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Laboratoire GRETTIA, IFSTTAR†,

Laboratoire ERIC, Université Lumiére Lyon 2‡

Bike sharing systems (BSSs) have become a means of sustainable
intermodal transport and are now proposed in many cities world-
wide. Most BSSs also provide open access to their data, particularly
to real-time status reports on their bike stations. The analysis of the
mass of data generated by such systems is of particular interest to
BSS providers to update system structures and policies. This work
was motivated by the will to analyze and compare several European
BSSs to identify common operating patterns in BSSs and to propose
practical solutions to avoid potential issues. Our approach relies on
the identification of common patterns between and within systems.
To this end, a model-based clustering method, called FunFEM, for
time series (or more generally functional data) is developed. It is
based on a functional mixture model that allows the clustering of the
data in a discriminative functional subspace. This model presents the
advantage in this context to be parsimonious and to allow the visual-
ization of the clustered systems. Numerical experiments confirm the
good behavior of FunFEM, particularly compared to state-of-the-art
methods. The application of FunFEM to BSS data from JCDecaux
and the Transport for London Initiative allows us to identify 10 gen-
eral patterns, including pathological ones, and to propose practical
improvement strategies based on the system comparison. The visual-
ization of the clustered data within the discriminative subspace turns
out to be particularly informative regarding the system efficiency. The
proposed methodology is implemented in a package for the R soft-
ware, named funFEM, which is available on the CRAN. The package
also provides a subset of the data analyzed in this work.

1. Introduction. This work was motivated by the will to analyze and
compare bike sharing systems (BSSs) to identify their common strengths
and weaknesses. This type of study is possible because most BSS operators,
in dozens of cities worldwide, provide open access to real-time status reports
on their bike stations (e.g., the number of available bikes, the number of free
bike stands). The implementation of bike sharing systems is one of the urban
mobility services proposed in cities across the world as an additional means
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of sustainable intermodal transport. Several studies (Froehlich, Neumann
and Oliver, 2009; Borgnat et al., 2011; Vogel and Mattfeld, 2011; Lathia,
Saniul and Capra, 2012) have shown the usefulness of analyzing the data
collected by BSS operators and city authorities. A statistical analysis of
these data helps in the development of new and innovative approaches for
a better understanding of both urban mobility and BSS use. The design of
BSSs, the adjustment of pricing policies, and the improvement of system
services (eg. redistribution of bikes over stations) can all benefit from this
type of analysis (Dell’Olio, Ibeas and Moura, 2011; Lin and Yang, 2011).

However, the amount of data collected on such systems is often very
large. It is therefore difficult to acquire knowledge using it without the help
of automatic algorithms that extract mobility patterns and give a synthetic
view of the information. This task is usually achieved in the literature using
clustering approaches. In almost all clustering studies conducted until now,
bicycle sharing stations are grouped according to their usage profiles, thus
highlighting the relationships between time of day, location and usage. In
this way, the global behavior of each station can be efficiently summarized
using a few clusters. These data can be used afterward to analyze the effect
of changing pricing policies or opening new sets of stations (Lathia, Saniul
and Capra, 2012). Clustering results can also be used to study the cause of
network imbalance (Vogel and Mattfeld, 2011; Vogel, Greiser and Mattfeld,
2011; Côme and Oukhellou, 2014) and serve as a first step towards providing
automatic re-allocation strategies. In the same way, the clustered results can
be used to compare the level of services reached by the systems of several
cities through the inspection of the proportions of stations that belong to
each cluster in the different cities.

From a methodological point of view, the first attempt in this line of
work was made by Froehlich, Neumann and Oliver (2008), who analyzed a
dataset from the Barcelona Bicing system. The data correspond to station
occupancy statistics in the form of free slots, available bikes over several
time frames and other station activity statistics derived from station oc-
cupancy data collected every 5 minutes. The clustering is performed using
a Gaussian mixture model based on features such as the average number
of available bikes at different periods of the day. It should be noted that
such techniques do not really take advantage of the temporal dynamic of
data. In Froehlich, Neumann and Oliver (2009), two types of clustering are
compared, both of which are performed by hierarchical aggregation. The
first one uses activity statistics derived from the evolution of station oc-
cupancy, whereas the second directly uses the number of available bicycles
throughout the day. Other studies, such as Lathia, Saniul and Capra (2012),
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use similar clustering techniques and data. As in Froehlich, Neumann and
Oliver (2009), each station is described by a time series vector that corre-
sponds to the normalized available bicycle value of the station throughout
the day. Each element of the feature vector is therefore equal to the number
of available bicycles divided by the station size. These time series are then
smoothed using a moving average and clustered using a hierarchical agglom-
erative algorithm (Duda, Hart and Stork, 2001, see p. 552), with a cosine
distance. Another work that uses the same type of data was proposed by Vo-
gel and Mattfeld (2011); Vogel, Greiser and Mattfeld (2011); it uses feature
vectors to describe the stations that come from normalizing arrival and de-
parture counts per hour and also handles weekdays and weekends separately.
Classical clustering algorithms, i.e., k-means, Gaussian mixture models and
sequential information bottleneck (sIB), are then compared. Finally, Côme
and Oukhellou (2014) recently proposed an original approach considering a
generative model based on Poisson mixtures to cluster stations with respect
to hourly usage profiles build from trip data. The results obtained for the
Vélib’ system (Paris) were then analyzed with respect to the city geography
and sociology.

However, all these works share two limitative characteristics: They are
limited to one BSS (one city), and they do not explicitly model the func-
tional nature of the data. Indeed, the observed time series are clustered
in those works using either geometric methods based on distances between
time series or by creating features that summarize the activity in the given
periods of the day (and thus omitting the temporal dynamics of the data).
In this work, we aim to go beyond the analyses made in those works by com-
paring several European BSSs using a clustering approach designed for time
series data. To this end, we introduce a novel model-based clustering method
devoted to time series (and, more generally, functional data) that is able to
take into account the nature of the BSS data. The proposed methodology,
called FunFEM, is based on the discriminative functional mixture (DFM)
model, which models the data into a single discriminative functional sub-
space. This subspace subsequently allows an insightful visualization of the
clustered data and eases the comparison of systems regarding the identified
patterns. A family of 12 models is also proposed by relaxing or constraining
the main DFM model, allowing it to handle a wide range of situations. The
FunFEM algorithm is proposed for the inference of the DFM models, and
model selection can be performed either by BIC or the ”slope heuristic”.
In addition, the selection of the most discriminative basis functions can be
made afterward by introducing sparsity through a `1-type penalization. The
comparison of 8 European BSS using FunFEM allows us to identify patho-
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Fig 2.1. Map of the eight European bike sharing systems involved in the study. The dot
size denotes the system size.

logical and healthy patterns in the system dynamic and to propose practical
improvement strategies based on the most efficient systems.

The paper is organized as follows. Section 2 presents the BSS data used
to analyze and compare several European bike sharing systems. Section 3
introduces the DFM model, its model family and the FunFEM algorithm.
The model choice and selection of the discriminative functions are also dis-
cussed in Section 3. Numerical experiments on simulated and benchmark
datasets are then presented in Section 4 to validate the proposed approach.
Section 5 presents the analyses and comparisons of 8 bike sharing systems
using the FunFEM algorithm. Based on the comparison results, recommen-
dations to BSS providers and city planners are made. Finally, Section 6
provides concluding remarks.

2. The BSS data. In this work, we want to analyze station occupancy
data collected over the course of one month on eight bike sharing systems
in Europe. The data were collected over 5 weeks, between February, 24 and
March, 30, 2014. Table 1 lists the BSSs included in this study and some
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Table 1
Summary statistics for the eight bike sharing systems involved in the study.

City Stations Bikes

Paris 1230 18000
London 740 9500
Lyon 345 3200
Bruxelles 330 3800
Valencia 280 2400
Sevilla 260 2150
Marseille 120 650
Nantes 102 880

summary statistics on the systems. Figure 2.1 visualizes the locations of the
studied systems. The cities were chosen to cover different cases in terms of
the geographic positions of the city (south / north of Europe) and to cover
a range of system sizes, from small-scale systems, such as Nantes, to much
larger systems, such as Paris.

The station status information, in terms of available bikes and docks, were
downloaded every hour during the study period for the seven systems from
the open-data APIs provided by the JCDecaux company1 and by the Trans-
port for London initiative2. To accommodate the varying stations sizes (in
terms of the number of docking points), we normalized the number of avail-
able bikes by the station size and obtained a loading profile for each station.
The final dataset contains 3230 loading profiles, one per station, sampled at
1448 time points. Notice that the sampling is not perfectly regular; there is
an hour, on average, between the two sample points.

The daily and weekly habits of inhabitants introduce a periodic behavior
in the BSS station loading profiles, with a natural period of one week. It is
then natural to use a Fourier basis to smooth the curves, with basis functions
corresponding to sinus and cosinus functions of periods equal to fractions
of this natural period of the data. Using such a procedure, the profiles of
the 3230 stations were projected on a basis of 41 Fourier functions (see Sec-
tion 3 for details). The smoothed curves obtained for 6 different stations are
depicted in Figure 2.2, together with the curve samples. A typical periodic
behavior is clearly visible in this figure for some stations. Some other sta-
tions exhibit, however, a less clear pattern, such as curves 2, 4 and 5. Our
study aims, therefore, to identify the different patterns hidden in the data
using functional clustering and to use them to compare the eight studied

1The real-time data are available at https://developer.jcdecaux.com/ (with an api key).
2The real time data are available at https://www.tfl.gov.uk/info-for/open-data-users/

(with an api key).
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Fig 2.2. Some examples of smoothed station profiles, with the corresponding observations.
One month of observations is depicted here using a period of one week.

systems.

3. The discriminative functional mixture model. From a theoret-
ical point of view, the aim of this work is to cluster a set of observed curves
{x1, ..., xn} (the loading function of the bike stations) into K homogenous
groups (or clusters), allowing for the analysis of the studied process. After
a short review of related works in functional data clustering, this section
introduces a latent functional model that adapts the model of Bouveyron
and Brunet (2012) proposed in the multivariate case to functional data. An
original inference algorithm for the functional model is then proposed, sub-
sequently allowing for the clustering of the curves. The model choice and
variable selection are also discussed.

3.1. Related work in functional clustering. This work is rooted in the
recent advances in functional data analysis that have contributed to the de-
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velopment of efficient clustering techniques specific to functional data. One
of the earlier works in that domain was by James and Sugar (2003), who
defined an approach that is particularly effective for sparsely sampled func-
tional data. This method, called fclust, considers that the basis expansion
coefficients of curves into a spline basis are distributed according to a mix-
ture of Gaussians with cluster-specific means and common variances. The
use of a spline basis is convenient when the curves are regular but are not
appropriate for peak-like data, for instance, the data encountered in mass
spectrometry. For this reason, Giacofci et al. (2012) recently proposed a
Gaussian model on a wavelet decomposition of curves. This approach allows
for addressing a wider range of functional shapes than splines. An interesting
approach has also been considered by Samé et al. (2011), who assume that
curves arise from a mixture of regressions based on polynomial functions,
with possible regime changes at each instant of observation. Let us also men-
tion the work of Frühwirth-Schnatter and Kaufmann (2008), who have built
a specific clustering algorithm based on parametric time series models. Bou-
veyron and Jacques (2011) extended the high-dimensional data clustering
(HDDC) algorithm (Bouveyron, Girard and Schmid, 2007) to the functional
case. The resulting model assumes a parsimonious cluster-specific Gaussian
distribution for the basis expansion coefficients. More recently, Jacques and
Preda (2013) proposed a model-based clustering built on the approximation
of the notion of density for functional variables, extended to multivariate
functional data in Jacques and Preda (2014). These models assume that the
functional principal component scores of curves have a Gaussian distribu-
tion whose parameters are cluster-specific. Bayesian approaches have also
been proposed. On the one hand, Heard, Holmes and Stephens (2006) con-
sider that the basis expansion coefficients are distributed as a mixture of
Gaussians, whose variances are modeled by an Inverse-Gamma distribution.
On the other hand, Ray and Mallick (2006) propose a nonparametric Bayes
wavelet model for curve clustering based on a mixture of Dirichlet processes.

3.2. Transformation of the observed curves. Let us first assume that the
observed curves {x1, ..., xn} are independent realizations of a L2-continuous
stochastic process X = {X(t)}t∈[0,T ] for which the sample paths, i.e., the
observed curves, belong to L2[0, T ]. In practice, the functional expressions of
the observed curves are not known, and we have access only to the discrete
observations xij = xi(tis) at a finite set of ordered times {tis : s = 1, . . . ,mi}.
It is therefore necessary to first reconstruct the functional form of the data
from their discrete observations. A common way to do this is to assume
that the curves belong to a finite dimensional space spanned by a basis of
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functions (see for example Ramsay and Silverman, 2005). Let us therefore
consider such a basis {ψ1, . . . , ψp} and assume that the stochastic process
X admits the following basis expansion:

X(t) =

p∑
j=1

γj(X)ψj(t),(3.1)

where γ = (γ1(X), ..., γp(X)) is a random vector in Rp, and the number p
of basis functions is assumed to be fixed and known. The basis expansion of
each observed curve xi(t) =

∑p
j=1 γijψj(t) can be estimated by an interpola-

tion procedure (see Escabias, Aguilera and Valderrama (2005), for instance)
if the curves are observed without noise or by least squares smoothing if
they are observed with error:

xobsi (tis) = xi(tis) + εis s = 1, . . . ,mi.

The latter option is used in the present work. In this case, the basis coeffi-
cients of each sample path xi are approximated by

γ̂i =
(
Θ′iΘi

)−1
Θ′iX

obs
i ,

with Θi = (ψj(tis))1≤j≤n,1≤s≤mi and Xobs
i = (xobsi (ti1), . . . , xobsi (timi ))

′.

3.3. The model. The goal is to cluster the observed curves {x1, ..., xn}
into K homogeneous groups. Let us assume that there exists an unobserved
random variable Z = (Z1, . . . , ZK) ∈ {0, 1}K indicating the group member-
ship of X: Zk is equal to 1 if X belongs to the kth group and 0 otherwise.
The clustering task aims therefore to predict the value zi = (zi1, . . . , ziK) of
Z for each observed curve xi.

Let F [0, T ] be a latent subspace of L2[0, T ] assumed to be the most dis-
criminative subspace for the K groups spanned by a basis of d basis functions
{ϕj}j=1,...,d in L2[0, T ], with d < K and d < p. The assumption d < K is
motivated by the fact that a subspace of d = K − 1 dimensions is suffi-
cient to discriminate K groups (Fisher, 1936; Fukunaga, 1990). The basis
{ϕj}j=1,...,d is obtained from {ψj}j=1,...,p through a linear transformation
ϕj =

∑p
`=1 uj`ψ` such that the p × d matrix U = (uj`) is orthogonal. Let

{λ1, ..., λn} be the latent expansion coefficients of the curves {x1, ..., xn} on
the basis {ϕj}j=1,...,d. These coefficients are assumed to be independent re-
alizations of a latent random vector Λ ∈ Rd. The relationship between the
bases {ϕj}j=1,...,d and {ψj}j=1,...,p suggests that the random vectors Γ and
Λ are linked through the following linear transformation:

Γ = UΛ + ε,(3.2)
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where ε ∈ Rp is an independent and random noise term.
Let us now make distributional assumptions on the random vectors Λ

and ε. First, conditionally on Z, Λ is assumed to be distributed according
to a multivariate Gaussian density:

Λ|Z=k ∼ N (µk,Σk),(3.3)

where µk and Σk are, respectively, the mean and the covariance matrix of
the kth group. Secondly, ε is also assumed to be distributed according to a
multivariate Gaussian density:

ε ∼ N (0,Ξ).(3.4)

With these distributional assumptions, the marginal distribution of Γ is a
mixture of Gaussians:

p(γ) =
K∑
k=1

πkφ(γ;Uµk, U
tΣkU + Ξ),(3.5)

where φ is the standard Gaussian density function, and πk = P (Z = k) is
the prior probability of the kth group.

We finally assume that the noise covariance matrix Ξ is such that ∆k =
cov(W tΓ|Z = k) = W tΣkW has the following form:

∆k =


Σk 0

0

β 0
. . .

0 β



 d

 p− d

(3.6)

with W = [U, V ] where V is the orthogonal complement of U . With these
notations, and from a practical point of view, one can say that the variance
of the actual data of the kth group is therefore modeled by Σk whereas
the parameter β models the variance of the noise outside the functional
subspace. This model is referred in the sequel by DFM[Σkβ], and Figure 3.1
summarizes the modeling.

3.4. A family of discriminative functional model. Starting with the model
DFM[Σkβ] and following the strategy of Fraley and Raftery (1999), sev-
eral submodels can be generated by applying constraints on the parameters
of the matrix ∆k. For instance, it is first possible to relax the constraint
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Fig 3.1. Graphical representation for the model DFM[Σkβ].

Table 2
Number of free parameters in covariance matrices when d = K − 1 for the DFM models.

Model Σk βk Nb. of variance parameters

DFM[Σkβk] Free Free (K − 1)(p−K/2) +K2(K − 1)/2 +K
DFM[Σkβ] Free Common (K − 1)(p−K/2) +K2(K − 1)/2 + 1
DFM[Σβk] Common Free (K − 1)(p−K/2) +K(K − 1)/2 +K
DFM[Σβ] Common Common (K − 1)(p−K/2) +K(K − 1)/2 + 1
DFM[αkjβk] Diagonal Free (K − 1)(p−K/2) +K2

DFM[αkjβ] Diagonal Common (K − 1)(p−K/2) +K(K − 1) + 1

DFM[αkβk] Spherical Free (K − 1)(K − 1)(p−K/2) + 2K
DFM[αkβ] Spherical Common (K − 1)(p−K/2) +K + 1
DFM[αjβk] Diagonal & Common Free (K − 1)(p−K/2) + (K − 1) +K

DFM[αjβ] Diagonal & Common Common (K − 1)(p−K/2) + (K − 1) + 1

DFM[αβk] Spherical & Common Free (K − 1)(p−K/2) +K + 1
DFM[αβ] Spherical & Common Common (K − 1)(p−K/2) + 2

that the noise variance is common across groups. This generates the model
DFM[Σkβk], which is the more general model of the family. It also possible to
constrain this new model such that the covariance matrices Σ1, . . . ,ΣK in
the latent space are common across groups. This submodel will be referred
to as DFM[Σβk]. Similarly, in each group, Σk can be assumed to be diago-
nal, i.e.. Σk = diag(αk1, . . . , αkd), and this submodel will be referred to as
DFM[αkjβk]. The variance within the latent subspace F can also be assumed
to be isotropic for each group, and the associated submodel is DFM[αkβk].
Following this strategy, 12 different DFM models can be enumerated, and
an overview of them is proposed in Table 2. The table also provides, for
each model, the number of variance parameters to estimate as a function
of the number K of groups and the number p of basis functions. One can
note that the models turn out to be particularly parsimonious because their
complexity is a linear function of p, whereas most model-based approaches
usually have a complexity that is a quadratic function of p.
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3.5. Model inference: the FunFEM algorithm. Because the group mem-
berships {z1, ..., zn} of the curves are unknown, the direct maximization of
the likelihood associated with the model described above is intractable. In
such a case, a classical solution for model inference is to use the EM al-
gorithm. Here, however, the use of the EM algorithm is prohibited due to
the particular nature of the functional subspace F . Indeed, maximizing the
likelihood over the subspace orientation matrix U is equivalent to maximiz-
ing the projected variance, and it yields the functional principal component
analysis (fPCA) subspace. Because F is here assumed to be the most dis-
criminative subspace, U has to be estimated separately, and we therefore
propose the algorithm described hereafter and named FunFEM. The Fun-
FEM algorithm alternates, at iteration q, over the three following steps:

The F step. Let us first suppose that at iteration q, the posterior proba-

bilities t
(q)
ik = E[zik|γi, θ(q−1)] are known (they have been estimated in the E

step of iteration q−1). The F step aims therefore to determine, conditionally

on the t
(q)
ik , the orientation matrix U of the discriminative latent subspace

F in which the K clusters are best separated. Following the original idea of
Fisher (1936), the functional subspace F should be such that the variance
within the groups should be minimal, whereas the variance between groups
should be maximal. Let C be the covariance operator of X with kernel

C(t, s) = E [(X(t)−m(t))(X(s)−m(s))] ,

and B be the integral between-cluster covariance operator with kernel

B(t, s) = E [E[X(t)−m(t)|Z]E[X(s)−m(s)|Z]] ,

where m(t) = E[X(t)]. In the following, and without a loss of generality, the
curves are assumed to be centered, i.e., m(t) = 0. The operator B can thus
be rewritten as:

B(t, s) = E [E[X(t)|Z]E[X(s)|Z]] ,

= E

[
K∑
k=1

1{Z=k}E[X(t)|Z = k]
K∑
`=1

1{Z=`}E[X(s)|Z = `]

]

=

K∑
k=1

P (Z = k)E[X(t)|Z = k]E[X(s)|Z = k].

The Fisher criterion, in the functional case and the supervised setting (Preda,
Saporta and Lévéder, 2007), looks for the discriminative function u ∈ L2[0, T ]
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which is solution of:

max
u

V ar(E[Φ(X)|Z])

V ar(Φ(X)),
(3.7)

where Φ(X) =
∫

[0,T ]X(t)u(t)dt is the projection of X on the discriminative
function u. Let us recall that we consider here the unsupervised setting,
and Z is an unobserved variable. The solution of (3.7) is the eigenfunction
u associated with the largest eigenvalue η ∈ R of the following generalized
eigenproblem:

Bu = ηCu∫
[0,T ]

B(t, s)u(s)ds = η

∫
[0,T ]

C(t, s)u(s)ds,(3.8)

under the constraint < u,Cu >L2[0,T ]= 1. The estimator for C(t, s) from
the sample {x1, ..., xn}, expanded on the basis (ψj)j=1,...,p, is:

Ĉ(t, s) =
1

n

n∑
i=1

(

p∑
j=1

γijψj(t))(

p∑
j=1

γijψj(s))

=
1

n
Ψ′(t)Γ′ΓΨ(s),

where Γ = (γij)i,j is the n × p-matrix of basis expansion coefficients and
Ψ(s) is the p-vector of the basis functions ψj(s) (1 ≤ i ≤ n and 1 ≤ j ≤ p).
Because the variable Z is unobserved, B(t, s) has to be estimated condition-

ally on the posterior probabilities t
(q−1)
ik = E[zik|γi, θ(q−1)] obtained from

the E step at iteration q − 1:

B̂(q)(t, s) =

K∑
k=1

n
(q−1)
k

n

(
1

n
(q−1)
k

n∑
i=1

t
(q−1)
ik xi(t)

)(
1

n
(q−1)
k

n∑
i=1

t
(q−1)
ik xi(s)

)

=
1

n

K∑
k=1

1

n
(q−1)
k

 n∑
i=1

t
(q−1)
ik

p∑
j=1

γijψj(t)

 n∑
i=1

t
(q−1)
ik

p∑
j=1

γijψj(s)

 ,

and in a matrix form:

B̂(q)(t, s) =
1

n
Ψ′(t)Γ′TT′ΓΨ(s),

with n
(q−1)
k =

∑n
i=1 t

(q−1)
ik and T =

(
t
(q−1)
ik√
n

(q−1)
k

)
i,k

is a n×K-matrix. Assum-

ing that the discriminative function u can be decomposed in the same basis
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as the observed curves:

u(t) =

p∑
j=1

νjψj(t) = Ψ′(t)ν,(3.9)

the generalized eigenproblem (3.8) becomes:∫
[0,T ]

1

n
Ψ′(t)Γ′TT′ΓΨ(s)Ψ′(s)νds = η

∫
[0,T ]

1

n
Ψ′(t)Γ′ΓΨ(s)Ψ′(s)νds,

which is equivalent to

1

n
Ψ′(t)Γ′TT′ΓWν = η

1

n
Ψ′(t)Γ′ΓWν,

with W =
∫

[0,T ] Ψ(s)Ψ′(s)ds. Because this equality holds for all t ∈ [0, T ],
we have

Γ′TT′ΓWν = ηΓ′ΓWν,

or, equivalently,

(Γ′ΓW )−1Γ′TT′ΓWν = ην.(3.10)

Finally, the basis expansion coefficient ν = (ν1, . . . , νp)
′ of the discrimina-

tive function u is the eigenvector of the above generalized eigenproblem
associated with the largest eigenvalue. Once the first discriminative func-
tion, let us say u1, is determined, the second discriminative function is ob-
tained by solving the generalized eigenproblem (3.10) in the complemen-
tary space of u1. This procedure is recursively applied until the d discrim-
inative functions {u1, ..., ud} are obtained. The basis expansion coefficients

ν
(q)
j = (ν

(q)
j1 , . . . , ν

(q)
jp )′, j = 1, . . . , d of the estimated discriminative functions

are gathered in the p× d matrix U (q) =
(
ν

(q)
j`

)
j,`

.

The M step. Following the classical scheme of the EM algorithm, this step
aims to maximize, conditionally on the orientation matrix U (q) obtained
from the previous step, the conditional expectation of the complete data
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log-likelihood Q(θ; θ(q−1)) = E
[
`(θ; Γ, z1, ..., zn)|Γ, θ(q−1)

]
:

Q(θ; θ(q−1)) = −1

2

K∑
k=1

n
(q−1)
k [log |Σk|+ (p− d) log(β)− 2 log(πk) + p log(2π)

+
1

n
(q−1)
k

n∑
i=1

t
(q−1)
ik (γi − µk)tU (q)∆−1

k U (q)t(γi − µk)

]

= −1

2

K∑
k=1

n
(q−1)
k [log |Σk|+ (p− d) log(β)− 2 log(πk) + p log(2π)

+trace(Σ−1
k U (q)tCkU

(q)) +
1

β

trace(Ck)− d∑
j=1

ν
(q)t
j Ckν

(q)
j

 ,
where θ = (πk, µk,Σk, β)k, for 1 ≤ k ≤ K, and Ck = 1

n
(q−1)
k

∑n
i=1 t

(q−1)
ik (γi −

µ
(q−1)
k )(γi−µ(q−1)

k )t. The maximization ofQ(θ; θ(q−1)), according to πk, µk,Σk

and β, yields the following updates for model parameters:

• π(q)
k = n

(q−1)
k /n,

• µ(q)
k = 1

n
(q−1)
k

∑n
i=1 t

(q−1)
ik U (q)tγi,

• Σ
(q)
k = U (q)tC

(q)
k U (q),

• β(q) =
(

trace(C(q))−
∑d

j=1 u
(q)t
j C(q)u

(q)
j

)
/ (p− d).

Updated formula for other models of the family can be easily obtained
from Bouveyron and Brunet (2012).

The E step. This last step reduces to update, at iteration q, the posterior

probabilities t
(q)
ik = E[zik|γi, θ(q)]. Let us also recall that t

(q)
ik is also the

posterior probability P (zik = 1|γi, θ(q)) that the curve xi belongs to the kth
component of the mixture under the current model. Using Bayes’ theorem,

the posterior probabilities t
(q)
ik , i = 1, ..., n, k = 1, ...,K, can be expressed as

follows:

(3.11) t
(q)
ik =

π
(q)
k φ(γi, θ

(q)
k )∑K

l=1 π
(q)
l φ(γi|θ(q)

l )
,

where θ
(q)
k = (π

(q)
k , µ

(q)
k ,Σ

(q)
k , β(q)) is the set of parameters for the kth com-

ponent updated in the M step.
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3.6. Model selection. We discuss now both the choice of the most appro-
priate model within the family and the problem of selecting the number K of
groups and the intrinsic dimension d. On the one hand, it first of interest to
select the model of the DFM family that is the most appropriate model the
data at hand. On the other hand, the problem of selecting K and d can be,
in fact, recast as a model selection problem. The idea here is to consider, for
instance, a DFM model with K = 2 and the same DFM model with K = 3
as two different models among which one wants to choose. Thus, because a
model is defined by its parametrization, its number of components K and
its intrinsic dimensionality d, model selection criteria allow us to select the
best combination of those three features for the data to analyze.

Classical tools for model selection include the AIC (Akaike, 1974) and
BIC (Schwarz, 1978) criteria, which penalize the log-likelihood `(θ̂) as fol-
lows, for model M:

(3.12) AIC(M) = `(θ̂)− ξ(M), BIC(M) = `(θ̂)− ξ(M)

2
log(n),

where ξ(M) is the number of free parameters of the model, and n is the
number of observations. The value of ξ(M) is, of course, specific to the
model selected by the practitioner (cf. Table 2). Although penalized like-
lihood criteria are widely used, AIC and BIC are also known to be less
efficient in practical situations than in simulated cases. In particular, the re-
quired regularity conditions are not fully satisfied in the mixture framework
(Lindsay, 1995; Ray and Lindsay, 2008), and hence, the criteria might not
be appropriate.

To overcome this drawback, Birgé and Massart (2007) recently proposed
a data-driven technique, called the ”slope heuristic”, to calibrate the penalty
involved in penalized criteria. The slope heuristic was first proposed in the
context of Gaussian homoscedastic least squares regression and was then
used in different situations, including model-based clustering. Birgé and
Massart (2007) showed that there exists a minimal penalty and that consid-
ering a penalty equal to twice this minimal penalty allows for approximating
the oracle model in terms of risk. The minimal penalty is, in practice, esti-
mated by the slope of the linear part of the log-likelihood `(θ̂) with regard
to the model complexity. The criterion associated with the slope heuristic is
therefore defined by:

(3.13) SHC(M) = `(θ̂)− 2ŝξ(M),

where ŝ is the slope of the linear part of `(θ̂). A detailed overview and ad-
vice for implementation are provided in Baudry, Maugis and Michel (2012).
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Fig 4.1. Raw and smoothed simulated curves.

Section 3 proposes a comparison of the slope heuristic with classical model
selection criteria. In Section 4, the slope heuristic criterion is used for the
model selection for the BSS data.

3.7. Selection of discriminative basis functions. Another advantage of
the proposed modeling is the possibility of using the discriminative sub-
space to select the relevant basis functions for discriminating between the
groups. Indeed, the functional subspace F allows for determining the dis-
criminative basis functions through the loading matrix U , which contains
the coefficients of the linear relation that links the basis functions with the
subspace F . It is therefore expected that basis functions associated with
large absolute values of U are particularly relevant for discriminating be-
tween the groups. An intuitive way to identify the discriminative basis func-
tions would be to keep only large absolute loading variables by, for instance,
thresholding. Although this approach is commonly used in practice, it has
been particularly criticized by Cadima and Jolliffe (1995) because it induces
some misleading information. Here, we propose selecting the discriminative
basis functions by constraining the optimization problem (3.7) of the F step
such that the loading matrix U is sparse (i.e., such that U contains as many
zeros as possible). To this end, we follow the approach proposed by Bou-
veyron and Brunet (2014), who rewrites the constrained Fisher criterion
as a `1-penalized regression problem. We therefore use their algorithm (Al-
gorithm 2 of Bouveyron and Brunet, 2014) to maximize the optimization
problem (3.7) under `1-penalization.

4. Numerical experimentations. This section presents numerical ex-
periments to validate on simulated and benchmark data the approach pre-
sented above, before to apply it on the BSS data.
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Fig 4.2. Selection of the number of clusters using BIC on the simulated data (actual value
of K is 4).

4.1. Model selection. We first focus on the problem of model selection.
Here, BIC and the slope heuristic are challenged on a set of simulated curves.
A sample of n = 100 curves is simulated according to the following model,
inspired by Ferraty and Vieu (2003); Preda (2007):

Cluster 1 : X(t) = U + (1− U)h1(t) + ε(t), t ∈ [1, 21],

Cluster 2 : X(t) = U + (1− U)h2(t) + ε(t), t ∈ [1, 21],

Cluster 3 : X(t) = U + (0.5− U)h1(t) + ε(t), t ∈ [1, 21],

Cluster 4 : X(t) = U + (0.5− U)h1(t) + ε(t), t ∈ [1, 21],

where U is uniformly distributed on [0, 1], and ε(t) is white noise that is
independent from U such that Var(εt) = 0.5. The function h1 and h2 are
defined, for t ∈ [1, 21], by h1(t) = 6 − |t − 7| and h2(t) = 6 − |t − 15|. The
mixing proportions are equal, and the curves are observed in 101 equidistant
points (t = 1, 1.2, . . . , 21). The functional form of the data is reconstructed
using a Fourier basis smoothing with 25 basis functions. Figure 4.1 plots the
simulated curves and the smoothed ones.

For each simulated dataset, the number K of clusters is estimated based
on both the BIC and the slope heuristic criteria. As an example of the results,
Figures 4.2 and 4.3 (right panel) plot, respectively, the values of the BIC cri-
terion and the slope heuristic for one simulation with the model DFM[Σkβk].
On this run, both criteria succeed in selecting the actual number of clusters
(K = 4). Figure 4.3 may require further explanation. The left panel plots the
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Fig 4.3. Selection of the number of clusters using the slope heuristic on the simulated data
(actual value of K is 4).

log-likelihood function with regard to the number of free model parameters,
the latter being a function of K (see Table 2). The slope heuristic consists
of using the slope of the linear part of the objective function to calibrate
the penalty. The linear part is here represented by the red dashed line and
was automatically determined using a robust linear regression. The slope
coefficient is then used to compute the penalized log-likelihood function,
shown on the right panel. We can see here that the slope heuristic provides
a penalty close to the one of BIC.

Both criteria were then used to select the appropriate model and number
of groups on 100 simulated datasets. Table 3 presents the selected number
of clusters by BIC and the slope heuristic over 100 simulations for each of
the 12 DFM models. It turns out that although BIC can be very efficient
when the model is appropriate, it can provide unsatisfactory results in more
difficult inference situations. Conversely, the slope heuristic appears to be
more consistent in the selection of the number of clusters while keeping very
good overall results. For this reason, the selection of models and the number
of groups will be addressed in the following section with the slope heuristic.

4.2. Selection of discriminative basis functions. This experiment is con-
cerned with the selection of the discriminative basis functions, i.e., the most
relevant ones for discriminating the clusters. In this work, the selection of
the discriminative basis functions is viewed as solving the optimization prob-
lem (3.7) of the F step under sparsity constraints (i.e., such that the loading
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Table 3
Number of clusters selected by BIC over 100 simulations for the 12 DFM models. Actual

value for K is 4.

Number K of clusters

Model 2 3 4 5 6 7 8 9 10

DFM[Σkβk] 0 0 99 0 0 0 0 1 0

DFM[Σkβ] 0 0 27 37 23 12 1 0 0

DFM[Σβk] 0 0 100 0 0 0 0 0 0

DFM[Σβ] 0 0 2 2 8 10 10 10 58

DFM[αkjβk] 0 0 100 0 0 0 0 0 0

DFM[αkjβ] 0 0 1 5 8 12 10 7 57

DFM[αkβk] 0 0 100 0 0 0 0 0 0

DFM[αkβ] 0 0 0 0 1 1 4 7 87

DFM[αjβk] 0 0 100 0 0 0 0 0 0

DFM[αjβ] 0 0 91 5 1 1 1 0 1

DFM[αβk] 0 0 100 0 0 0 0 0 0

DFM[αβ] 0 0 97 2 1 0 0 0 0

Table 4
Number of clusters selected by the slope heuristic over 100 simulations for the 12 DFM

models. Actual value for K is 4.

Number K of clusters

Model 2 3 4 5 6 7 8 9 10

DFM[Σkβk] 6 9 84 0 0 0 0 1 0

DFM[Σkβ] 15 1 81 3 0 0 0 0 0

DFM[Σβk] 0 0 91 8 1 0 0 0 0

DFM[Σβ] 0 0 77 17 5 1 0 0 0

DFM[αkjβk] 0 0 97 3 0 0 0 0 0

DFM[αkjβ] 0 0 65 17 14 3 1 0 0

DFM[αkβk] 0 0 85 14 1 0 0 0 0

DFM[αkβ] 0 0 78 14 7 1 0 0 0

DFM[αjβk] 0 1 87 11 1 0 0 0 0

DFM[αjβ] 0 0 67 8 6 6 4 3 6

DFM[αβk] 4 0 96 0 0 0 0 0 0

DFM[αβ] 0 0 87 6 4 2 1 0 0
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matrix U contains as many zeros as possible). To evaluate the ability of our
approach to select the relevant discriminative basis functions, we consider
now a simulation setting in which two primarily different frequencies are
involved. The simulation setup is as follows:

Cluster 1 : X(t) = U + (1− U)h1(t) + ε(t), t ∈ [1, 21],

Cluster 2 : X(t) = U + (1− U)h2(t) + ε(t), t ∈ [1, 21],

Cluster 3 : X(t) = U + (1− U) cos(2t) + ε(t), t ∈ [1, 21],

Cluster 4 : X(t) = U + (1− U) sin(2t− 2) + ε(t), t ∈ [1, 21],

where U , ε(t), h1, h2, the mixing proportions where U , ε(t), h1, h2, the mix-
ing proportions and the observation points are the same as in the previous
simulation setting. The functional form of the data is reconstructed using
both Fourier basis smoothing (with 25 basis functions) and a cubic spline
basis (with 50 basis functions). Figure 4.4 plots the simulated curves, respec-
tively smoothed on cubic splines and Fourier basis functions. Starting from
the partition estimated with FunFEM and the DFM[Σkβk] model, the sparse
version of the algorithm is launched with the sparsity parameter λ = 0.1 on
both Fourier and spline smoothed curves.

Figures 4.5 and 4.6 plot the selected basis functions on both spline and
Fourier bases. For the Fourier basis, the selection of the basis functions indi-
cates which periodicity in the observed curves are the most discriminative,
whereas for the spline smoothing, it indicates which time intervals are the
most discriminant. On the one hand, for the Fourier basis, the sparse version
of FunFEM selects only two discriminative periodicities over the 25 original
basis functions (left panel of Figure 4.5). The selected basis functions turn
out to be relevant because they actually correspond to the two periodici-
ties present in the simulated data. The right panel of the figure plots the
smoothed curves on the two selected basis functions. One can observe that
the basis selection is actually relevant because the main features of the data
are kept.

On the other hand, for the spline basis, sparse FunFEM has selected
three basis functions among the 25 original ones (left panel of Figure 4.6).
The three selected functions indicate the most discriminative time intervals.
Those time intervals are reported on the right panel of the figure in addition
to the curves. One can, for instance, note that the first (from the left) se-
lected function discriminates the green clusters from the three other groups.
Similarly, the second discriminative function allows for separating the black
and green clusters from the blue and red curves. Finally, the last selected
function aims at discriminating the black group from the others.
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Fig 4.4. Simulated curves with cubic spline smoothing (left) and Fourier basis smooth-
ing (right).

0 20 40 60 80 100

−
0.

15
−

0.
10

−
0.

05
0.

00
0.

05
0.

10
0.

15

Discriminative basis functions

0 20 40 60 80 100

−
2

0
2

4
6

Clustering results on the discriminative basis functions

Fig 4.5. Discriminative functions among the Fourier basis functions: selected basis func-
tions (left) and data projected on the selected basis functions (right).

0 20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Discriminative basis functions

0 20 40 60 80 100

−
2

0
2

4
6

time

va
lu

e

Fig 4.6. Discriminative functions among the Spline basis functions: selected basis func-
tions (left) and original data with, highlighted in grey, the time periods associated with the
selected basis functions (right).



22 C. BOUVEYRON ET AL.

Table 5
Clustering accuracies (in percentage) on the Kneading, Growth, ECG and Wafer data

sets for FunFEM and state-of-the-art methods. Bold results correspond to best clustering
accuracies and the stars indicate the DFM model selected by BIC.

Method Kneading ECG Face Wafer

kmeans-d0 62.61 74.50 48.21 63.34
kmeans-d1 64.35 61.50 34.80 62.53
Funclust 66.96 84.00 33.03 63.10
FunHDDC 62.61 75.00 57.14 63.41
Fclust 64.00 74.50 - -
Curvclust 65.21 74.50 58.92 63.30

FunFEM DFM[Σkβk] 67.74 71.00 59.82 66.89
FunFEM DFM[Σkβ] 70.97 73.00 54.46 64.10
FunFEM DFM[Σβk] 67.74 72.00 61.60 66.35
FunFEM DFM[Σβ] 66.66 75.00 54.46 64.17
FunFEM DFM[αkjβk] 67.74 71.00* 53.57* 66.89

FunFEM DFM[αkjβ] 70.97 73.50 54.46 64.10

FunFEM DFM[αkβk] 67.74 71.00 53.57 66.89*
FunFEM DFM[αkβ] 70.97 73.00 57.14 64.10
FunFEM DFM[αjβk] 67.74 72.00 55.35 66.40

FunFEM DFM[αjβ] 66.66 75.00 53.57 64.17

FunFEM DFM[αβk] 67.74* 72.00 53.57 66.40
FunFEM DFM[αβ] 66.66 75.00 56.25 64.17

4.3. Comparison with state-of-the-art methods. This last numerical study
aims at comparing the FunFEM algorithm with state-of-the-art methods on
four real datasets that are commonly used in the functional clustering lit-
erature. The considered datasets are: the Kneading, ECG, Face, and Wafer
datasets. Appendix A provides a detailed description of those datasets.

FunFEM is here compared with the six state-of-the-art methods: kmeans-
d0 and kmeans-d1 (Ieva et al., 2013), funclust (Jacques and Preda, 2013),
funHDDC (Bouveyron and Jacques, 2011), fclust (James and Sugar, 2003)
and curvclust (Giacofci et al., 2012). The two kmeans based methods use,
respectively, the L2-metric between curves (kmeans-d0) and between their
derivatives (kmeans-d1). The four other methods assume a probabilistic
modeling. Funclust assumes a Gaussian distribution for the functional prin-
cipal components scores, whereas funHDDC, fclust and curvclust directly
model the basis expansion coefficients.

Table 5 presents the clustering accuracies (according to the known labels)
on the four datasets for FunFEM and the six clustering methods. FunFEM
turns out to be very competitive with its challengers on those datasets.
FunFEM outperforms the other methods on all datasets except the second
one where it is the second best method. On the kneading, ECG and wafer
sets, the improvement over state-of-the-art methods is significant. It is also
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worth noticing that the model selected by BIC (the model associated with
the higher BIC value) often provides some of the best possible results.

5. Analysis of bike sharing systems. This section now presents the
results of the application of FunFEM to one month of stock data from eight
bike sharing systems (Managed by JCDecaux Ciclocity and Serco) in Eu-
rope. As explained in the introduction, clustering is a principal way to sum-
marize the behavior of BSS stations, and this approach has already been
used in the literature. This study proposes going further here. The FunFEM
algorithm presents a few advantages compared to existing works for dealing
with the BSS data considered here and for comparing the eight studied sys-
tems. First, conversely to previous works, FunFEM explicitly addresses the
functional nature of BSS stock data, and as we saw earlier, it outperforms
multivariate and functional clustering techniques in most situations. Fun-
FEM is therefore expected to perform well on the BSS data and to provide
meaningful clusters from the operational point of view. Second, FunFEM is
able to easily handle large datasets, in term of time points, due to its par-
simonious modeling. This is an important point here because we consider
time series over one month (1448 time points, cf. Section 2). Last but not
least, FunFEM helps visualize the clustered data into a discriminative sub-
space. As we will see, this specific feature will be particularly informative
when analyzing the clustering results on the BSS data. The visualization of
the different cities within the discriminative subspace will allow us to iden-
tify the systems with operating issues and to propose practical solutions to
improve those systems.

5.1. Clustering results for Paris stations. We first begin the data analy-
sis with solely the Paris stations. The FunFEM algorithm has been applied
on the data with a varying number of clusters, from 2 to 40, and using the
DFM[αkjβ] model. This model was selected based on the good results it ob-
tained in the simulation study we performed. Note that it would also be
possible to test all models and select the most appropriate one for the data
using model selection. We, however, use BIC, AIC and slope heuristic cri-
teria to choose an appropriate value for the number K of clusters. BIC and
AIC provided hard-to-use values for K because even for 40 clusters, they
do not reach a maximum. Conversely, the slope heuristic gave a satisfying
value for K because it reaches its maximum for K = 10. Figure 5.1 shows
the evolution of the log-likelihood with respect to the model dimensionality
and the associated slope heuristic criterion. On the right panel, the slope
heuristic criterion peaks at K = 10, which corresponds to an elbow in the
log-likelihood function: Above this value, the gain in log-likelihood is linear
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Fig 5.1. Model selection plots for Paris: log-likelihood with respect to model dimensionality
and its estimated linear part (left), slope heuristic criterion with respect to K (right).

with respect to the model dimensionality. This value of K was used for the
cluster analysis. The mean profiles of the obtained clusters are depicted in
Figure 5.2, together with the cluster proportions and a sample of curves that
belong to each cluster.

The obtained clusters are fairly balanced, with approximately ten percent
of the stations in each. The clusters are also easily distinguishable. The
stations of the first two clusters get bikes during the afternoon and the
evening. These stations differ during the weekend; the first cluster presents
high values throughout this period, whereas the second cluster experiences a
lack of bikes on Saturday mornings. Taking into account these observations,
we named the first cluster Afternoon, Weekend and the second Afternoon
as a reference to the periods where these stations are full. The next two
clusters present a phase opposition with respect to the previous ones; these
stations are full at the end of the morning rush hour (approximately 9 a.m).
Because these two clusters differ in their weekend behavior, we named the
first one Morning because these stations are almost empty throughout the
entire weekend, and we named the second one Morning, Weekend because
bikes are available at these stations for a good part of the weekend. The
next two clusters do not present the same types of variations; their loading
profiles are considerably stable throughout the week. The difference is in the
level of fullness, with one cluster loading at approximately 0.85 and one at
approximately 0.7. The first cluster also presents day variations that are not
visible for the second one. We named these clusters Full and Almost Full.
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Fig 5.2. Cluster mean profiles together with 1000 randomly sampled curves. The name of
the clusters and their proportions are also provided.
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Clusters 7 and 8 present overall small activity: Cluster 7 get bikes at
night, but this does not saturate the stations that reach a balanced state
in these time periods. This phenomenon may be due to the re-allocation
journey performed by the operator to balance the system at night. Cluster 8
oscillates around a balanced state, receiving slightly more bikes during the
afternoons. Taking into account these remarks, we call these clusters Night
rebalancing and Balanced. Finally, clusters 9 and 10 gather stations that are
almost empty throughout the week. Cluster 9 presents considerably stable
behavior with a constant loading profile of approximately 0.25, whereas the
second one smoothly oscillates at approximately 0.1. We respectively call
these clusters Almost empty and Empty.

To complement this analysis of the clustering results, Figure 5.33 presents
the spatial location of the clustering results . One of the first things that
catches the eye when looking at this figure concerns the relatively good spa-
tial organization of the results, although this information was never used
in the clustering process. Stations from the same clusters are frequently
grouped together on the map. From a Parisian perspective, those results
are natural: The Morning and Morning, week-end clusters (in green on the
map) are located in areas with a high employment density, which therefore
correspond to destinations during the morning commute. This phenomenon
explains why these stations experience a saturation at the end of the morn-
ing rush hour. On the contrary, the blue clusters, which correspond to the
Afternoon and Afternoon, weekend clusters, are located in more residen-
tial neighborhoods with a higher population density. They therefore corre-
spond to classical origins during the morning rush hour and lose their bikes
during this time period. The stations that belong to these clusters are lo-
cated in regions that are close to Empty, Almost empty stations, which are
more problematic from a user perspective. These neighborhoods are not in
the hyper-center of Paris, and they are also located close to stations that
belong to the Night rebalancing cluster. The Night rebalancing cluster is
frequently located in uphill locations, such as the ”Butte Montmarte”, the
”Père Lachaise” cemetery and the ”Butte Chaumont” garden. Finally, the
Full and Almost full stations are located in the center, whereas the Balanced
stations are located primarily in the periphery of the system.

In comparison with previous results obtained based on Paris bike share
origin/destination data, such as in Côme and Oukhellou (2014), these obser-
vations are considerably consistent. One of the major differences concerns
parks and leisure locations, which do not emerge from the clustering in our
study. This phenomenon may be explained by the difference in the nature of

3Map build using the ggmap package for R (Kahle and Wickham, 2013).
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Fig 5.3. Map of the clustering results for Paris stations.

the input data. The stock data that are used in this paper do not enable the
differentiation of these stations, whereas origin/destination data do. How-
ever, stock data are easier to obtain on a large scale and thus will allow
cross-city comparisons, which is the subject of the next section.

5.2. Clustering results on several cities. The clustering was also per-
formed on the entire dataset, which includes stations from the eight systems
(see Table 1). The same methodology was used; the curves were projected
on the same Fourier basis, and as prior, the clustering was performed with
the model DFM[αkjβ] and with a varying number of clusters, from 2 to 40.
The slope heuristic leads to the same number of clusters (K = 10 clusters)
in this larger dataset. The obtained clusters are also close to those obtained
only in Paris. Their profiles, which are supplied in the Appendix, are close
to those shown in Figure 5.2, and their interpretation does not differ signifi-
cantly. We kept the same labels for the clusters because the main difference
comes from the amplitude of the profile variations, which are smaller in
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Fig 5.4. Cluster proportions by city.

the entire dataset. An interesting point in the obtained results concerns the
proportions of the different clusters for each city. This indeed enables an ag-
gregate view of the systems that eases their comparison. These proportions
are shown in Figure 5.4.

Differences between the cities are visible in this figure. The proportion of
the Night rebalancing cluster is, for example, much more important for Paris
than in any other city. This cluster, which corresponds to stations that are
rebalanced during the night, is not visible in cities other than Paris. On the
contrary, the proportion of the Balanced cluster is much smaller in Paris
than in the other cities. Another clear difference concerns the Empty and
Almost empty cluster stations, which are important in Marseille and Brux-
elles. In Marseille, the Full and Almost full clusters are also over-represented,
corresponding to more than 25% of the city stations. This system seems,
therefore, the more unbalanced system with many stations frequently full
or empty. Conversely, the cities on the left of the plot, such as Valencia or
Lyon, seem to be more active and balanced with an important proportion of
stations that belong to the Afternoon and Morning clusters. This aggregate
view helps identify the BSSs that do not have satisfying behavior from the
exploitation point of view. Indeed, Bruxelles and Marseille have exploita-
tion profiles with low or even very low proportions of the active clusters
(Afternoon,WE, Afternoon, Morning, WE and Morning). Conversely, the
BSS of Valencia, Lyon and London seem to be the most efficient systems.
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Fig 5.5. Bike stations projected into the two first axes of the discriminative functional
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Fig 5.7. Density of bike stations per city projected into the two first axes of the discrimi-
native functional subspace.

Some of the factors that may explain these behaviors are the ratio between
bikes and docks, the topography and geography of the cities and the bike
redistribution policy.

The observations made on the cluster proportions from Figure 5.4 can
be confirmed by looking at the discriminative functional subspace estimated
by FunFEM. Figure 5.5 shows the bike stations of the 8 cities projected
into the two first axes of the discriminative subspace. Figure 5.6 shows the
projection into the third and fourth discriminative axes. The colors indicate
the cluster memberships of the stations. It may first be useful to interpret
the discriminative axes from the cluster meanings. The first axis puts in
opposition the Full and Empty clusters and can be therefore viewed as a
station loading axis. The second axis opposes the Afternoon and Morn-
ing clusters. It can therefore be linked with the phase of the curves. The
third and fourth axes are less interpretable and seem primarily linked with
the Night rebalancing cluster. Knowing the meaning of the discriminative
subspace axes enables the comparison of the studied systems through the
analysis of their station behaviors. Figure 5.7 shows the projection of the
bike stations for each city on the two first axes of the discriminative sub-
space. A kernel density estimation is also proposed to visualize the relative
density of stations in this subspace. This visual representation confirms the
first comparison results of the cluster proportions. In particular, Marseille
and Bruxelles present a distribution in the discriminative subspace that is
considerably different from that of other cities. Indeed, both are oriented
along the first discriminative axis and do not present significant variations
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Fig 5.8. Density of ”bonus” (left) and regular stations (right) projected into the two first
axes of the discriminative functional subspace.

along the second axis. The signature of those two cities within the subspace
can be qualified as problematic from an operational point of view because
the first discriminative axis opposes the Full and Empty clusters, whereas
the second axis is associated with the Afternoon and Morning clusters.

The spatial analysis of the results was also performed by mapping the
clustering results (see Figure B.2 in the appendix). As with Paris, it turns
out that the different clusters are also frequently spatially clustered. Further-
more, the same type of global organization is visible for the different cities.
Stations from the Morning clusters are located in the center of the systems,
whereas the other clusters are located in the periphery of the system.

5.3. Recommendations for BSS operators. In light of the analyses and
comparisons made above, it is possible to make some recommendations for
BSS operators regarding system structures and policies. On the one hand,
the BSS systems of Marseille and Bruxelles appear to be composed primarily
of Full and Empty stations, which necessarily implies user dissatisfaction.
Possible ways to improve these situations would be either to use a ”bonus”
policy or to increase the rebalancing performed by the operator. The ”bonus”
policy is attractive for both users and providers. It consists of offering extra
free minutes of bike usage to users willing to return the bike to elevated
stations. In theory, this strategy should help rebalance the system. Bonus
stations, for instance, are available Paris and Bruxelles. Thanks to our dis-
criminative subspace, it is in fact possible to check the real effect of such a
policy. Figure 5.8 shows the density of ”bonus” and regular stations within
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the two first axes of the discriminative functional subspace. It appears that
the effect of the bonus policy is globally limited because there is no signif-
icant distribution difference between the regular and bonus statuses of the
Full stations (stations projected on the left of the first discriminative axis).
We therefore recommend to BSS operators to either modify their bonus
policies (e.g., extra time bonus, cash reward) or to increase the nighttime
rebalancing of the stations for those two cities.

However, the comparison of the largest and most efficient systems has
highlighted some weaknesses of the Paris system. Although the Velib sys-
tem is one of the largest and most popular systems in the world, it also
appears to have too many Full and Empty stations, particularly compared
to London. The night rebalancing operated by JCDecaux seems to be ef-
ficient but not sufficient to completely solve this issue. As we have seen,
shared bikes are used primarily for home-work journeys, and the stations
from the Afternoon and Morning clusters therefore play a key role in the
system efficiency. This situation emphasizes the importance of commutes in
the use of the service, and city bike policies must take seriously consider
this aspect when designing bike paths. London’s ”Cycle Superhighways”
initiative, which connects suburbs with the city center, seems particularly
effective with respect to this point in our analyses. Those specific bike paths
indeed connect stations from the Afternoon and Morning clusters (see Ap-
pendix 2). We therefore recommend to city planners to develop bike paths
in a similar way to improve the performance of system commutes.

6. Conclusion. This work was motivated by the will to compare sev-
eral European BSSs to identify common operating patterns and to propose
practical solutions to avoid potential issues. To this end, the discriminative
functional mixture (DFM) model was proposed to model the functional data
generated by the systems. In this framework, the data are modeled into a dis-
criminative functional subspace. The FunFEM algorithm has been proposed
for the inference of the DFM model. The selection of the most discrimi-
native basis functions can also be made afterward by introducing sparsity
through a `1-type penalization. Numerical experiments have demonstrated
the efficiency of the proposed clustering technique for both simulated and
benchmark data. FunFEM appears to be a good challenger to the best state-
of-the-art methods. The numerical experiments have also shown the good
behavior of the ”slope heuristic” for model selection in this context.

The proposed methodology has been applied to one-month usage statis-
tics of 8 bike sharing systems. FunFEM presents several advantages over
existing works for analyzing and comparing bike sharing systems. FunFEM
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benefits from its parsimonious modeling and its discriminative subspace.
The obtained results were easily interpretable and useful to obtain a com-
pact representation of BSS system behaviors. In particular, the discrimina-
tive subspace appears to be a useful tool to compare the different systems
with regard to the identified operating patterns. Recommendations to BSS
operators are made based on the clustering results.

Finally, the discriminative subspace offers an interesting tool from an op-
erational point of view to track changes in the behavior of bike stations.
Using a sliding window and projecting the station functional description
within this window into the discriminative subspace, one may obtain a tra-
jectory for each station within the subspace, allowing for the detection of
any changes in the station behavior. This may be useful, when trying new
pricing or bonus policies, to check their effects on the system.
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Frühwirth-Schnatter, S. and Kaufmann, S. (2008). Model-based clustering of multi-
ple time series. Journal of Business and Economic Statistics 26 78–89.

Fukunaga, K. (1990). Introduction to Statistical Pattern Recognition. Academic. Press,
San Diego.

Giacofci, M., Lambert-Lacroix, S., Marot, G. and Picard, F. (2012). Wavelet-based
clustering for mixed-effects functional models in high dimension. Biometrics in press.

Heard, N. A., Holmes, C. C. and Stephens, D. A. (2006). A quantitative study of
gene regulation involved in the immune response of anopheline mosquitoes: an appli-
cation of Bayesian hierarchical clustering of curves. Journal of the American Statistical
Association 101 18–29. . MR2252430

Ieva, F., Paganoni, A. M., Pigoli, D. and Vitelli, V. (2013). Multivariate functional
clustering for the analysis of ECG curves morphology. Journal of the Royal Statistical
Society. Series C. Applied Statistics 62 401–418.

Jacques, J. and Preda, C. (2013). Funclust: a curves clustering method using functional
random variable density approximation. Neurocomputing 112 164–171.

Jacques, J. and Preda, C. (2014). Model-based clustering of multivariate functional
data. Computational Statistics and Data Analysis 71 92–106.

James, G. M. and Sugar, C. A. (2003). Clustering for sparsely sampled functional data.
J. Amer. Statist. Assoc. 98 397–408.

Kahle, D. and Wickham, H. (2013). ggmap: Spatial Visualization with ggplot2. The R
Journal 5 144–161.

Lathia, N., Saniul, A. and Capra, L. (2012). Measuring the impact of opening the Lon-
don shared bicycle scheme to casual users. Transportation Research Part C: Emerging
Technologies 22 88–102.
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APPENDIX A: ADDITIONAL INFORMATION ABOUT THE
BENCHMARK DATASETS

The Kneading dataset (Lévéder et al., 2004) comes from Danone VitaPole
Paris Research Center and concerns the quality of cookies and the relation-
ship with the flour kneading process. There are 115 different flours for which
the dough resistance is measured during the kneading process for 480 sec-
onds. The dataset contains 115 kneading curves observed at 241 equispaced
instants of time in the interval [0, 480]. The 115 flours produce cookies of
different quality: 50 of them produced cookies of good quality, 25 produced
medium quality, and 40 produced low quality. Following (Lévéder et al.,
2004; Preda, Saporta and Lévéder, 2007), least squares approximation based
on cubic B-spline functions (with 18 knots) is used to reconstruct the true
functional form of each sample curve. The ECG, Face and Wafer datasets are
benchmarks taken from the UCR Time Series Classification and Clustering
website4. The ECG dataset consists of 200 electrocardiograms from 2 groups
of patients sampled at 96 time instants and has already been studied in Ol-
szewski (2001). The Face dataset (Xi et al., 2006) consists of 112 curves sam-
pled from 4 groups at 350 instants of time. The Wafer dataset (Olszewski,
2001) consists of 7174 curves sampled from 2 groups at 152 instants of time.
For these three datasets, the same basis of functions as for the kneading
dataset has been arbitrarily chosen (20 cubic B-splines).

4http://www.cs.ucr.edu/∼eamonn/time series data/
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APPENDIX B: DETAILED CLUSTERING RESULTS ON THE 8 BSS
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Fig B.1. Cluster mean profiles together with 1000 randomly sampled curves for the whole
dataset (Paris, London, Bruxelles, Lyon, Valencia, Sevilla and Nantes).
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Fig B.2. Maps of the clustering results (from left to right and top to bottom) for Paris,
London, Bruxelles, Lyon, Valencia, Sevilla and Nantes.


