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ABSTRACT

In the context of an heterogeneous disturbance with a Low

Rank (LR) structure (called clutter), one may use the LR ap-

proximation for filtering and detection process. These meth-

ods are based on the projector onto the clutter subspace in-

stead of the noise covariance matrix. In such context, adaptive

LR schemes have been shown to require less secondary data

to reach equivalent performances as classical ones. The main

problem is then the estimation of the clutter subspace instead

of the noise covariance matrix itself. Maximum Likelihood

estimator (MLE) of the clutter subspace has been recently

studied for a noise composed of a LR Spherically Invariant

Random Vector (SIRV) plus a white Gaussian Noise (WGN).

This paper focuses on environments with a high Clutter to

Noise Ratio (CNR). An original MLE of the clutter sub-

space is proposed in this context. A cross-interpretation of

this new result and previous ones is provided. Validity and

interest - in terms of performance and robustness - of the dif-

ferent approaches are illustrated through simulation results.

Index Terms— Covariance Matrix and Projector Estima-

tion, Maximum Likelihood, Low Rank, SIRV, STAP.

1. INTRODUCTION

In array processing, many applications require the use of the

covariance matrix (CM) of the noise : source localization

techniques [1, 2], radar and sonar detection methods [3, 4].

In practice, the CM of the noise is unknown and has to be

estimated from a set of secondary data, i.e. K signal free in-

dependent realizations of the noise. The CM estimate is then

used to process sub-optimal adaptive methods. Estimating the

CM or its parameters from a given data set is a fundamental

issue in signal processing. The CM estimator typically used

is the Sample Covariance Matrix (SCM), which is the Max-

imum Likelihood Estimator (MLE) of the CM in a Gaussian

environment. In this case, K > 2M (where M is the size

of the data) secondary data are needed to ensure good per-

formance of the sub-optimal filtering, i.e. a 3dB loss of the

output Signal to noise ratio (SNR) compared to optimal fil-

tering [5].

In various applications, the disturbance is not only Gaus-

sian, but a sum of noises with different distributions. In some

applications [4], it can be modeled by the sum of a corre-

lated noise, referred to as clutter, plus a white Gaussian noise

(WGN). When the correlated disturbance has a low-rank (LR)

structure, the corresponding sub-optimal LR-filter is based on

the projector on the clutter subspace instead of the CM of

the noise [6, 7]. The advantage of LR method is that esti-

mating the clutter subspace projector requires only K > 2R
secondary data (where R is the clutter rank, and generally

R ≪ M ) to reach equivalent performance to the previous

scheme [8]. The projector estimate is usually derived from

the Singular Value Decomposition (SVD) of an estimate of

the CM, classically the SCM. Nevertheless, the SCM is not

well adapted for samples that are not Gaussian (presence of

outliers, heavy tailed distributions...). Therefore, developing

filters/detectors based on the SCM in highly heterogeneous or

impulsive clutter environment may lead to poor performance.

To describe this kind of disturbance, one of the most gen-

eral model is the Complex Elliptical Distribution (CED) [9].

Among the general CED class, we will focus on the Spheri-

cally Invariant Random Vectors (SIRV) [10]. The SIRV fam-

ily covers a large panel of well known distributions, notably

heavy tailed such as Weibull and K-distribution. Moreover,

SIRV presents good agreement to several real clutter data sets

[11, 12]. Eventually, the disturbance will be modeled in this

paper as a LR-SIRV clutter plus a WGN, model already used

in former works such as [7, 13, 14, 15] .

Moreover, an other major issue is the introduction of an

outlier into the secondary data. To prevent loss of perfor-

mances of the estimators due to this corruption, one may de-

rive the projector’s estimate from robust estimates of the CM

such as Tyler’s estimate [16], also known as the Fixed Point

Estimator (FPE) [17] in the complex case. However, this es-

timator require K > M to be computed, which does not al-

low to take full advantage of the LR assumption in the cases

where 2R ≪ M . The projector estimate may also be derived

from the Normalized SCM (NSCM), which has been shown

to be robust [18] but leads to a loss of performance in terms of

SNR [15]. The underlying motivation of this work is there-



fore to provide an estimation method that is both robust and

efficient with few secondary data.

This paper proposes to derive the MLE of the clutter

subspace projector in this context of LR-SIRV clutter plus

a WGN. The problem has recently been addressed in [13],

where a solution is provided under two hypothesis : the

Probability Density Function (PDF) of the SIRV texture is

assumed known, and the LR-SIRV CM is assumed to have

identical eigenvalues. [14] presents a "distribution free" ver-

sion of this result where the texture is treated as an unknown

deterministic parameter. In this work, we investigate the

high Clutter to Noise Ratio (CNR) scenario, for which the

hypothesis of eguals eigenvalues will not be necessary. The

MLE of the clutter subspace projector is derived under this

assumption and shown to be obtained by a LR version of the

FPE. The interest of this result is that it allows to perform ro-

bust estimation with a number of secondary data K < M . A

recent approach to achieve this purpose is to estimate the CM

using shrinkage algorithms of the FPE [19, 20, 21]. However

the FPE is not an exact MLE of the CM in the described con-

text (LR-SIRV plus WGN). Our approach is different since

the LR adaptive method allows to estimate only dominants

eigenvectors of the noise CM instead of the CM itself. This

method requires less secondary data and will be shown to be

more robust to outliers through an application to STAP [4].

The following convention is adopted: italic indicates

a scalar quantity, lower case boldface indicates a vector

quantity and upper case boldface a matrix. H denotes the

transpose conjugate operator and T the transpose operator.

C N (a,Σ) is a complex Gaussian vector of mean a and of

covariance matrix Σ. E(τ) is the expectation of the random

variable τ . IM is the M × M identity matrix. |Σ| is the

determinant of the matrix Σ. d̂ is an estimate of the param-

eter d. {wn}n∈[[1,N ]] denotes the set of n elements wn with

n ∈ [[1, n]] and whose writing will often be contracted into

{wn}. †R will denote the rank R pseudo inverse operator:

for a given M × M matrix M, with eigen decomposition

M =
∑M

r=1 λrvrv
H
r , M†R =

∑R

r=1 1/λrvrv
H
r .

2. RELATION TO PRIOR WORK

This paper presents an original MLE of the clutter subspace

projector in the context of LR-SIRV clutter plus a WGN. Such

an estimator had been derived in [13] (for known SIRV texture

PDF) and [14] (for unknown SIRV texture PDF). Both papers

use the assumption of identical eigenvalues of the LR-SIRV

CM. We relax here this hypothesis using the High CNR as-

sumption, which is more realistic for most applications. Un-

der this assumption, the clutter subspace MLE is shown to be

obtained via a LR version of the FPE. The interest of this re-

sult is that it allows to perform robust estimation with a num-

ber of secondary data K < M . A recent approach to achieve

this purpose is to estimate the CM using shrinkage algorithms

of the FPE [19, 20, 21]. This work presents a different type

of shrinkage, using the pseudo-inverse, which is relevant for

LR noises. Another solution to achieve robustness with few

data is the use of the NSCM [18, 15] but this leads to a loss

of performance in terms of SNR. All these methods are con-

sequently compared to our approach in terms of performance

and robustness through simulations.

3. MODEL

We assume that K secondary data are available. The noise

is modeled as a LR-SIRV process plus an additive zero-mean

complex WGN. A SIRV is a Gaussian random vector with a

random power factor called the texture τ . The texture is here

considered as an unknown deterministic positive parameter.

Therefore, each data zk ∈ C
M , k ∈ [[1,K]] can be described,

conditioning to τk, by zk ∼ C N (0,Σk), with

Σk = τkΣc + σ2
IM , (1)

where σ2
Im represents the CM of the WGN, with known σ2,

and Σc the CM of the clutter. Σc is described by its rank R,

its eigenvalues cr and associated eigenvectors vr, r ∈ [[1, R]].
The clutter rank R is assumed to be known.

Σc =

R
∑

r=1

crvrv
H
r (2)

Let us now address the problem of the estimation of the cutter

subspace projector Πc:

Πc =

R
∑

r=1

vrv
H
r (3)

Equation (3) shows that this problem is equivalent to the esti-

mation of a basis of the clutter subspace {vr}. The likelihood

of the data set, conditioning to {vr} and {τk}, is then:

f({zk}|{vr}, {τk}) =
K
∏

k=1

e−z
H

k
Σ

−1

k
zk

πM |Σk|
(4)

which leads to the log-likelihood expression:

ln(f) = −

K
∑

k=1

z
H
k Σ

−1
k zk −

K
∑

k=1

ln(|Σk|)−MK lnπ (5)

An approached MLE1 of the clutter subspace basis corre-

sponding to this model is provided in [14]. From now, the

CNR will be considered high, which is a realistic assumption

for most applications. High CNR means that the WGN is

negligible compared to the SIRV noise over the clutter sub-

space: otherwise stated, for any r ∈ [[1, R]], σ2 ≪ τkcr∀k.

Conditioning to τk, the approached noise CM for a sample zk
is then:

Σk ≈ τk

R
∑

r=1

crvrv
H
r + σ2

M
∑

r=R+1

vrv
H
r , (6)

1based on the approximation of equals cr’s.



where {vr}r>R is the completion of the basis {vr}r∈[[1,R]].

Combining equations (4) and (6), one can derive the log-

likelihood of the data set in high CNR scenario. Condition-

ing to {vr} and {τk} its expression is given by:

ln f = −

K
∑

k=1

R
∑

r=1

1

τkcr
z
H
k vrv

H
r zk

−
K
∑

k=1

M
∑

r=R+1

1

σ2
z
H
k vrv

H
r zk −R

K
∑

k=1

ln(τk)

−K
R
∑

r=1

ln(cr)−K(M −R) ln(σ2)−MK lnπ (7)

4. MLE OF ΠC AND DISCUSSION

Proposition 4.1 The MLE of the clutter subspace basis {v̂r}

is given by the R greatest eigenvectors of the matrix Σ̂LR−FP

that satisfies:

Σ̂LR−FP =

K
∑

k=1

zkz
H
k

zHk Σ̂
†R
LR−FP zk

, (8)

where Σ̂
†R
LR−FP is the rank R pseudo inverse of the matrix

ΣLR−FP :

Σ̂
†R
LR−FP =

R
∑

r=1

1

ĉr
v̂rv̂

H
r (9)

Proof 4.1 The textures {τk} are unknown deterministic pa-

rameters. The first step of the proof is deriving their MLE

expression from the log-likelihood. (7) is differentiated with

respect to (w.r.t.) τk and canceled for

τ̂k =
1

R

R
∑

r=1

1

cr
z
H
k vrv

H
r zk =

1

R
z
H
k Σ

†R
c zk (10)

The parameters {τk} are substituted by their MLE expression

in (7) to obtain the generalized log-likelihood:

ln(f) = −KR−R

K
∑

k=1

ln(
1

R
z
H
k Σ

†R
c zk)

−

K
∑

k=1

M
∑

r=R+1

1

σ2
z
H
k vrv

H
r zk −K

R
∑

r=1

ln(cr)

−K(M −R) ln(σ2)−MK lnπ (11)

The vector set {vr} must form a basis of the clutter subspace

estimate. Thus, the maximization of ln f̂ with respect to the

vr’s must be done under a normalization constraint. Never-

theless, imposing an orthogonality constraint is not necessary

since the solution will appear as eigenvectors of an unique

matrix and therefore inherently orthogonal to each other. Re-

moving terms that are not depending on vr’s, the functional

g to maximize w.r.t the vr’s is:

g = −R

K
∑

k=1

ln(
1

R
z
H
k Σ

†R
c zk) +

R
∑

r=1

λr(v
H
r vr − 1) (12)

where λr, r ∈ [[1, R]] are Lagrange multipliers associated to

the normalization constraint. g is differentiated, w.r.t. vH
j for

a specific j ∈ [[1, R]], and canceled for:

∂g

∂vH
j

= 0 ⇔ R

K
∑

k=1

zkz
H
k

zHk

∑R

r=1
1
cr
vjv

H
j zk

vj =
λj

cj
vj (13)

Thus, the ML basis of the clutter subspace is defined as eigen-

vectors of the matrix Σ̂LR−FP that satisfies the fixed point

equation (8). This result considered with a maximization ob-

jective of f concludes the proof of proposition 4.1.

The introduced estimator is defined as the fixed point of

an implicit function. We propose the following heuristic:

Σ(n+1) =

K
∑

k=1

zkz
H
k

zHk Σ
†R
(n)zk

, (14)

to compute Σ̂LR−FP , which corresponds to the FPE algo-

rithm, but wit a rank R pseudo inverse. Convergence and

uniqueness of the solution is not yet proven and should be the

topic of further coming work.

The MLE of the cluter subspace presented in this paper

and in [14] are both defined as the R dominant eigenvectors

of a matrix. It is important to notice that this matrices are

just intermediary results and not MLE of the noise CM it-

self. These matrices correspond to SCMs of the data scaled

by a factor that is depending on the estimated texture. The

interpretation of these two factors denotes a rather different

estimation strategy. In the "classical" case [13, 14], the sam-

ples zkz
H
k are scaled by a factor τ̂k

τ̂k+σ2 ∈ [0, 1]: the Clutter

to Overall Noise Ratio (CONR) estimate. With these scaling

factors, realizations that contain more power in the subspace

of interest are given more significance in the estimation pro-

cess, which may be useful if the clutter subspace is not well

represented over the data set (for example with a low CNR
or for very impulsive SIRV’s). In the high CNR case (Propo-

sition 4.1) the samples zkz
H
k are scaled by the inverse of the

estimated texture 1
τ̂k

. The matrix ΣLR corresponds to the FPE

with a rank shrinkage. A robust estimation strategy is there-

fore applied over the subspace of interest. This LR version of

the FPE may be of interest since it proposes a robust estima-

tion method that does not need regularization algorithms such

as in [20, 21] as long as K > R (instead of K > M in the

classical FPE algorithm).

5. APPLICATION TO STAP

First of all, let us denote by Π̂SCM , Π̂NSCM , Π̂S−FPE ,

respectively the clutter subspace estimates derived from an



Fig. 1. SINR-Loss versus K, for the following STAP configuration: Q =

8, P = 8, M = PQ = 64. Center frequency f0 = 450 MHz, bandwidth

B = 4 MHz. Radar velocity v = 100 m/s. Inter-element spacing d =
c

2f0
with c the celerity of light. Pulse repetition frequency fr = 600 Hz.

Clutter rank R = 15 computed from Brennan rule [22]. The texture PDF is

a Gamma law of shape parameter ν = 1 and scale parameter 1

ν
. CNR =

30dB.

SVD of the SCM, the NSCM, and the diagonnaly loaded FPE

[19, 20].

STAP is applied to airborne radar in order to detect mov-

ing targets. Typically, the radar receiver consists in an array

of Q antenna elements processing P pulses in a coherent pro-

cessing interval (M = PQ). In this framework, we assume

that the received signal z = d+n is a complex known signal

d corrupted by an additive disturbance n which follows the

general noise model described in section 3. With a LR clut-

ter, it is well known that a classical sub-optimal filter is [6, 8]:

ŵlr = Π̂
⊥
c d =

(

Im − Π̂c

)

d (15)

Of course, the performance of the LR filters will directly rely

on the accuracy of the estimation of Πc, which will illustrate

performance of the clutter subspace estimators. The crite-

rion used is the mean SINR-Loss [4]: the ratio between the

SINRout, computed for ŵlr, and SINRmax computed for

the optimal filter w = Σ
−1

d, with Σ = σ2
I+ E(τ)Σc.

Figure 1 presents the mean SINR-Loss versus the number

of secondary data K: Π̂A−MLE , Π̂SCM and Π̂S−FPE reach

a slightly better SINR-Loss than Π̂LR−FPE , and Π̂NSCM

is below. In Figure 2 the steering vector of the target is in-

serted into the secondary data. The presence of this outlier

in the estimation data set deteriorates the performance of the

adaptive filter. An estimator is more robust to outliers if its

drop in mean SINR-Loss comes for a higher Outlier to Noise

Ratio (ONR). In that case, Π̂LR−FPE appears to be more

robust than others estimators. Figure 3 shows the output of

adaptive filters build from different estimators for two sce-

narios : with and without an outlier in the training set. This

illustrates the interest of the proposed approach : Π̂LR−FPE

does not causes a great loss in performance with uncorrupted

Fig. 2. SINR-Loss versus ONR, for the same configuration, K = 2R.

Fig. 3. Output of the adaptive filters build from A-MLE (left) S-FPE

(middle) and LR-FPE (right). K = 2R, uncorrupted training set (top) and

corrupted training set (bottom) with ONR = 15dB. Target at 10
◦ and

Vt = 35m/s with SNR = 20dB

samples but presents attractive robust properties since it pro-

vides a better interference rejection when training samples are

corrupted.

6. CONCLUSION

This paper has presented a new MLE of the clutter subspace

basis in the context of a LR-SIRV plus WGN under the high

CNR assumption. This MLE has been shown to be the dom-

inant eigenvectors of a LR version of the FPE [16][17]. This

result allows to perform robust estimation of the clutter sub-

space with few data (K > R instead of K > M for the

FPE) in LR heterogeneous environment. Simulation results

show that this estimator is valid and seems to ensure a good

compromise between performance (in terms SINR-Loss) and

robustness to outliers for small training sets (K ≃ 2R).
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