teurs dans DGVNS. Les sections 4 et 5 présentent les jeux de test et les résultats expérimentaux. Enfin, nous concluons et présentons des perspectives.

2 Contexte et définitions 2.1 Réseau de fonctions de coût Un réseau de fonctions de coût (CFN) est un couple (X, W) où X={x 1 , . . . , x n } est un ensemble de n variables et W est un ensemble de e fonctions de coût. Chaque variable x i ∈ X a un domaine fini D i de valeurs qui peuvent lui être affectées. La taille du plus grand domaine est notée d. Une affectation de x i à la valeur a ∈ D i est notée (x i , a). Pour un sousensemble de variables S ⊆ X, on note D S le produit cartésien des domaines des variables de S. Pour un n-uplet donné t, t[S] représente la projection du nuplet t sur l'ensemble de variables S. Une affectation complète t=(a 1 , ..., a n) est une affectation de toutes les variables ; dans le cas contraire, on l'appelle affectation partielle. Une fonction de coût w S ∈ W , de portée S ⊆ X, est une fonction w S : D S → [0, k] où k est un coût entier maximum (fini ou non) utilisé pour représenter les affectations interdites (exprimant des contraintes dures). Pour capturer fidèlement les contraintes dures, les coûts sont combinés par l'addition bornée ⊕, définie par α ⊕ β = min(k , α + β). Le problème consiste à trouver une affectation complète t de l'ensemble des variables minimisant la combinaison des fonctions de coût w S ∈W w S (t[S]).

Décomposition arborescente

Le graphe de contraintes d'un CFN est un graphe G=(X,E) composé d'un sommet par variable et il existe une arête {u, v} ∈ E ssi ∃ w S ∈ W, u, v ∈ S.

Définition 1 Une décomposition arborescente [START_REF] Robertson | Graph minors. ii. algorithmic aspects of tree-width[END_REF] de G=(X, E) est un couple (C T , T) où T = (I, A) est un arbre avec pour ensemble de noeuds I et pour ensemble d'arêtes A, et C T = {C i | i ∈ I} est une famille de sous-ensembles de X (appelés clusters) telle que :

-

∪ i∈I C i = X, -∀ (u, v) ∈ E, ∃ C i ∈ C T t.q. u, v ∈ C i ,
-∀ i, j, k ∈ I, si j est sur le chemin de i à k dans T , alors

C i ∩ C k ⊆ C j .
Définition 2 L'intersection entre deux clusters est appelée séparateur et notée sep(C i , C j). Deux clusters C i et C j sont adjacents ssi sep(C i , C j) = ∅. Les variables appartenant à un et un seul cluster sont appelées variables propres.

Définition 3 Un graphe de clusters, pour une décomposition arborescente (C T , T), est un graphe nonorienté G T = (C T , E T) dont les sommets sont les éléments de C T et il existe une arête (C i , C j) ∈ E T entre les sommets C i et C j ssi sep(C i , C j) = ∅.

La largeur d'une décomposition arborescente T =(I, A) est définie par w -(T)=max i∈I (|C i |-1). La largeur de décomposition tw(G) d'un graphe G est la plus petite largeur de toutes les décompositions arborescentes possibles de G. Calculer la largeur de décomposition d'un graphe est un problème NP-complet [START_REF] Arnborg | Complexity of finding embeddings in a k-tree[END_REF]. Cependant, des heuristiques reposant sur la notion de triangulation de graphe1 permettent le calcul de décompositions approchées. Elles fournissent un majorant de la largeur de décomposition.

Dans cet article, nous utilisons l'heuristique Maximum Cardinality Search (MCS) [START_REF] Tarjan | Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs[END_REF] qui constitue un bon compromis entre la largeur de la décomposition obtenue et le temps nécessaire à son calcul [START_REF] Jégou | Computing and exploiting tree-decompositions for solving constraint networks[END_REF].

Decomposition Guided VNS

DGVNS (Decomposition Guided VNS) [START_REF] Fontaine | Guiding VNS with tree decomposition[END_REF][START_REF] Fontaine | Exploiting tree decomposition for guiding neighborhoods exploration for VNS[END_REF] étend le principe de VNDS [START_REF] Hansen | Variable neighborhood decomposition search[END_REF] (Variable Neighborhood Decomposition Search), en exploitant le graphe de clusters pour guider l'exploration de grands voisinages. Les voisinages sont obtenus en désaffectant une partie de la solution courante selon une heuristique de choix de variables. La reconstruction de la solution sur les variables désinstanciées est effectuée par une recherche arborescente partielle, LDS (Limited discrepancy search, [START_REF] Harvey | Limited discrepancy search[END_REF]), aidée par la propagation des contraintes (CP) basée sur un calcul de minorants.

Définition 4 Soit G T =(C T ,E T) le graphe de clusters associé à G. Soient C i ∈ C T un cluster de G T et k ∈ [1 . . . n]
la dimension du voisinage. La structure de voisinage N k,i désigne l'ensemble de toutes les combinaisons possibles de k variables parmi C i .

L'algorithme 1 présente le pseudo-code de DGVNS. Tout d'abord, il construit une décomposition arborescente de G (ligne 4), puis génère aléatoirement une solution initiale S (fonction genInitSol, ligne 6). Afin de favoriser les mouvements dans des régions fortement liées, DGVNS se base sur les structures de voisinages N k,i (cf. Définition 4). En effet, la notion de cluster permet d'exhiber ces régions, de part sa taille (plus petite que le problème initial), et de part la forte connexion entre les variables qu'il contient. Ainsi, l'ensemble de variables candidates C s à désaffecter est Algorithme 1: Pseudo-code de DGVNS 1 Function DGVNS(X, W, kinit, kmax, δmax); 2 begin 3 let G be the constraints graph of (X, W) ;

if f (S) < f (S) then S ← S ; k ← kinit; i ← succ(i) ; else k ← k + 1 ; i ← succ(i) ;
sélectionné à partir du cluster C i . Si (k > |C i |), C s est étendu aux variables des clusters C j voisins de C i afin de prendre en compte la topologie du graphe de clusters. Ce traitement est réalisé par la fonction Com-pleteCluster(C i , k) (ligne 10). De plus, grâce à la forte connexion entre les variables de C s , l'étape de reconstruction pourra bénéficier d'un plus fort filtrage et d'un meilleur calcul de minorants. Un sous ensemble X un de k variables est sélectionné aléatoirement dans C s parmi les variables en conflit par l'heuristique de voisinage Hneighborhood (ligne 11). Une affectation partielle A est générée à partir de la solution courante S en désaffectant les k variables de X un (ligne 12). Ensuite, ces variables sont reconstruites (ligne 13) par une recherche arborescente partielle LDS [START_REF] Harvey | Limited discrepancy search[END_REF], aidée par la propagation de contraintes (CP) (voir [START_REF] Loudni | Combining VNS with constraint programming for solving anytime optimization problems[END_REF] pour plus de détails). La recherche s'arrête dès que la dimension maximale de voisinage k max ou le TimeOut est atteint (ligne 9).

La procédure NeighborhoodChangeDGVNS contrôle les mécanismes d'intensification et de diversification de DGVNS (cf. Algorithme 1). Soit p le nombre total de clusters, succ une fonction de succession 2 , et N k,i la structure de voisinage courante. Si LDS+CP ne trouve pas de meilleure solution S dans le voisinage de S, DGVNS cherche des améliorations dans N (k+1),succ(i) (la structure de voisinage où (k +1) variables de C s seront désaffectées) (ligne 22). Tout d'abord, la diversification 2. si i < p alors succ(i) = i + 1 sinon succ(p) = 1.

réalisée par le déplacement du cluster C i au cluster C succ(i) permet de favoriser l'exploration de nouvelles parties de l'espace de recherche et de rechercher de meilleures solutions dans celles-ci. Ensuite, quand un optimum local est atteint dans le voisinage courant, l'augmentation de la dimension du voisinage k permet aussi de diversifier la recherche en explorant de plus grandes régions.

Quand une solution de meilleure qualité S est trouvée par LDS+CP dans le voisinage N k,i , S devient la solution courante (ligne 19), k est réinitialisé à k init et le prochain cluster est considéré (ligne 21). En effet, rester dans le même cluster rend plus difficile la découverte de nouvelles solutions : se déplacer sur un nouveau cluster permet la diversification de la recherche autour de la nouvelle solution S .

VNS guidée par les séparateurs

Dans cette section, nous présentons les deux extensions de DGVNS, notées SGVNS et ISGVNS, qui exploitent à la fois le graphe de clusters et les séparateurs entre ces clusters, afin de mieux cibler les régions du problème qui vont être explorées durant la recherche.

Separator-Guided VNS (SGVNS)

SGVNS exploite l'évolution de la solution au cours de la recherche afin de guider l'effort de diversification de DGVNS vers des clusters contenant, dans leurs séparateurs, au moins une variable réinstanciée impliquée dans l'amélioration de la solution courante. L'algorithme 2 présente le pseudo code de SGVNS. Son schéma général est similaire à celui de DGVNS (cf. algorithme 1). La différence principale, réside dans l'utilisation d'une liste de prospection, notée Cand, contenant les clusters à visiter en priorité. Cette liste est mise à jour à chaque fois que LDS+CP trouve une solution de meilleure qualité.

Soit C i le cluster courant et S une solution de meilleure qualité trouvée par LDS+CP dans le voisinage de S. Soit V c l'ensemble des variables qui ont été réinstanciées dans S pour obtenir S (ligne 23) et C w l'ensemble des clusters C j de Cand tel que sep(C i , C j) partage au moins une variable avec V c 3 (ligne 24). Au début, Cand est initialisé à l'ensemble des clusters C T de la décomposition arborescente (ligne 6).

Contrairement à DGVNS, la diversification de SGVNS est réalisée en considérant successivement les clusters C j ∈ C w . En effet, à chaque fois que LDS+CP trouve une solution de meilleure qualité S dans le voisinage de S (ligne 20), l'ensemble C w est calculé (lignes 3. En effet, comme Vc ne contient que des variables de Cs (cf. ligne 10), si

C j ∩ Vc = ∅, alors sep(C i , C j) ∩ Vc = ∅.
Algorithme 2: Pseudo-code de SGVNS 1 Function SGVNS (X, W, kinit, kmax, δmax); 2 begin 3 let G be the constraints graph of (X, W) ; 23-24), les clusters de C w sont déplacés en début de la liste Cand (lignes 25-27) et le prochain cluster C i à considérer est retiré de la liste (ligne 30). Comme pour DGVNS, S devient la solution courante et k est réinitialisé à k init (ligne 22). À l'inverse, si aucune amélioration de la solution courante n'a été trouvée, k est incrémenté de 1 (ligne 29) et SGVNS considère le cluster courant en tête de la liste Cand (ligne 30).

Tout d'abord, la suppression du cluster courant C i de Cand permet de ne maintenir dans celle-ci que la liste des clusters non encore visités, assurant ainsi une plus large couverture de l'espace de recherche. Ainsi, chaque cluster de C T sera visité au moins une fois 4 . De plus, privilégier les clusters contenant, dans leurs séparateurs, au moins une variable réinstanciée permet de guider la recherche vers des régions du problème pouvant mener à de plus larges améliorations de la solution courante. Enfin, cela permet de propager, au travers des séparateurs, les nouvelles affectations de S vers les clusters C j ∈ C w , lors des prochaines itérations de SGVNS.

Intensified Separator-Guided VNS (ISGVNS)

ISGVNS vise à intensifier l'exploration "autour" des clusters contenant des variables réinstanciées. À cet effet, une liste de propagation P List dotée d'une liste taboue dynamique T List de taille L sont utilisées. La liste de propagation contient l'ensemble des clusters candidats à examiner après chaque amélioration de la solution courante. La liste taboue assure que les variables impliquées dans la sélection des clusters candidats (i.e. variables de V c) ne seront pas reconsidérées dans N k,i par la fonction Hneighborhood, lors des L prochaines itérations de ISGVNS.

L'algorithme 3 présente le pseudo-code de ISGVNS. L'intensification est réalisée en exploitant la liste de propagation. Comme pour SGVNS, V c dé-signe l'ensemble de toutes les variables qui ont été réinstanciées (ligne 21) et C w est l'ensemble des clusters ayant au moins, dans leurs séparateurs, une variable de V c (ligne 22). Contrairement à SGVNS, chaque cluster C j ∈ C w est ajouté à P List (ligne 24) et chaque variable x ∈ V c est rendue taboue pour les L prochaines itérations (ligne 25). La valeur de L est fixée à la taille de P List afin d'éviter de réaffecter les variables de V c tant que tous les clusters C j ∈ C w n'ont pas été considérés. Enfin, le prochain cluster à examiner correpond au premier élément de P List , si celle-ci n'est pas vide (ligne 29). Dans le cas contraire, le successeur de C i dans C T est considéré (ligne 31).

ISGVNS permet de renforcer l'équilibre entre intensification et diversification. En effet, tant qu'aucune amélioration n'est effectuée, ISGVNS se comporte comme DGVNS, en considérant successivement tous les clusters C i . Cependant, dès que LDS+CP améliore la solution courante, ISGVNS bascule vers un schéma d'intensification, jusqu'à ce que tous les clusters de P List aient été examinés.

Jeux de test

Les expérimentations ont été menées sur différentes instances de quatre problèmes différents.

-Instances RLFAP : Le CELAR (Centre d'électronique de l'Armement) a mis à disposition un ensemble d'instances du problème d'affectation de fréquences radio (RLFAP) [START_REF] Cabon | Radio link frequency assignment[END_REF]. L'objectif est d'assigner un nombre limité de fréquences à un ensemble de liens radios entre des couples de sites, afin de minimiser les interférences dues à la réutilisation des fréquences. Nous reportons les résultats sur les instances les plus difficiles : Scen06, Scen07 et Scen08.

-Instances GRAPH : Le générateur GRAPH (Generating Radio link frequency Assignment Problems Heuristically) a été développé par le projet CALMA [START_REF] Van Benthem | GRAPH : Generating radiolink frequency assignment problems heuristically[END_REF] afin de proposer des instances aléatoires ayant une structure proche des instances RLFAP.

-Instances SPOT5 : La planification quotidienne d'un satellite d'observation de la terre (SPOT5) consiste à sélectionner les prises de vue à effectuer dans la journée en prenant en compte les limites matérielles du satellite, tout en maximisant l'importance des photographies sélectionnées [START_REF] Bensana | Earth observation satellite management[END_REF]. Nous reportons les résultats sur six instances sans contraintes dures de capacité.

-Instances tagSNP : Un SNP (Single Nucleotide Polymorphism) -ou polymorphisme nucléotidique-est la variation d'une seule paire de nucléotides dans l'ADN de deux individus d'une même espèce ou dans une paire de chromosomes d'un même individu. Les SNP sont des marqueurs biologiques qui peuvent être uti-lisés pour la prédiction des risques de développement de certaines maladies [START_REF] Carlson | Selecting a maximally informative set of single-nucleotide polymorphisms for association analyses using linkage disequilibrium[END_REF][START_REF] Gopalakrishnan | Tagsnp selection based on pairwise ld criteria and power analysis in association studies[END_REF]. Le problème de sélection des tagSNP consiste à choisir un sous-ensemble de SNP, appelé tagSNP, qui permet de capturer le maximum d'information génétique. Ce problème est considéré comme très difficile du fait de sa proximité avec le problème de set covering (NP-difficile) [START_REF] Sánchez | Russian doll search with tree decomposition[END_REF]. Nous rapportons les résultats des expérimentations menées sur 13 instances issues des données du chromosome1 humain 5 avec r 0 =0.5 (instances modélisées sous forme de CFN binaires [START_REF] Sánchez | Russian doll search with tree decomposition[END_REF] ayant jusqu'à n = 1550 variables, avec des domaines de taille d allant de 30 à 266 valeurs et jusqu'à e = 250, 000 fonctions de coût). 7 instances sont de taille moyenne et 6 de grande taille.

Expérimentations

Protocole expérimental

Chaque méthode a été appliquée sur chaque instance, avec une discrepancy de 3 pour LDS, ce qui correspond à la meilleure valeur trouvée sur les instances RLFAP [START_REF] Loudni | Combining VNS with constraint programming for solving anytime optimization problems[END_REF]. Les valeurs de k min et k max ont été respectivement fixées à 4 et n (nombre total de variables). Le T imeOut à été fixé à 3 600 secondes pour les instances RLFAP et SPOT5. Pour les instances tagSNP de taille moyenne (resp. de grande taille), le T imeOut a été fixé à 2 heures (resp. 4 heures). Un ensemble de 50 essais par instance a été réalisé sur un AMD opteron 2.1 GHz et 256 Go de RAM. Toutes les méthodes ont été implantées en C++ en utilisant la librairie toul-bar2 6 .

Pour chaque instance et chaque méthode, nous reportons (i) le nombre de succès (l'optimum est atteint), (ii) le temps de calcul moyen pour atteindre l'optimum, ainsi que (iii) le coût moyen des solutions trouvées sur les 50 essais.

Dans cette section, nous reportons les résultats de nos expérimentations menées sur les instances RLFAP, GRAPH, SPOT5 et tagSNP. Tout d'abord, nous comparons SGVNS et ISGVNS avec DGVNS (cf. sections 5.2 et 5.3), puis nous comparons SGVNS avec ISGVNS (cf. section 5.4).

Comparaison entre SGVNS et DGVNS

Instances RLFAP

Sur les instances RLFAP (cf. tableau 1), SGVNS surclasse clairement DGVNS sur Scen07, et reste très comparable sur les deux autres instances. Pour la Scen07, SGVNS améliore le taux de succès de DGVNS de 16% (de 80% à 96%), et réduit la déviation moyenne de l'optimum de (0.58% à 0.06%).

Instances SPOT5

Sur les instances SPOT5 (cf. tableau 2), SGVNS se montre très efficace comparé à DGVNS, particulièrement sur les instances de grande taille (#412, #414, #507 et #509), pour lesquelles l'amélioration est très significative. Pour les instances #507 et #509, SGVNS procure un gain en termes de taux de succès de 12% (de 66% à 78%) et 16% (de 80% à 96%) respectivement. Ces gains atteignent respectivement 24% et 20% pour les instances #412 et #414. Sur les autres instances, les deux méthodes obtiennent des résultats similaires.

Instances GRAPH

La tendance se confirme sur les instances GRAPH (cf. tableau 1). Pour les instances réputées faciles (Graph05 et Graph06), les deux méthodes obtiennent les mêmes taux de succès (i.e. 100%). Toutefois, SGVNS est plus rapide que DGVNS sur Graph06 (gain en temps de calcul d'environ 20%). Pour les instances difficiles, les gains obtenus par SGVNS sont plus importants. Pour l'instance Graph11, SGVNS obtient 3 fois plus de succès que DGVNS (gain de 38% en termes de taux de succès). Pour l'instance Graph13, SGVNS atteint l'optimum (6 essais avec succès), surclassant nettement DGVNS. Ces résultats démontrent clairement la pertinence d'exploiter les séparateurs pour guider l'exploration des voisinages. Pour les instances de grande taille (cf. tableau 4), SGVNS se montre moins compétitive en termes de taux de succès et de temps de calcul, en particulier sur les trois instances #10442, #14226 et #17034, où DGVNS est clairement le meilleur. Pour l'instance #17034, DGVNS améliore le taux de succès de SGVNS de 16% (de 66% à 82%), la déviation moyenne de l'optimum est réduite (de 1.43% à 0.63%) et DGVNS est 1.2 fois plus rapide que SGVNS. Pour l'instance #14226, le gain en taux de succès atteint 12% (de 80% à 92%) et DGVNS réduit la déviation moyenne de l'optimum (de 0.54% à 0.09%). Pour les autres instances, DGVNS trouve des solutions de meilleure qualité en moyenne que SGVNS.

Instances SPOT5

Sur les instances SPOT5, aucune des deux méthodes ne domine l'autre (cf. tableau 2). En effet, SGVNS ob-tient 2 succès de plus que ISGVNS sur deux instances (#414 et #509) et est plus rapide sur l'instance #408, tandis que ISGVNS devance SGVNS en termes de taux de succès sur deux instances (#412 et #507) et est plus rapide sur l'instance #505.

Instances GRAPH

Sur les instances faciles (Graph05 et Graph06), ISGVNS est légèrement plus rapide que SGVNS (cf. tableau 1). En revanche, sur les deux instances réputées difficiles, aucune méthode ne surclasse nettement l'autre. Pour l'instance Graph11, ISGVNS obtient 24% de succès en plus par rapport à SGVNS et réduit la déviation moyenne de l'optimum de (37% à 8%). Pour l'instance Graph13, SGVNS multiplie le nombre de succès de ISGVNS par 6 et réduit la déviation moyenne de l'optimum de (69% à 45%).

Instances tagSNP

Pour les instances de taille moyenne, SGVNS et ISGVNS obtiennent les mêmes taux de succès. Toutefois, ISGVNS est plus rapide que SGVNS sur quatre instances (#3792, #8956, #15757 et #16706), et est moins rapide sur trois autres instances. Pour les instances de grande taille, ISGVNS surclasse nettement SGVNS. ISGVNS améliore le taux de succès moyen de SGVNS d'environ 13% sur deux instances (#14226 et #17034) et obtient des solutions de meilleure qualité sur les instances #12976 et #14007, tandis que SGVNS est plus rapide sur l'instance #14226 et obtient des solutions de meilleure qualité sur l'instance #13931.

Bilan sur les apports de SGVNS et ISGVNS

Nous avons montré expérimentalement l'intérêt d'exploiter les séparateurs pour mieux guider DGVNS vers des voisinages susceptibles de conduire à des améliorations plus importantes. Sur la plupart des instances testées, SGVNS et ISGVNS surclassent nettement DGVNS, excepté sur les instances tagSNP de grande taille, où SGVNS est moins efficace que DGVNS. SGVNS reste toutefois plus compétitive sur les instances de taille moyenne.

De ces expérimentations, il ressort également que ISGVNS donne de meilleurs résultats en moyenne que SGVNS. ISGVNS surclasse SGVNS sur 17 instances parmi 26, alors que SGVNS obtient de meilleurs résultats sur 9 instances. Ces résultats montrent l'importance de la liste de propagation pour réaliser un meilleur compromis entre intensification et diversification.

Nous avons proposé deux extensions de la méthode DGVNS qui tirent parti à la fois du graphe de clusters et des séparateurs entre ces clusters, pour guider efficacement l'exploration des grands voisinages dans DGVNS. Les expérimentations menées sur plusieurs instances difficiles ont montré que SGVNS et ISGVNS sont nettement plus performants que DGVNS, et que ISGVNS est très efficace par rapport à SGVNS. Nous travaillons actuellement sur une version parallèle pour l'exploration des clusters.

4 let(6 S 7 k ← kinit ; 8 i ← 1 ; 9 while

 467819 CT , T) be a tree decomposition of G ; 5 let CT = {C1, C2, ..., Cp} ; ← genInitSol() ; (k < kmax) ∧ (notT imeOut) do Cs ← CompleteCluster(Ci, k) ; Xun ← Hneighborhood(Cs, N k,i , S) ; A ← S\{(xi, a) | xi ∈ Xun} ; S ← Rebuild(A, Xun, δmax, f (S), S) ; NeighbourhoodChangeDGVNS(S, S , k, i); return S ; Procedure NeighbourhoodChangeDGVNS (S, S , k, i); begin

4 let(5 S 6 Cand ← CT ; 7 k ← kinit ; 8 Ci 13 S 18 if 21 S ← S ; 22 k 25 Cand ← Cand\Cw; 26 foreach

 45678131821222526 CT , T) be a tree decomposition of G ; ← genSolInit(); ← remove-first(Cand) ; 9 while (k < kmax) ∧ (notT imeOut) do 10 Cs ← CompleteCluster(Ci, k) ; 11 Xun ← Hneighborhood(Cs, N k,i , S) ; 12 A ← S\{(xi, a) | xi ∈ Xun} ; ← LDS + CP(A, Xun, δmax, f (S), S) ; 14 NeighbourhoodChangeSGVNS(S, S , k, i) ; 15 return S ; 16 Procedure NeighbourhoodChangeSGVNS(S, S , k, i); 17 begin Cand = ∅ then 19 Cand ← CT ; 20 if f (S) < f (S) then ← kinit; 23 Vc ← {x | S [x] = S[x]}; 24 Cw ← {Cj ∈ Cand | Cj ∩ Vc = ∅}; Cj ∈ Cw do 27 insert-first(Cand, Cj); 28 else 29 k ← k + 1; 30 Ci ← remove-first(Cand);

4 .

 4 Un cluster pourra être considéré plusieurs fois dès lors que Cand devient vide, car réinitialisée à C T (ligne 19).

Algorithme 3 : 5 S 6 k ← kinit ; 7 i ← 1 ; 8 PList ← ∅; 9 while 13 S

 356718913 Pseudo-code de ISGVNS 1 Function ISGVNS (X, W, kinit, kmax, δmax); 2 begin 3 let G be the constraints graph of (X, W) ; 4 let (CT , T) be a tree decomposition of G ; ← genSolInit() ; (k < kmax) ∧ (notT imeOut) do 10 Cs ← CompleteCluster(Ci, k) ; 11 Xun ← Hneighborhood(N k,i , Cs, W, S) ; 12 A ← S\{(xi, a) | xi ∈ Xun} ; ← LDS + CP(A, Xun, δmax, f (S), S) ; 14 NeighbourhoodChangeISGVNS(S, S , k, i); 15 return S ; 16 Procedure ChangeNeighborISGVNS(S, S , k, i); 17 begin 18 if f (S) < f (S) then 19 S ← S ; 20 k ← kinit; 21 Vc ← {x | S [x] = S[x]}; 22 Cw ← {Cj | Cj ∩ Vc = ∅, j = i + 1, . . . , | CT |} ; 23 foreach Cj ∈ Cw do 24 insert-Queue (PList,Cj) ; 25 make tabu each element x ∈ Vc for L next iterations; 26 else 27 k ← k + 1 ; 28 if PList = ∅ then 29 i ← remove-first(PList) 30 else 31 i ← succ(i)

 5. http://www.costfunction.org/benchmark 6. http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/SoftCSP

	Instance	Méthode	Succ.	Temps	Moy.
	Scen06, n = 100	SGVNS	50/50	111	3,389
	e = 1222, d = 44	ISGVNS	50/50	93	3,389
	S * =3,389	DGVNS	50/50	112	3,389
	Scen07, n = 200	SGVNS	48/50	652	343,802
	e = 2, 665, d = 44	ISGVNS	49/50	806	343,794
	S * =343,592	DGVNS	40/50	317	345,614
	scen08, n = 458	SGVNS	2/50	532	281
	e = 5, 286, d = 44	ISGVNS	4/50	1,408	276
	S * =262	DGVNS	3/50	1,811	275
	Graph05, n = 100 SGVNS	50/50	19	221
	e = 1, 034, d = 44	ISGVNS	50/50	16	221
	S * =221	DGVNS	50/50	10	221
	Graph06, n = 200 SGVNS	50/50	292	4,123
	e = 1, 970, d = 44	ISGVNS	50/50	240	4,123
	S * =4,123	DGVNS	50/50	367	4,123
	Graph11, n = 340 SGVNS	27/50	3,026	4,238
	e = 3417, d = 44	ISGVNS	39/50	2,762	3,349
	S * =3,080	DGVNS	8/50	3,046	4,234
	Graph13, n = 458 SGVNS	6/50	3,260	14,707
	e = 4, 915, d = 44	ISGVNS	1/50	3,196	17,085
	S * =10,110	DGVNS	0/50	-	22,489 (18,639)

Table 1 -

 1 Comparaison entre SGVNS, ISGVNS et DGVNS sur les instances RLFAP et GRAPH.

Table 2 -

 2 Comparaison entre SGVNS, ISGVNS et DGVNS sur les instances SPOT55. SGVNS améliore de 24% le temps de calcul de DGVNS. Le meilleur résultat est obtenu sur l'instance #9313, où SGVNS améliore le temps de calcul de DGVNS de 36%. Les moins bons résultats sont obtenus sur l'instance #8956, pour laquelle DGVNS est plus rapide.

	5.2.4 Instances tagSNP
	Pour les instances de taille moyenne (cf. tableau 3),
	SGVNS et DGVNS atteignent l'optimum sur chacun des
	50 essais. Cependant, SGVNS est plus rapide sur trois
	instances (#4449, #9313 et #16421), plus lent sur
	trois autres instances (#3792, #8956 et #15757), et
	très similaire à DGVNS sur l'instance #16706. Pour
	l'instance #16421,

Table 3 -

 3 Comparison entre SGVNS, ISGVNS et DGVNS sur les instances tagSNP de taille moyenne.

	Instance	Méthode	Succ.	Temps	Moy.
	#10442, n = 908	DGVNS	50/50	4,552	21,591,913
	e = 28, 554, d = 76	SGVNS	50/50	7,153	21,591,913
	S * = 21, 591, 913	ISGVNS	50/50	7,291	21,591,913
	#14226, n = 1, 058	DGVNS	46/50	7,606	25,688,751
	e = 36, 801, d = 95	SGVNS	40/50	7,646	25,805,242
	S * = 25, 665, 437	ISGVNS	50/50	9,596	25,665,437
	#17034, n = 1142	DGVNS	41/50	8,900	38,563,232
	e = 47, 967,d = 123	SGVNS	33/50	10,212	38,869,514
	S * = 38, 318, 224	ISGVNS	36/50	10,579	38,746,957
	#12976, n = 920	DGVNS	0/50	-	24,685,331 (24,483,048)
	e = 44, 823, d = 128 SGVNS	0/50	-	25,059,787 (24,483,414)
	S * = 21, 604, 644	ISGVNS	0/50	-	24,627,760 (24,482,897)
	#13931, n = 820	DGVNS	0/50	-	21,107,259 (21,106,760)
	e = 38, 775, d = 145 SGVNS	0/50	-	21,107,723 (21,106,833)
	S * = 21, 106, 731	ISGVNS	0/50	-	21,331,064 (21,106,770)
	#14007, n = 1, 554	DGVNS	0/50	-	57,808,373 (53,753,706)
	e = 54, 753, d = 100 SGVNS	0/50	-	58,155,109 (53,753,161)
	S * = 50, 290, 563	ISGVNS	0/50	-	57,565,916 (55,486,138)

Table 4 -

 4 Comparison entre SGVNS, ISGVNS et DGVNS sur les instances tagSNP de grande taille.

 DGVNS sur la plupart des instances (cf. tableau 2). Pour les instances de grande taille (#412, #414, #507 et #509), ISGVNS obtient un taux de succès moyen de 93% contre 73.5% pour DGVNS. Pour les autres instances (#408 et #505), les deux méthodes obtiennent les mêmes taux de succès, mais DGVNS est plus rapide. ISGVNS obtient 5 fois plus de succès que DGVNS. Pour l'instance Graph13, ISGVNS atteint une fois l'optimum et obtient des solutions de meilleure qualité en moyenne. Pour les instances faciles, ISGVNS est plus rapide que DGVNS. 5.3.4 Instances tagSNP Pour les instances de taille moyenne (cf. tableau 3), ISGVNS est plus rapide que DGVNS sur quatre instances (#3792, #8956, #9313 et #16706), plus lent sur deux instances (#15757 et #16421) et similaire à DGVNS sur l'instance #4449. Pour les instances #8956 et #9313, ISGVNS améliore le temps de calcul de DGVNS d'environ 16% en moyenne. Les meilleurs résultats sont obtenus sur l'instance #16706, pour laquelle le gain est d'environ 41%. À l'inverse, pour l'instance #16421, ISGVNS obtient sa plus mauvaise performance : DGVNS est deux fois plus rapide. ISGVNS est plus rapide en moyenne. Pour la Scen07, ISGVNS obtient un succès de plus que SGVNS. Pour la Scen08, ISGVNS obtient deux fois plus de succès que SGVNS et des solutions de meilleure qualité en moyenne.

	5.3 Comparaison entre ISGVNS et DGVNS 5.3.1 Instances RLFAP ISGVNS domine clairement DGVNS, notamment sur les deux instances réputées difficiles Scen07 et Scen08. Pour la Scen07, ISGVNS améliore le taux de succès de DGVNS de 18% (de 80% à 98%). Pour la Scen08, ISGVNS obtient un succès de plus que DGVNS et ré-duit le temps de calcul d'environ 22%. Pour la Scen06, ISGVNS est plus rapide que DGVNS. 5.3.2 Instances SPOT5 ISGVNS est meilleur que 5.3.3 Instances GRAPH Une fois de plus, ISGVNS surclasse nettement DGVNS, particulièrement sur les deux instances Graph11 et Graph13 (cf. tableau 1). Pour l'instance Graph11, Pour les instances de grande taille, ISGVNS est plus efficace que DGVNS sur l'instance #14226 et est moins compétitive sur l'instance #17034. Les deux méthodes obtiennent les mêmes taux de succès sur l'instance #10442, mais DGVNS est plus rapide. Pour les autres instances, si on compare la qualité moyenne des so-lutions obtenues, ISGVNS est meilleure sur 2 instances (#12976 et #14007) et reste comparable sur l'instance #13931. Par ailleurs, ISGVNS obtient les meilleurs coûts sur 2 instances parmi 3. 5.4 Comparaison entre SGVNS et ISGVNS 5.4.1 Instances RLFAP ISGVNS devance SGVNS sur toutes les instances (cf. tableau 1). Pour la Scen06,

Un graphe est cordal ou triangulé si et seulement si tous ses cycles de taille supérieure à quatre ont une corde (une arête connectant deux sommets non-adjacents du cycle).

Acknowledgements. Ce travail à été soutenu par l'Agence Nationale de la Recherche, référence projet FiCOLOFO ANR-10-BLA-0214.