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This paper aims to give a general (possibly compact or noncompact) analog of Strichartz inequalities with loss of derivatives, obtained by Burq, Gérard, and Tzvetkov [19] and Staffilani and Tataru [51]. Moreover we present a new approach, relying only on the heat semigroup in order to understand the analytic connexion between the heat semigroup and the unitary Schrödinger group (both related to a same self-adjoint operator). One of the novelty is to forget the endpoint L 1 -L ∞ dispersive estimates and to look for a weaker H 1 -BMO estimates (Hardy and BMO spaces both adapted to the heat semigroup). This new point of view allows us to give a general framework (infinite metric spaces, Riemannian manifolds with rough metric, manifolds with boundary, . . . ) where Strichartz inequalities with loss of derivatives can be reduced to microlocalized L 2 -L 2 dispersive properties. We also use the link between the wave propagator and the unitary Schrödinger group to prove how short time dispersion for waves implies dispersion for the Schrödinger group.

Introduction

A powerful tool to study nonlinear Schrödinger equations is the family of so called Strichartz estimates. Those estimates are useful to control the size of solutions to a linear problem in terms of the size of the initial data. The "size" notion is usually given by a suitable functional space L p t L q x . Such inequalities were first introduced by Strichartz in [START_REF] Strichartz | Restriction of Fourier Transform to Quadratic Surfaces and Decay of Solutions of Wave Equations[END_REF] for Schrödinger waves on Euclidean space. They were then extended by Ginibre and Velo in [START_REF] Ginibre | Smoothing properties and retarded estimates for some dispersive evolution equations[END_REF] (and the endpoint is due to Keel and Tao in [START_REF] Keel | Endpoint Strichartz estimates[END_REF]) for the propagator operator associated with the linear Schrödinger equation in R d . So for an initial data u 0 , we are interested in controlling u(t, . ) = e it∆ u 0 which is the solution of the linear Schrödinger equation:

i∂ t u + ∆u = 0 u |t=0 = u 0 .
It is well-known that the unitary group e it∆ satisfies the following inequality:

e it∆ u 0 L p L q ([-T,T ]×R d ) ≤ C T u 0 L 2 (R d )
for every pair (p, q) of admissible exponents which means : 2 ≤ p, q ≤ ∞, (p, q, d) = (2, ∞, 2), and

(p, q) 2 p + d q = d 2 .
The Strichartz estimates can be deduced via a T T * argument from the dispersive estimates (1.1)

e it∆ u 0 L ∞ (R d ) |t| -d 2 u 0 L 1 (R d ) .
If sup T >0 C T < +∞, we will say that a global-in-time Strichartz estimate holds. Such a globalin-time estimate has been proved by Strichartz for the flat Laplacian on R d while the localin-time estimate is known in several geometric situation where the manifold is nontrapping (asymptotically Euclidean, conic, or hyperbolic, Heisenberg group); see [START_REF] Bouclet | Strichartz estimates for long range perturbations[END_REF][START_REF] Bouclet | Strichartz estimates for asymptotically hyperbolic manifolds[END_REF][START_REF] Hassell | Sharp Strichartz estimates on nontrapping asymptotically conic manifolds[END_REF][START_REF] Staffilani | Strichartz estimates for a Schrödinger operator with nonsmooth coefficients[END_REF][START_REF] Bahouri | Espaces de Besov et estimations de Strichartz généralisées sur le groupe de Heisenberg[END_REF][START_REF] Anker | Nonlinear Schrödinger equation on real hyperbolic spaces[END_REF] or with variable coefficients [START_REF] Robbiano | Strichartz estimates for Schrödinger equations with variable coefficients[END_REF][START_REF] Tataru | Outgoing parametrices and global Strichartz estimates for Schrödinger equations with variable coefficients[END_REF]. The finite volume of the manifold and the presence of trapped geodesics appear to limit the extent to which dispersion can occur, see [START_REF] Burq | Strichartz estimates without loss on manifolds with hyperbolic trapped geodesics[END_REF].

The situation for compact manifolds presents a new difficulty, since considering the constant initial data u 0 = 1 ∈ L 2 yields a contradiction for large time.

Burq, Gérard, and Tzvetkov [START_REF] Burq | Strichartz inequalities and the nonlinear Schrodinger equation on compact manifolds[END_REF] and Staffilani and Tataru [START_REF] Staffilani | Strichartz estimates for a Schrödinger operator with nonsmooth coefficients[END_REF] proved that Strichartz estimates hold on compact manifolds for finite time if one considers regular data u 0 ∈ W 1/p,2 . Those are called "with a loss of derivatives". An interesting problem is to determine for specific situations, which loss of derivatives is optimal (for example the work of Bourgain [START_REF] Bourgain | Fourier transform restriction phenomena for certain lattice subsets and application to nonlinear evolution equations I. Schrödinger equations[END_REF] on the flat torus and [START_REF] Takaoka | On 2D nonlinear Schrödinger equations with data on R × T[END_REF] of Takaoka and Tzvetkov).

Numerous recent works aim also to obtain such Strichartz estimates with a loss of derivatives in various situations, for example corresponding to a Laplacian operator on a smooth domain with boundary condition (Dirichlet or Neumann) see the works of Anton [START_REF] Anton | Strichartz inequalities for Lipschitz metrics on manifolds and the nonlinear Schrödinger equation on domains[END_REF], Blair-Smith-Sogge [START_REF] Blair | On Strichartz estimates for Schrödinger operators in compact manifolds with boundary[END_REF] and Blair-Ford-Herr-Marzuola [START_REF] Blair | Strichartz Estimates for the Schrödinger Equation on Polygonal Domains[END_REF]. All these works are built on the approach for compact manifolds of [START_REF] Burq | Strichartz inequalities and the nonlinear Schrodinger equation on compact manifolds[END_REF]. Concerning noncompact manifolds, Strichartz estimates with the same loss of derivatives have been obtained in [START_REF] Burq | On nonlinear Schrödinger equations in exterior domains[END_REF] by Burq-Gérard-Tzvetkov for the complement of a smooth and bounded domain in the Euclidean space. Let us precise that the two approaches [START_REF] Burq | Strichartz inequalities and the nonlinear Schrodinger equation on compact manifolds[END_REF] (for the compact situation) and [START_REF] Burq | On nonlinear Schrödinger equations in exterior domains[END_REF] (for the non-compact situation) are completely different, although they give exactly the same loss of derivatives. Indeed in [START_REF] Burq | Strichartz inequalities and the nonlinear Schrodinger equation on compact manifolds[END_REF] the loss of derivatives is due to the use of the only semi-classical dispersive inequality and in [START_REF] Burq | On nonlinear Schrödinger equations in exterior domains[END_REF] the loss of derivatives is due to the use of Sobolev embeddings together with the local smoothing near the boundary. The case of infinite manifolds (with boundary) with one trapped orbit was considered by Christianson in [START_REF] Christianson | Dispersive estimates for manifolds with one trapped orbit[END_REF] where a larger loss of derivatives of 1/p + ε is obtained. There the author allows to perturb the Laplacian by a smooth potential.

We remark that, by Sobolev embedding, the loss of 2/p derivatives is straightforward. Indeed W 2 p ,2 ֒→ L p since d( 12 -1 q ) = 2 p so that (1.2)

e it∆ u 0 L p e it∆ u 0 W 2 p ,2 ≤ u 0 W 2 p ,2
and taking the L q ([-T, T ]) norm it comes e it∆ u 0 L p L q ≤ C T u 0 W 2 p ,2 . So Strichartz estimates with loss of derivatives are interesting for a loss, smaller than 2/p.

The purpose of this article is multiple:

• To present a general/unified result with loss of derivatives for a (possibly compact or noncompact) general setting (involving metric spaces with a self-adjoint generator); • To try to understand the link between the heat semigroup and the unitary Schrödinger group, through the use of corresponding Hardy and BMO spaces. Such spaces allow us to get around the pointwise dispersive estimates and only to consider L 2 -L 2 localized estimates (in space and in frequency); • To connect (short time) dispersive properties for Schrödinger group with dispersion for the wave propagators.

Let us set the general framework of our study. Let (X, d, µ) be a metric measured space of homogeneous type. That is d is a metric on X and µ a nonnegative σ-finite Borel measure satisfying the doubling property: ∀x ∈ X, ∀r > 0, µ(B(x, 2r)) µ(B(x, r)), where B(x, r) denote the open ball with center x ∈ X and radius r > 0. As a consequence, there exists a homogeneous dimension d > 0, such that (1.3) ∀x ∈ X , ∀r > 0 , ∀t ≥ 1 , µ(B(x, tr)) t d µ(B(x, r)).

Thus we aim our result to apply in numerous cases of metric spaces such as open subsets of R d , smooth d-manifolds, some fractal sets, Lie groups, Heisenberg group, . . . Keeping in mind the canonical example of the Laplacian operator in R d : ∆ = 1≤j≤d ∂ 2 j , we will be more general in the following sense: we consider a nonnegative, self-adjoint operator H on L 2 = L 2 (X, µ) densely defined, which means that its domain

D(H) := {f ∈ L 2 , Hf ∈ L 2 }
is supposed to be dense in L 2 . It is known that -H is the generator of a L 2 -holomorphic semigroup (e -tH ) t≥0 (see Definition 2.1 and [START_REF] Davies | Non-Gaussian aspects of heat kernel behaviour[END_REF]) and we assume that it satisfies L 2 Davies-Gaffney estimates: for every t > 0 and every subsets E, F ⊂ X (DG) e -tH

L 2 (E)→L 2 (F ) e -d(E,F ) 2 4t
(with the restriction to t diam(X) if X is bounded). Without losing generality (up to consider λH for some positive real λ > 0), we assumed that H satisfies the previous normalized estimates, which are equivalent to a finite speed propagation property at speed 1 (see later (1.5)).

We will assume also that the heat semigroup (e -tH ) t≥0 satisfies the typical upper estimates (for a second order operator): that for every t > 0 the operator e -tH admits a kernel p t with (DUE) 0 ≤ p t (x, x) 1 µ(B(x, √ t)) , ∀ t > 0, a.e. x ∈ X.

It is well-known that such on-diagonal pointwise estimates self-improve into the full pointwise Gaussian estimates (see [START_REF] Grigor'yan | Gaussian upper bounds for the heat kernel on arbitrary manifolds[END_REF]Theorem 1.1] or [START_REF] Coulhon | Gaussian heat kernel bounds via Phragmén-Lindelöf theorem[END_REF]Section 4.2] e.g.):

(UE) 0 ≤ p t (x, y) 1 µ(B(x, √ t)) exp -c d(x, y) 2 t , ∀ t > 0, a.e. x, y ∈ X.

Before we carry on, let us give some examples to point out that (DUE) is a quite common estimate:

• It is well known that on a Riemannian manifold [START_REF] Grigor'yan | Gaussian upper bounds for the heat kernel on arbitrary manifolds[END_REF]Theorem 1.1] or for the Laplacian on a subset with boundary conditions [START_REF] Gyrya | Neumann and Dirichlet heat kernels in inner uniform domains[END_REF], under very weak conditions the heat kernel satisfies (DUE) and so (UE). It is also the case for the semigroup generated by a selfadjoint elliptic operator of divergence form L = -div(A∇) on the Euclidean space with a bounded and real valued matrix A (see [START_REF] Auscher | Square Root Problem for Divergence Operators and Related Topics[END_REF]Theorem 4]); • If (X 1 , . . . , X n ) is a family of vector fields satisfying Hörmander condition and if H := -n i=1 X 2 i , then, in the situation of Lie groups or Riemannian manifolds with bounded geometry, the heat semigroup satisfies Gaussian upper-bounds (UE) too (see [START_REF] Robinson | Elliptic Operators and Lie Groups[END_REF]Theorem 5.14] and [27, Section 3, Appendix 1]); • When one consider an infinite volume Euclidean surface with conic singularities with H equals to its Laplacian, then it is proved in [START_REF] Blair | Strichartz Estimates for the Schrödinger Equation on Polygonal Domains[END_REF]Section 4] that the heat kernel satisfies Gaussian pointwise estimates (UE). Let us now emphasize why we put so importance on such estimates and on the heat semigroup. The considered operator H is self-adjoint and so admits a C ∞ -functional calculus, which allows us to control φ(H) L p →L p for some regular functions φ. Such estimates can be obtained as explained in the Appendix of [START_REF] Ivanovici | Square-function and heat flow estimates on domains[END_REF] as a consequence of pointwise Gaussian estimates (UE) on the heat kernel. Moreover, we aim to use some extrapolation techniques (to go from localized L 2 -L 2 dispersive estimates to L p -L p ′ estimates) which require local informations, as off-diagonal estimates of some functional operators. Such local informations could be transferred from those on the heat semigroup to some operators coming from a C ∞ -calculus (see [START_REF] Kunstmann | Spectral multiplier theorems of Hörmander type on Hardy and Lebesgue spaces submitted[END_REF] for example). However, it requires to deal with the whole class of C ∞ functions (compactly supported) with suitable norms. . . For an easier readability and a more intrinsic method, we prefer to work only with the semigroup and its time derivatives. We refer the reader to Remark 2.6 for the equivalence between the two points of view.

Moreover, we still keep in mind the following very general/interesting question: what assumptions on the heat semigroup (e -tH ) t≥0 could imply dispersive estimates and Strichartz estimates (possibly with a loss of derivatives) for the unitary Schrödinger group (e -itH ) t∈R ? Such a question is natural, since the application z → e -zH is holomorphic on {z ∈ C, Re(z) ≥ 0}. Dispersive information on Schrödinger group should be connected to some specific properties of the heat kernel.

Motivated by this program, we decide to only work with the holomorphic functional calculus associated with the operator H and more precisely, we will see that all of our study relies on (a sectorial) functional calculus only involving the heat semigroup and its time derivatives, and could also be written in terms of a C ∞ -calculus, see Remark 2.6.

In the first part of this work, we investigate this question, allowing loss of derivatives, as in [START_REF] Burq | Strichartz inequalities and the nonlinear Schrodinger equation on compact manifolds[END_REF], proposing a new approach, related to the heat semigroup and the use of Hardy-BMO spaces associated with the semigroup. We point out that our approach gives an "unified" way to prove Strichartz estimates with loss of derivatives for the compact and noncompact framework.

Let us briefly explain the study of Hardy and BMO spaces associated with such a heat semigroup. The classical spaces Hardy space H 1 (also called of Coifman-Weiss [START_REF] Coifman | Extensions of Hardy spaces and their use in analysis[END_REF], [START_REF] Fefferman | H p spaces of several variables[END_REF]) and BMO (introduced by John and Nirenberg in [START_REF] John | On functions of bounded mean oscillation[END_REF]) naturally arises (from a point of view of Harmonic Analysis) as a "limit/extension" of the Lebesgue spaces scale (L p ) 1<p<∞ when p → ∞ (for BMO) and p → 1 (for H 1 ). Indeed, these two spaces have many properties, which are very useful and which fail for the critical spaces L 1 and L ∞ , as Fourier characterization, duality, boundedness of some maximal functions or Calderón-Zygmund operators, equivalence between several definitions. . . Even if BMO is strictly containing L ∞ and H 1 stricly contained in L 1 , these spaces still satisfies a very convenient interpolation results: indeed H 1 or BMO interpolates with Lebesgue spaces L p , 1 < p < ∞ and the intermediate spaces are the corresponding intermediate Lebesgue spaces.

However, there are situations where these spaces H 1 and BMO are not the right substitutes to L 1 or L ∞ (for example it can be shown that the Riesz transform may be not bounded from H 1 to L 1 ) and there has been recently numerous works whose goal is to define Hardy and BMO spaces adapted to the context of a semigroup (see [START_REF] Auscher | On necessary and sufficient conditions for L p estimates of Riesz transforms associated to elliptic operators on R n and related estimates[END_REF][START_REF] Auscher | Riesz transform on manifolds and heat kernel regularity[END_REF][START_REF] Bernicot | Use of abstract Hardy spaces, real interpolation and applications to bilinear operators[END_REF][START_REF] Bernicot | New abstract Hardy spaces[END_REF][START_REF] Bernicot | Abstract framework for John Nirenberg inequalities and applications to Hardy spaces[END_REF][START_REF] Duong | Duality of Hardy and BMO spaces associated with operators with heat kernel bounds[END_REF][START_REF] Duong | New function spaces of BMO type, the John-Niremberg inequality, Interplation and Applications[END_REF][START_REF] Hofmann | Hardy and BMO spaces associated to divergence form elliptic operators[END_REF]). In [START_REF] Bernicot | Use of abstract Hardy spaces, real interpolation and applications to bilinear operators[END_REF][START_REF] Bernicot | New abstract Hardy spaces[END_REF], Bernicot and Zhao have described a very abstract theory for Hardy spaces (built via atomic decomposition) and interpolation results with Lebesgue spaces. The main idea is to consider the oscillation given by the semigroup instead of the classical oscillation involving the average operators. Then these adapted Hardy and BMO spaces have been extensively studied these last years (see the previous references) and it is known that interpolation property still holds. We refer the reader to Subsection 2.4 for the precise definition and refer to the previous citations for more details on this theory.

Still having in mind to connect the heat semigroup with the Schrödinger propagator, we aim to prove H 1 -BMO dispersive estimates, using these spaces corresponding to the heat semigroup. Even if we loose the endpoint (L 1 -L ∞ estimate) by interpolation, we know that we could at least recover the intermediate L p -L p ′ dispersive estimates. Moreover, such approach has the advantage that we do not require any pointwise estimates on the Schrödinger propagators. We first point out that such Hardy-BMO approach have already been used in [START_REF] Metcalfe | Nonlinear waves on 3D hyperbolic space[END_REF][START_REF] Taylor | Hardy Spaces and Bmo on manifolds with bounded geometry[END_REF] to obtain dispersive estimates, but there the authors considered the classical spaces and not the ones associated with the heat semigroup.

It seems to us that the combination of dispersive estimates and H 1 -BMO spaces associated with the heat semigroup is a new problematic. Due to the novelty of such approach, we first describe it in a very general setting, by introducing the following notion: we say that a L 2 -bounded operator T satisfies Property (H m (A)) for some integer m ≥ 0 and constant A (which is intended to be |t| -d 2 in the applications for dispersive estimates), if for every r > 0 (or

r diam(X) if X is bounded) (H m (A)) T ψ m (r 2 H) L 2 (Br)→L 2 ( Br) Aµ(B r ) 1 2 µ( B r ) 1 2
where B r and B r are any two balls of radius r and ψ m (x) := x m e -x .

Under a uniform lower control of the volume: it exists ν > 0 such that

(1.4) r ν µ(B(x, r)) ∀x ∈ X, r min(1, diam(X)),
we then prove the following: if the ambient space X is unbounded and

T H 1 →BM O max(A, 1) and T L p →L p ′ max(A 1 p -1 p ′ , B)
if the ambient space X is bounded, and where, for the last inequality, we assumed that

T L p →L 2 B.
As a consequence, this allows us to reduce L p -L p ′ dispersive estimates to microlocalized L 2 -L 2 estimates (localized in the frequency through the operators ψ(r 2 H) and in the physical space through the balls B r and B r , respecting the Heisenberg uncertainty principle).

Note that Property (H m (A)) is weaker (and also necessary to have) than a L 1 -L ∞ estimate: indeed if T is supposed to map L 1 to L ∞ with a bound lower than A then Cauchy-Schwarz inequality leads us to Property (H m (A)):

T ψ(r 2 H)f L 2 ( Br) ≤ A ψ(r 2 H)f L 1 µ( B r ) 1/2 Aµ( B r ) 1 2 f L 1 (Br ) ≤ Aµ( B r ) 1 2 µ(B r ) 1 2 f L 2 (Br) .
For the L 1 -L 1 continuity of ψ(r 2 H) see Corollary 2.4.

Our goal is to obtain the dispersive estimate

T t (H) H 1 →BMO |t| -d 2 ,
where T t (H) = e itH ψ m (h 2 H), h > 0. The case of the full range |t| ≤ 1 (which is independent of h) is the most difficult. However the case |t| ≤ h 2 is straightforward: indeed for m = 0 (m = 0 then deduces easily) we have

T t (H) = e itH e -h 2 H = e -zH with z = h 2 -it.
The key observation is that |z| = √ h 4 + t 2 h 2 = Re(z). Thus (the complex time z lives into a sector far away from the axis of imaginary complex numbers) by analyticity, Property (UE) can be extended to complex time semigroup and so

T t (H) L 1 →L ∞ ≤ 1 Re(z) d 2 1 |z| d 2 ≤ 1 |t| d 2
.

So the full L 1 -L ∞ and so Property (H m (A)) (which is weaker, as we have just seen) are obviously satisfied in the range |t| h 2 . The intermediate case h 2 |t| ≤ h is treated in the particular case of compact Riemannian manifolds in [START_REF] Burq | Strichartz inequalities and the nonlinear Schrodinger equation on compact manifolds[END_REF] together with the implicated Strichartz estimates with a nontrivial loss of derivatives. We will focus on this interesting situation and we describe in this very general setting how dispersive estimates imply these Strichartz estimates (see Theorem 4.5).

We intend to emphasize the link between the heat semigroup and the wave operator. In the second part of the paper (from Section 5) we aim to study what dispersive properties on the wave equation would be sufficient to ensure our hypothesis (H m (A)) for T = e itH , in order to regain the dispersive estimates and then Strichartz estimates for the Schrödinger group. Mainly, we are interested in the wave propagator cos(t √ H) which is defined as follows: for any f ∈ L 2 , u(t) := t → cos(t √ H)f is the unique solution of the wave equation:

     ∂ 2 t u + Hu = 0 u |t=0 = f ∂ t u |t=0 = 0.
One can find the explicit solutions of this problem in [START_REF] Folland | Introduction to partial differential equations[END_REF] for the Euclidean case and in [START_REF] Bérard | On the wave equation on a compact riemannian manifold without conjugate points[END_REF] for the Riemannian manifold case through precise formulae for the kernel of the wave propagator.

The remarkable property of this operator comes from its finite speed propagation. We know that Davies-Gaffney estimates (DG) imply (and indeed are equivalent ([26, Theorem 3.4]) to) the finite speed propagation property at a speed equals to 1: namely, for every disjoint open subsets U 1 , U 2 ⊂ X, every function

f i ∈ L 2 (U i ), i = 1, 2, then (1.5) cos(t √ H)f 1 , f 2 = 0 for all 0 < t < d(U 1 , U 2 ). If cos(t √ H
) is an integral operator with kernel K t , then (1.5) simply means that K t is supported in the "light cone" D t := {(x, y) ∈ X 2 , d(x, y) ≤ t}.

To apply Theorem 1.1 in order to get dispersive estimates, we first have to prove that Schrödinger propagators satisfy Property (H m (A)) for some suitable constant A. The following formula (see Section 5): for all z ∈ C with Re(z) > 0:

e -zH = 1 √ π +∞ 0 cos(s √ H)e -s 2 4z ds √ z ,
alllows us to describe the link between Schrödinger propagators and wave propagators. We will need extra assumptions (deeper than just the finite speed propagation property), in order to be able to check Property (H m (A)). More precisely, we need the following short time L 2 -L 2 dispersive estimates: Assumption 1.2. There exist κ ∈ (0, ∞] and an integer m 0 such that for every s ∈ (0, κ) we have: for every r > 0, every balls B r , B r of radius r then

cos(s √ H)ψ m 0 (r 2 H) L 2 (Br )→L 2 ( Br ) r s + r d-1 2 1 + |L -s| r -d+1 2 
where L = d(B r , B r ).

To obtain our second result we will need more regularity on the measure than (1.4). For the next theorem assume that µ is Ahlfors regular: there exist two absolute positive constants c and C such that for all x ∈ X and r > 0:

(1.6) cr d ≤ µ(B(x, r)) ≤ Cr d .
Then our second main theorem is the following: ) and so we have Strichartz estimates with loss of 1+ε p derivatives. It is worth noting that, in the proof, the same approach raises the two cases:

• κ < +∞ which leads to Strichartz estimates with loss of derivatives,

• κ = +∞ which leads to estimates without loss of derivatives. Moreover, Assumption 1.2 holds in the context of smooth compact Riemannian manifold with κ given by the injectivity radius and in the Euclidean situation with κ = ∞ (also with smooth perturbation and there κ < ∞).

As an example, note that in the case of the Euclidean space with an operator of the form H = -divA∇, where A is a matrix with variable and C 1,1 coefficients, then Smith has built a short time parametrix [START_REF] Smith | Spectral cluster estimates for C 1,1 metrics[END_REF] of the corresponding wave equation (see also the work of Blair [START_REF] Blair | Strichartz estimates for wave equations with coefficients of Sobolev regularity[END_REF]), which yields in particular our Assumption 1.2 for some κ < ∞. As a consequence, we deduce that the solutions of Schrödinger equation satisfies Strichartz estimates with loss of 1+ε p derivatives for every ε > 0. By this way, we have an unified approach to deal with compact or noncompact situations and we recover (up to a loss ε as small as we want) the Strichartz estimates with loss of derivatives for a compact smooth manifold due to [START_REF] Burq | Strichartz inequalities and the nonlinear Schrodinger equation on compact manifolds[END_REF][START_REF] Staffilani | Strichartz estimates for a Schrödinger operator with nonsmooth coefficients[END_REF] and full Strichartz estimates for the Euclidean situation.

The plan of this article is as follow: In Section 2 we first set the notations and definitions used throughout the paper. Then we describe the assumptions required on the heat semigroup e -tH together with some basic properties about Hardy-BMO spaces and functional calculus associated to H. Theorem 1.1 is proved in Section 3 and we apply it in Section 4 to prove Strichartz estimates (with a possible loss of derivatives). Section 5 shows Theorem 1.3, and Section 6 how the hypothesis (H m (A)) can be derived from the small time parametrix of the associated wave operator.

Definitions and preliminaries

2.1. Notations. For B(x, r) a ball (x ∈ X and r > 0) and any parameter λ > 0, we denote λB(x, r) := B(x, λr) the dilated and concentric ball. As a consequence of the doubling property, a ball B(x, λr) can be covered by Cλ d balls of radius r, uniformly in x ∈ X, r > 0 and λ > 1 (C is a constant only dependent on the ambient space). Moreover, the volume of the balls satisfies the following behaviour:

(2.1) µ(B(y, r)) 1 + d(x, y) r d µ(B(x, r))
uniformly for all x, y ∈ X and r > 0.

For a ball Q, and an integer i ≥ 1, we denote C i (Q) the ith dyadic corona around Q:

C i (Q) := 2 i Q\2 i-1 Q.
We also set C 0 (Q) = Q.

If no confusion arises, we will note L p instead of L p (X, µ)

for p ∈ [1 , ∞].
We will use u v to say that there exists a constant C (independent of the important parameters) such that u ≤ Cv and u ≃ v to say that u v and v u.

If Ω is a set, 1 Ω is the characteristic function of Ω, defined by

1 Ω (x) = 1 if x ∈ Ω 0 if x / ∈ Ω.
The Hardy-Littlewood maximal operator is denoted by M and is given for every x ∈ X and function f ∈ L 1 loc by: M(f )(x) := sup

B ball x∈B 1 µ(B) B |f |dµ .
Since the space is of homogeneous type, it is well-known that this maximal operator is bounded in any L p spaces, for p ∈ (1, ∞].

2.2.

The heat semigroup and associated functional calculus. We recall the definition of a L 2 -holomorphic semigroup:

Definition 2.1. A familly of operators (S(z)) Re(z)≥0 on L(L 2 ) is said to be a holomorphic semigroup on L 2 if (with Γ := {z ∈ C, Re(z) ≥ 0}):

(1) S(0) = id;

(2)

∀z 1 , z 2 ∈ Γ , S(z 1 + z 2 ) = S(z 1 ) • S(z 2 ); (3) ∀f ∈ L 2 , lim z→0 z∈Γ S(z)f -f L 2 = 0; (4) ∀f, g ∈ L 2 , the map z → S(z)f, g is holomorphic on Γ.
We recall the bounded functional calculus theorem from [START_REF] Reed | Functional Analysis I. Methods of modern mathematical physics[END_REF]:

Theorem 2.2.
Since H is a nonnegative self-adjoint operator, it admits a L ∞ -functional calculus: if f ∈ L ∞ (R + ), then we may consider the operator f (H) as a L 2 -bounded operator and

f (H) L 2 →L 2 ≤ f L ∞ .
For any integer m ≥ 1 and real n > 0, we set ψ m,n (x) = x m e -nx and ψ m := ψ m,1 . These smooth functions ψ m,n ∈ C ∞ (R + ), vanish at 0 and at infinity; moreover ψ m,n L ∞ (R + )

1. The previous theorem allows us to define the operators ψ m,n (tH) for any t ≥ 0 and m ∈ N, n > 0.

From the Gaussian estimates of the heat kernel (UE) and the analyticity of the semigroup (see [START_REF] Carron | Gaussian estimates and Lp-boundedness of Riesz means[END_REF]) it comes that for every integer m ∈ N and n > 0 the operator ψ m,n (tH) has a kernel p m,n,t also satisfying upper Gaussian estimates:

(2.2) |p m,n,t (x, y)| 1 µ(B(x, √ t)) exp -c d(x, y) 2 t , ∀ t > 0, a.e. x, y ∈ X.
We now give some basic results about the semigroup thanks to our assumptions.

Proposition 2.3. Under (1.3) and (UE), the heat semigroup is pointwisely bounded by the Hardy-Littlewood maximal operator and is uniformly bounded in every L p -spaces for p ∈ [1, ∞]: for every locally integrable function f and every x 0 ∈ X, we have

sup t>0 e -tH f L ∞ (B(x 0 , √ t)) M(f )(x 0 ) and sup t>0 e -tH f L p f L p .
Proof. The pointwise boundedness by the maximal function is an easy consequence of (UE) with the doubling property (1.3). As a consequence, the L p -boundedness of the maximal operator yields the uniform L p -boundedness of the heat semigroup, for p > 1. Let us now check the L 1 -boundedness. By (UE), we have:

x∈X |e -tH f (x)|dµ(x) x∈X y∈X 1 µ(B(x, √ t)) e -c d(x,y) 2 t |f (y)|dµ(y)dµ(x) y∈X |f (y)| 1 µ(B(y, √ t)) x∈X 1 + d(x, y) √ t d e -c d(x,y) 2 t dµ(x)dµ(y).
A decomposition in coronas around B(y, √ t) allows us to control the integral over x:

B(y, √ t) 1 + d(x, y) √ t d e -c d(x,y) 2 t dµ(x) + j≥1 C j (B(y, √ t)) 1 + d(x, y) √ t d e -d(x,y) 2 t dµ(x) ≤2 d µ(B(y, √ t)) + j≥1 1 + 2 j d e -c2 2j µ(B(y, 2 j √ t)) 2 d + j≥1 (1 + 2 j ) d 2 jd e -c2 2j µ(B(y, √ t)) µ(B(y, √ t)),
where the last line results from the doubling property of µ. Hence, uniformly in t > 0

e -tH L 1 →L 1 1.
Corollary 2.4. For m ∈ N and n > 0, since ψ m,n (tH) satisfies (UE), we deduce that the operators ψ m,n (tH) also satisfy the same estimates.

Let us now give some basic properties about the functions ψ m,n :

Proposition 2.5. (a) for all k ∈ N * , m ∈ N and n > 0 then ψ km,kn = (ψ m,n ) k ; (b) for all m, m ′ ∈ N and n, n ′ , u, v > 0 then : ψ m,n (u•)ψ m ′ ,n ′ (v•) = u m v m ′ (nu + n ′ v) m+m ′ ψ m+m ′ ,1 ((nu + n ′ v)•);
(c) for every r > 0 and every f ∈ L 2 then:

(1 -e -r 2 H )f = r 2 0 He -sH f ds = r 2 0 ψ 1,1 (sH)f ds s ; (d) for m ∈ N * , n > 0 and f ∈ L 2 , then +∞ 0 ψ m,n (vH)f 2 L 2 dv v 1 2 + P N (H) f L 2 f L 2 ;
where P N (H) is the projector on the kernel of

H: N(H) := {f ∈ L 2 ∩ D(H), Hf = 0}.
(e) for m ∈ N * , n > 0 up to a constant c m,n , we have the decomposition:

Id = c m,n +∞ 0 ψ m,n (sH) ds s + P N (H) .
Proof. (a), (b), (c) and (e) are straightforward. (d) is classical and a direct application of (e) with the almost-orthogonality of ψ m,n (vH) operators: for every u, v > 0

ψ m,n (uH)ψ m,n (vH) L 2 →L 2 min u v , v u m ;
for which we refer to [START_REF] Badr | Algebra properties for Sobolev spaces. Applications to semilinear PDE's on manifolds[END_REF] e.g.

It is crucial to keep in mind that by the holomorphic functional calculus, item (e) gives a decomposition of the identity

Id = c m,n ∞ 0 ψ m,n (sH) ds s + P N (H) ,
which has to be seen/thought as a smooth version of the spectral decomposition. Indeed the operator ψ m,n (sH) plays the role of a regularized version of the projector

1 [s -1 ,2s -1 ] (H).
Remark 2.6. We would like to emphasize that the use of ψ m,n functions is exactly equivalent to the use of smooth compactly supported cut-off functions. Indeed, it is easy by a smooth partition of the unity to build ψ m,n by an absolutely convergent serie of smooth and compactly supported cut-off functions. From functional calculus, we also know how we can build a smooth and compactly supported function by the resolvent of H (using the semigroup) and so the ψ m,n functions (see [START_REF] Ivanovici | Square-function and heat flow estimates on domains[END_REF]Appendix] or [START_REF] Kunstmann | Spectral multiplier theorems of Hörmander type on Hardy and Lebesgue spaces submitted[END_REF] e.g.).

We have chosen to work with ψ m,n functions to enlighten the connexion between dispersive estimates and heat semigroup and also to get around the different norms that we have to consider on the C ∞ space.

Quadratic functionals associated to the heat semigroup and Sobolev spaces.

Let us define some tools for the next theorem:

ϕ(λ) = +∞ λ ψ m,n (u) du u , φ(λ) = λ 0 ψ m,n (v) dv v = 1 0 ψ m,n (λu) du u .
Remark 2.7. Notice that ϕ is, by integration by parts, a finite linear combination of functions ψ k,ℓ for k ∈ {0, .., m} and ℓ > 0. Moreover for every λ ∈ R,

φ(λ) + ϕ(λ) = +∞ 0 u m-1 e -nu du = Γ(m) n m := c m,n .
The following theorem will be useful to estimate the L p -norm through the heat semigroup:

Theorem 2.8. Assume (1.3) and (DUE). For every integer m ≥ 2, real number n > 0 and all p ∈ (1, ∞), we have

f L p ≃ ϕ(H)f L p + 1 0 |ψ m,n (uH)f | 2 du u 1 2 L p . So if q ≥ 2 f L q ϕ(H)f L q + 1 0 ψ m,n (uH)f 2 L q du u 1 2
.

Such a result can be seen as a semigroup version of the Littlewood-Paley characterization of Lebesgue spaces.

Proof. We give the sketch of the proof (and refer to [4, Chapter 6, Theorem 6.1] and [6, Proposition 2.12] for more details where it is proved that such inequalities hold for every exponent p belonging to the range dicted by the heat semigroup e -tH ; here (1, ∞)). We aim to study the boundedness of the quadratic functional

T : f → 1 0 |ψ m,n (s 2 H)f | 2 ds s 1 2
.

Indeed T is a horizontal square function (or Littlewood-Paley-Stein g-function), and its L pboundedness is well-known by functional calculus theory (see [START_REF] Stein | Topics in Harmonic Analysis related to the Littlewood-Paley Theory[END_REF], [START_REF] Meda | On the Littlewood-Paley-Stein g-function[END_REF] and references therein) when the semigroup is submarkovian and conservative.

We aim here to quickly explain another approach (more analytic) of its boundedness, which does not require submarkovian property and conservativeness but relies on Gaussian estimates (UE). We are looking to apply extrapolation result [4, Theorem 1.1] or [START_REF] Bernicot | New abstract Hardy spaces[END_REF] to T with p 0 = 1. To keep the notation of [START_REF] Auscher | On necessary and sufficient conditions for L p estimates of Riesz transforms associated to elliptic operators on R n and related estimates[END_REF] we recall that

A r := Id -(Id -e -r 2 H ) M and B r := Id -A r = (Id -e -r 2 H ) M ,
with M a large enough integer. First by L 2 holomorphic functional calculus, it is known that T is bounded on L 2 (see [START_REF] Badr | Algebra properties for Sobolev spaces. Applications to semilinear PDE's on manifolds[END_REF] e.g.). We now have to check the two main hypothesis of [START_REF] Auscher | On necessary and sufficient conditions for L p estimates of Riesz transforms associated to elliptic operators on R n and related estimates[END_REF]Theorem 1.1].

By expanding, A r behaves like e -r 2 H , in the sense that it admits a kernel satisfying the Gaussian upper estimates at the scale r. Note B a ball of radius r, and f supported in B. For all j ≥ 1 and for all x ∈ C j (B), we have

|A r f (x)| B 1 µ(B(x, r)) e -c d(x,y) 2 r 2 |f (y)|dµ(y) 1 µ(B(x, r)) B e -c2 2j |f |dµ.
If z denotes the center of B, then by the doubling property (2.1) of the measure it comes

µ(B) 1 + d(z, x) r d µ(B(x, r)), so that µ(B(x, r)) -1 1 + d(z, x) r d µ(B) -1 2 jd µ(B) -1 ,
where we used that z ∈ B and x ∈ C j (B) so d(z, x) 2 j r. Hence,

1 µ(2 j+1 B) C j (B) |A r f | 2 dµ 1 2 g(j) 1 µ(B) B |f |dµ,
with g(j) e -c4 j 2 jd satisfying j g(j)2 dj < +∞.

That is the first assumption required in [4, Theorem 1.1].

Then the second (and last) assumption of [4, Theorem 1.1] has been weakened in [START_REF] Bernicot | New abstract Hardy spaces[END_REF] and we only have to check that for all j ≥ 2:

1 µ(2 j+1 B) C j (B) |T (B r f )| 2 dµ 1 2 ≤ g(j) 1 µ(B) B |f | 2 dµ 1/2
.

We refer the reader to [4, Step 3, item 1, Theorem 6.1] and also [START_REF] Coulhon | Littlewood-Paley-Stein functions on complete Riemannian manifolds for 1 < p < 2[END_REF] and [START_REF] Auscher | Riesz transform on manifolds and heat kernel regularity[END_REF], where such inequalities are proved, and the arguments only rely on the Davies-Gaffney estimates (DG) for ψ m,n (tH).

By this way, we may apply [4, Theorem 1.1] and deduce that the square function T is bounded on L p for every p ∈ (1, 2]. For p > 2, we have to apply [4, Theorem 1.2] and this is also detailed in [4, Step 2, Theorem 6

.1]. Thus, if p ∈ (1, ∞) then (2.3) 1 0 |ψ m,n (s 2 H)f | 2 ds s 1 2 L p f L p .
It remains to check the reverse inequalities. We proceed by duality to finish the proof. Since ϕ(x)

+ 1 0 ψ m,n (tx) dt t = c m,n is a constant independent of x, then: c m,n f, g = f, ϕ(H)g + 1 0 ψ m,n (tH)g dt t = ϕ(H)f, g + 1 0 ψ m 2 , n 2 (tH)f, ψ m 2 , n 2 (tH)g dt t .
We should decompose m = m 1 + m 2 with 2 integers m 1 , m 2 comparable to m 2 . For simplicity we take m 1 = m 2 = m 2 , assume they are integers, and let to the reader the minor modifications. The Cauchy-Schwarz inequality for the scalar product (u, v) = 1 0 u(t)v(t) dt t gives then:

| f, g | | ϕ(H)f, g | + 1 0 |ψ m 2 , n 2 (tH)f | 2 dt t 1 2 1 0 |ψ m 2 , n 2 (tH)g| 2 dt t 1 2 dµ ≤ ϕ(H)f L p g L p ′ + 1 0 |ψ m 2 , n 2 (tH)f | 2 dt t 1 2 L p 1 0 |ψ m 2 , n 2 (tH)g| 2 dt t 1 2 L p ′ ϕ(H)f L p g L p ′ + 1 0 |ψ m 2 , n 2 (tH)f | 2 dt t 1 2 L p g L p ′ ,
where 1 p + 1 p ′ = 1 and we used (2.3) for p ′ . Thus, by duality

f L p = sup g L p ′ ≤1 | < f, g > | ϕ(H)f L p + 1 0 |ψ m 2 , n 2 (tH)f | 2 dt t 1 2 L p .
That concludes the proof of the characterization of the Lebesgue norms, via these square functionals.

Then in particular for q ∈ [2, +∞), Minkowski generalized inequality finally gives

f L q (M ) ϕ(H)f L q + 1 0 ψ m,n (uH)f 2 L q (M ) du u 1 2
.

We will also work with the nonhomogeneous Sobolev spaces associated to H, defined in terms of Bessel type: for s ≥ 0 and p ∈ (1, ∞), W s,p H which will be noted W s,p is the Sobolev space of order s associated/equipped with the norm

f W s,p := (1 + H) s 2 f L p ≃ f L p + H s 2 f L p .
Following the previous result, it comes

f W s,p ≃ ϕ(H)f L p + +∞ k=1 2 2ks |ψ m,n (2 -2k H)f | 2 1 2 L p ≃ ϕ(H)f L p + 1 0 u -2s |ψ m,n (u 2 H)f | 2 du u 1 2 L p
We refer the reader to [START_REF] Badr | Algebra properties for Sobolev spaces. Applications to semilinear PDE's on manifolds[END_REF] for more details about such Sobolev spaces. We can move from the discrete to the continuous case of those partitions of "Littlewood-Paley" writing:

+∞ k=1 2 1 ψ m,n (2 -2k u 2 λ) du u = +∞ k=1 2 -(k-1) 2 -k ψ m,n (λv 2 ) dv v = 1 0 ψ m,n (λv 2 ) dv v = λ 0 ψ m,n (u) du 2u = 1 0 ψ(λu) du 2u .
Remark 2.9. The left hand integral works over u ∈ [1, 2], so we can pass from information on the discrete case to the same information on the continuous case.

2.4.

Hardy and BMO spaces. We define now atomic Hardy spaces adapted to our situation (dicted by a semigroup on a doubling space) using the construction introduced in [START_REF] Bernicot | New abstract Hardy spaces[END_REF].

Let Q be the family of all balls of X:

Q := {B(x, r) , x ∈ X , r > 0}.
We define (B Q ) Q∈Q the family of operators:

∀Q ∈ Q , B Q := (1 -e -r 2 H ) M ,
where r is the radius of the ball Q and M is an integer (large enough: M ≥ min( 3 4 + 3d 8 , 3) is sufficient). Those operators are bounded on L 2 uniformly in r. Indeed, by expanding, B Q is a finite linear combination of operators e -kr 2 H with k ∈ {0, . . . , M} and Theorem 2.2 gives

e -kr 2 H L 2 →L 2 ≤ x → e -kr 2 x L ∞ (R + ) ≤ 1, because H is nonnegative. Remark 2.10. M ≥ 3 4 + 3d 8 ensures that 4M 3 -d 2 ≥ 1 so there exists an integer m ∈ [ d 2 , 4M 3 ]. Definition 2.11. A function a ∈ L 1 loc is an atom associated with the ball Q if there exists a function f Q whose support is included in Q such that a = B Q (f Q ), with f Q L 2 (Q) ≤ (µ(Q)) -1 2 .
That last condition allows us to normalize f Q in L 1 . Indeed by the Cauchy-Schwarz inequality

f Q L 1 ≤ f Q L 2 (Q) µ(Q) 1 2 ≤ 1. Moreover, B Q is bounded on L 1 so every atom is in L 1 and they are also normalized in L 1 (2.4) sup a a L 1 1,
where we take the supremum over all the atoms. Indeed, consider an atom a = B Q (f ) = (1 -e -r 2 H ) M f with suitable function f supported on a ball Q. By the binomial theorem, B Q behaves like e -kr 2 H . So Proposition 2.3 gives

a L 1 (X) = B Q (f ) L 1 (X) ≤ M k=1 M k e -kr 2 H f L 1 f L 1 1.
We may now define the Hardy space by atomic decomposition:

Definition 2.12. A measurable function h belongs to the atomic Hardy space H 1 ato , which will be denoted H 1 , if there exists a decomposition

h = i∈N λ i a i µ -a.e.
where a i are atoms and λ i real numbers satisfying:

i∈N |λ i | < +∞.
We equip the space H 1 with the norm:

h H 1 := inf h= i λ i a i i∈N |λ i |,
where we take the infimum over all the atomic decompositions.

For a more general definition and some properties about atomic spaces we refer to [START_REF] Bernicot | Use of abstract Hardy spaces, real interpolation and applications to bilinear operators[END_REF][START_REF] Bernicot | New abstract Hardy spaces[END_REF], and the references therein. From (2.4), we deduce: Corollary 2.13. The Hardy space is continuously embedded into L 1 :

f L 1 f H 1 .
From [11, Corollary 7.2], the Hardy space H 1 is also a Banach space.

We refer the reader to [START_REF] Bernicot | New abstract Hardy spaces[END_REF]Section 8], for details about the problem of identifying the dual space (H 1 ) * with a BMO space. For a L ∞ -function, we may define the BMO norm

f BMO := sup Q - Q |B Q (f )| 2 dµ 1/2
, where the supremum is taken over all the balls. If f ∈ L ∞ then B Q (f ) is also uniformly bounded (with respect to the ball Q), since the heat semigroup is uniformly bounded in L ∞ (see Proposition 2.3) and so f BMO is finite.

Definition 2.14. The functional space BMO is defined as the closure

BMO := {f ∈ L ∞ + L 2 , f BMO < ∞} for the BMO norm.
Remark 2.15. The following characterization of the BMO norm will be useful: for f ∈ L 2 then (2.5)

f BMO = sup a atom | f, a |
and f belongs to BMO if and only if the right hand side is finite.

Indeed if f ∈ L 2 then for all ball Q µ(Q) -1 2 B Q (f ) L 2 (Q) = µ(Q) -1 2 sup g∈L 2 (Q) g L 2 (Q) ≤1 | B Q (f ), g | = sup g∈L 2 (Q) g L 2 (Q) ≤1 | f, B Q (µ(Q) -1 2 g) |,
where we used that B Q is self-adjoint. One can easily check that the collection of atoms exactly corresponds to the collection of functions of type

B Q (µ(Q) -1 2 g) with g ∈ L 2 (Q) and g L 2 ≤ 1.
Following [START_REF] Bernicot | New abstract Hardy spaces[END_REF]Section 8], it comes that BMO is continuously embedded into the dual space (H 1 ) * and contains L ∞ :

L ∞ ֒→ BMO ֒→ (H 1 ) * . Hence (2.6) T H 1 →(H 1 ) * T H 1 →BMO .
The following interpolation theorem between Hardy spaces and Lebesgue spaces is the key of our study: Theorem 2. [START_REF] Bouclet | Strichartz estimates for long range perturbations[END_REF]. For all θ ∈ (0, 1), consider the exponent p ∈ (1, 2) and q = p ′ ∈ (2, ∞) given by

1 p = 1 -θ 2 + θ and 1 q = 1 -θ 2 .
Then (using the interpolation notations), we have

(L 2 , H 1 ) θ = L p and (L 2 , (H 1 ) * ) θ ֒→ L q ,
if the ambient space X is non-bounded and

L p ֒→ L 2 + (L 2 , H 1 ) θ and L 2 ∩ (L 2 , (H 1 ) * ) θ ֒→ L q ,
if the space X is bounded. The same results hold replacing (H 1 ) * by BMO thanks to (2.6).

Proof. The result follows directly from [9, Theorems 4 and 5] (and we keep here its notations).

To ensure that it applies in our setting, we have to check that H 1 ֒→ L 1 (which we knew from Corollary 2.13), and that the maximal function M ∞ is bounded by M, where we recall that

M ∞ (f )(x) = sup Q∋x A * Q (f ) L ∞ (Q) , with A Q = Id -(Id -e -r 2 H
) M is self-adjoint and r denotes the radius of Q.

The binomial theorem shows that A Q is a linear combination of operators e -kr 2 H for k ∈ {1, . . . , M}. So the property that M ∞ is pointwisely controlled by M is a direct consequence of Proposition 2.3.

In the situation of bounded space (with a finite measure), interpolation is more delicate since the previous result does not give a complete characterization of L p as an intermediate space. We have the following: Theorem 2.17. Assume that the space is bounded (or equivalently that µ(X) < +∞) and consider a self-adjoint operator T satisfying the following boundedness for some p ∈ (1, 2):

     T L 2 →L 2 1 T H 1 →(H 1 ) * A < +∞ T L p →L 2 B < +∞, then T is bounded from L p to L p ′ with T L p →L p ′ B + A 1 p -1 p ′ .
The same result holds with BMO instead of (H 1 ) * by (2.6).

Proof. Let p ∈ (1, 2). We aim to apply Theorem 2.16 to T . Pick θ ∈ (0, 1) such that

1-θ 2 = 1 -1 p . Then θ = 1 p -1 p ′ . Let f ∈ L p ֒→ L 2 + (L 2 , H 1 ) θ . We chose a decomposition f = a + b with a ∈ L 2 and b ∈ (L 2 , H 1 ) θ such that a L 2 + b (L 2 ,H 1 ) θ f L p .
Since T is self-adjoint, T is bounded from L 2 to L p ′ with a norm at most B. Thus

T a L p ′ B a L 2 .
Similarly, by Theorem 2.16:

T b L p ′ T b L 2 + T b (L 2 ,(H 1 ) * ) θ B b L p + A 1 p -1 p ′ b (L 2 ,H 1 ) θ .
Moreover

H 1 ֒→ L 1 so (L 2 , H 1 ) θ ֒→ (L 2 , L 1 ) θ = L p . Consequently, T b L p ′ B + A 1 p -1 p ′ b (L 2 ,H 1 ) θ . Hence T f L p ′ B a L 2 + B + A 1 p -1 p ′ b (L 2 ,H 1 ) θ B + A 1 p -1 p ′ f L p .

On the hypothesis (Hm(A)).

We aim here to study the behaviour of Assumption (H m,n (A)) with respect to the parameters m, n. Consider a fix operator T , a positive real A > 0 and let us define property (H m,n (A)) for m ∈ N and n > 0:

(H m,n (A)) T ψ m,n (r 2 H) L 2 (Br)→L 2 ( Br) Aµ(B r ) 1 2 µ( B r ) 1 2 ,
where B r and B r are any two balls of radius r > 0.

Proposition 2.18. For all integer m ≥ 0 and n, n ′ > 0:

(H m,n ′ (A)) ⇒ (H m,n (A)).
Proof. For simplicity, we deal with the case n ′ = 1. Assume Property (H m,1 (A)). Since

ψ m,n (x) = x m e -nx = (nx) m e -nx n -m = n -m ψ m,1 (nx), it comes T ψ m,n (r 2 H) = n -m T ψ m,1 (nr 2 H).
If n ≥ 1 then B r ⊂ √ nB r and B r ⊂ √ n B r . Hence, using the doubling property we get

T ψ m,n (r 2 H) L 2 (Br)→L 2 ( Br) = n -m T ψ m,1 (nr 2 H) L 2 (Br)→L 2 ( Br) ≤ n -m T ψ m,1 (nr 2 H) L 2 ( √ nBr)→L 2 ( √ n Br) ≤ n -m Aµ( √ nB r ) 1 2 µ( √ n B r ) 1 2
Aµ(B r )

1 2 µ( B r ) 1 2 
. 

If n ≤ 1 then √ n B r ⊂ B r . We cover B r by N ≃ r √ nr d = n -d 2 balls B j of
T (ψ m,n (r 2 H)f ) L 2 ( Br) ≤ j k T (ψ m,n (r 2 H)f.1 B k ) L 2 ( B j ) .
Finally:

T ψ m,n (r 2 H) L 2 (Br)→L 2 ( Br) ≤ j k n -m T t (H)ψ m,1 (nr 2 H) L 2 (B k )→L 2 ( B j ) j k n -m Aµ(B k ) 1 2 µ( B j ) 1 2 A j µ( B j ) 1 2 k µ(B k ) 1 2
Aµ(B r )

1 2 µ( B r ) 1 2 
.

We will now be able to focus on (H m,1 (A)) and functions ψ m,1 = ψ m rather than keeping the dependence in the parameter n.

Proposition 2.19. If m ′ > m ≥ 0 are two integers then (H m,1 (A)) ⇒ (H m ′ ,1 (A)).
Proof. Assume (H m,1 (A)) is satisfied. Then, by Proposition 2. 18,(H m,n (A)) is also true for all n > 0. First we remark that

T ψ m ′ ,1 (r 2 H) = T ψ m, 1 2 (r 2 H)ψ m ′ -m, 1 2 (r 2 H).
Hence, decomposing X in dyadic coronas around B r :

T ψ m ′ ,1 (r 2 H) L 2 (Br)→L 2 ( Br) ≤ +∞ j=0 T ψ m, 1 2 (r 2 H) L 2 (C j (Br))→L 2 ( Br) ψ m ′ -m, 1 2 (r 2 H) L 2 (Br )→L 2 (C j (Br )) .
Let f ∈ L 2 (B r ). We treat the case j = 0 with Proposition 2.3 and (H m, 1 2 (A)):

T ψ m, 1 2 (r 2 H) L 2 (Br)→L 2 ( Br) ψ m ′ -m, 1 2 (r 2 H) L 2 (Br )→L 2 (Br) Aµ(B r ) 1 2 µ( B r ) 1 2 .
Assume now that j ≥ 1. If x ∈ C j (B r ), then by Cauchy-Schwarz inequality:

|ψ m ′ -m, 1 2 (r 2 H)f (x)| ≤ Br 1 µ(B(x, r)) e -c d(x,y) 2 r 2 |f (y)|dµ(y) ≤ e -c2 2j µ(B r ) 1 2 µ(B(x, r)) f L 2 (Br) .
By (2.1), we have already seen that for every x ∈ C j (B r )

µ(B r ) 2 jd µ(B(x, r)),
which yields

|ψ m ′ -m, 1 2 (r 2 H)f (x)| e -c2 2j 2 jd µ(B r ) -1 2 f L 2 (Br) .
Hence, by the doubling property:

(2.7)

ψ m ′ -m, 1 2 (r 2 H)f L 2 (Br)→L 2 (C j (Br)) e -c2 2j 2 3jd 2 .
Consider (B k ) k=0,...,K a collection of balls of radius r (with a bounded overlap property so K 2 jd ) which covers C j (B r ) with, by the doubling property:

µ(B k ) 2 jd µ(B r ). From (H m, 1 2 ) it follows T ψ m, 1 2 (r 2 H) L 2 (C j (Br))→L 2 ( Br) ≤ N k=0 T ψ m, 1 2 (r 2 H) L 2 (B k )→L 2 ( Br) ≤ N k=0 Aµ(B k ) 1 2 µ( B r ) 1 2 A2 3 2 jd µ(B r ) 1 2 µ( B r ) 1 2 .
(2.8) Thus, combining (2.7) and (2.8), it comes

T ψ m ′ ,1 (r 2 H) L 2 (Br)→L 2 ( Br) 1 + j≥1 e -c2 2j 2 3jd Aµ(B r ) 1 2 µ( B r ) 1 2
Aµ(B r )

1 2 µ( B r ) 1 2 ,
which ends the proof of Property (H m ′ ,1 (A)).

We sum up Propositions 2.18 and 2.19 in:

Theorem 2.20. Assume (1.3). For every integer m ≥ 0, Property (H m,n (A)) is independent on n > 0. So let us call (H m (A)) this property. It is "increasing in m", since for two integers m ′ > m ≥ 0 (H m (A)) ⇒ (H m ′ (A)).

Dispersion inequality from Property (Hm(A))

The aim of this section is to show Theorem 1.1, more precisely that Property (H m (A)) implies a H 1 -BMO and L p -L p ′ dispersive estimates. The main idea is first to prove boundedness of the operator on atoms, then to deduce boundedness on the whole Hardy space H 1 , and finally to interpolate with the L 2 -boundedness.

In all this section, we fix a large enough integer M ≥ min(3, 3 4 + 3d 8 ), which allows us to consider the notions of atoms and Hardy spaces H 1 , built with this parameter. As pointed out in Remark 2.10, that also allows us to find an integer m ∈ [ Proof. Let a and b be two atoms. By definition, there exists B 1 and B 2 two balls with radiuses r 1 and r 2 respectively, and

f ∈ L 2 (B 1 ) , g ∈ L 2 (B 2 ), such that a = (1 -e -r 2 1 H ) M f with f L 2 (B 1 ) ≤ µ(B 1 ) -1 2 b = (1 -e -r 2 2 H ) M g with g L 2 (B 2 ) ≤ µ(B 2 ) -1 2 .
We first remark by (c) of proposition 2.5 that:

a = r 2 1 0 He -sH ds M f = r 2 1 0 . . . r 2 1 0 H M e -(s 1 +...+s M )H f ds 1 . . . ds M = M r 2 1 0    s 1 +...+s M =u 0≤s i ≤r 2 1 ds 1 . . . ds M -1    =I M (u)
H M e -uH f du.

As s i ≥ 0 for all i ∈ {1, . . . , M} with

s 1 + • • • + s M = u, we have: 0 ≤ s i ≤ u. Hence I M (u) ≤ u M -1 . Thus T a, b = M r 2 1 0 M r 2 2 0 I M (u)I M (v) T ψ M (uH)f, ψ M (vH)g dv v M du u M . Moreover ψ M is
continuous and H is self-adjoint, so ψ M (uH) and ψ M (vH) are also selfadjoint. Using (a) and (b) of Proposition 2.5 and the fact that T commutes with H (and so with every operator ψ m,n (H)), we get:

| T a, b | ≤ M r 2 1 0 M r 2 2 0 | T t (H)ψ M,1 (uH)ψM 3 , 1 3 (vH)ψM 3 , 1 3 (vH)f, ψM 3 , 1 3 (vh)g | du u dv v = | T t (H) (uv 1 
3 ) M (u + v 3 ) 4M 3 ψ4M 3 ,1 ((u + v 3 )H)ψM 3 , 1 3 (vH)f, ψM 3 , 1 3 (vh)g | du u dv v .
Here we have decomposed ψ M,1 in three terms involving ψM 3 , 1

3

. We aim to use in particular the Gaussian estimates (2.2), which hold only if M 3 is an integer. We should decompose M = M 1 + M 2 + M 3 with 3 integers M 1 , M 2 , M 3 which are comparable to M/3 (that is why we picked M ≥ 3). For simplicity we take M 1 = M 2 = M 3 = M/3 and assume that they are integers. We let to the reader the minor modifications.

Without losing generality because the problem is symmetric in u and v, we can assume that u ≤ v so that v 3 ≤ u + v 3 ≤ 4v 3 . Hence uv 1 3

(u+ v 3 ) 4 3 
≃ u v . We cover the whole space X by balls B j and B k of radius u + v 3 . The covering satisfies the bounded overlap property. We use Cauchy-Schwarz inequality and Property (H m (A)) to obtain:

| T a, b | ≤ ≤ j,k u v M | 1 B k T ψ4M 3 ,1 ((u + v 3 )H)1 B j ψM 3 , 1 3 (vH)f, 1 B k ψM 3 , 1 3 (vH)g | du u dv v j,k u v M T ψ4M 3 ,1 ((u + v 3 )H)1 B j ψM 3 , 1 3 (vH)f L 2 (B k ) ψM 3 , 1 3 (vH)g L 2 (B k ) du u dv v j,k u v M Aµ(B k ) 1 2 µ(B j ) 1 2 ψM 3 , 1 3 (vH)f L 2 (B j ) ψM 3 , 1 3 (vH)g L 2 (B k ) du u dv v ,
where we have used that T satisfies Property (H 4M/3 ). Indeed T satisfies property (H m (A)) for m ≤ 4M/3 (so T satisfies also (H 4M/3 ) by Theorem 2.20). To simplify the notation we will now note ψM

3 , 1 3 = ψ.
We use a decomposition in dyadic coronas around B 1 :

j∈J µ(B j ) 1 2 ψ(vH)f L 2 (B j ) ≤ j∈J +∞ l=0 µ(B j ) 1 2 1 C l (B 1 ) ψ(vH)f L 2 (B j ) .
We study the terms l = 0 and l ≥ 1 separately. First when l = 0:

j∈J µ(B j ) 1 2 1 C 0 (B 1 ) ψ(vH)f L 2 (B j ) ≤ J µ(B j ) 1 2 J 1 B 1 ψ(vH)f 2 L 2 (B j ) 1 2 µ(B 1 ) 1 2 J B j |1 B 1 (x)ψ(vH)f (x)| 2 dµ(x) 1 2 µ(B 1 ) 1 2 ψ(vH)f L 2 .
Now when l ≥ 1 the number of indices in J for which the sum is nonzero is equivalent to the number of balls of radius u + v 3 we need to cover C l (B 1 ), that is |J| ≃

2 l r 1 √ u+ v 3 d
. Now, remark that by the doubling property of the measure and (2.1), since B j is a ball of radius u + v/3 ≃ √ v we deduce that for x ∈ B j ∩ C l (B 1 ) then

µ(B(x, √ v)) ≃ µ(B j ).
By (2.2), we have:

j∈J +∞ l=1 µ(B j ) 1 2 1 C l (B 1 ) ψ(vH)f L 2 (B j ) j∈J +∞ l=1 µ(B j ) 1 2 1 C l (B 1 ) (x) µ(B(x, √ v)) e -2 2l r 2 1 v f L 1 (B 1 ) L 2 x (B j ) j∈J +∞ l=1 µ(B j ) 1 2 µ(B j ) 1 2 1 µ(B j ) e -2 2l r 2 1 v l≥1 2 l r 1 u + v 3 d e -2 2l r 2 1 v l≥1 2 l r 1 √ v d e -2 2l r 2 1 v ,
where we have used the L 2 -normalization of f , which yields that f L 1 1.

We then refer the reader to Lemma 3.2 to estimate the sum and it comes

j∈J +∞ l=1 µ(B j ) 1 2 χ C l (B 1 ) ψ(vH)f L 2 (B j ) r 1 √ v -1
.

Thus j∈J µ(B j ) 1 2 ψ(vH)f L 2 (B j ) ≤ µ(B 1 ) 1 2 ψ(vH)f L 2 + √ v r 1 .
Similarly for B 2 and the sum over k ∈ K:

k∈K µ(B k ) 1 2 ψ(vH)g L 2 (B k ) ≤ µ(B 2 ) 1 2 ψ(vH)g L 2 + √ v r 2 .
Hence, one concludes:

| T a, b | A u v M µ(B 1 ) 1 2 ψ(vH)f L 2 + √ v r 1 µ(B 2 ) 1 2 ψ(vH)g L 2 + √ v r 2 du u dv v .
We then develop the product to split the problem into four different terms:

I = u v M µ(B 1 ) 1 2 µ(B 2 ) 1 2 ψ(vH)f L 2 ψ(vH)g L 2 du u dv v , II = u v M µ(B 1 ) 1 2 ψ(vH)f L 2 √ v r 2 du u dv v , III = u v M µ(B 2 ) 1 2 ψ(vH)g L 2 √ v r 1 du u dv v , IV = u v M √ v r 1 √ v r 2 du u dv v .
We discern now two cases:

Case 1: 0 ≤ u ≤ v ≤ R = min(Mr 2 1 , Mr 2 2 ).
Then Item (d) of Proposition 2.5 yields

I = R v=0 v u=0 u v M µ(B 1 ) 1 2 µ(B 2 ) 1 2 ψ(vH)f L 2 ψ(vH)g L 2 du u dv v = µ(B 1 ) 1 2 µ(B 2 ) 1 2 R 0 ψ(vH)f L 2 ψ(vH)g L 2 dv v ≤ µ(B 1 ) 1 2 µ(B 2 ) 1 2 +∞ 0 ψ(vH)f 2 L 2 dv v 1 2 +∞ 0 ψ(vH)g 2 L 2 dv v 1 2
≤ µ(B 1 )

1 2 f L 2 µ(B 2 ) 1 2 g L 2 1,
Similarly for the second term,

II =µ(B 1 ) 1 2 1 r 2 R 0 ψ(vH)f L 2 √ v dv v ≤ µ(B 1 ) 1 2 1 r 2 f L 2 R 0 v dv v 1 2 ≤ R 1 2 r 2 ≤ Mr 2 2 r 2 1.
The third term is treated the same way. The fourth term gives:

IV = 1 r 1 r 2 R 0 √ v √ v dv v = R r 1 r 2 ≤ min(Mr 2 1 , Mr 2 2 ) min(r 2 1 , r 2 2 ) min(r 2 1 , r 2 2 ) 1. 
So in this first case, we obtain (3.1)

I + II + III + IV 1.
Case 2: 0 ≤ u ≤ Mr 2 1 ≤ v ≤ Mr 2 2 . Similarly we get:

I = µ(B 1 ) 1 2 µ(B 2 ) 1 2 M r 2 2 v=M r 2 1 M r 2 1 u=0 u v M ψ(vH)f L 2 ψ(vH)g L 2 du u dv v ≤ µ(B 1 ) 1 2 µ(B 2 ) 1 2 M r 2 2 v=M r 2 1 M r 2 1 u=0 uv M -1 v M ψ(vH)f L 2 ψ(vH)g L 2 du u dv v = µ(B 1 ) 1 2 µ(B 2 ) 1 2 M r 2 2 v=M r 2 1 Mr 2 1 v ψ(vH)f L 2 ψ(vH)g L 2 dv v ≤ µ(B 1 ) 1 2 µ(B 2 ) 1 2 Mr 2 1 sup v∈[M r 2 1 ,M r 2 2 ] 1 v M r 2 2 0 ψ(vH)f 2 L 2 dv v 1 2 M r 2 2 0 ψ(vH)g 2 L 2 dv v ≤ Mr 2 1 Mr 2 1 = 1.
For the second term, since r 1 ≤ r 2 :

II ≤ µ(B 1 ) 1 2 Mr 2 1 r 2 M r 2 1 0 ψ(vH)f 2 L 2 dv v 1 2 +∞ M r 2 1 1 v dv v 1 2 r 2 1 r 2 r 1 ≤ 1.
The third term is similar:

III ≤ µ(B 2 ) 1 2 Mr 2 1 M r 2 2 M r 2 1 1 v ψ(vH)g L 2 √ v r 1 dv v r 1 +∞ M r 2 1 1 v dv v 1 2 r 1 r 1 = 1.
Finally we treat the last term:

IV ≤ M r 2 2 M r 2 1 Mr 2 1 v √ v r 1 √ v r 2 dv v r 1 r 2 M r 2 2 M r 2 1 1 v dv v = 2 r 1 r 2 ln r 2 r 1 1, because x → ln x
x is continuous if x ≥ 1, equals 0 if x = 1 and tends to 0 as x tends to +∞, so is bounded uniformly in x ≥ 1 (here r 2 r 1 ≥ 1). Thus, in this second case, we also conclude that (3.2)

I + II + III + IV 1.
Since u ≤ v (which was assumed at the beginning by symmetry), cases 1 and 2 cover all the possible situations. Consequently, we deduce that for all atoms a and b, we have

| T a, b | A,
where the implicit constant does not depend on the atoms (but maybe on the parameters M and m).

We used the following lemma with N = 1 and x = r Proof. We remark that

2 l+1 2 l dt t = ln 2 l+1 2 l = ln 2. Thus: +∞ l=0 (2 l x) d e -(2 l x) 2 = 1 ln 2 +∞ l=0 (2 l x) d e -(2 l x) 2 2 l+1 2 l dt t . 2 l ≤ t ≤ 2 l+1 yields (2 l x) d ≤ (tx) d and e -(tx) 2 ≥ e -(2 l+1 x) 2 . So we have: e -(2 l x) 2 ≤ e -(tx) 2 4 . Hence: +∞ l=0 (2 l x) d e -(2 l x) 2 +∞ 1 (tx) d e -(tx) 2 4 dt t = +∞ x 2 (2u) d e -u 2 du u +∞ x 2 1 u N du u = u -N -N +∞ x 2 x -N
for N ∈ N * as large as we want.

3.2. Boundedness on Hardy space. After having proved that the operator T (of Theorem 1.1) is bounded on atoms, we now aim to show that T is bounded from the Hardy space H 1 to its dual (H 1 ) * (and more precisely to BMO) with a norm controlled by A. If f ∈ H 1 then there exists an atomic decomposition f = +∞ i=0 λ i a i where a i are atoms and +∞ i=0 |λ i | < 2 f H 1 . We know how to bound the operator on atoms, we would like to extend it passing to the limit in

T N i=0 λ i a i = N i=0 λ i T a i
in order to apply Theorem 3.1. As N goes to +∞, that last equality may not be true. Indeed, one can find in [START_REF] Bownik | Boundedness of operators on Hardy spaces via atomic decompositions[END_REF] an example (due to Meyer) of a linear form bounded on atoms, which is not bounded on the whole Hardy space. So to rigorously check this step, we need to prove it using specificities of our situation. Aiming that, we are going to use an approximation of the identity well suited to our frame: (e -sH ) s>0 .

We start by showing that T e -sH (the regularized version of T ) satisfies the same estimate as the one in Theorem 3. Proof. Set U s := T e -sH . It suffices to check that U s satisfies Property (H m (A)) uniformly in s, which is

U s ψ m,1 (r 2 H) L 2 (Br)→L 2 ( Br) t -d 2 µ(B r ) 1 2 µ( B r ) 1 2 ,
for any two balls B r and B r with radius r > 0. First, remark that

U s ψ m,1 (r 2 H) = T e -sH (r 2 H) m e -r 2 H = T ψ m,1 ((r 2 + s)H) r 2 r 2 + s m , so that U s ψ m,1 (r 2 H) L 2 (Br )→L 2 ( Br) = r 2 r 2 + s m T ψ m,1 ((r 2 + s)H) L 2 (Br)→L 2 ( Br ) .
As r 2 < r 2 + s, the balls of radius r are included into the balls with same centers and radius √ r 2 + s denoted B √ r 2 +s and B √ r 2 +s . Then it comes (with Property (H m (A)) for T and the doubling property)

U s ψ m,1 (r 2 H) L 2 (Br)→L 2 ( Br) ≤ r 2 r 2 + s m T ψ m,1 ((r 2 + s)H) L 2 (B √ r 2 +s )→L 2 ( B √ r 2 +s ) ≤ r 2 r 2 + s m Aµ(B √ r 2 +s ) 1 2 µ( B √ r 2 +s ) 1 2 r 2 r 2 + s m A r 2 + s r 2 d 2 µ(B r ) 1 2 r 2 + s r 2 d 2 µ( B r ) 1 2 ≤ A r 2 r 2 + s m-d 2 µ(B r ) 1 2 µ( B r ) 1 2 ≤ Aµ(B r ) 1 2 µ( B r ) 1 2 ,
where the last inequality comes from m ≥ d 2 . That concludes the proof of Property (H m (A)) for the operator U s and all the estimates are uniform with respect to s > 0.

In order to prove that we can pass to the limit as N goes to +∞ in

T e -sH N i=0 λ i a i = N i=0 λ i T e -sH a i
for atoms a i , we have to show some continuity of the operator T e -sH . Theorem 3.4. If T is a L 2 -bounded operator which commutes with H and the ambient space X satisfies the uniform control of the volume (1.4), then for all s > 0: T e -sH maps L 1 to L ∞ and T e -sH

L 1 →L ∞ s -ν 2 .
Proof. By the commutativity property, we write T e -sH = e -sH/2 T e -sH/2 . Hence

T e -sH L 1 →L ∞ ≤ e -s 2 H L 1 →L 2 T L 2 →L 2 e -s 2 H
L 2 →L ∞ . Using the Gaussian pointwise estimates of the heat kernel and (1.4), we deduce by a T * T argument that

e -s 2 H 2 L 1 →L 2 = e -sH L 1 →L ∞ = sup x,y p s (x, y) s -ν 2
and by duality

e -s 2 H L 1 →L 2 = e -s 2 H L 2 →L ∞ s -ν 4 .
As a consequence, we deduce the desired estimate.

We are now able to establish the result on the whole Hardy space H 1 : Theorem 3.5. Assume (1.3), (1.4) and (DUE). Consider a L 2 -bounded operator T , which commutes with H and which satisfies Property (H m (A)) for some integer m ∈ [ d 2 , 4M 3 ]. Then T and T e -sH , for all s > 0, can be continuously extended from H 1 to BMO (and so in particular to its dual (H 1 ) * ) and we have

T H 1 →BM O + sup s>0 T e -sH H 1 →BM O A.
Proof. Let f ∈ H 1 and consider an atomic decomposition. The atoms are uniformly bounded in L 1 so the limit

f = +∞ i=0 λ i a i = lim N →+∞ N i=0 λ i a i takes place in L 1 .
Moreover a i ∈ L 1 implies T e -sH (a i ) ∈ L ∞ due to Theorem 3.4. Hence the limit T e -sH lim

N →+∞ N i=0 λ i a i = lim N →+∞ T e -sH N i=0 λ i a i = lim N →+∞ N i=0 λ i T e -sH (a i )
is valid and takes place in L ∞ for every s > 0 fixed. Thus

T e -sH (f ) = +∞ i=0 λ i T e -sH (a i ).
Let f ∈ H 1 . There exists a decomposition f = i λ i a i with a i atoms, i |λ i | < +∞ and

i |λ i | ≤ 2 f H 1 . We want to estimate T e -sH f BMO = sup b | T e -sH f, b |
where the supremum is taken over all atoms b (see Remark 2.15). By Theorem 3.3, and what we just prove, we have:

| T e -sH i λ i a i , b | ≤ i |λ i || T e -sH a i , b | i |λ i |A A f H 1 .
Hence T e -sH

H 1 →BMO
A and the implicit constant is uniform in s > 0.

Let us now consider the boundedness of the operator T . We know (see [START_REF] Bernicot | New abstract Hardy spaces[END_REF] e.g.) that H 1 ∩ L 2 is dense in H 1 (since every atoms are L 2 functions). Moreover (e -sH ) s≥0 is a strongly continuous semigroup on L(L 2 ) so:

∀f ∈ L 2 , lim s→0 e -sH f -f L 2 = 0. Let f ∈ H 1 ∩ L 2 so that T f ∈ L 2 and
let a be an atom. We also have

| T e -sH f -T f , a | ≤ e -sH T f -T f L 2 a L 2 → s→0 0.
Consequently, uniformly with respect to the atom a, we have

| T f , a | = lim s→0 | T e -sH f , a | A f H 1 . Then for all f ∈ H 1 ∩ L 2 : T f BMO A f H 1 .
As BMO is a Banach space, T admits an extension (still denoted T ) which is bounded from H 1 to BMO and then from H 1 to (H 1 ) * because BMO ֒→ (H 1 ) * .

Interpolation.

Having obtained a bound on the Hardy space, we now aim to use interpolation to conclude the proof of Theorem 1.1.

Proof of Theorem 1.1. Consider a L 2 -bounded operator T , which commutes with H and satisfies Property (H m (A)) for some m ∈ [ d 2 , 4M 3 ]. Then Theorem 3.5 shows that T admits a continuous extension from H 1 to (H 1 ) * . So we aim now to interpolate the two following continuities:

T L 2 →L 2 1 T H 1 →(H 1 ) * A.
Let p be fixed in [START_REF] Anker | Nonlinear Schrödinger equation on real hyperbolic spaces[END_REF][START_REF] Anton | Strichartz inequalities for Lipschitz metrics on manifolds and the nonlinear Schrödinger equation on domains[END_REF]. Then by choosing θ = 2 p -1 ∈ (0, 1) and 1 q = 1 -1 p , that is q = p ′ , in Theorem 2.16, if µ(X) = +∞, we have

T : (L 2 , H 1 ) θ = L p → (L 2 , (H 1 ) * ) θ ֒→ L q .
It follows the boundedness of T from L p to L p ′ . More precisely, if the space X is unbounded then

T L p →L p ′ T θ H 1 →(H 1 ) * T 1-θ L 2 →L 2 A θ = A 1 p -1 p ′ .
If the space X is bounded, then Theorem 2.17 shows

T L p →L p ′ A 1 p -1 p ′ + B, provided that T L p →L 2 B.

Application to Strichartz estimates

In this section we aim to take advantage of the dispersive estimates previously obtained in the particular situation where T is given by the Schrödinger propagator, to deduce some Strichartz estimates with loss of derivatives, as introduced in [START_REF] Burq | Strichartz inequalities and the nonlinear Schrodinger equation on compact manifolds[END_REF].

In particular, we are looking to dispersive estimates L p -L p ′ with polynomial bound. It is also natural to work in the setting of an Ahlfors regular space (and not only in the doubling situation). The space X of homogeneous type is said Ahlfors regular if there exist two absolute positive constants c and C such that for all x ∈ X and r > 0:

(4.1) cr d ≤ µ(B(x, r)) ≤ Cr d .
From now on, we will assume this property.

To establish Strichartz estimates from dispersive inequalities we adapt the result by Keel-Tao in [START_REF] Keel | Endpoint Strichartz estimates[END_REF], namely: Consider (U(t)) t∈R a collection of uniformly L 2 -bounded operators, i.e. and such that for a certain σ > 0

(4.3) ∀t = s ∈ R, U(s)U(t) * L 1 →L ∞ |t -s| -σ .
Then in [START_REF] Keel | Endpoint Strichartz estimates[END_REF], it is proved that for all admissible pair of exponents (p, q), we have

U(t)f L p t L q x f L 2 .
By the exact same proof, we have the following Theorem 4.1. Suppose that the collection (U(t)) t satisfies (4.2) and for some σ > 0

(4.4) ∀t = s ∈ R, U(s)U(t) * H 1 →(H 1 ) * |t -s| -σ .
Then for all admissible pair (p, q) with q = +∞, we have

U(t)f L p t L q x f L 2 ,
where we assume in addition that

(4.5) ∀t = s ∈ R, U(s)U(t) * L q ′ →L 2 |t -s| -σ 1 q ′ -1 q if X is bounded.
We do not give a proof of this result, since it is exactly the same as the one in [START_REF] Keel | Endpoint Strichartz estimates[END_REF] by replacing the space L 1 with the Hardy space H 1 . The proof relies on interpolating the two boundedness (4.2) and (4.4), which is still possible with the Hardy space, due to Theorem 2. [START_REF] Bouclet | Strichartz estimates for long range perturbations[END_REF].

We are now in position to prove the following result: . Then for all pair of admissible exponents (p, q) with q = +∞ we have:

1 -1 e itH ψ 2ℓ (h 2 H)f p L q dt 1 p ψ ℓ, 1 2 (h 2 H)f L 2 .
We also have the "semi-classical" version, involving a loss of derivatives:

Theorem 4.3. Assume (4.1) with (DUE). Consider an integer ℓ ≥ 0. Assume that for some

h 0 > 0 and γ ∈ [0, 2) (or γ ∈ [1, 2) if X is bounded) the operator T t (H) := e itH ψ 2ℓ (h 2 H) satisfies Property (H m (|t| -d 2 
)) for some m ≥ d 2 and every t satisfying |t| h γ and h ≤ h 0 .

Then for all pair of admissible exponents (p, q) with q = +∞ we have

1 -1 e itH ψ 2ℓ (h 2 H)f p L q dt 1 p h -γ p ψ ℓ, 1 2 (h 2 H)f L 2 .
Remark 4.4.

(1) Following the arguments of Proposition 2.19, if

e itH ψ 2ℓ (h 2 H) satisfies Property (H m (|t| -d 2 )) for some integer ℓ ≥ 0 then e itH ψ 2ℓ ′ (h 2 H) also satisfies Property (H m (|t| -d 2 
)) for every integer ℓ ′ ≥ ℓ.

(2) The case γ ≥ 2 is easy (as explained in the Introduction). When X is bounded, one cannot expect γ = 0 because of the example of a constant initial data (see Introduction).

Proof of Theorems 4.2 and 4.3 . We only detail the proof of Theorem 4.3 which is slightly more technical, we let the minor modifications to the reader to prove Theorem 4.2. Fix an interval J ⊂ [-1, 1] of length |J| = h γ and consider

U(t) = 1 J e itH ψ ℓ, 1 2 (h 2 H)
We aim to apply Theorem 4.1 with σ = d 2 and a suitable large enough integer M (defining the Hardy space). So fix this integer M ≥ 3m 4 large enough which allows us to consider atoms and Hardy space, related to this parameter and we have m ∈ [ d 2 , 4M 3 ] as required in Theorem 3.5.

Since x → e itx ψ ℓ, 1 2 (x) ∈ L ∞ (R + ) is uniformly bounded, with respect to t, then Theorem 2.2 yields that sup

t>0 U(t)f L 2 = 1 J e itH ψ ℓ, 1 2 (h 2 H)f L 2 f L 2 ,
which is (4.2). Then let us check (4.4). We have

U(t)U(s) * = 1 J (t)1 J (s)e itH ψ ℓ, 1 2 (h 2 H)(e isH ψ ℓ, 1 2 (h 2 H)) * = 1 J (t)1 J (s)T t-s (H),
where we used that H is self-adjoint and |ψ ℓ,

1 2 | 2 = ψ 2ℓ . Since J has a length equal to h γ then U(t)U(s) * is vanishing or else |t -s| ≤ h γ . In this last case, U(t)U(s) * satisfies Property (H m (|t -s| -d 2 )
). Hence, by Theorem 3.5, we deduce that

U(t)U(s) * f (H 1 ) * 1 |t -s| d 2 f H 1 ,
which is (4.4). Let us check (4.5) in case X is bounded: similarly since the Schrödinger propagators are unitary in L 2 , we have

U(t)U(s) * L q ′ →L 2 ≤ ψ 2ℓ (h 2 H) L q ′ →L 2 with |t -s| ≤ h γ 1. Recall that for all q ′ ∈ [1, 2): ψ 4ℓ,2 (h 2 H)f L q h -d 1 q ′ -1 q f L q ′ .
By a T T * argument we have:

ψ 4ℓ,2 (h 2 H) L q ′ →L q = ψ 2ℓ (h 2 H) 2 L q ′ →L 2 . Hence U(t)U(s) * L q ′ →L 2 h -d 2 1 q ′ -1 q ≤ |t -s| -d 2γ 1 q ′ -1 q |t -s| -d 2 1 q ′ -1 q
as soon as γ ≥ 1. Thus we can apply Theorem 4.1. For all admissible pair (p, q) with q = +∞, then

R U(t)g p L q dt 1 p g L 2 .
That is

J e itH ψ ℓ, 1 2 (h 2 H)g p L q dt 1 p g L 2 . Take g = ψ ℓ, 1 2 (h 2 H)f then ψ ℓ, 1 2 (h 2 H)g = ψ 2ℓ (h 2 H)f and so (4.6) J e itH ψ 2ℓ (h 2 H)f p L q dt 1 p ψ ℓ, 1 2 (h 2 H)f L 2 .
We write [-1, 1] = N k=1 J k , where J k are disjoint intervals with a length smaller than h γ , so the number of intervals satisfies N h -γ .

Hence, by (4.6)

1 -1 e itH ψ 2ℓ (h 2 H)f p L q dt N k=1 J k e itH ψ 2ℓ (h 2 H)f p L q dt N ψ ℓ, 1 2 (h 2 H)f p L 2 ,
and so

1 -1 e itH ψ 2ℓ (h 2 H)f p L q dt 1 p h -γ p ψ ℓ, 1 2 (h 2 H)f L 2 .
We can now prove the main result of this section: How Property (H m (t -d 2 )) implies Strichartz estimates with loss of γ p derivatives: Theorem 4.5. Assume (4.1) with (DUE). Consider an integer ℓ ≥ 0. Assume that for some

h 0 > 0 and γ ∈ [0, 2) the operator T t (H) := e itH ψ 2ℓ (h 2 H) satisfies Property (H m (|t| -d 2 )
) for some m ≥ d 2 and every t satisfying |t| h γ and h ≤ h 0 .

Then for all pair of admissible exponents (p, q) with q = +∞, every solution u = e itH u 0 of the problem

i∂ t u + Hu = 0 u |t=0 = u 0 satisfies u L p ([-1,1],L q ) u 0 W γ p ,2
. Remark 4.6. We can consider more regular initial data, in the sense that if for some δ > 0

2 p + d q = d 2 -δ, then we have u L p ([-1,1],L q ) u 0 W δ+ γ p ,2 . Proof. Apply Theorem 2.8 to u(t) = e itH u 0 u(t) L q ϕ(H)u(t) L q + h 0 0 |ψ 2ℓ (s 2 H)u(t)| 2 ds s 1 2 L q .
The function ϕ is also depending of the parameters h 0 , ℓ. We omit this dependence. Take the L p ([-1, 1]) norm in time of that expression. Minkowski inequality leads to

u L p ([-1,1],L q ) ϕ(H)u L p ([-1,1],L q ) =I + h 0 0 ψ 2ℓ (s 2 H)u 2 L q ds s 1 2 L p =II .
Then (UE) with (4.1) yields that ϕ(H) has a kernel satisfying Gaussian pointwise estimate (2.2) at the scale 1 (or more precisely h 0 but we forget this dependence) so is in particular bounded from L 2 to L q (since q ≥ 2) and so

I e itH u 0 L p ([-1,1],L 2 ) u 0 L 2 u 0 W γ p ,2
, because the Schrödinger group is an isometry on L 2 . Since p ≥ 2, generalized Minkowski inequality and Theorem 4.3 yield

II ≤ h 0 0 ψ 2ℓ (s 2 H)u 2 L p ([-1,1],L q ) ds s 1 2 h 0 0 s -2γ p ψ ℓ, 1 2 (s 2 H)u 0 2 L 2 ds s 1 2 h 0 0 s -2γ p |ψ ℓ, 1 2 (s 2 H)u 0 | 2 ds s 1 2 L 2 u 0 W γ p ,2 ,
where we used ℓ > γ p (since ℓ ≥ 1, γ ∈ [0, 2) and p ≥ 2) and the fact that

s -γ p ψ ℓ, 1 2 (s 2 H) = ψ ℓ-γ 2p , 1 2 (s 2 H)H γ 2p
with Theorem 2.8. Finally, we get

u L p ([-1,1],L q ) u 0 W γ p ,2 .
5. Dispersive estimates for Schrödinger operator through wave operator 5.1. Dispersive estimates from Wave to Schrödinger propagators. We recall that we want to obtain

T t (H) H 1 →BMO |t| -d 2
where T t (H) = e itH ψ 2ℓ (h 2 H) for t belonging to an interval, as large as possible. In regard of the previous section, it suffices to check that e itH ψ 2ℓ (h 2 H) satisfies Property (H m (|t| -d 2 )) (for some parameters ℓ, m, γ, h 0 ), which may be written with (4.1) as: for every balls B r , B r (5.1)

e itH ψ 2ℓ (h 2 H)ψ m (r 2 H) L 2 (Br)→L 2 ( Br) r 2 |t| d 2
.

We aim to use the Hadamard formula, which describes how the Schrödinger propagator may be built using the wave propagator. Let us quickly recall it: the Cauchy formula gives that for any a ∈ C with Re(a) > 0

a -1 2 e -ξ 2 2a = (2π) -1 2 R e -ixξ e -ax 2 2 dx.
Using imparity and noting z = 1 2a , we get

e -zξ 2 = 1 √ π +∞ 0 cos(sξ)e -s 2 4z ds √ z .
Since H is a self-adjoint nonnegative operator admitting a L ∞ -functional calculus, one deduces the Hadamard transmutation formula:

(5.2)

e -zH = 1 √ π +∞ 0 cos(s √ H)e -s 2 4z ds √ z .
We now give a suitable condition on the wave propagators, under which (5.1) can be proved through (5.2). The next section aims to check that this assumption is satisfied in well-known situations as Euclidean space or smooth Riemannian manifolds. Assumption 5.1. There exists κ ∈ (0, ∞] and an integer m 0 such that for every s ∈ (0, κ) we have: for every r > 0, every balls B r , B r of radius r then

cos(s √ H)ψ m 0 (r 2 H) L 2 (Br )→L 2 ( Br ) r s + r d-1 2 1 + |L -s| r -d+1 2 
where L = d(B r , B r ).

Remark 5.2. Using the same arguments as in Proposition 2.19, one can show that if Assumption 5.1 is true for an integer m 0 then it also holds for every integer m ≥ m 0 .

The main result of this section is the following: ) (where the integer m 0 is the one given by Assumption 5.1) we have for every t ∈ R

(5.3) e itH ψ m (r 2 H) L 2 (Br)→L 2 ( Br) r 2 |t| d 2
,

where the implicit constant only depends on integers m, m ′ . Consequently, e itH satisfies Property (H m (|t| -d 2 )) for every t ∈ R. ) (where the integer m 0 is the one given by Assumption 5.1) we have

(5.4) e itH ψ m ′ (h 2 H)ψ m (r 2 H) L 2 (Br )→L 2 ( Br) r 2 |t| d 2
,

where the implicit constant only depends on ε > 0 and integers m, m ′ . Consequently, e itH ψ m ′ (h 2 H) satisfies Property (H m (|t| -d 2 )) for every |t| < h 1+ε and every ε > 0.

Proof of Theorems 5.3 and 5.4 . We only prove Theorem 5.4, which is more difficult and let the reader to check that the exact same proof allows us to get Theorem 5.3, which is indeed easier since the quantity I κ (defined later in the proof) is vanishing.

Step 1: Some easy reductions. Remark that the case r ≥ |t| is easy via the bounded functional calculus, indeed

e itH ψ m ′ (h 2 H)ψ m (r 2 H) L 2 (Br )→L 2 ( Br ) ≤ e it• ψ m ′ (h 2 • )ψ m (r 2 • ) L ∞ (R + ) 1 r 2 |t| d 2
.

So now we only restrict our attention and assume that r 2 ≤ |t|. Then assume that (5.4) is proved for every h ∈ (0, r]. We aim to check that it also holds for h > r. So fix balls of radius r < h. It comes

e itH ψ m ′ (h 2 H)ψ m (r 2 H) L 2 (Br)→L 2 ( Br) r 2m ( h 2 2 + r 2 ) m e itH ψ m ′ ( h 2 2 H)ψ m (( h 2 2 + r 2 )H) L 2 (Br)→L 2 ( Br) r h 2m e itH ψ m ′ ( h 2 2 H)ψ m (( h 2 2 + r 2 )H) L 2 (Bρ)→L 2 ( Bρ) ,
where ρ = h 2 2 + r 2 ≥ r, ρ ≃ h and we write B ρ = ρ r B r the dilated ball (similar notation for B ρ ). Using (5.4) ,

where we have used that m ≥ d/2 and (since r ≤ h)

r 2m h 2m h d = r d r 2m-d h 2m-d ≤ r d .
So as soon as (5.4) will be proved for h ≤ r, then the other case immediately follows.

Consequently, we can restrict our study to h ≤ r and r 2 ≤ |t|, that we now assume for the sequel.

For an integer m ′ = 0, we have

e itH ψ m ′ (h 2 H)ψ m (r 2 H) = h 2 r 2 m ′ e itH e -h 2 H ψ m ′ +m (r 2 H).
Using h ≤ r, it comes

e itH ψ m ′ (h 2 H)ψ m (r 2 H) L 2 (Br)→L 2 ( Br) e (it-h 2 )H ψ m ′ +m (r 2 H) L 2 (Br)→L 2 ( Br) .
So if (5.4) is proved for m ′ = 0 and some integer m then by Theorem 2.20, it also holds for m ′ = 0 and any integer m ′′ ≥ m. Hence, by the previous observation, (5.4) will hold for every m ′ = m ′′ -m ≥ 0.

Finally, we can restrict our attention to prove (5.4) for m ′ = 0 with h ≤ r and r 2 ≤ |t|, which is now supposed for the rest of the proof.

Step 2: Decomposition into three regimes.

We fix the parameter h and consider e itH e -h 2 H = e -zH with z = h 2 -it. By the representation (5.2), it comes

e -zH = ∞ 0 cos(s √ H)e -s 2 4z ds √ πz .
We split this integral into three ranges. Let us consider a smooth cut-off function χ

∈ C ∞ (R + ) such that      0 ≤ χ ≤ 1 χ(x) = 1 if x ∈ [0, |t| r ] χ(x) = 0 if x ∈ [ 2|t| r , +∞] , with ∀n ∈ N, χ (n) L ∞ r |t| n .
We split the integral into three terms

e -zH = χ(z) cos(s √ H)e -s 2 4z ds √ πz + κ |t| r (1 -χ(z)) cos(s √ H)e -s 2 4z ds √ πz + I κ (H),
where I κ = 0 if κ = ∞ and else

I κ (H) := ∞ κ (1 -χ(z)) cos(s √ H)e -s 2 4z ds √ πz .
Step 3: The two last regimes. The second term is estimated using Assumption 5.1 as follows (we recall that z = h 2 -it so that |z| ≃ |t|)

κ |t| r (1 -χ(z)) cos(s √ H)ψ m (r 2 H)e -s 2 4z ds √ z L 2 (Br)→L 2 ( Br) κ |t| r r s d-1 2 1 + |L -s| r -d+1 2 ds |t| κ |t| r r |t| r d-1 2 1 + |L -s| r -d+1 2 ds |t| ∞ 0 r 2 |t| d-1 2 (1 + u) -d+1 2 rdu |t| r 2 |t| d 2
.

The last term I κ (H) is estimated by only using the L 2 -boundedness of the wave propagator: .

I κ (H)ψ m (r 2 H) L 2 (Br)→L 2 ( Br) +∞ κ cos(s √ H)ψ m (r 2 H) L 2 (Br )→L 2 ( Br ) e -
Given that Re( Step 4: The first regime.

We aim to use integration by parts in s. For all integer n ≥ 0, all s > 0 and Re(z) > 0, we have

∂ n s e -s 2 4z = e -s 2 4z c n s n z n + c n-1 s n-2 z n-1 + . . . + c n-2⌊ n 2 ⌋ s n-2⌊ n 2 ⌋ z n-⌊ n 2 ⌋
, where (c j ) j are numerical constants. Making 2n integrations by parts gives (as soon as

m ≥ n) ∞ 0 cos(s √ H)ψ m (r 2 H)χ(s)e -s 2 4z ds = ∞ 0 cos(s √ H) H n ψ m (r 2 H)∂ 2n s χ(s)e -s 2 4z ds = ∞ 0 cos(s √ H)r 2n ψ m-n (r 2 H) 2n k=0 c k χ (2n-k) (s)∂ k s e -s 2 4z ds = ∞ 0 cos(s √ H)r 2n ψ m-n (r 2 H) 2n k=0 χ (2n-k) (s)e -s 2 4z c k s k z k + . . . + c n-2⌊ n 2 ⌋ s k-2⌊ k 2 ⌋ z k-⌊ k 2 ⌋ ds,
where c j always denotes some numerical constants, possibly changing from line to line. The behaviour of the sum over k is governed by its two extremal terms (that is k = 0 and k = 2n where we only keep the first and last terms of the sum) which leads us to (since |z| ≃ |t|) Following the same reasoning as in Sections 3 and 4, it comes that the assumed inequality

cos(s √ H)ψ m 0 (r 2 H) L 2 (B)→L 2 ( B) r s + r d-1 2 1 + |L -s| r -d+1 2 
allows us to prove that cos(s √ H) is bounded from the Hardy space H 1 to BMO (built with some parameter M sufficiently large) with

cos(s √ H)ψ 1 (r 2 H) H 1 →BMO r -d+1 2 (s + r) -d-1 2 , ∀|s| ≤ 1. That corresponds to the H 1 → BMO counterpart of more classical L 1 → L ∞ dispersive estimates.
Following interpolation and Keel-Tao's argument (as detailed previously) for the wave propagator, it allows us to deduce Strichartz estimates for the wave equations: for exponents p, q wave-admissible and δ ≥ 0 satisfying

1 p + d q = d 2 -δ, every solution u = cos(t √ H)u 0 of the problem      ∂ 2 tt u + Hu = 0 u |t=0 = u 0 ∂ t u |t=0 = 0 satisfies: (5.5) u L p ([-1,1],L q ) u 0 W δ,2 .
Such Strichartz estimates for the wave equation, allow us to deduce some sharp L 2 -L q estimates for the spectral projector (introduced by Sogge [START_REF] Sogge | Concerning the L p norm of spectral clusters for second order elliptic operators on compact manifolds[END_REF]), as detailed by Smith in [START_REF] Smith | Spectral cluster estimates for C 1,1 metrics[END_REF]. Without details, we just sketch the proof of [START_REF] Smith | Spectral cluster estimates for C 1,1 metrics[END_REF] to check that it can be adapted to this very general setting.

Indeed, consider λ > 0 and the spectral projector

Π λ = 1 [λ,λ+1) ( √ H).
Define the function

ρ λ (x) := 1 -1
e -itλ cos(tx)dt which a direct computation gives

ρ λ (x) = sin(λ -x) λ -x + sin(λ + x) λ + x . So we observe that ρ λ (x) ∈ [ 1 2 , 2] if x ∈ [λ, λ+1). As a consequence, by bounded L 2 -functional calculus, we deduce that for f ∈ L 2 Π λ (f ) = 1 -1 e -itλ cos(t √ H) ρ λ ( √ H) -1 Π λ f dt, with ρ λ ( √ H) -1 Π λ a uniformly L 2 -
bounded operator (and also in any L 2 Sobolev space since it commutes with H).

By applying (5.5), we deduce that for q ∈

[ 2(d+1) d-1 , ∞) Π λ (f ) L q cos(t √ H) ρ λ ( √ H) -1 Π λ f L 2 ([-1,1],L q ) ρ λ ( √ H) -1 Π λ f W δ(q),2 Π λ f W δ(q),2 λ δ(q) f L 2 ,
where δ(q) is given by 1

2 + d q = d 2 -δ(q).
By interpolating with the trivial L 2 -L 2 bound, we deduce (as explained in [START_REF] Smith | Spectral cluster estimates for C 1,1 metrics[END_REF]) that

(5.6) Π λ L 2 →L q λ d-1 2 ( 1 2 -1 q ) , if 2 ≤ q ≤ 2 d+1 d-1 λ d( 1 2 -1 q )-1 2 , if q ≥ 2 d+1 d-1
Let us point out that if now we assume Assumption 5.1 for κ = ∞, then by combining Theorems 4.5 and 5.3 we get free dispersive estimates without loss of derivatives: for p ∈ (1, 2] then

e itH L p →L p ′ |t| -d 2 1 p -1 p ′
uniformly with respect to t ∈ R. Then if the operator H (or √ H) has a spectral measure with a Radon-Nicodym derivative, then following [10, Corollary 3.3], we know that Restriction estimates hold which are:

dE H (λ) dλ L p →L p ′ λ d 2 ( 1 p -1 p ′ )-1 ,
where E H (λ) is the spectral measure of H and p ∈ [1, 2d d+2 ). We also have other estimates for higher order derivatives and we refer to [START_REF] Bernicot | Restriction estimates via the derivatives of the heat semigroup and connexion with dispersive estimates[END_REF] for more details. Such estimates give in particular for λ ≥ 1

Π λ L p →L p ′ (λ+1) 2 λ 2 dE H (s) ds L p →L p ′ ds (λ+1) 2 λ 2 s d 2 ( 1 p -1 p ′ ) ds s λ d( 1 p -1 p ′ )-1 λ 2d( 1 p - 1 
2 )-1 . (5.7)

We then exactly recover the estimate in (5.6) but the range for q = p ′ in (5.6) is larger than the one obtained by (5.7): indeed the range in (5.6) is given by the sharp critical exponent 1 ≤ p ≤ 2 d+1 d+3 .

The Euclidean and Riemannian cases

To enhance the legitimacy of Assumption 5.1, we check its validity for the Laplace-Beltrami operator H = -∆ in four situations:

• the Euclidean space X = R d with κ = ∞;

• any smooth compact Riemannian manifold of dimension d and κ is given by the injectivity radius; • any smooth noncompact Riemannian manifold of dimension d, with C ∞ b -geometry and κ given by the geometry; • Smooth perturbation of the Euclidean space X = R d , H = -1 ρ ∇•(A∇•) (for uniformly nondegenerate function ρ and matrix A, with bounded derivatives) which is a selfadjoint operator on R d , equipped with the measure dµ = ρdx, with κ < ∞ (given by A and ρ). Proposition 6.1. In these four previous cases, Assumption 5.1 is satisfied.

The proof is based on the following properties (which are a refinement of the finite speed propagation property): for B, B two balls of radius r, then with L = d(B, B) and s ∈ (0, κ):

• If L > s + 2r then the finite speed propagation property occurs

(6.1) cos(s √ H) L 2 (B)→L 2 ( B) = 0; • if L ≤ s -10r then (6.2) cos(s √ H) L 2 (B)→L 2 ( B) r r + s d-1 2 1 + |L -s| r -d+1 2 
.

We refer the reader to the introduction for more details about the finite speed propagation property, which yields (6.1). Property (6.2) is quite standard, see for example [START_REF] Bérard | On the wave equation on a compact riemannian manifold without conjugate points[END_REF] for the case of a compact Riemannian manifold (where a short time parametrix is detailed) and appendix A where we detail computations in the Euclidean situation.

In particular, we partly recover the results of [START_REF] Burq | Strichartz inequalities and the nonlinear Schrodinger equation on compact manifolds[END_REF][START_REF] Staffilani | Strichartz estimates for a Schrödinger operator with nonsmooth coefficients[END_REF] (up to a loss ε > 0 as small as we want). Indeed, by combining Proposition 6.1 with Theorems 4.5 and 5.4 (with γ = 1 + ε), we have the following: Corollary 6.2. Any smooth compact Riemannian manifold or non-compact Riemannian manifold with a C ∞ b geometry (or as previously for a smooth perturbation of the Euclidean setting with suitable functions ρ, A) satisfy Strichartz estimates with a loss of derivatives 1 p + ε, for every ε > 0.

As a conclusion, we have obtained that as soon as we have suitable (short time) L 2 -L 2 microlocalized dispersive properties on the wave equation (Assumption 5.1) then we can obtain their Strichartz estimates and dispersive estimates for Schrödinger equation (with an eventual loss of derivatives if κ < ∞). We just point out that in the case of a convex subset of the Euclidean space with a boundary, then wave operators for the Dirichlet Laplacian do not satisfy Assumption 5.1 (since there is a loss of 1/4 in the main exponent), see [START_REF] Ivanovici | Dispersion for the wave equation inside strictly convex domains I: The Friedlander model case[END_REF] by Ivanovici, Lebeau and Planchon.

Proof of Proposition 6.1. We detail the proof in the Euclidean case with κ = ∞. We let the reader to check that everything still holds (up to some change of notations) for a compact Riemannian manifold with κ given by the injectivity radius. Indeed, the proof relies on (6.2) and a precise formulation of the wave kernel around the light cone, which is obtained by the Hadamard parametrix (and has the same form as in the Euclidean case), see [START_REF] Bérard | On the wave equation on a compact riemannian manifold without conjugate points[END_REF]. So let us focus on the Euclidean situation.

First, if s ≤ 10r then by the finite speed propagation property and Davies-Gaffney estimates, we have

cos(s √ H)ψ(r 2 H) L 2 (B)→L 2 ( B) ≤ ψ(r 2 H) L 2 (B)→L 2 (10 B) e -d(B,10 B) 2 4r 2 1 + d(B, B) r -d+1 2 = 1 + L -s + s r -d+1 2 r r + s d-1 2 1 + |L -s| r -d+1 2 
, since s r, which is the desired estimate. So we now only focus in the situation where s ≥ 10r and consider (B k ) k a bounded covering of X, by balls of radius r. Let χ B k be a smooth partition of the unity, adapted to this covering: so χ B k is supported in 2B k , takes values in [0, 1] and satisfies for all n ∈ N (6.3)

∇ n χ B k L ∞ ≤ 1 r n . We decompose cos(s √ H)ψ(r 2 H) L 2 (B)→L 2 ( B) ≤ B k cos(s √ H)(χ B k .ψ(r 2 H)) L 2 (B)→L 2 ( B) .
Due to (6.1), the sum is restricted to balls B k such that d(B k , B) ≤ s + 2r.

Step 1: The case d(B k , B) ≤ s -10r.

Using (6.2) and Davies-Gaffney estimates, it comes because for every x ≥ 0, e -x 2 (1 + x) -α for all α > 1.

d(B k , B)≤s-10r cos(s √ H)(χ B k .ψ(r 2 H)) L 2 (B)→L 2 ( B) ≤ d(B k , B)≤s-10r cos(s √ H) L 2 (B k )→L 2 ( B) ψ(r 2 H) L 2 ( 
Step 2: The case s -10r ≤ d(B k , B) ≤ s + 2r with an odd dimension d ≥ 3.

In this case, we have to use a sharp expression of the kernel of the wave propagator. It is known that the behaviour of the kernel is different according to the parity of the dimension. Let us start with the case of an odd dimension d ≥ 3. In the Euclidean situation, we have an exact representation of the kernel (see [START_REF] Folland | Introduction to partial differential equations[END_REF] Let us explain this point. Indeed, we can control the derivatives of χ B k by (6.3). It remains to explain the behaviour of the derivatives of ψ(r 2 H)f (x + sy). The kernel of the heat semigroup, for t > 0, is , which means that, up to some numerical constants, the nth derivative of ψ(r 2 H)f (x + sy) behaves as 1 r n ψ(r 2 H)f (x + sy) in the sense that their kernels have both similar Gaussian pointwise decays. Such a property also holds on a compact smooth Riemannian manifold.

p t (x, y) = 1 (4πt) 
So we have for f ∈ L In the end, we have obtained that

s-10r≤d( B,B k )≤s+2r cos(s √ H)(χ B k .ψ(r 2 H)f ) L 2 ( B) r s d-1 2 1 + |L -s| r -d+1 2 f L 2 (B)
which gives the desired estimate (for an odd dimension).

Step In this appendix, we aim to check (6.2) in the Euclidean situation, from the exact and global formula giving the wave operators. Let us consider the Euclidean space X = R d , equipped with its canonical structure and H = -∆. ).

Hence, cos(s

√ H)f (x) = α 1 2 ,0 I 1 2 ,0 + • • • + α d+1 2 , d 2 I d+1 2 , d 2 ,
where coefficients α n,m are some numerical constants, possibly changing from line to line. Since 
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 322|y|<122 The case s -10r ≤ d(B k , B) ≤ s + 2r with an even dimension d ≥ 2. In this case the wave propagator is given by s (g(x + sy)) dy 1 -|y|2 , with some numerical constants c n . The same arguments as above givecos(s √ H)(χ B k .ψ(r 2 H)f ) L 2 ( B) f L 2 (B) ( B,B k )≤s+2r cos(s √ H)(χ B k .ψ(r 2 H)f ) L 2 ( L 2 (B) ,which gives the desired estimate.Note that since r s we have r s r r+s so in any dimension d > 1:cos(s √ H)ψ(r 2 H) L 2 (B)→L 2 (Appendix A. Wave propagation in the Euclidean setting

Proposition A. 1 . 2 .c n s n |y|=1 ∂ 2 ( 1 2 + d-2 2 ,

 12|y|=1212 For every balls B r , B r of radius r > 0 and every s > 0, ifL := d(B r , B r ) ≤ s -10r then cos(s √ H) L 2 (Br)→L 2 ( Br) Proof. Let f ∈ L 2 (B r ). If d ≥ 3is odd then the wave propagator is given by s (f (x + sy)) dy,for some numerical constants c n . If x ∈ B r and x + sy ∈ B r then y = x+sy-x s ∈ B-B s hence (A.1) |y| ≤ d(B, B) + 2r s ≤ s -8r s < 1. Thus cos(s √ H)f (x) = 0. If d ≥ 2 is even then the wave propagator is given by cos(s √ H)f (x) = ∂ s evaluate ∂ s I n,m = |y|<1 ∇f (x + sy).y |y| 2m (1 -|y| 2 ) n dy.By (A.1) the boundary term in Green's formula vanishes and so∂ s I n,m = -|y|<1 f (x + sy) s ∇ • y|y| 2m (1 -|y| 2 ) n dy.Consequently, it comes with numerical constants α n,m , α n+1,m+1∂ s I n,m = 1 s (α n,m I n,m + α n+1,m+1 I n+1,m+1 ).It follows that (with other coefficients but for simplicity we keep the same notations)1 s ∂ s (s d-1 I n,m ) = s d-3 (α n,m I n,m + α n+1,m+1 I n+1,m+1 ).By iterating, we deduce that for n = 1 2 and m = s d-1 I 1 2 ,0 ) = s d-1-(d-2) (α 1 2 ,0 I 1 2 ,0 + • • • + α

1 1 -( 1 -|y| 2 ) d+1 2 L 2 (

 1122 |y| 2 ≥ 1 and |y| ≤ 1 we have:cos(s √ H)f L 2 ( Br) |y|<1 |f (x + sy)| dy Br ) B(0,1)∩A f (• + sy) L 2 ( Br)dy((1 + |y|)(1 -|y|)) d+12where A := 1 s (B r -B r ) so that |y| ≥ d(Br, Br)-2r s . Moreoverf (• + sy) L 2 ( Br) ≤ f L 2 (Br ) .

  ∞: the propagator e itH satisfies Property (H m (|t| -d 2 )) for every t ∈ R and so we have Strichartz estimates without loss of derivatives; • if κ < ∞: for every ε > 0, every h > 0 with |t| < h 1+ε and integer m ′ ≥ 0 the propagator e itH ψ m ′ (h 2 H) satisfies Property (H m (|t| -d 2 )

	• if κ =
	Theorem 1.3. Suppose (1.6) with d > 1, (DUE) and Assumption 1.2 with κ ∈ (0, ∞]. Then for every integer m ≥ max( d 2 , m 0 + d-1 2 ) we have

  at the scale ρ (since ρ ≥ h/ √ 2) yields e itH ψ m ′ (h 2 H)ψ m (r 2 H) L 2 (Br)→L 2 ( Br) r h

		2m	ρ 2	d 2
	r	2m	|t| h 2	d 2
	h r 2	d 2	|t|	
	|t|			

  Note that the implicit constant here may depend on κ. Since we have reduced the situation to h ≤ r, it comes which is true for k large enough since |t| ≤ h 1+ε .So we have obtained the desired bound for the two last terms. It remains to study the first and more difficult one.

		1 z ) = h 2 h 4 +t 2	h 2 t 2 (since we assumed |t| ≥ h 2 , see Step 1), we get
		I κ (H)ψ m (r 2 H) L 2 (Br)→L 2 ( Br)	|t| h 1 2	h |t|	-k	,
	for k > 0 as large as we want because h |t| 1 (indeed |t| ≤ h 1+ε h). |t| 1 2 h h |t| |t| |t| k h d r d
	as soon as |t|	1 2 +k+ d 2 ≤ h 1+k+d , i.e. |t| ≤ h	1+k+d 1 2 +k+ d 2 ≤ h 1+	1 2 + d 2 2 +k+ d 1 2
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