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Introduction

The bi-Hamiltonian structure of certain evolution equations leads to various remarkable features such as infinitely many symmetries and conserved quantities, and in some cases to the exact solvability of these equations [START_REF] Magri | A Simple Model of the integrable Hamiltonian Equation[END_REF][START_REF] Olver | On the Hamiltonian structure of evolution equations[END_REF]. Examples include the KdV equation [START_REF] Caudrey | A new hierarchy of Korteweg-de Vries equations, Proceedings of the Royal Society of London[END_REF] and the Benjamin-Ono equation [START_REF] Benjamin | Internal waves of permanent form in fluids of great depth[END_REF]. Years later, R. Camassa and D. Holm [START_REF] Camassa | An integrable shallow water equation with peaked solitons[END_REF] in their studies of completely integrable dispersive shallow water equation tackled the following equation, (C-H)

u t + ku x -u xxt + 3uu x = uu xxx + 2u x u xx , x ∈ R, t > 0.
where u can be interpreted as a horizontal velocity of the water at a certain depth and k as the dispersion parameter. The equation (C-H) also has been derived independently by B. Fuchssteiner and A. Fokas in [START_REF] Fuchssteiner | Symplectic structures, their Bäcklund transformations and hereditary symmetries[END_REF]. When k = 0 (dispersionless case), the equation (C-H) possess soliton solutions peaked at their crest (often named peakons) [START_REF] Brandolese | Local-in-space criteria for blowup in shallow water and dispersive rod equations[END_REF][START_REF] Camassa | An integrable shallow water equation with peaked solitons[END_REF][START_REF] Camassa | A new integrable shallow water equation[END_REF]. Equation (C-H) is obtained by using an asymptotic expansion directly in the Hamiltonian for Euler's equation in the shallow water regime. Like the KdV equation, the Camassa-Holm equation (C-H) describes the unidirectional propagation of waves at the surface of shallow water under the influence of gravity [START_REF] Camassa | An integrable shallow water equation with peaked solitons[END_REF][START_REF] Caudrey | A new hierarchy of Korteweg-de Vries equations, Proceedings of the Royal Society of London[END_REF]. The equation (C-H) is physically relevant as it also describes the nonlinear dispersive waves in compressible hyperelastic rods [START_REF] Brandolese | Local-in-space criteria for blowup in shallow water and dispersive rod equations[END_REF][START_REF] Brandolese | Blowup issues for a class of nonlinear dispersive wave equations[END_REF][START_REF] Dai | Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod[END_REF]. It is convenient to rewrite the Cauchy problem associated with the dispersionless case of (C-H) in the following weak form:

(1.1)

   u t + uu x + ∂ x p * u 2 + u 2 x 2 = 0, x ∈ A, t > 0, u(0, x) = u 0 (x) x ∈ A,
where p(x) is the fundamental solution of the operator 1 -∂ 2 x in A. If A = R, we refer (1.1) as the non-periodic Camassa-Holm equation and p = 1 2 e -|x| , x ∈ R in this case. If otherwise that A = T = R/Z is unit circle, we refer (1.1) as the periodic Camassa-Holm equation, and p = cosh(x-[x]- 1 2 ) 2 sinh( 12 ) in this case. It is know that both the non-periodic and periodic Camassa-Holm equations are locally well-posed (in the sense of Hadamard) in the Sobolev space H s , with s > 3 2 . See [START_REF] Danchin | A few remarks on Camassa-Holm equation[END_REF][START_REF] Lellis | Low-regularity solutions of the periodic Camassa-Holm equation[END_REF][START_REF] Rodríguez-Blanco | On the Cauchy problem for the Camassa-Holm equation[END_REF]. There is an abundance of the literature about the issue of the finite time blowup (see [2-4, 11, 12, 25, 29, 33]) and the related issue of the global existence of strong solutions ( [START_REF] Constantin | Wave breaking for nonlinear nonlocal shallow water equations[END_REF][START_REF] Constantin | Global weak solutions for a shallow water equation[END_REF][START_REF] Gui | On the global existence and wave-breaking criteria for the two-component Camassa-Holm system[END_REF]).

On the other hand, Degasperis and Procesi [START_REF] Degasperis | Asymptotic integrability, in Symmetry and Perturbation Theory[END_REF], in their search of new integrability properties inside a wide class of equations, were led to consider the following integrable equation:

(D-P) u t -u txx + 4uu x = 3u x u xx + uu xxx .
As before, it is convenient to rewrite the Cauchy problem, using the same notations

(1.2) u t + uu x + ∂ x p * 3 2 u 2 = 0, x ∈ A, t > 0, u(0, x) = u 0 (x), x ∈ A.
A few years later, equation (1.2) as been proved to be relevant in shallow water dynamics, see [START_REF] Constantin | The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations[END_REF][START_REF] Constantin | Nonlinear Water Waves with Applications to WaveCurrent Interactions and Tsunamis[END_REF][START_REF] Dullin | Korteweg-de Vries and other asymptotically equivalent equations for shallow water waves[END_REF]. Both the Camassa-Holm equation and the the Degasperis-Procesi equation (D-P) possess a bi-Hamiltonian structure (see [START_REF] Degasperis | Asymptotic integrability, in Symmetry and Perturbation Theory[END_REF]). The local well-posedness in H s , with s > 3 2 for the Cauchy non periodic problem was elaborated in [START_REF] Zhaoyang | On the Cauchy problem for an integrable equation with peakon solutions[END_REF], and [START_REF]Global weak solutions for a new periodic integrable equation with peakon solutions[END_REF] for the Cauchy periodic problem. With respect to blow-up criteria on the line we refer to [START_REF] Degasperis | Asymptotic integrability, in Symmetry and Perturbation Theory[END_REF][START_REF] Liu | Global existence and blow-up phenomena for the Degasperis-Procesi equation[END_REF][START_REF] Guo | Blow-up and global solutions to a new integrable model with two components[END_REF][START_REF] Zhou | Blow-up phenomenon for the integrable Degasperis-Procesi equation[END_REF] and, for the unit torus, to [START_REF]Global weak solutions for a new periodic integrable equation with peakon solutions[END_REF][START_REF] Guo | Blow-up and global solutions to a new integrable model with two components[END_REF]. For the existence globally of the solution, see [START_REF] Liu | Global existence and blow-up phenomena for the Degasperis-Procesi equation[END_REF][START_REF] Zhaoyang | On the Cauchy problem for an integrable equation with peakon solutions[END_REF][START_REF] Guo | Blow-up and global solutions to a new integrable model with two components[END_REF]. Despite sharing some properties with the Camassa-Holm equation, the Degasperis-Procesi has its own peculiarities. A specific feature is that (D-P) admits, beside peakons (i.e., soliton solutions of the form u(t, x) = ce -|x-ct| , c > 0) also shock peakon solitons (i.e., solutions at the form u = 1 t+k sign(x)e -|x-ct| , k > 0). For more details see [START_REF] Escher | Global weak solutions and blow-up structure for the Degasperis-Procesi equation[END_REF][START_REF] Henry | Infinite propagation speed for the Degasperis-Procesi equation[END_REF][START_REF] Lundmark | Formation and dynamics of shock waves in the Degasperis-Procesi equation[END_REF]. After these premises, we will now focus on the Cauchy problem for the spatially periodic b-family of equations:

(1.3) u t -u txx + (b + 1)uu x = bu x u xx + uu xxx , x ∈ T, t > 0, u(0, x) = u 0 (x), x ∈ T,
where T is the unit torus. Here b is a real parameter, and u(x, t) stands for a horizontal velocity. The b-family of equations can be derived as the family of asymptotically equivalent shallow water wave equations that emerges at quadratic-order accuracy for any b = 1 by an appropriate Kodama transformation [START_REF] Degasperis | Asymptotic integrability, in Symmetry and Perturbation Theory[END_REF][START_REF] Dullin | Korteweg-de Vries and other asymptotically equivalent equations for shallow water waves[END_REF]. Again, when b = 2 and b = 3 (1.3) became (C-H) and (D-P) respectively. These values are the only values for which (1.3) is completely integrable. The Cauchy problem for the b-family of equations is locally well posed in the Sobolev space H s for any s > 3 2 , [START_REF] Christov | On the Cauchy problem for the periodic b-family of equations and of the non-uniform continuity of Degasperis-Procesi equation[END_REF][START_REF] Escher | Well-posedness, blow-up phenomena, and global solutions for the b-equation[END_REF][START_REF] Liu | Global existence and blow-up phenomena for the Degasperis-Procesi equation[END_REF][START_REF] Saha | Blow-Up results for the periodic peakon b-family of equations[END_REF]. In [START_REF] Chen | The Höder continuity of the solution map to the b-family of equations in weak topology[END_REF] it is proved that the solution map of the b-family of equations is Holder continuous as a map from bounded sets of H s (R), s > 3 2 with the H r (R) (0 ≤ r < s) topology, to C([0, T ], H r (R)). While that in [START_REF] Christov | Non-uniform continuity of periodic Holm-Staley b-family of equations[END_REF], the authors proved that the solution map is not uniformly continuous. Their proof relies on a construction of smooth periodic traveling waves with small amplitude. J. Escher and J. Seiler [START_REF] Escher | Well-posedness, blow-up phenomena, and global solutions for the b-equation[END_REF] showed that the periodic b-family of equations can be realized as Euler equation on the Lie group Diff ∞ (T) of all smooth and orientation-preserving diffeomorphisms on the unit torus, if b = 2 (C-H equation). The global existence theory of the solution of (1.3) is discussed in [START_REF] Escher | Well-posedness, blow-up phenomena, and global solutions for the b-equation[END_REF][START_REF] Liu | Global existence and blow-up phenomena for the Degasperis-Procesi equation[END_REF][START_REF] Saha | Blow-Up results for the periodic peakon b-family of equations[END_REF][START_REF]Global weak solutions for a new periodic integrable equation with peakon solutions[END_REF]. In this paper we rather focus on blow-up criteria as well in estimates about the lifespan of the solutions. The blowup problem for the b-family of equations has been already treated, e.g. in [START_REF] Christov | On the Cauchy problem for the periodic b-family of equations and of the non-uniform continuity of Degasperis-Procesi equation[END_REF][START_REF] Escher | Well-posedness, blow-up phenomena, and global solutions for the b-equation[END_REF][START_REF] Li | Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation[END_REF][START_REF] Saha | Blow-Up results for the periodic peakon b-family of equations[END_REF][START_REF] Guo | Blow-up and global solutions to a new integrable model with two components[END_REF][START_REF]On solutions to the Holm-Staley b-family of equations[END_REF]: in these references the condition on the initial datum u 0 leading to the blowup typically involves the computation of some global quantities (the Sobolev norm u 0 H 1 , or some other integral expressions of u 0 ). Motivated by the recent paper [START_REF] Brandolese | Local-in-space criteria for blowup in shallow water and dispersive rod equations[END_REF] (where earlier blowup results for the Camassa-Holm equations were unified in a single theorem) we address the more subtle problem of finding a local-in-space blowup criterion for the b-family of equations, i.e., a blowup condition involving only the properties of u 0 in a neighborhood of a single point x 0 ∈ T.

Loosely, the contribution of this paper can be stated as follows: if the parameter b belongs to a suitable range (including the physically relevant cases b = 2 and b = 3), then then there exists a constant β b > 0 such that if

u 0 (x 0 ) < -β b |u 0 (x 0 )| ,
in at least one point x 0 ∈ T, then the solution arising from u 0 ∈ H s (T) (s > 3 2 ) must blow-up in finite time.

This paper is organized as follows. In the next section we start by introducing the relevant notations and function spaces, recalling a few basic results. Then we precisely state and prove our main theorem. An important part of our work will be devoted to the computations of sharp bounds for the constant β b and the lifespan of the solution. The smallest b > 1 to which our main theorem applies is computed numerically in the last part of the paper.

Blow-up for the periodic b-family of equations

It is convenient to rewrite the periodic Cauchy problem (1.3) in the following weak form (see [START_REF] Saha | Blow-Up results for the periodic peakon b-family of equations[END_REF]):

(2.1)

       u t + uu x + ∂ x p * b 2 u 2 + 3-b 2 u 2 x = 0, x ∈ T, t > 0, u(0, x) = u 0 (x), x ∈ T u(t, x) = u(t, x + 1) t ≥ 0, where (2.2) p(x) = cosh(x -[x] -1 2 ) 2 sinh 1 2 ,
is the fundamental solution of the operator 1 -∂ 2

x and [•] stands for the integer part of 3 2 satisfies (2.1) then we call u a strong solution to (2.1). If u is a strong solution on [0, T ) for every T > 0, then is called global strong solution of (2.1).

x ∈ R. If u ∈ C([0, T ), H s (T)) ∩ C 1 ((0, T * ), H s-1 (T)), with s >
If u 0 ∈ H s (T), s > 3 2 , an application of Kato's method [START_REF] Kato | Quasi-linear equations of evolution, with applications to partial differential equations, Spectral Theory and Differential Equations[END_REF] leads to the following local well-posedness result: Theorem 2.1 (See [START_REF] Saha | Blow-Up results for the periodic peakon b-family of equations[END_REF]). For any constant b, given u 0 ∈ H s (T), s > 3 2 , then there exists a maximal time T * = T * ( u 0 H s ) > 0 and a unique strong solution u to (2.1), such that

(2.3) u = u(•, u 0 ) ∈ C([0, T * ), H s (T)) ∩ C 1 ([0, T * ), H s-1 (T)).
Moreover, the solution depends continuously on the initial data, i.e. the mapping

u 0 → u(•, u 0 ) : H s (T ) → C([0, T * ); H s (T )) ∩ C 1 ([0, T * ); H s-1 (T )) is continuous.
Remark 2.2. The maximal lifespan of the solution in Theorem 2.1 may be chosen independently of s in the following sense: [START_REF] Christov | On the Cauchy problem for the periodic b-family of equations and of the non-uniform continuity of Degasperis-Procesi equation[END_REF][START_REF] Saha | Blow-Up results for the periodic peakon b-family of equations[END_REF]. Moreover, by using the Theorem 2.1 and energy estimates, the following precise blow-up scenario of the solution to (2.1) can be obtained.

If u = u(•, u 0 ) ∈ C([0, T * ), H s (T))∩C 1 ([0, T * ), H s-1 (T)) to (2.1) and u 0 ∈ H s (T) for some s = s, s > 3 2 , then u = u(•, u 0 ) ∈ C([0, T * ), H s (T)) ∩ C 1 ([0, T * ), H s -1 (T)) and with same T * . In particular, if u 0 ∈ ∩ s≥0 H s , then u ∈ C([0, T * ), H ∞ (T)). See
Theorem 2.3 (See [9, 36]). Assume b ∈ R and u 0 ∈ H s (T), s > 3 2 . Then blow up of the strong solution u = u(•, u 0 ) in finite time occurs if only if (2.4) lim t→T * inf{(2b -1) inf x∈R [u x (t, x)]} = -∞
Before presenting our contribution, we will review a few known blow-up theorems with respect to (2.1).

Theorem 2.4 (See [START_REF] Saha | Blow-Up results for the periodic peakon b-family of equations[END_REF]). Let 5 3 < b ≤ 3 and

T u 3 x (0) dx < 0. Assume that u 0 ∈ H s (T), s > 3
2 , u 0 ≡ 0, and the corresponding solution u(t) of (2.1) has a zero for any time t ≥ 0. Then, the solution u(t) of the equation (2.1) blows-up finite time.

The next blow-up theorem uses the fact that if u(t, x) is a solution to (2.1) with initial datum u 0 , then -u(t, -x) is also a solution to (2.1) with initial datum -u 0 (-x). Hence due to the uniqueness of the solutions, the solution to (2.1) is odd as soon as the initial datum u 0 (x) is odd.

Theorem 2.5 (See [START_REF] Christov | On the Cauchy problem for the periodic b-family of equations and of the non-uniform continuity of Degasperis-Procesi equation[END_REF]). Let 1 < b ≤ 3. Assume that u 0 ∈ H s (T), s > 3 is odd and u 0 (0) < 0. Then the corresponding solution to Eq (2.1) blows-up in finite time.

Notations. For any real β, let us consider the 1-periodic function

(2.5) w(x) = p(x) + β∂ x p(x)
where p is the kernel introduced in (2.1) and ∂ x p denotes the distributional derivative on R, that agrees in this case with the classical i.e pointwise derivative on R \ Z. Notice that the non-negativity condition w ≥ 0 is equivalent to the inequality cosh(1/2) ≥ ±β sinh(1/2), i.e., to the condition

- e + 1 e -1 ≤ β ≤ e + 1 e -1 .
Throughout this section, we will work under the above condition on β. Let us now introduce the following weighted Sobolev space:

E β = {u ∈ L 1 loc (0, 1) : u 2 E β = 1 0 w(x)(u 2 + u 2 x )(x) dx < ∞}, (2.6)
where the derivative is understood in the distributional sense. Notice that E β agrees with the classical Sobolev space H 1 (0, 1) when |β| < e+1 e-1 , as in this case w is bounded and bounded away from 0, and the two norms • E β and • H 1 are equivalent. The situation is different for β = ± e+1 e-1 as E β is strictly larger that H 1 (0, 1) in this case. Indeed, we have

w(x) = 2e (e -1) 2 sinh(x), x ∈ (0, 1), if β = e+1 e-1 ; (2.7)
The elements of E (e+1)/(e-1) , after modification on a set of measure zero, are continuous on (0, 1], but may be unbounded for x → 0 + (for instance, |log(x/2)| 1/3 ∈ E (e+1)/(e-1) ). In the same way,

w(x) = 2e (e -1) 2 sinh(1 -x), x ∈ (0, 1), (if β = -e+1 e-1 ); (2.8)
after modification on a set of measure zero, the elements of E -(e+1)/(e-1) are continuous on [0, 1), but may be unbounded for x → 1 -. Let us now introduce the closed subspace E β,0 of E β defined as the closure of C ∞ c (0, 1) in E β . The elements of E β,0 satisfy the weighted Poincaré inequality below: Lemma 2.6. For all |β| ≤ e+1 e-1 , there exists a constant C > 0 such that

(2.9) ∀v ∈ E β,0 , 1 0 w(x) v 2 (x) dx ≤ C 1 0 w(x) v 2 x (x) dx.
Proof. This demonstration is found in [START_REF] Brandolese | On permanent and breaking waves in hyperelastic rods and rings[END_REF].

We need some notations.

Definition 2.7. For any real constant b = 1 and β, let J(b, β) ≥ -∞, be defined by (2.10)

J(b, β) = inf 1 0 (p + β∂ x p) b 2 u 2 + 3 -b 2 u 2 x dx; u ∈ H 1 (0, 1), u(0) = u(1) = 1 and
(2.11)

β b = inf β > 0 : β 2 + 2 |b -1| J(b, β) - b 2 ≥ 0 .
Notice that a priori 0 ≤ β b ≤ +∞, as the set on the right-hand side could be empty.

Main results.

Let us now formalize the goal of this paper.

Theorem 2.8. Let b ∈]1, 3] be such that β b is finite. Let u 0 ∈ H s (T) be with s > 3 2 and assume that there exists x 0 ∈ T, such that

(2.12) u 0 (x 0 ) < -β b |u 0 (x 0 )| .
then the corresponding solution u of (2.1) in C([0, T * ), H s (T))∩C 1 ([0, T * ), H s-1 (T)) arising from u 0 blows up in finite time. Moreover, the maximal time T * verifies

T * ≤ 2 (b -1) (u 0 (x 0 )) 2 -β 2 b u 2 0 (x 0 ) . (2.13)
Remark 2.9. Notice that the Theorem 2.8 relies on the condition that β b is finite. In section 2, we will prove that one indeed has β b < +∞, as soon as b is outside a very small neighborhood of 1. On the other hand, as we will see later on, for 1 < b < 1.0012 . . ., β b = +∞ and Theorem 2.8 does not apply in such range.

For the proof of Theorem 2.8, we need the following propositions.

Proposition 2.1. We have

(2.14) J(b, β) > -∞ ⇔              |β| ≤ e+1 e-1 , b ≤ 3, b 3-b > -1 C β , where C β > 0 is the best Poincaré constant in inequality (2.9).
Proof. Putting u = v + 1 and observing that 1 0 w(x) dx = 1, we see that

(2.15) J(b, β) = b 2 + inf{T (v) : v ∈ H 1 0 (0, 1)},
where

(2.16) T (v) = 1 0 w(x) b 2 (v 2 + 2v) + 3 -b 2 v 2 x (x) dx.
Assume that J(b, β) > -∞. In order to show |β| ≤ e+1 e-1 , we refer to the proof of proposition 3.3. in [START_REF] Brandolese | On permanent and breaking waves in hyperelastic rods and rings[END_REF]. In order to prove b ≤ 3, we consider |β| ≤ e+1 e-1 and

(2.17)

u n (x) = 1 + 1 2 sin(n2πx) ⇒ u n (x) = nπ cos(n2πx).
For each n ∈ N u n ∈ H 1 (0, 1), u n (1) = u n (0) = 1. Thus there is a constant c 1 > 0 independent of n, such that

∀n ∈ N 0 ≤ b 2 1 0 w(x)u 2 n (x) dx ≤ c 1 ,
and 3 -b 2 1 0 w(x)(u n ) 2 (x) dx → -∞,
because b > 3 and then J(b, β) = -∞. In order to prove the third inequality, we only have to treat the case b < 0. Applying the inequality (2.18)

1 0 w(x) b 2 (n 2 v 2 + 2nv) + 3 -b 2 n 2 v 2 x (x) dx ≥ J(b, β) - b 2 ,
valid for all v ∈ H 1 0 (0, 1) and all n ∈ N and letting n → ∞, we get

1 0 w(x) b 2 v 2 + 3 -b 2 v 2 x (x) dx ≥ 0.
We deduce:

1 0 w(x)v 2 (x) dx ≤ - 3 -b b 1 0 w(x)v 2 x (x) dx.
Then we get b 3-b ≥ -1 C β . But the equality case b 3-b = -1 C β can be excluded, as otherwise we could find a sequence v n such that ((b/2)

1 0 ωv 2 n )/((3 -b) 1 0 ω(v n ) 2 
x ) converges to 1 and such that bωv n → -∞: for such a sequence we have

T (v n ) ∼ 1 0 bωv n → -∞, contradicting the assumption J(b, β) > -∞.
Conversely, assume that |β| ≤ e+1 e-1 . By the weighted Poincairé inequality (2.9), we can consider an equivalent norm in E β,0 :

(2.19) v E β,0 = 1 0 w(x)v x (x) dx. Since b 3-b > -1 C β , the symmetric bilinear form (2.20) B(u, v) = 1 0 w(x) b 2 uv + 3 -b 2 u x v x (x) dx,
is coercive on the Hilbert space E β,0 . Applying the Lax-Milgram theorem yields the existence and uniqueness of a minimizer v ∈ E β,0 for the functional T . But H 1 0 (0, 1) ⊂ E β,0 , so in particular, we get J(b, β) > -∞. Moreover, if |β| < e+1 e-1 , then recalling E β,0 = H 1 0 (0, 1) we see that J(b, β) is in fact a minimun, achieved at û = 1 + v ∈ H 1 (0, 1).

The next lemma provides some useful information about J(b, β).

Lemma 2.10. The function (b, β) → J(b, β) ∈ R ∪ {-∞} defined for all (b, β) ∈ R 2 is concave with respect to each one of its variables, and is even with respect to the variable

β. Also for all b ∈ R and |β| ≤ e+1 e-1 , -∞ ≤ J(b, e+1 e-1 ) ≤ J(b, β) ≤ J(b, 0) ≤ b 2 .
Proof. The proof is similar to that of the proposition 3.4. in [START_REF] Brandolese | On permanent and breaking waves in hyperelastic rods and rings[END_REF] The next lemma motivates the introduction of quantity the J(b, β) in relation with the b-family of equations. Proposition 2.2. Let (α, β) ∈ R 2 and u ∈ H 1 (T), we get

∀x ∈ T, (p + β∂ x p) * b 2 u 2 + 3 -b 2 u 2 x ) (x) ≥ J(b, β) u 2 (x).
Proof. Let α = α(b, β) be some constant. Because of the invariance under translation, we get that the inequality

(2.21) (p + β∂ x p) * b 2 u 2 + 3 -b 2 u 2 x ) (x) ≥ α u 2 (x),
holds true for all u ∈ H 1 (T) and all x ∈ T if and only if the inequality

(2.22) (p + β∂ x p) * b 2 u 2 + 3 -b 2 u 2 x ) (1) ≥ α u 2 (1),
holds true for all u ∈ H 1 (T). But on the interval ]0, 1[, (p + β∂ x p)(1 -x) = (p -β∂ x p)(x).

Then we get (2.23)

(p + β∂ x p) * b 2 u 2 + 3 -b 2 u 2 x ) (1) = 1 0 (p -β∂ x p) b 2 u 2 + 3 -b 2 u 2 x (x) dx.
Normalizing to obtain u(1) = 1, we get that the best constant α in inequality (2.21) satisfies α = J(b, -β) = J(b, β).

The next proposition provides a first lower bound estimate of J(b, β),

when b ∈ [-1, 3]. Proposition 2.3. Let -1 ≤ b ≤ 3 and |β| ≤ e+1 e-1 .
Then, if u ∈ H 1 (0, 1) such that u(1) = u(0), we get

(p ± β∂ x p) * b 2 u 2 + 3 -b 2 u 2 x ≥        δ b u 2 , if |β| ≤ 1 δ b 2 [(e + 1) -|β| (e -1)]u 2 , if 1 ≤ |β| ≤ e+1 e-1
, where

(2.24) δ b = √ 3 -b 4 3(1 + b) - √ 3 -b .
Remark 2.11. Notice that δ b ≥ 0 if and only if for 0 ≤ b ≤ 3.

Proof. It is sufficient to consider the case 0 ≤ β ≤ e+1 e-1 . We make the convolution estimates for (p + β∂ x p), the convolution estimates for (p -β∂ x p) being similar. First observe that:

(2.25) ∀x ∈ R p(x) = e x-1 2 -[x] 4 sinh 1 2 + e -x+ 1 2 +[x] 4 sinh 1 2 = p 1 (x) + p 2 (x).
We start with the estimate of p 1 * (a 2 u 2 + u 2 x )(1), with a ∈ R to be determined later. We get

p 1 * (a 2 u 2 + u 2 x )(1) = 1 4 sinh( 1 2 ) 1 0 e 1 2 -ξ (a 2 u 2 + u 2 x )(ξ) dξ ≥ -a 4 sinh( 1 2 ) 1 0 e 1 2 -ξ (2uu x )(ξ) dξ = -a 4 sinh( 1 2 ) (e -1 2 -e 1 
2 )u 2 (1) -1 4 sinh( 12 )

1 0 e 1 2 -ξ au 2 dξ = a 2 u 2 (1) -p 1 * (au 2 )(1).
Hence

p 1 * ((a 2 + a)u 2 + u 2 x )(1) ≥ a 2 u 2 (1),
and because of the invariance under translations, we get (2.26)

p 1 * ((a 2 + a)u 2 + u 2 x ) ≥ a 2 u 2 .
Similarily:

p 2 * (a 2 u 2 + u 2 x )(1) = 1 4 sinh( 1 2 ) 1 0 e ξ-1 2 (a 2 u 2 + u 2 x )(ξ) dξ ≥ a 4 sinh( 1 2 ) 1 0 e ξ-1 2 (2uu x )(ξ) dξ = a 4 sinh( 1 2 ) (e 1 2 -e - 1 
2 )u 2 (1) -1 4 sinh( 12 )

1 0 e ξ-1 2 au 2 dξ = a 2 u 2 (1) -p 2 * (au 2 )(1).
Hence, again using the invariance under translations, we get (2.27)

p 2 * ((a 2 + a)u 2 + u 2 x ) ≥ a 2 u 2 .
Choose a such that a 2 + a = b 3-b . This is indeed possible if -1 ≤ b < 3 (if b = 3, the proposition is trivial and there is nothing to prove). We get:

p 1 * b 2 u 2 + 3 -b 2 u 2 x ≥ δ b 2 u 2 , (2.28) p 2 * b 2 u 2 + 3 -b 2 u 2 x ≥ δ b 2 u 2 . (2.29)
Now, from the identity p = p 1 + p 2 and ∂ x p = p 1 -p 2 , that holds both in the distributional and in the a.e. pointwise sense, we get (2.30)

p + β∂ x p = (1 + β)p 1 + (1 -β)p 2 .
If 0 ≤ β ≤ 1, then from (2.28) and (2.30), we deduce

(2.31) (p + β∂ x p) * b 2 u 2 + 3 -b 2 u 2 x ≥ [(1 + β) + (1 -β)] δ b 2 u 2 = δ b u 2 .
We proved as follows. From We deduce, using (2.28): Proof of Theorem 2.8. By the well-posedness result in H s (T), with s > 3/2, the density of H 3 (T) in H s (T) and a simple approximation argument, we only need to prove Theorem 2.8 assuming u 0 ∈ H 3 (T). We thus obtain a unique solution of (2.1), defined in some nontrivial interval [0, T [, and such that u

∀ 1 ≤ β ≤ e+1 e-1 , (p + β∂ x p) b 2 u 2 + 3-b 2 u 2 x ≥ [(e + 1) -β(e -1)] δ b 2 u 2 . (2.
∈ C([0, T [, H 3 (T)) ∩ C 1 ([0, T [, H 2 (T))
. The starting point is the analysis of the flow map q(t, x) of (2.1)

(2.35) q t (t, x) = u(t, q(t, x)) x ∈ T, t ∈ [0, T * ), q(0, x) = x, x ∈ T. As u ∈ C 1 ([0, T [, H 2 (T))
, we can see that u and u x are continuous on [0, T [×T and x → u(t, x) is Lipschitz, uniformly with respect to t in any compact time interval in [0, T [. Then the flow map q(t, x) is well defined by (2.35) in the time interval [0, T [ and ). Differentiating (2.1) with respect to the x variable and applying the identity ∂ 2 x p * f = p * f -f , we get:

q ∈ C 1 ([0, T [×R, R
u tx + uu xx = b 2 u 2 - b -1 2 u 2 x -p * b 2 u 2 + 3 -b 2 u 2 x .
Let us introduce the two C 1 functions of the time variable depending on β. The constant β, will be chosen later on

f (t) = (-u x + βu) (t, q(t, x 0 )) and g(t) = -(u x + βu) (t, q(t, x 0 )).
Using (2.35) and differentiating with respect to t, we get

df dt (t) = [(-u tx -uu xx ) + β(u t + uu x )](t, q(t, x 0 )) = - b 2 u 2 + b -1 2 u 2 x + (p -β∂ x p) * b 2 u 2 + 3 -b 2 u 2 x (t, q(t, x 0 )),
and

dg dt (t) = [(-u tx -uu xx ) -β(u t + uu x )](t, q(t, x 0 )) = - b 2 u 2 + b -1 2 u 2 x + (p + β∂ x p) * b 2 u 2 + 3 -b 2 u 2 x (t, q(t, x 0 )).
Let us first consider b ∈]1, 3]. Recall that we work under the condition β b < ∞. By the definition of β b (2.11) we deduce that there exists β ≥ 0 such that

β 2 ≥ 2 b -1 b 2 -J(b, β) . (2.36)
Applying the convolution estimate of (2.2) and the fact that J(b, β) = J(b, -β), we get

df dt (t) ≥ b -1 2 u 2 x + J(b, -β) - b 2 u 2 (t, q(t, x 0 )) ≥ b -1 2 (u 2 x -β 2 u 2 ) (t, q(t, x 0 )) = b -1 2 [f (t)g(t)]
In the same way,

dg dt (t) ≥ b -1 2 u 2 x + J(b, β) - b 2 u 2 (t, q(t, x 0 )) ≥ b -1 2 (u 2 x -β 2 u 2 ) (t, q(t, x 0 )) = b -1 2 [f (t)g(t)].
The assumption u 0 (x 0 ) < -β b |u 0 (x 0 )| guarantees that we may choose β satisfying (2.36) with β -β b > 0 small enough so that

u 0 (x 0 ) < -β |u 0 (x 0 )| .
For such a choice of β we have f (0) > 0 and g(0) > 0.

We now make use of the following result:

Lemma 2.13 (See [START_REF] Brandolese | On permanent and breaking waves in hyperelastic rods and rings[END_REF]). Let 0 < T * ≤ ∞ and f, g ∈ C 1 ([0, T * [, R) be such that, for some constant c > 0 and all t ∈ [0, T * [,

df dt (t) ≥ cf (t)g(t) dg dt (t) ≥ cf (t)g(t).
If f (0) > 0 and g(0) > 0, then

T * ≤ 1 c f (0)g(0)
.

The blow-up of u then follows immediately from our previous estimates applying the above lemma.

estimates of β b

Theorem 2.8 is meaningful only if b ∈ (1, 3] is such that β b < ∞. We recall here that β b is defined by Eq. (2.11):

β b = inf β > 0 : β 2 + 2 |b -1| J(b, β) - b 2 ≥ 0 .
Next, we propose three lower bound estimates for the convolution term

(p ± β∂ x p) * b 2 u 2 + 3 -b 2 u 2 x ,
or -what is equivalent, owing to Proposition 2.2-three lower bound estimates for J(b, β)). Such estimates will allow us to determinate sufficient conditions on b ∈ [START_REF] Benjamin | Internal waves of permanent form in fluids of great depth[END_REF][START_REF] Brandolese | Blowup issues for a class of nonlinear dispersive wave equations[END_REF] in order to β b to be finite and will provide upper bounds for β b . Estimate 1 and Estimate 2 below are presented mainly for pedagogical purposes, as they are self-contained. But these two estimates will be later on improved by Estimate 3, which is more technical and deeply relies on a few involved computations made in [START_REF] Brandolese | On permanent and breaking waves in hyperelastic rods and rings[END_REF]. We point out however that Estimate 1 suffices to claim that Theorem 2.8 is not vacuous.

3.1. Estimate 1. Let 0 ≤ β ≤ e+1 e-1 and 1 < b ≤ 3. We start considering the obvious estimate

(p ± β∂ x p) * b 2 u 2 + 3 -b 2 u 2 x ≥ 0.
Thanks to definition (2.11), we see that a sufficient condition on b which entails β b < ∞, is the existence of a constant β satisfying

(3.1) b b -1 ≤ β ≤ e + 1 e -1 .
This holds when b ≥ (e+1) 2 4e ≡ α. In this case, the corresponding bound for β b is

(3.2) β b ≤ b b -1 < +∞, for (e+1) 2 4e ≤ b ≤ 3.
(See Figure 1a). 

∃ 0 ≤ β ≤ 1 such that β 2 + 2 b -1 δ b - b 2 ≥ 0, (3.3) or ∃ 1 ≤ β ≤ e + 1 e -1 such that β 2 + 2 b -1 [(e + 1) -β(e -1)] δ b 2 - b 2 ≥ 0, (3.4)
where δ b is as (2.24). The study of the function b → 

J(b, β) =      3-b 2 I b 3-b , β , if b = 3 3 2 inf 1 0 w(x) u 2 dx; u ∈ H 1 (0, 1), u(0) = u(1) = 1 , if b = 3.
where I(α, β) is as in [START_REF] Brandolese | On permanent and breaking waves in hyperelastic rods and rings[END_REF]. If b = 3, borrowing the computation made in [START_REF] Brandolese | On permanent and breaking waves in hyperelastic rods and rings[END_REF], we get

J b, e + 1 e -1 = 3 -b 2 I b 3 -b , e + 1 e -1 = 3 -b 4e (e + 1) 2 P υ(b) P υ(b) (cosh 1)
where

υ(b) = - 1 2 + 1 2 • 1 + 4 • b 3 -b ∈ {z ∈ C : (z) ≥ 0}.
and P υ(b) is Legendre function of the first kind, of the degree υ(b), arising when solving the Euler-Lagrange equation associated with the minimization problem of I(α, e+1 e-1 ). The reason for considering here the limit case β = e+1 e-1 is twofold: on one hand, in this case the weight function has a simpler expression, namely w(x) becomes in this case w(x) = p(x) + e+1 e-1 ∂ x p(x) = 2e (e-1) 2 sinh x, x ∈ (0, 1); this allow to reduce the Euler-Lagrange equation to a linear second order ordinary differential equation of Legendre type. See [START_REF] Brandolese | On permanent and breaking waves in hyperelastic rods and rings[END_REF] for more details. On the other hand, by Lemma 2.10, we have J(b, β) ≥ J b, e+1 e-1 for all 0 ≤ β ≤ e+1 e-1 . Now, for 0 ≤ β ≤ e+1 e-1 , we have x (x) dx.

β 2 + 2 b -1 J(b, β) - b 2 ≥ β 2 + 2 b -1 3 -b 4e (e + 1) 2 P υ(b) P υ(b) (cosh 1) - b 2 . ( 3 
On the other hand, multiplying (3.9) by v and integrating with respect to the spatial variable, we get The above solution v of the minimization problem, depending on the parameters b and β, cannot be computed analytically, but it it can be computed numerically with the standard numerical schemes for linear ODEs, with an arbitrary good precision. This allow to compute numerically the above function J(b, β). This being done, a simple algorithm allows to compute numerically the quantity β b (with an arbirary good precision). Such numerical computations illustrate that in fact β b < +∞ for 1.0012 . . . ≤ b ≤ 3, which is (slightly !) better than the range 1.012 ≤ b ≤ 3 obtained via Estimate 3. The actual value of β b is actually slightly smaller than its upper bound computed in (3.7). See Figure 3 and 4. We summarize in the last picture all our previous estimates and numerical approximate of β b . In this plot we can see the different estimates that we have worked out (green curve first estimate, blue curve second estimate and red curve third estimates), as well as the numerical approach of β b .

(2. 32 ) p 2 1 p

 3221 (x) ≤ e p 1 (x), ∀x ∈ (0, 1), we get, for 1 ≤ β ≤ e+1 e-+ β∂ x p = (1 + β)p 1 -(β -1)p 2 , ≥ [(e + 1) -β(e -1)]p 1 . (2.33)

34 )

 34 Remark 2.12. If -1 ≤ b ≤ 3, then it follows by the preceding proposition that |β| ≤ 1, then J(b, β) ≥ δ b , and if 1 ≤ |β| ≤ e+1 e-1 then J(b, β) ≥ δ b 2 [(e + 1) -|β| (e -1)].

2 b- 1 b 2 - 3 . 3 .

 1233 δ b in the interval[START_REF] Benjamin | Internal waves of permanent form in fluids of great depth[END_REF][START_REF] Brandolese | Blowup issues for a class of nonlinear dispersive wave equations[END_REF] however reveals that condition(3.3) is satisfied only for b = 2. We have δ 2 = 1 2 and so β = 1. The corresponding estimate for β 2 is then β 2 ≤ 1. This situation corresponds to the Camassa-Holm equation. We thus recover the result in[START_REF] Brandolese | Local-in-space criteria for blowup in shallow water and dispersive rod equations[END_REF]. (See Figure1b.) On the other hand, solving (3.4) is possible if and only if the largest real zero φ(b) of the quadratic polynomial β → P b (β) = β 2 + β δ b e+1 b-1 + δ b e+1 b-1 -b b-1 is inside the interval [1, e+1 e-1 ]. A simple computation shows that this is indeed the case when α ≤ b ≤ 3. Here α = (e+1) 2 4e is the same as in Estimate 1. For α ≤ b ≤ 3, now we get the bound (3.5) β b ≤ φ(b) < +∞, that considerably improves our earlier estimate (3.2). See Figure 1b Estimate 3. This part relies on the properties of J(b, β) which are described in Lemma 2.10 and the computations made in [4] Let I(α, β) as in [4, Section 2]. For b ∈ (1, 3], and |β| ≤ e+1 e-1 , the relation between I and J is the following:

( a )

 a The plot of the function b → b b-1 , providing the bound (3.2). The upper-bound estimate of β b given by Eq.(3.2), showing that Theorem 2.8 applies for b ∈ [α, 3], where α = (e+1) 2 4e (blue and gray region). (b) The function b → φ(b), providing the bound (3.5). The upper-bound estimates of β b given by Eq.(3.5) and the Theorem 2.8 are valid inside the interval [α, 3] (grey region).

Figure 1 .

 1 Figure 1. First and Second estimate of β b .

. 6 )- 1 b 2 - 3

 6123 Computing the Legendre function shows that the right hand-side of the above expression is nonnegative when γ ≤ b ≤ 3, with γ ≈ 1.012. See Figure 2. Therefore, in the range b ∈ [γ, 3] we have β b < +∞ (3.7) β b ≤ 2 b -b 4e (e + 1) 2 P υ(b) P υ(b) (cosh 1) , for γ ≤ b ≤ 3, and Theorem 2.8 applies in such range.

Figure 2 .- 1 b 2 - 3 . 4 .

 21234 Figure 2. The function b →

1 0( 3 1 0( 3 1 0parts 1 0( 3 - 1 0( 3 - 1 0[

 1313113131 -b)wv xx v dx + -b)w x vv x dx -bw(v 2 + v) dx = 0.Integrating by b)w x vv x dx, and using that v(0) = v(1) = 0, we get w dx = 1 and (3 -b)(wv xx + w x v x ) = bw(v + 1), we getJ(b, β) wv x ] x dx = 3 -b 2 (wv x )(1 -) -(wv x )(0 + ) .

Figure 3 .

 3 Figure 3. The plot of the function b → β b . This numerical approach of β b , allows us to say: if 3 ≥ b ≥ α 0 ≈ 1.0012, then the Theorem 2.8 is valid (gray region).

Figure 4 .

 4 Figure 4. In this plot we can see the different estimates that we have worked out (green curve first estimate, blue curve second estimate and red curve third estimates), as well as the numerical approach of β b .

  3.2. Estimate 2. Proposition 2.3 provides a better sufficient condition ensuring that β b < +∞. Namely:
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