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Abstract. We present a comparison between 14 chemical fingerprints using 1D/2D features and PMCSFG, a
data mining method that induces features based on maximum common subgraphs. We provide an experimental
evaluation and discuss the usefulness of the different methods on ecotoxicology data. The features generated by
data mining yield a similar performance for predicting toxicity, while they are more interpretable by chemists.

1 Introduction
The evolution of data mining techniques provides methods for efficiently finding relations between chemicals
and toxicological endpoints in large datasets. A fundamental part of any data mining study is how to encode
the information. Molecular fingerprints [1], where structural features are represented by a Boolean array, are a
standard and computationally efficient representation of chemical compounds. They have been successfully used
in molecular similarity search [2, 3], and thus provide a relevant description of molecular structures. We focus on
the use of 2D fingerprints in predictive toxicology and we compare different algorithms to construct them. These
algorithms can be divided into four classes: (1) dictionary-based, (2) path-based, (3) radial-based, and (4) atom
pair-based. As an alternative to the above approaches, we also considered a maximum common substructure
(MCS) algorithm to describe the molecules. We trained predictive toxicology models from each of the chemical
descriptions with several machine learning algorithms widely used in chemoinformatics [4]. The results suggest
that the MCS-based chemical descriptors are an interesting alternative to the standard chemical fingerprints.

2 Fingerprint methods
The features generated by fingerprint methods are used to encode each molecule in a dataset as a k-dimensional
binary vector (with k the number of features), where a 1 is marked in the i-th position if the i-th feature occurs
in the example. We divide fingerprint methods into five categories, based on the way features are generated.

Dictionary-based fingerprints rely on features which have been identified a priori by domain experts as
important fragments: MACCS keys consist of 166 features mostly encoded by SMARTS patterns, PubChem
keys have 883 features corresponding to PubChem substructures. The remaining fingerprint types conceptually
encode fragments based on the atom-bond structures in the dataset. Path-based fingerprints can enumerate all
linear paths up to seven bonds including the description of rings up to 14 bonds (Linear), or the linear paths
augmented with intersections of linear paths, with a maximum of five bonds per path to encode branched features
(Dendritic), or features of four consecutively bonded non-hydrogen atoms along with the number of non-hydrogen
branches, corresponding to a torsion angle (Torsion). Radial-based fingerprints iteratively encode features that
represent each heavy atom in larger and larger structural neighborhoods, up to a given diameter (2, 4, and 6
in this study). The atom type (ECFP) and the functional class (FCFP) encoding rules were used to define the
atom abstraction. In another approach, each heavy atom in a structure is characterized by an environment that
consists of all other heavy atoms within a distance of two bonds. Each member of the list is encoded into a string
of the form Type-freq(Type)-d, where freq(Type) is the number of times a given atom type is found at a distance
d from the central atom. The atom-typing scheme used is the Sybyl Mol2 (MOLPRINT2D). Atom pair-based
fingerprints encode features representing two atoms and their corresponding distance, for example the Carthart
atom types and the topological distance separating them (Pairwise) or, as an extension, a triplet consisting of a set
of three atoms and the topological distances separating them. As there are six different ways to order the atoms
in a triplet, a canonicalization is performed, ensuring that every bit corresponds to a unique triplet (Triplets).
Pairwise Maximum Common Subgraph Feature Generation (PMCSFG) [5] computes maximum common
subgraphs (MCSs) under the block-and-bridge-preserving subgraph isomorphism between molecule pairs. For
efficiency reasons the algorithm computes MCSs only from outerplanar graphs. For a given set of graphs, the
method can compute all possible MCSs or a random subset [6].

3 Experiments
Dataset The European Chemicals Bureau (ECB) dataset was constructed using data from the European Chem-
icals Agency. We only kept chemicals annotated with standardized phrases implemented by the EU through the
CLP regulation and referring to the hazard of the substance to aquatic organisms. The dataset was cleaned
following standard practices such as the removal of inconsistent compounds or the addition of hydrogens on
hetero-atoms. This resulted in a dataset with 372 chemicals annotated “very toxic” and 195 chemicals annotated
“harmful”.



Experimental methodology In order to compare the different fingerprint methods, we used them as features
in five different machine learning methods: decision tree learning (DT), instance-based learning (IBL), näıve
Bayes (NB), rule-based learning (RBL) and support vector machines (SVM). The learning task is to discriminate
the harmful molecules from the toxic ones. We based the SVMs on the Tanimoto kernel [6], which computes
a similarity between two fingerprints as the number of common features (i.e., the set intersection between the
two molecules) divided by the total number of patterns that occur in either or both of the molecules (i.e., the
set union). Tanimoto is the recommended kernel for fingerprints of small molecules. As implementation we used
SVMlight and C-parameter tuning. For the other learning methods, we used the Weka data mining tool, with
standard configurations. We report the performance as the area under the ROC curve.

Fingerprint method # features DT IBL NB RBL SVM Average

MACCS 166 0.75 0.77 0.72 0.69 0.89 0.76
PubChem 883 0.76 0.79 0.75 0.65 0.90 0.77
Linear 42757 0.71 0.60 0.78 0.57 0.88 0.71

Dendritic 24933 0.70 0.66 0.77 0.57 0.85 0.71
Torsion 2051 0.63 0.58 0.68 0.58 0.74 0.62
ECFP2 1111 0.73 0.76 0.78 0.58 0.88 0.75
ECFP4 3821 0.71 0.70 0.79 0.59 0.87 0.73
ECFP6 7058 0.71 0.70 0.79 0.55 0.87 0.72
FCFP2 258 0.78 0.77 0.73 0.62 0.87 0.75
FCFP4 1807 0.75 0.73 0.76 0.63 0.86 0.75
FCFP6 4461 0.76 0.69 0.77 0.65 0.89 0.75

MOLPRINT2D 2163 0.74 0.72 0.80 0.58 0.88 0.74
AtomPairs 3778 0.73 0.69 0.75 0.58 0.86 0.72
Triplets 102447 0.67 0.68 0.75 0.56 0.84 0.70

PMCSFG 1218 0.77 0.76 0.73 0.62 0.89 0.76

Average 13259 0.73 0.71 0.76 0.60 0.87
Table 1. Area under the ROC for the different fingerprint methods and learning algorithms on the ECB dataset.

Results Table 1 shows the results of the comparison. The Torsion fingerprints perform the worst on average,
while PubChem keys, MACCS keys, and PMCSFG perform the best. Interestingly, the three best performing
fingerprints have the fewest features (133 to 1218). The average performance of the different learning methods
varies from 0.60 to 0.87. Quantitatively, whatever the molecular description is, SVM appears to be the best
performing learning method while rule-based learning leads to the poorest results. Moreover, there is a significant
difference between the average score of the SVMs and the second best learner, NB.

4 Discussion

The preliminary results show that the dictionary-based fingerprints (PubChem keys and MACCS keys) obtain the
best performance on average, with MCS fingerprints following closely behind. Apart from an adequate predictive
performance, MCS fingerprints have multiple advantages. First, they can be automatically and efficiently learned
from data, unlike the dictionary-based fingerprints which are selected by hand. Second, the feature set is smaller
than the non-dictionary-based fingerprints. Moreover, the MCS features are typically much larger than the ones
in the former fingerprints (9 atoms on average, up to 28 atoms for the ECB dataset) and hence carry more
information. Third, an MCS feature corresponds to a recognizable molecular fragment, which makes it directly
significant for a chemist. During the talk, we will illustrate this by exhibiting some examples of the recovery of
known structural alerts for ecotoxicity, e.g., organophosphorus moieties, chlorobenzenes or phenol rings.
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