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Abstract. We study the problem of constructing a smooth approximant from a
finite set of patches given on a surface defined by an equation xs = f( 21, 22).
As an approrimant of f, a discrete smoothing spline belonging to a suitable
precewise polynomial space is proposed. Error results and numerical results are
given.
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0 Introduction

The problem of constructing a surface from given patches on this surface ap-
pears, for instance, in geophysics or geology processes like migration of time-
maps or depth-maps as shown in [4]. Classical algorithms used to solve this class
of problems usually select points on the patches to define a Lagrange dataset,
and subsequently make use of classical spline functions (e.g. de Boor [7], Laurent
[22], Schumaker [26]), bivariate spline (Lai and Schumaker [20], [21], Schumaker
and von Golitschek[15]), or spline functions in Hilbert spaces (see for instance
Duchon [13], Arcangéli [5]). In the available literature, to our knowledge there
are classical methods that explicitely take into account the continuous aspect
of the data (which consist of surface patches). Meanwhile, an alternative ap-
proach has been developed by Le Méhauté [23] using surface’s extensions: A.
Le Méhauté proposes a rational scheme interpolating a Taylor field of order 1
(or a function and its first partial derivatives) given on the edge of a triangle T
with acute angles. This approach is very interesting but difficult to use on real
data sets, and it does not perform well to get a C'* (or higher) approximant.
That is why we propose to use a penalized least square approach, as done for



Figure 1: Example of an open set Q with three subsets wl, ws and ws. From
these three surface patches, the goal is to propose a method to reconstruct the
surface on 2.

instance in Apprato and Arcangéli [1], in von Golitschek and Schumaker [15],
or in Manzanilla [24].

In this paper, our purpose is to devise an approximation method which takes
into account the original aspect of the data. To do that, we use a fidelity
criterion to the data of integral type related to the L?-norm of these data. It
leads to the following abstract formulation: from a finite set of open subsets
w;,j = 1,.., N in the closure of a bounded non empty open set € C IR"(see

N
Fig. 1) and from a function f defined on w = 'Ule, construct a regular function
]:

® on €2, approximating f on w.
In practice, n = 2 and w is the finite union of pairwise disjoint open subsets
wj,j=1,...,N of Q, which are called patches (see again Fig. 1).

Remark 1: As a fit criterion, we have chosen the L?-norms (which define
a distance). Of course, it would have been possible to use the L'-norms (the
fidelity criterion to the data being a minimization of the volume located between
the patches and the approximant), but, in order to obtain a functional with
”good properties” we have chosen a L?-norm approach. This choice permits
to study the problem in Hilbert spaces (L!-norm only defines reflexive Banach



spaces).

The paper is organized as it follows: we first introduce some notations and state
an existence-uniqueness result. In Section 1, we focus on the quadrature formula
used to approximate the fidelity criterion to the data. Section 2 is devoted to
the proof of the convergence theorem which is the main result of the paper. We
give numerical results in Section 3.

We assume that:

e ) is a non-empty, connected, bounded open set in IR", with Lipschitz-
continuous boundary (in the sense of Necas [25]);

o for an integer j,7 = 1,..,, N, let w; be a non-empty connected subset in
R";

’ n

e k €N and m > 5;

e and for simplicity, f is the restriction on w of a function f defined on
N
Q, given on w | = 'Ule and unknown on € \ w, that belongs to the Sobolev
]:
space H™ (Q). Finally, we impose the condition that the approximant & belongs
to H™(Q) N C*(Q), where Q is the closure of Q. The main interest of such a
regularity for @ is that it allows one to obtain a final surface that can later be
used directly as an input model in a different application, such as ray tracing,
image synthesis or numerical simulation (e.g., Komatitsch and Tromp [19]).

The problem of the approximation of f on w 1s a fitting problem on each surface
patches: {(z, f(z)) : z € w}.

When m > k + g, the corresponding interpolation problem &, = f;, has an
infinity of solutions because, in this case, H™(Q) < C*(Q). We can obtain a
solution using Duchon’s theory (see [13]). Unfortunately, Duchon’s theory leads
to linear systems whose order increases rapidly with the number of data points,
which makes the method inefficient in the case of large datasets. We can obtain
another solution using the following (interpolation) method: we introduce the
convex set

[(:{UEHm(Q), v|w:f|w}.

Then we consider the following interpolation problem on the data patches: find
o € K such that

Yo S [{a | a |m,ﬂ S | v |m,ﬂa (1)

where
1/2

| vlma= [ Y. [ (@°v(@)’de]| |
|oc|:m/Q

olaly

n
with o = (g, g,y ..., an) € N7 o| = Zai, x = (x;)"_, and 0% =

P Oz dxy? . Oz



Let L? (w) be equipped with the usual norm

2

N 1
bllow= (2] v |
7j=1 Wy

Then, Gout [16] has established the existence and uniqueness of the problem
of equation (1) using compactness argument (see Necas [25] ) to establish the

1/2
equivalence of the usual norm of H™ () denoted by || u ||, o = ( > g (30‘1))2 da:)
7 |

al<m

and the norm

9 5 1/2
[ alll = (el o+l g) 2)

Then, as K is a convex, closed and non-empty set in H™(£2), the solution ¢ of
(1) is nothing but the unique element of minimal norm |||.||| .

Hence we could take the solution & = ¢ when m > k + iy Unfortunately, it is

often impossible to compute o using a discretization of the problem (1), because
in a finite dimensional space, it 1s generally not possible to satisfy an infinity of
interpolation conditions. Therefore, to take into account the continuous aspect
of the data ( f} ), we instead choose to define the approximant ® as a fitting
surface.

We propose to construct a ”smoothing D™ — Spline”, as defined by Arcangeli
[56], that will be discretized in a suitable piecewise polynomial space. In order
to do that, we introduce the functional J, defined on H™ () by

Jo() = llv=flls+elvhg (3)

where ¢ > 0 18 a classical smoothing parameter. The key idea here is that the
fidelity criterion to the data ||v — f“é,w honors their continuous aspect.

We now need to numerically estimate this term, which is done using a quadrature
formula. In this regard, the approach is quite different from more classical
techniques that usually simply make use of a large number of data points on w
in order to solve the fitting problem.

In this paper, C' denotes a generic positive constant and may take different
values at different occurrences.

1 Approximation of ||.||, -



In this section, we propose a quadrature formula to approximate ||.||07w with
certain order of approximation.
We introduce a bounded subset E in IR} for which 0 is an accumulation point,
and, for any n € E and for an integer j,j = 1,..., N, a set {(;},c;cp of L =
L(n, j) distinct points ¢; = ¢; (1, j) of &; such that T

(i,k@i%,Lé(Q’Ck)) depends on 7,

where § is the Euclidean distance in IR" and the (; are the nodes of a numerical
integration formulae. We also introduce a set {\;},.,.; of real numbers \; =

Ai(n,j) >0.
Then we define, for any n € £ and any v € CO(Uj),
L
Ow) => Aiv(é), =1, N,
i=1
and, for any v € C%(),
N
0 (v) :ZE;(U), j=1,..N.
=1

In all that follows, we assume that there exists C,t > 0, such that, for any
n € F, and for any v € H™ (),

2 2
E;(v)— /wvda:

7

< vl j=1,..,N. (4)

For simplicity we shall write v instead of v}, or v|, and we shall consider ("

as a linear continuous form defined in C° (ﬁ) ,or in C° (m for all open sets
' such that Q C Q.

Remark 2: When the hypothesis (4) is satisfied, the relation ||v||§ o~ 0 (v?)

gives us an abstract numerical integration formula for ||||§ - In order to obtain
the convergence of this integration formula when 7 tends to 0, the nodes {; must
satisfy
i 8 (¢; <

max | min (G, Ck) <,
where §(.,.) represents the Euclidean distance in TR".
Let us assume, for example, that w is a polyhedron. One can introduce a suitable
triangulation 7, on @ by means of n-simplexes T' of diameter <7, and a Py, _;
integration formula on each T

/Tv(x)dx ~ meas (T)Z'yiv(CiT),



where the (A;),_; 5 and the (v;),_; , are classically the weights and the
nodes of the integration formula. In that context, Arcangéli and al. [6] showed
that when m > n, the relation (4) is satisfied with ¢ = m and

0(v) = Z (meas T)Z%’U(QT)'

TET,

In practice, when n = 2, one can use the P3- exact formula on a triangle T" with
vertices (a;);=1,2,3, with mid-points of the sides (b;)i=1,23, and with barycenter
c:

/ v dr ~ meas(T)
T

1< 2 9
%; v(a;) + EZ v(bi) + %v(c)] .

i=1

Thus, for any € E and for any v € C? () , we obtain

3 3
1 2
—0'_ U(Cli)—i—ﬁ'_

i=1 1

v(bi) + 29—01)(6)] )

When w is not a polyhedron, one can use quadrature formulas adapted to the
geometry of w (e.g. Gout and Guessab [17],[18]).1H

2 Discrete Smoothing D"-Spline.

In order to compute a discrete approximant ®, we could use Bézier-polynomials
space or any other finite dimensional space. We select a finite element repre-
sentation of ®, which allows us to obtain a very small sparse linear system (see
Ciarlet [8] and [9] for more details) and an easier study of the convergence of
the approximation.

Let H be a bounded subset in IR} for which 0 is an accumulation point, let Q
be a bounded polygonal open set in IR" such that  C Q , and, for any h € H,

let 7~}L be a triangulation on Q by means of elements K whose diameter hy are
< h and let V}j, be a finite element space constructed on 7} such that
Vj, is a finite- dimensional subspace of Hm(ﬁ) N C’k(ﬁ) (5)
Furthermore, to study the convergence of the approximation, we assume that
there exists a family of operators (ﬁh) C E(Hm(ﬁ), ‘7/1) satisfying:
heH

i) 3C' > 0 such that for any h € H, for any ! =0,...,m—1,

m () R m—1 _
and for any v € H™(Q), |v Hhv‘l,ﬁ < Ch |v|myQ , (6)

=0.

m,Q

)

ii) For any v € Hm(ﬁ), lim ‘v — Tl

h——0




The condition (6) does not need the classical hypothesis of regularity of the

finite element method : Hm(ﬁ) — CS(Q) where s is the maximal order of the
derivatives appearing in the definition of the degrees of freedom of the generic

finite element of (‘7,5 ) , but it is assumed that
heH

the family (ﬁ)h . is regular (see Ciarlet- Raviart [10]). (7)
€

Moreover, the condition (6) needs the following hypothesis: the generic finite

element (K, Pg, ©g) of the family (f/h) satisfies the inclusion P D
heH

P (K).

In fact, 1) only uses the inclusion Pp,_1(K) C Pk, and a property of uniformity

of the generic finite element of (‘7,5 ) , which is satisfied in the usual cases
heH

(see Clément [11] and Strang [27]).

Remark 3: In most problems one would want to solve in practice, the value of
m would be either 2 or 3, allowing one to get either a C' or a C? approximant.
When m = 2, the finite elements used to solve the problem could typically be
classical elements of class C'' or C?, such as the Argyris or the Bell triangle
(see Zenisek [29],Manzanilla [24]), or the Bogner-Fox-Schmit quadrangle (e.g.,
Ciarlet [8], Apprato and al. [2]). When m = 3, one could use the same finite
element of class C? as for m = 2. When m > 3, one could generalize the Bogner-
Fox-Schmit quadrangle into a finite element of class C”~'. Other elements,
such as isoparametric finite elements (Ciarlet [8]) or rational finite elements
(Wachspress [28]) could also be used. Tsoparametric finite elements are useful
to impose boundary conditions, but this is not usually a critical problem in
the context of surface approximation. On the other hand, the use of rational
finite elements is expensive, therefore we choose to use the Bogner-Fox-Schmit
quadrangle of class C'!, which allows us to obtain a C''-approximant. Note that
in certain classes of interpolation problems, each data point must also be a
node of the finite element grid, in which case the use of triangles, as opposed to
quadrangles, greatly facilitates the creation of a suitable finite element mesh to
numerically solve the problem. This is not the case in a surface fitting problem
(data points do not need to be linked with the geometry of the finite element
grid), and as rectangles are less expensive than triangles, we will use the Bogner-
Fox-Schmit rectangles. Tn all cases, we could verify that the conditions (5) and

(6) are satisfied under (7).1

Now, for any h € H, we consider the subset p, (see Fig. 2) defined by:

Qy, is the 1nside of the union of the rectangles K of 7} 8
such that K NQ £ (. (8)
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Figure 2: Definition of the sets 2, €5 and Q.

It is clear that the family (1), satisfies the following relations

Yhe H,QCQCQ, (9)

lim meas(Q, \ Q) = 0. (10)
h——0
For any h € H, we define V}, as it follows:

Vi, 1s the vector space of the restrictions to Qj, of the functions of ‘~/h. (11)

For any e > 0, any h € H and any n € E, we consider the minimization problem
of finding ¢! , € V}, satisfying, for any v, € Vj,

Jg,h(ag,h) < J:,h(vh)a (12)

where J7, is the functional defined by

T (o) =0 (o= P +elonlg, -

Then, we consider the variational problem of finding ¢ , € V), satisfying,

Von € Vi, £7(0 yon) + ¢ (0l 4, vn)ma, = £7(fvn), (13)



where (4, V)ma, = . 9“u(x)0%v(x) dz. Then, we have the following
|a|=m Qp
theorem.

Theorem 2.1. We assume that 2, w, m and f are defined as in section 0 and
that hypotheses (4), (5), (8), and (11) are satisfied, then, for any € > 0, any
h € H, there exists ng > 0 such that for any n € E, n < no, the problems (12)
and (13) have the same unique solution Ugyh.

Proof. This proof is divided into two parts.
1) Using compactness arguments (see Necas [25]), we show, under the relation:

for any p € Proe1 (), pjw =0 = p=0,
that the function [|.|], defined on H™ (23) by
. . 1/2
Jolls = (ol + 1017, 0, )
is a norm on H™ (§2p,) which is equivalent to the usual norm

1/2
19l 52, Eﬁ: /ﬂh (80‘v)2d7\ .

al<m

2) As a consequence of the definition of £7, the symmetric bilinear form

(up, v) — L (upvr) + € (up, Ua)m,

is continuous on Vj, x V},. Likewise, this form is V}, — elliptic for n small enough
because using (4) we have

2 2 2 2
O @R) e lnlma, 2 lonllow = O loall o +2lonl q,

> min(1, ) [JoalJy = Cn' llon]l 0 (14)
> (€' min(1,¢) = Cn') flvall g, »

where C” is a constant related to the equivalence of norms ({|.|], and ||.[|,, o, )-

Let us assume (see also [6] for more details) that there exists § > 0, such

that

Ve > 0,Vn € F,

t !

( < f3. Taking 3 = %, there exists C” > 0 such that

min(1,¢)
2
m,ﬂh

O1(v3) + € o]

> " ||Uh||,2n q, - Then, the Lax-Milgram lemma gives the
result.ll

The function ¢ ,is called the Vj,-discrete smoothing D™-spline of f relative to
w,n and €.



Remark 4. Denoting by M = M (h) the dimension of ¥} and by (goj)1<j<M a
basis of V,, we set T

M
ol = e,
j=1
with a; € IR, 1 < j < M. Introducing the matrices A = (€7 (vi;)), <, i< R =

((goi, Sﬁj)m,ﬂh)1gz’,jSM
to the problem:

and F = (&7 (fi))1<i<pr, We see that (13) is equivalent

find o = (a1, ..., 4, ...,ap) € R solution of (A4+eR)a = F.

Then, we can take as an approximation of f the function ® = 0';7 Bl o which,

using the hypotheses (5), (8) and (11), belongs to H™ (Q) N C* (Q) . We have

to know in which sense ® is an approximation of f. The next result proves the

convergence of ¢ , to the solution ¢ of (1) and gives an error result between
n

o, and f on w. Other convergence results are given in Apprato and Gout [3]

and in Gout [16] when the number of data patches increases to infinity.

Theorem 2.2. Under the hypotheses of Theorem 2.1, if moreover we assume

that (6) is satisfied, then the solution Ugyh of (12) and (13) satisfies:
: I =0, wh s the soluti 1
(i) a—>0,h2m/?i>10,nt/a<ﬁ , where o is the solution of (1)

m,Q
and where [ is introduced in Theorem 2.1.
(ii) There erxists a positive constant C' such that

2
‘ ‘0 < C(h*™ +no(l) +¢), when & — 0,h*™ /e — 0,n' /e < B.

Proof:
The proof of point (i) will be split into four steps.
e Let ¢ be the unique solution of (1). We have o}, = f},, and

n
Oop—0

Ug,h —f

2

0 2
Ua,h _fHOw - ‘
)

no_
O-a,h 0-‘ 0,w
)

We obtain using (4)

s o], < o ((etame)) v

Then, from (12) we have

Yup € V01 ((Ugh — 0')2) + ¢

2
U:yh — O-Hm,Q. (15)

U:,h_f‘

ol <o (n—)) +elonlg, - (16)

)

10



Let & be a m-extension of ¢ on (~2, taking (with (6)) vy = M,5 € H™ (Q) , we

obtain
2 - 2 ~ 2
Vi ((Ug,h — 0') ) < ((Hha — 0') ) + ¢ ‘Hha‘m,ﬂh , (17)
but from (6) ii), there exists hg € H such that

~ 2 ~ 2
Vh < ho, ‘Hhﬁ‘ < ‘Hhﬁ‘ S <O < Cllellg- (18)

Moreover, using (4) we have

V4 ((ﬁhﬁ— 0')2) < Hﬁhﬁ—o"

and finally, with (6) 1)

2 2

+Cyf

Hh&_UH s
0 m,Q

)

|11 — |

< Hﬁh& - &H < ORI, 5
0,w 0,02 )
Thus, using (6), we get
T~ 2 2m =12 t
o (5 —0) ) < CW™ G, 5+ Crlo(1), h—0. (19)

From (17) and (19), we deduce that
2 2
o ((agyh - 0') ) < Ch™ || =+ Cnfo(l) + ‘Hhﬁ‘ L h—0,  (20)

m,ﬂh

and therefore, using (15), we have

‘ U:yh - o" - < Ch?m 7], 5 + Cnto(1) +¢ ‘ﬁhﬁ‘; i +Cnt U:yh - UH;Q
<C(h*™ +qo(1)) +¢ ‘ﬁh&‘fn,ﬂh + Cnt U:yh — UH;Q , h— 0.
(21)
Likewise, the relations (16) with vy = 11,7, (18) and (19) involve that
n 2 h*m 77t 2
o, — a‘myﬂ <C (T + Lo(1) + ||a||myﬂ)  h—0. (22)

We finally obtain, using (21) and (22):

2m t

2 h ’
ol < e (B a Loty el n) + o ot~ ne

(23)

67

11



where [||.]|| is defined in (2). Because the norm |||.||| is equivalent to the usual
norm |||, o in H™ (Q), we deduce from (23) that

2 th 77t 5
da-o| <cE+n (T + Loy + ||a||myﬂ) b= 0.

(1-Cn') ‘

o~ | =

. Therefore, the family (Ugyh)

o 1
Let i’ be a positive constant less than (5)
n,8,h

is bounded in H™ (§2) if
2m

t
5—>0a—%0a77§77/a77_§5~ (24)
53 53

N )
Enyhn nEﬂ\I*

extracted from the family (0';7 h) and a function ¢* € H™ () such that:

The previous result involves that H™ () contains a sequence (0'

o* =weak lim o’" B, i H™(Q),

n—4oo Em
t
=0, (1) C (0,) and (Z—) (0.9

n

2m

(25)

with lim ¢, = lim
n——4oo n—+o00 €

o Now, we have to show that ¢ = o. Let us consider the relations (20) and (22)

applied to the sequence (0';7" A ) :
wihn )

3C >0,
2 th 77t - 2
Ugnh §C<L+—no(1)) —|—‘th&‘ , N — 400
Um0 En En Mdlp,
2 - 2
£n ((ag: b — 0') ) < ChE™ | &+ Cnho(1) + e, thﬁ‘ , n— +oo.
o ’ m,Qp,
(26)
But, for n large enough, we have, knowing that lim ‘ﬁhnﬁ‘ =lol,,q;
n—+4o00 m,Qp, ’
~ 2 , ) S
‘tho" <ol o+ #°, 1> 0 arbitrarily small,
m,Qp, ’
and then i1t comes that
Nn 2 hrzlm 77; 2 2
Terbnl, o <C — + 6—0(1) + ol o+ 15, n— Foo. (27)

2 \2 .
<L ((ng,hn - 0') ) + Cn,,

2
Nn ~
Enihin Hm Q '
)



thus, using (26), and because the sequence (0'”" hn) is bounded in H™ (), we

obtain
~ 2 th t t
‘ ol UHOw <Ce, ( 6” + Z—”o(l) + |‘7|72n,n + 4+ Z_n) , n— +oo. (28)

Therefore, from (27) and (28), we finally have:

n

2 5 ,
Q S |U|myﬂ +/'L ’ (29)
2
x 2 . . Nn o~
o=l <t i o2z, =7, <0

w12 . . N
0" < lim_inf |77,

)

Tt comes from (29), as p is arbitrarily small

o= € H™ (),
|U*|m,ﬂ S |U|m,ﬂ’
oc=0" onw.

And thus o = ¢ in H™ (2) by Theorem 0.1.

Nn

e We now have to show that Im o

n——+oo
embedding of H™ (Q) in H™~1(Q) and knowing that ¢ = ¢* in H™ (Q), we
have ¢" ,  — o in H™™!(Q). Furthermore, for any n €N,

i n—4o00

= o in H™ (Q). Using the compact

2
M
Ten b "‘ <

m,Q

Nn
Terhin

9
2 n
e + |U|m’Q -2 (O-Znyhn’o-)m .

)

Therefore, using (27), we obtain

2 2m nt 9
o —o" <Ol 2=+ Lo(l) | + 2|0 Q—i—uz—Q(U”"h,U) , N — 400
Enyhn m,Q €n En m, Enyfiin m,§2

and when n — 400, it comes because ¢/, — ¢ in H™ () that,

lim (o,
n— 400 Enyfin

o

2
_U‘

2
o S2lol ot i’ =2(0,0), 0= 1",

)

and the result follows because p is arbitrarily small.

e To achieve this proof, we now assume that

2

ol — O'H 0
e,h m,Q ;é

lim ‘

2m

withe — 0, — — 0, ”a—t < B. Tt means there exists a sequence (dj,, my,, €5, b)) N

12m 1t
such that lim &, = lim —2— =0, Tn < A satisfying for any n € IN*,
n— 400 n— 400 541 41

13



d
0-517“]17 - f > Q.
n'ln m,Q

But such a sequence is bounded in H™ () and using the previous argument,
we reach a contradiction.

Point (ii) is an immediate consequence of (21) and point (i), taking into account
that o, = f., .1

3 Numerical results

The CPU time for each of the following examples was less than 10 seconds (on
a PC Tntel Pentium TTT 500 Mhz, 128 Megabytes).
We have chosen two functions f and g defined by:

S (1,5) = =10

bl

and
3 (= 1(9w-2)"=1(9y—2)?) 3 (= & (97+1)° = & (9y+1)?)
g (l‘, y) — Ze 1 1 4+ —e\l73s 16
+%e(—%<9x—7>2—%<9y—3>2) _ L (-2 (oy-7)%)

The open € is ]0, 1] x ]0, 1[. We use a finite element grid which divides Q into
four rectangles. The chosen generic finite element is the Bogner-Fox-Schmit
rectangle of class C''. Therefore the associated finite element space Vj, as a
dimension of V}, = 36.

For the numerical integration on the given subsets, we use the Ps; formula on
triangles:

/Tudx ~ meas(T) (%Z u(a;) + 12—52 u(b;) + %u(c)) ,

i=1 i=1

as introduced in the remark 2.

We take ¢ = 1075, To our knowledge, there is no mathematical method to opti-
mize this choice. In (Deshpande and Girard [12], Girard [14]), cross validation
methods are studied to solve a similar kind of problem.

For the function f (see Fig. 3), the data corresponding to the first example are
reproduced in Figure 4. Only one surface patch w; is used and the triangulation
is made using 32 triangles (total of 32 distinct vertices for w, see Fig. B5).
For the second example, data are reproduced in Figure 7. In this case, w has
three connected components (wq,ws,ws) and the triangulation is made using 2
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triangles with a common side per wj.j=1 2 3 (total of 12 distinct vertices for w, see
Fig. 8). We show the three surface patches. The corresponding approximant
surface are given, for the first example, in Figure 6, and for the second one in
Figure 9.

For the function g (see Fig. 10), we have used the same kind of data as for the
function f : one surface patch (see Fig. 11) or three surface patches (see Fig.
13). The corresponding approximating surfaces are displayed in Figs. 12 and
14, respectively.

In all cases, we have evaluated the approximant on a regular 40 x 40 grid of
points.

To estimate the accuracy of the method, we evaluate the quadratic error on £
(for the approximant and a usual D™-spline (e.g. [5])) based upon the classical
formula:

1600 1600
Qerror (LZJ (l‘i, Yi, Zz)) = (Z (zl - Zi)z /Zzzz)
i=1

i=1

where z; represents the z-data value, and where Z; is the z-approximant for the
same (2, ;) -

For the usual D™ -spline, the Lagrange data are the nodes of the triangulation,
and of course, we have chosen exactly the same finite element grid (and the
Bogner-Fox-Schmit finite element of class C'!).

Function f Qerror (U ($ia Yis Zz)) Data
approximant 1.84 1073 wy : 128 data points
D™ Spline 5.17 1073 wy : 128 data points
approximant 8.91 10-3 Wis=1,2,3 - 53 data points
D™ Spline 1.07 10~2 Wii=1,2,3 - 53 data points
Table 1.
Function g Qerror (U ($ia Yis Zz)) Data
approximant 1.21 1072 wy : 128 data points
D™ Spline 1.13 1072 wy : 128 data points
approximant 0.18 Wis=1,2,3 - 53 data points
D™ Spline 0.24 Wis=1,2,3 - 53 data points
Table 2
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Considering the dataset corresponding to the first triangulation (32 trian-
gles), such values are considered very good in the context of surface approxi-
mation. Let us note that we obtain the same error order if we use more data
points and a larger finite element space : for instance, using 1152 data points
in wy, and using 81 (=9 x 9) quadrangular BFS finite elements, we obtain a
quadratic error of 1.4 1073 on  for the approximant of the function f..

The second triangulation (6 triangles) illustrates the method in the case of
fewer data points.

For the reader interested in learning more about possible applications of this
technique to realistic cases, numerical examples to real geophysical data (large
datasets up to several hundreds of thousands data points coming from an old
glacial valley located in the Vallée d’Ossau, Pyrénées Mountains, France) are
given in [4]. The regularity obtained, which can be C% C?, or higher, allows
to describe the topography of real geophysical surfaces accurately. Future work
will focus on investigating automatic methods to choose the finite element grid
and, when necessary, the local refinement, as well as on the choice of quadrature
formula with better order of approximation.
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Figure 3: Function f.
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Figure 5: Triangulation of w;.
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Figure 6: C'! approximant.

Figure 7: Data corresponding to fu,, ,.,-
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Figure 12: C'' approximant.

Figure 13: Data corresponding to gy, , ,-

21



=S
SIS

<>
XS ‘:‘:::':0‘
%%

Figure 14: C'! approximant.

ACKNOWLEDGMENTS

ACKNOWLEDGMENTS

The author is very grateful to Dominique Apprato and Dimitri Komatitsch
for valuable comments that helped tmprove the manuscript. The numerical part
of this work has been presented at the Sixth SIAM Conference on Geometric
Design i Albuquerque, New Mexico. Qur thanks also go to the referees of
Computers and Mathematics with Applications for a careful reading of the man-
uscript and for their comments which were very helpful in preparing the final
and improved version of the paper. This research has been funded in part by the
"Communauté de Travail des Pyrénées (C.T.P.)".

References

[1] D. Apprato, R. Arcangéli, Ajustement spline le long d’un ensemble de
courbes. Math. Model. Numer. Anal. 25 193-212 (1991).

[2] D. Apprato, R. Arcangéli, R. Manzanilla, Sur la construction de surfaces
de classe C* & partir d’ un grand nombre de données de Lagrange. Math.

Model. Numer. Anal. 21 - 4 529- 555 (1987).

[3] D. Apprato, C. Gout, Ajustement spline sur des morceaux de surfaces. C.R.
Acad. Sci. Paris, Série 1, tome 325 445-448 (1997).

22



[4] D. Apprato, C. Gout, P. Sénéchal, C* reconstruction of surfaces from par-
tial data. Mathematical Geology 32-8 969-983 (2000).

[6] R. Arcangéli, Some applications of discrete D™- Splines. In Mathematical
Methods in Computer Aided Geometric Design (edited by T. Lyche and
L.L. Schumaker) pp. 35-44, Academic Press, New York, (1989).

[6] R. Arcangéli, M. Cruz de Silanes, J.J. Torrens, D™- Splines: Théorie et
Applications, to appear 2001.

[7] C. de Boor, A Practical Guide to Splines, Springer Verlag, Berlin-
Heidelberg (1978).

[8] P.G. Ciarlet, The Finite Element Method for Elliptic Problems, North Hol-
land, Amsterdam (1978).

[9] P.G. Ciarlet, Analyse numérique matricielle et optimisation, Masson, Paris,

(1990).

[10] P.G. Ciarlet, P.A Raviart, General Lagrange and Hermite Interpolation in
IR"™ with Applications to Finite Element Methods. Arch. Mech. Anal. 46
177-199 (1972).

[11] P. Clément, Approximation by Finite Element Functions Using Local Reg-
ularisation. RATRO 9 R-2 77-84 (1975).

[12] L.N. Deshpande, D. Girard, Fast computation of cross-validated robust
splines and other nonlinear smoothing splines, in Curves and Surfaces, pp.
143-148, Academic Press, Boston, 1991.

[13] J. Duchon, Interpolation des fonctions de deux variables suivant le principe

de la flexion des plaques minces. RAIRO 9 R-3 5-12 (1976).

[14] D.A. Girard, Monte-Carlo cross-validation procedure for large least squares
problems with noisy data, Numer. Math. 56-1, 1-23 (1989).

[15] M. von Golitschek, L. L. Schumaker, Data fitting by penalized least squares.
In Algorithms for Approzimation IT (Editeb by J. C. Mason and M.G. Cox)
pp. 210-227, Chapman and Hall, London, (1990).

[16] C. Gout, Etude de changements d’échelle en Approximation-Ajustement
spline sur des morceaux de surfaces. Ph. D. dissertation, Université de

Pau, France, (1997).

[17] C. Gout, A. Guessab, A new family of Extended Gauss Quadratures with
an Interior Constraint. Journal of Computational and Applied Mathematics

131 (1-2) 35-53, 2001.

[18] J.L. Gout, A. Guessab, Sur les formules de quadrature numérique & nombre
minimal de noeuds. Numer. Math. 49 439-455 (1986).

23



[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

D. Komatitsch, J. Tromp, Introduction to the spectral-element method for
3D-seismic wave propagation. Geophys. J. Int. 139 806-822 (1999).

M.J. Lai, L.L. Schumaker, On the approximation power of splines on tri-
angulated quadrangulations. STAM Num. Anal. 36 143-159 (1999).

M.J. Lai, L.L. Schumaker, On the Approximation Power of Bivariate
Splines. Adv. in Comp. Math. 9 51-279 (1998).

P.J. Laurent, Approzimation et optimisation, Hermann, Paris (1972).

A. Le Méhauté, Prolongement d’'un champ Taylorien connu sur les cotes
d’un triangle. In Numerical Methods of Approzimation Theory, ISMN 52,
Birkhauser Verlag, Basel, (1980).

R. Manzanilla, Sur I’approximation de surfaces définies par une équation
explicite, Ph. D. dissertation, Université de Pau, France, (1986).

J. Neéas, Les méthodes directes en théorie des équations elliptiques, Masson,

Paris (1967).

L. L. Schumaker, Spline functions: Basic theory, Wiley-Interscience, New
York (1981).

G. Strang, Approximation in the Finite Element Method. Numer. Math 19
81-98 (1972).

E.L. Wachspress, A Rational Finite FElement Basis, Academic Press, New
York (1975).

A. Zenisek, A General Theorem on Triangular Finite C™- Elements.

RAIRO 8 R-2 119-127 (1974).

24



