S which belong to this

boundary. Let g : [0,+∞[−→ [0,+∞[ be an edge-function as in ([7], [10]), such that
g(0) = 1, g is positive, strictly decreasing and lim

s→∞
g(s) = 0. The function g is applied to

the gradient of the image |∇I(x, y)|. An example of such a function is given by

g(s) =
1

1 + s2
,

so

g(|∇I(x, y)|) = 1

1 + |∇I(x, y)|2 . (1)

Furthermore, to the set of points S, we associate the distance function d(a) from every

point a ∈ Ω to S

d(a) = distance(a, S) = min
c∈S

|a− c| . (2)

By definition, d(a) = 0 if and only if a ∈ S. In order to find a contour Γ such that g ' 0
or d ' 0 on Γ, we propose to minimize the following energy:

E(Γ) =

Z

Γ
d.g(|∇I|)ds. (3)

We will start with an initial guess Γ0 and we will apply gradient descent to the energy, in

a Level Set approach. We will construct a family of curves Γ(t) decreasing the energy as

t increases.

Remark 1 In the previous definition of the distance function d, its effect is global, so,

this model could be considered not appropiated because the evolution of points which are

very far from the set of points S are going to be (in some cases) influenced by S because of

the distance function d given in (2). So, to overcome this fact and improve the model, it
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is possible to use the following distance function: at the point a, we consider the following

distance function da(x) defined on an interval [A,B] ,

da(x) = 1−Da(x)e−
x2

σ2

where

Da(x) =

(
0 sur ]−∞,α[ ∪ ]α,+∞[
P a5 sur [−α,α]

,

with P a5 (x) ∈ P5 (polynomial space, degree ≤ 5) and satisfying



P a5 (a) = 1, (P
a
5 )
0 = 0,

P a5 (a+ α) = (P a5 )
0(a+ α) = 0

P a5 (a− α) = (P a5 )
0(a− α) = 0

so

P a5 (a) = (cx+ b) (x− α)2 (x+ α)2 ,

the parameter α allowing to control the support of the function Da(x) (b, c ∈ <). We note
that da(x) ∈ C1. In 2D , it is easy to get the following distance function:

d(x) =
nY

k=1

Ã

1− P ak,15 (x1)P
ak,2
5 (x2)e

− [
(x1−a1)2+(x2−a2)2]

σ2

!

.

The effect of the function d is therefore local: in a neighborhood of the points from S, d ≈ 0,
which means that it will stop the evolution of the curve, while it will not affect the motion

of the curve in remote points from S. ¥

2.2 The Level Set Approach

The Level Set approach ([27], [29], [26], [1], [30]) consists in considering the evolving

active contour Γ = Γ(t) as the zero level set of a function Φ, which is a Lipschitz continuous

function defined by:
(

Φ :
Ω× [0,+∞[−→ <

(x, y, t) 7−→ Φ(x, y, t)
(4)

such that

Γ(t) = {(x, y) ∈ Ω : Φ(x, y, t) = 0},

and Φ(·, ·, t) takes opposite signs on each side of Γ(t). It enables us to re-write the energy

in terms of Φ as follows

F (Φ) =
R
Ω d(x, y)g(|∇I(x, y)|)|∇H(Φ(x, y))|dxdy,

where H is the one-dimensional Heaviside function. By approximating H by a C1 or C2

regularization H², as ² −→ 0 and letting δ² = H
0
², the energy can be written as (see Chan

and Vese [11])

F²(Φ) =
R
Ω d(x, y)g(|∇I(x, y)|)δ²(Φ)|∇Φ(x, y)|dxdy, (5)

where
Z

Ω
δ²(Φ)|∇Φ(x, y)|dxdy

is an approximation of the length term.
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2.3 Minimization of the energy

In this section, we minimize the energy F² and we determine the associated partial

differential equation satisfied by Φ. To this end, it is possible to use variational calculus

with the extension of the classical Euler-Lagrange theorem to a function that depends on

two variables (see le Guyader [19]). But we prefer proposing a proof based on the Gâteaux

derivative which permits to get boundary conditions. We recall that F is differentiable in

the Gâteaux sense at Φ ∈ X if the application

x 7−→ F 0Φ(Ψ) = lim
h→0

F (Φ+ hΨ)− F (Φ)
h

is defined for any Ψ ∈ X and if it is linear and continuous. In this case, Riesz theorem

provides the existence of F 0(Φ) ∈ X such that

F 0Φ(Ψ) =< F
0(Φ),Ψ >,

F 0(Φ) being the gradient of F at Φ. Coming back to the problem, let us determine the

Gâteaux derivative of the energy F². The Gâteaux derivative of F² with respect to Φ in

the direction of Ψ is

F 0²Φ(Ψ) = lim
h→0

F²(Φ+ hΨ)− F²(Φ)
h

where

F²(Φ+ hΨ)− F²(Φ) =
Z

Ω
d(x, y)g(|∇I(x, y)|)δ²(Φ+ hΨ)|∇Φ+ h∇Ψ|dxdy

−
Z

Ω
d(x, y)g(|∇I(x, y)|)δ²(Φ)|∇Φ|dxdy.

Then

F²(Φ+ hΨ)− F²(Φ)
=

Z

Ω
d(x, y)g(|∇I(x, y)|)δ²(Φ+ hΨ)|∇Φ|

q
1 + h2 |∇Ψ|

2

|∇Φ|2 + 2h
<∇Φ,∇Ψ>
|∇Φ|2 dxdy

−
Z

Ω
d(x, y)g(|∇I(x, y)|)δ²(Φ)|∇Φ|dxdy

and we use a Taylor development (on h) to linearize the square root. Taking the limit

when h→ 0, we get

F 0²Φ(Ψ) =

Z

Ω
d(x, y)g(|∇I(x, y)|)δ0²(Φ)Ψ|∇Φ|dxdy

+

Z

Ω
d(x, y)g(|∇I(x, y)|)δ²(Φ)

< ∇Φ,∇Ψ >
|∇Φ| dxdy.

Hence

F 0²Φ(Ψ) = −
Z

Ω
δ²(Φ)div(d(x, y)g(|∇I(x, y)|) ∇Φ|∇Φ|)Ψdxdy

+

Z

∂Ω
d(x, y)g(|∇I(x, y)|) δ²(Φ)|∇Φ|Ψ(

∂Φ
∂x νxdσ +

∂Φ
∂y νydσ)dσ

and

F 0²Φ(Ψ) = −
Z

Ω
δ²(Φ)div(d(x, y)g(|∇I(x, y)|) ∇Φ|∇Φ|)Ψdxdy

+

Z

∂Ω
d(x, y)g(|∇I(x, y)|) δ²(Φ)|∇Φ|

∂Φ
∂νΨdσ.
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This expression must vanish for all Ψ in order to satisfy the Euler-Lagrange equation.

Therefore, we obtain the following problem:





δ²(Φ)div(d(x, y)g(|∇I(x, y)|)
∇Φ
|∇Φ|) = 0.

with the boundary conditions
δ²(Φ)

|∇Φ|
∂Φ

∂ν
= 0.

(6)

2.4 Evolution equation

From the previous section, we get the evolution equation

∂Φ

∂t
= δ²(Φ)div(d(x, y)g(|∇I(x, y)|)

∇Φ
|∇Φ|). (7)

As stressed by Zhao et al. [34], there is a balance between the potential force and the

surface tension. A parallel can be drawn with the classical deformable models, a model

which shows off an equilibrium between the regularization energy and the energy linked to

the image. The closer we are to the finite set of points or on edges, the more important is

the flexibility in the model, since in this case the expression d(x, y)g(|∇I(x, y)|) vanishes.

Proposition 1 The energy F²(Φ) is decreasing with time t.

Proof: We follow the same arguments as Zhao et al.[35].¥

When a local minimum is reached, then the quantity
∂Φ

∂t
tends to 0, which means that

the steady state is reached. A rescaling can be made so that the motion is applied to all

level sets by replacing δ² by |∇Φ|. As stressed by Zhao et al. [34] and Alvarez et al. [4],
it makes the flow independent of the scaling of Φ. Thus the proposed parabolic problem

with the associated boundary conditions
∂Φ

∂ν
= 0 can be written:





Φ(x, 0) = Φ0(x),
∂Φ

∂t
= |∇Φ|

·
div(d(x, y)g(|∇I(x, y)|) ∇Φ

|∇Φ|)
¸
,

∂Φ

∂ν
= 0 on ∂Ω.

(8)

The evolution equation satisfied by Φ is defined by

∂Φ

∂t
= |∇Φ|

·
div(d(x, y)g(|∇I(x, y)|) ∇Φ

|∇Φ|)
¸
.

All the level set move according to

Γt = d(x, y)g(|∇I(x, y)|)κ~n− < ∇(d(x, y)g(|∇I(x, y)|)), ~n > ~n, (9)

with κ = div(
∇Φ
|∇Φ|) and ~n = −

∇Φ
|∇Φ| (interior normal). Indeed, we have for all level sets

Φ(Γ(t), t) = constant.

Calculating the derivatives with respect to the variable t, we have

d

dt
[Φ(Γ(t), t)] = 0⇔ Φt+ < ∇Φ,Γt >= 0,
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where Φt denotes
∂Φ

∂t
and Γt,

∂Γ

∂t
.

Hence, using the definition of Γt and ~n, we get

Φt = d(x, y)g(|∇I(x, y)|)κ|∇Φ|+ < ∇(d(x, y)g(|∇I(x, y)|)),∇Φ > .

A parallel can be drawn with the Caselles et al. model ([9], [8]) in which the evolution

equation of any level set is given by:

Γt = g(|∇I(x, y)|)κ~n− < ∇(g(|∇I(x, y)|)), ~n > ~n.

The convergence of the model can be increased by adding the component kdg(|∇I|), ~n
in the evolution equation of a level set (9), k being a constant. This component can be

seen as an area constraint. An analogy with the Balloon model developed by Cohen [13]

can be made: this constant motion term prevents the curve to stop on a non significative

local minimum and is also of importance when starting from curves inside the object to

be detected.

The associated parabolic problem becomes:




Φ(x, 0) = Φ0(x),
∂Φ

∂t
= |∇Φ|d(x)g(|∇I(x)|)div( ∇Φ

|∇Φ|)+ < ∇(d(x)g(|∇I(x)|)),∇Φ >
+kd(x, y)g(|∇I(x, y)|)|∇Φ|,

∂Φ

∂ν
= 0 on ∂Ω.

(10)

In the next section, we aim at proving the existence and uniqueness of the solution of

this parabolic problem which are the main results of this paper.

Remark 2 In the evolution equation satisfied by Φ, ∇d is well-defined, except at the
points that are equidistant from at least two points of the given finite set S and at the

points from S. Indeed, the function d(x) = d(x;S) is continuous as the inf of a finite

number of continuous functions but is not differentiable at the points equidistant from at

least two points of the given finite set S and at the points from S. The distance function d

satisfies the Eikonal equation |∇d| = 1. In the theoretical part devoted to the existence and
uniqueness of the solution of our problem, we need a certain smoothness on the distance

function d. Using the curvature as a regularizing or smoothing term enables us to get

the desired properties on d. What follows is taken from Sethian’s book [29]: the main

conclusion that we use here is that “a front propagating at the speed 1− ²κ for ² > 0 does
not form corners and remains smooth for all time”. Furthermore, as the dependence on

curvature vanishes, the limit of this motion is the entropy-satisfying solution obtained for

the constant speed case.

2.5 Existence, uniqueness of the solution

In this section, we use the notion of viscosity solutions (for more details, see the ‘User’s

guide to viscosity solutions’ by Crandall, Ishii and Lions [14]). This theory applies to some

partial differential equations that can formally be written in the form F (x, u,Du,D2u)

where Du denotes the gradient and D2u the Hessian matrix (which is symmetric). In

general, F is defined as

F : <n ×<×<n × S(n) −→ <
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where S(n) denotes the set of symmetric (n× n) matrices. In our case, F will be defined

by F : Ω×<×<2 ×S(2) −→ <. A complete study of viscosity solutions for this problem

is studied in le Guyader [19], where different approaches of viscosity solutions are given for

our considered problem (based on works of Alvarez et al. [4], Barles [5] and [6], Caselles

et al. [7], Chen et al. [12], Crandall and Lions [15]).

Here is a first result that will be used in the sequel.

Preliminary: Let p, q ∈ <n\ {0} , then

|
p

|p|
− q

|q|
| ≤ |p− q|

min(|p|, |q|)
.

Proof: evident.

We use here the existence theorem for viscosity solutions introduced by Ishii and Sato

in [22]. This article treats the difficult case of singular parabolic equations with non-

linear oblique derivative boundary conditions while we wish to apply it to a problem with

homogeneous Neumann boundary conditions. As formerly done in their article, we denote

by ρ(p, q) = min

µ
|p− q|

min(|p|, |q|)
, 1

¶
. We assume that Ω is a bounded domain in <n with

a C1 boundary. Let us consider the following conditions:

1. F ∈ C([0, T ] × Ω̄ × < × (<n − {0}) × Sn), where Sn denotes the space of n × n
symmetric matrices equipped with the usual ordering.

2. There exists a constant γ ∈ < such that for each

(t, x, p,X) ∈ [0, T ]× Ω̄× (<n − {0})× Sn,

the function

u 7→ F (t, x, u, p,X)− γu

is non decreasing on <.

3. For each R > 0, there exists a continuous function wR : [0,∞[−→ [0,∞[ satisfying
wR(0) = 0 such that if X,Y ∈ Sn and µ1, µ2 ∈ [0,∞[ satisfy:

Ã
X 0

0 Y

!

≤ µ1
Ã

I −I
−I I

!

+ µ2

Ã
I 0

0 I

!

(11)

then

F (t, x, u, p,X)− F (t, y, u, q,−Y )
≥ −wR(µ1(|x− y|2 + ρ(p, q)2) + µ2 + |p− q|+ |x− y|(1 +max(|p|, |q|))),

for all t ∈ [0, T ] , x, y ∈ Ω, u ∈ < with |u| ≤ R and p, q ∈ <n\ {0} .

4. B ∈ C(<n ×<n)TC1,1(<n × (<n\{0}))

5. For each x ∈ <n, the function p 7→ B(x, p) is positively homogeneous of degree one

in p, i.e., B(x,λp) = λB(x, p), ∀λ ≥ 0, p ∈ <n\{0}.
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6. There exists a positive constant θ such that < ν(z),DpB(z, p) >≥ θ for all z ∈ ∂Ω

and p ∈ <n − {0}. Here ν(z) denotes the unit outer normal vector of Ω at z ∈ ∂Ω.

We recall the following theorem taken from Ishii and Sato [22].

Theorem 2 Consider the following problem :

(
ut + F (t, x, u,Du,D

2u) = 0 in ]0, T [×Ω

B(x,Du) = 0 in ]0, T [×∂Ω
(12)

satisfying u(0, x) = g(x) for x ∈ Ω̄. Assume that conditions 1, 2, 3, 4, 5, 6 hold. Then
for each g ∈ C(Ω̄) there is a unique viscosity solution u ∈ C([0, T [×Ω̄) of (10) satisfying
u(0, x) = g(x) for x ∈ Ω̄.¥

We apply this theorem to the considered problem. The function F is defined by:

F (t, x, u, p,X) = −trace
µ
d(x)g(|∇I(x)|)(I − p

N
p

|p|2
)X

¶

− < ∇(d(x)g(|∇I(x)|)), p > .

Denoting by A(x, p) the symmetric positive matrix defined by

A(x, p) = d(x)g(|∇I(x)|)(I − p
N
p

|p|2
),

we get

F (t, x, u, p,X) = −trace(A(x, p)X)− < ∇(d(x)g(|∇I(x)|)), p > .

F presents a singularity for p = 0 but is continuous otherwise. The first point is

satisfied.

F does not depend explicitly on u so any negative constant γ satisfies the second

condition.

For the third point, the inequality (11) gives us that for all r, s ∈ <2,

(Xr, r) + (Y s, s) ≤ µ1|r − s|2 + µ2(|r|2 + |s|2).

Taking successively r = σ(x, p)ei and s = σ(y, q)ei with (ei)i an orthonormal basis of <
2

(as done in [17], A(x, p) = σ(x, p)σT (x, p)), we get:

trace(A(x, p)X) + trace(A(y, q)Y )

≤ µ1trace((σ(x, p)− σ(y, q))(σ(x, p)− σ(y, q))T )

+µ2(d(x)g(|∇I(x)|) + d(y)g(|∇I(y)|)).

Hence

trace(A(x, p)X) + trace(A(y, q)Y )

≤ µ1|
p
d(x)g(|∇I(x)|) p|p| −

p
d(y)g(|∇I(y)|) q|q| |2 + 2θµ2.

The function x 7→ d(x)g(|∇I(x)|) is bounded by θ.
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Moreover, one has:

|
p
d(x)g(|∇I(x)|) p|p| −

p
d(y)g(|∇I(y)|) q|q| |2

= |(
p
d(x)g(|∇I(x)|)−

p
d(y)g(|∇I(y)|)) p|p| +

p
d(y)g(|∇I(y)|)( p|p| −

q
|q|)|

2.

Thus

|
p
d(x)g(|∇I(x)|) p|p| −

p
d(y)g(|∇I(y)|) q|q| |2

≤ 2(
p
d(x)g(|∇I(x)|)−

p
d(y)g(|∇I(y)|))2 + 2d(y)g(|∇I(y)|)| p|p| −

q
|q| |

2.

Using the preliminary and properties of the functions x 7→ d(x)g(|∇I(x)|) and x 7→p
d(x)g(|∇I(x)|) as in [17], we can conclude that

trace(A(x, p)X) + trace(A(y, q)Y )

≤ µ1(2ζ|x− y|2 + 8θρ(p, q)2) + 2θµ2.

Next, we have to evaluate the expression

F (t, x, u, p,X)− F (t, y, u, q,−Y ) = −(trace(A(x, p)X) + trace(A(y, q)Y ))
−(< ∇(d(x)g(|∇I(x)|)), p >
− < ∇(d(y)g(|∇I(y)|)), q >).

Using the same arguments as in [17], we have

| < ∇(d(x)g(|∇I(x)|)), p > − < ∇(d(y)g(|∇I(y)|)), q > | ≤ κ|x− y|max(|p|, |q|) + C2|p− q|,

from which we deduce

−(F (t, x, u, p,X)− F (t, y, u, q,−Y ))
≤ µ1[2ζ|x− y|2 + 8θρ(p, q)2]
+2θµ2 + κ|x− y|max(|p|, |q|) + C2|p− q|

and

−(F (t, x, u, p,X)− F (t, y, u, q,−Y ))
≤ max(2ζ, 8θ, C2,κ)(µ1(ρ(p, q)2 + |x− y|2)
+µ2 + |p− q|+ |x− y|(1 +max(|p|, |q|))).

We just have to take wR(l) = max(2ζ, 8θ, C2,κ)l. wR(0) = 0 and wR is non-decreasing on

[0,∞[.
The fourth point is fulfilled with assumptions on ν (vector field of class C1,1).

Then, it is easy to check that B is positively homogeneous of degree one. For the last

point, one can easily see that:

B(z, p) =< ν(z), p > (13)

and

< ν(z),DpB(z, p) >= |ν(z)|
2 = 1.

We take θ = 1 and the last assumption is fulfilled.

11



3 Numerical algorithm

We recall the evolution equation




∂Φ

∂t
= |∇Φ|d(x)g(|∇I(x)|)div( ∇Φ

|∇Φ|)
+ < ∇(d(x)g(|∇I(x)|)),∇Φ > +kd(x)g(|∇I(x)|)|∇Φ| , on [0,+∞[×Ω.,

Φ(0, x) = Φ0(x),
∂Φ

∂ν
= 0 on ∂Ω.,

(14)

Its discretization has the following characteristics:

� The distance function d is computed using the Fast Marching method (see Sethian

[29], Hvistendahl Karlsen et al. [21]).

� We have chosen the Additive Operator Splitting (AOS, see Weickert and Kühne [33])

scheme.

The classical spatial discretization of the term div(c|∇Φ|) is




div(c∇Φ) ' ∂x(cij
Φ
i+1

2 ,j
−Φ

i− 1
2 ,j

h
) + ∂y(cij

Φ
i,j+1

2
−Φ

i,j− 1
2

h
),

' ci+ 1
2
,j
Φi+1,j−Φi,j

h2
− ci− 1

2
,j
Φi,j−Φi−1,j

h2
+ ci,j+1

2

Φi,j+1−Φi,j
h2

− ci,j− 1
2

Φi,j−Φi,j−1
h2

.

The terms c
i
+
− 1
2
,j
and c

i,j
+
− 1
2

can be determined by linear interpolation. To simplify

the notation in the following, we use a vectorial representation of the function Φ via

a concatenation of the rows of the image. So, Φ ∈ RN×M where N is the number

of lines and M the one of columns. The center of gravity of a pixel i is associated

with the node of the meshing of coordinates xi. Thus, the term Φ
n
i corresponds to

an approximation of Φ(xi, tn). We first suppose that k = 0. The discretization of

the evolution equation 14 is given by the semi-implicit scheme

Φn+1i = Φni + τ |∇Φ|ni
X

j∈Λ(i)

( dg
|∇Φ|)

n
i + (

dg
|∇Φ|)

n
j

2
.
Φn+1j −Φn+1i

h2
,

where Λ(i) denotes the neighbourhood of the pixel i. However, to assure that |∇Φ|

does not vanish, one can replace the arithmetic mean
( dg
|∇Φ|)

n
i + (

dg
|∇Φ|)

n
j

2
by its har-

monic counterpart. If |∇Φ|ni = 0 or (dg)i = 0, we set:

Φn+1i = Φni .

Then, we introduce the linear system

Φn+1 = Φn + τ
X

l∈{x,y}
Al(Φ

n)Φn+1.

where Ax(Φ
n) is defined by

aijx(Φ
n) =





|∇Φ|ni 2

(
|∇Φ|
dg

)ni +(
|∇Φ|
dg

)nj
, j ∈ Λx(i),

−|∇Φ|ni
P
m∈Λx(i)

2

(
|∇Φ|
dg

)ni +(
|∇Φ|
dg

)nm
, i = j,

0 else,

12



where Λx(i) represents the neighbouring pixels of i with respect to direction x.

However, the solution Φn+1 cannot be directly determined from this scheme, it

requires to solve the following linear system:


Id− τ

X

l∈{x,y}
Al (Φ

n)


Φn+1 = Φn,

where Id is the unit matrix. The matrix

Ã

Id− τ
P

l∈{x,y}
Al (Φ

n)

!

is strictly diagonally

dominant, it follows from Gershgorin’s theorem that it is invertible. To solve this

linear system, iterative algorithms should be used. Classical methods like Gauss-

Seidel does not need additional storage, and convergence can be guaranteed for the

special structure of the system matrix. This convergence, however, may be rather

slow (when parameter τ increases) since the condition number of the system matrix

increases with the image resolution. An alternative discretization is proposed by

Weickert and Künhe [33], they focus on a splitting-based alternative (AOS scheme).

It is easy to implement and does not require to specify any additional parameters.

This may make it attractive in a number of practical applications. Instead of using

the semi-implicit scheme

Φn+1 =


Id− τ

X

l∈{x,y}
Al (Φ

n)



−1

Φn,

Weickert an Kühne [33] consider the additive operator splitting (AOS) variant:

Φn+1 =
1

2

X

l∈{x,y}
(Id− 2τAl (Φn))−1Φn. (15)

By means of a Taylor expansion, it is easy to see that the semi-implicit scheme and its

AOS version differ by an O(τ2) term. The AOS scheme leads to

2Φn+1 = (Id− 2τAx (Φn))−1Φn + (Id− 2τAy (Φn))−1Φn. (16)

We set for l ∈ {x, y},

Bl(Φ
n) = Id− 2τAl(Φn).

The matrix B is strictly diagonally dominant tridiagonal linear system which can be solved

very efficiently with a Gaussian algorithm. As shown in [33], the fact that AOS schemes

are based on an additive splitting guarantees that both axes are treated in exactly the

same manner. AOS schemes are not only efficient, they are also unconditionally stable. ¥

4 Numerical results

� The user defines an initial condition (paraboloids, ellipses...).

� The user gives interpolation conditions (if there are ones).

13



� The stopping criteria is either the number of iteration, either a verification that the

solution is stationnary while computing the relative error between Φn+1 and Φn.

Example 1 (velocity seismic model). We give a numerical example on a velocity

seismic model. There is a vertical fault and several layers. The time step is equal to 2,

k = 0.02, and g : s 7→ 1

1 + s2
. CPU time is equal to 96 seconds (pc Intel Pentium 4 2.8Ghz

256Mo).

Figure 3. 2D view of the initial condition. There are 6 interpolation conditions.

Figure 4. The final contour after 140 iterations.
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Example 2 (2D fault extraction). The time step is equal to 2, k = 0.02, and g :

s 7→ 1

1 + s2
. CPU time is equal to 128 seconds (pc Intel Pentium 4 2.8Ghz 256Mo). This a

very difficult (extreme!) example because we want to locate a vertical fault which is very

difficult to segment. In this example, the interpolation condition are not well data, but

points given by the user in order to help the segmentation process. Without these (well

chosen) interpolation condition, the segmentation is impossible to realize.

Figure 5. Fault extraction. Many interpolation conditions (9

points) are needed on such an image, in order to get a vertical

fault. User intervention is crucial in this process. (source

data: confidential). The algorithm has been modified in order

to define such an initial condition.
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Figure 6. Final result.

5 Concluding remarks

We have developed a segmentation method under interpolation condition which gives

good results.

But some works still remain to be done:

� The CPU time is suspiciously high for such a result, the main problem is that the

fast marching method to approximate the distance function needs 80% of the CPU

time. We are currently trying to improve this part of the algorithm.

� Of course, the final goal will be to segment more complex geophysical data. For

now, to segment a 3D block (see Figure 7), it is needed to start the process with an

initial guess, and the main problem is to be able to give a ”correct” initial condition.

And so to have a “good” visualization of the data set. Another approach would be

to segment 2D slices (like example 2 of section 4) of the 3D block, and then apply a

3D reconstruction method (work in progress).
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Figure 7. Example of 3D geological data (Location: Pyrénées region near Pau, France)

where several layers (A and B) are clearly located, but to segment the complex structure,

one needs to give initial guesses and a scientific visualization tool must be used to look

inside the data.

We conclude with some remarks:

Remark 3 This method has been successfully tested on classical image segmentation with-

out interpolation condition in Le Guyader [19].

Remark 4 Some comparisons with other methods (deformable models method under ge-

ometrical constraints developed by Le Guyader et al. [20]) are given in [19].

Remark 5 This method has been validated on medical applications (see Apprato et al.

[3]): in this case, the interpolation conditions are useful in order to help the process

when some image data are missing. The goal was to compute the blood flow variations,

throughout a cardiac cycle. With our colleagues from “C.H.U du Haut-Lévèque-Hôpital

de Bordeaux”, this method has been successfully applied on an patient image sequence to

outline the cross-sectional area of a great thoracic vessel, namely the main pulmonary

artery, in order to non invasively assess pulmonary arterial hypertension.

Remark 6 Let us note that in case of noisy images, it is possible to use usual filter or

specific algorithm (see Sethian [29]).
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