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Introduction 
 

Nowadays, the understanding of the chemical risks to health and 
the environment represents a hot topic and in silico toxicology is 
extremely appealing because of its high throughput, its 
inexpensiveness, and its capacity to reduce the use of animals. By the 
way, according to regulators, in silico techniques, like Quantitative 
Structure-Activity Relationships (QSARs), read-across, and structural 
alerts have a foot in the door in the assessment of chemicals.1-3 The 
definition of structural alerts corresponds to one of the most 
interesting approach whose main advantage is the identification of 
chemicals with common mechanism of action. Indeed, investigators 
have always been interested in the structural and physicochemical 
basis of the biological behavior of chemicals. A well-known example is 
the Tennant and Ashby’s set which defines structural alerts for DNA 
reactivity based on the analysis of in vitro mutagenicity and in vivo 
carcinogenicity data.4 This set of alerts has been largely superseded by 
others that incorporated and extended them. To date, one of the most 
advanced lists for evaluating the mutagenic and carcinogenic potential 
of chemicals is the list proposed by Benigni and Bossa,5 which has 
been implemented as a rule-based system in Toxtree6 and in the 
OECD QSAR Toolbox.7 Derek Nexus8, 9 is another example of 
expert system which associates structural alerts (generalized structural 
features in this case, like substituted vinyl ketone, 2,5-
Dihalothiophene, or alkylating agent) with various toxicological 
endpoints (e.g. mutagenicity/carcinogenicity, skin/ocular irritation, 
or skin sensitization). These systems do not discover new associations,   

 
 
 
 
 
 

 
 

 
  

 
 
 

but rather store knowledge from human experts and the scientific 
literature, and often use a reasoning model to make a prediction. 
However, the expand of the knowledge base is very time consuming 
since it requires strong investment of domain experts and a detailed 
analysis of the literature. Thus, the evolution of artificial intelligence 
and data mining tools should benefit to the reduction of time and 
efforts needed to identify new structural alerts, sometimes beyond the 
limits of human perception. This mini-review describes different 
programs leading to automated detection of such information from a 
dataset partitioned into two data classes. These programs range from 
commercially available expert systems to fundamental research tools, 
based on algorithms that are sometimes under development.  

It is impossible to make an exhaustive view of all the approaches 
leading to structural alerts in this mini review. We have made the 
difficult choice to discard the methods involving predefined fragments 
(chemical fingerprint) or a fix length of chemical fragments (hashed 
chemical fingerprint). So, some very interesting works like those 
carried out by Scheiber et al. (ECFP4) 10 and Pauwels et al. (Pubchem 
fingerprint) 11 are not described in this review. Two exceptions were 
done for the studies associated to the recent notion of Emerging 
Patterns (vide infra). 

 
Expert systems based on data mining approaches 
 

Historically, CASE is the first program which extracts chemical 
fragments from the comparative analysis of two chemical datasets. 
This approach identifies the most relevant descriptors, using 
automated algorithms, and creates expert systems capable of 
recognizing the existence of structural alerts in new chemicals. The 
program consists in tabulating, for each molecule, different fragments 
by breaking up the molecule into linear subunits containing between 3 
and 12 interconnected heavy atoms. All fragments belonging to an 
active molecule are labeled active while those belonging to an inactive 
molecule are labeled inactive. Once all molecules have been entered, a 
statistical analysis of the fragment distribution is made. A binomial 
distribution is assumed, and each type of fragment is considered 
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irrelevant if its distribution among actives and inactives is the same as 
that of the total sample of molecules. Any significant discrepancy 
from a random distribution of subunits between the active and 
inactive chemical derivatives is taken as an indication that the 
fragment is relevant. It is labeled as activating (biophore) if its 
distribution is skewed toward active molecules and inactivating 
(biophobe) otherwise. For example, from a training set consisting of 
39 cyclic N-nitrosamines tested on rats (27 active carcinogens and 12 
inactive compounds), two biophores and one biophobe were found by 
the program to have a better than 98% chance of being related to 
activity (Figure 1). For a new molecule, the program compares its 
fragments to those that are held in memory and defines a probability 
that the new molecule is active or not. 
 

 
 

 
 

 
Concerning MultiCASE, the program is based on a hierarchical 

statistical analysis of a database. Like CASE, the program aims to 
discover chemical fragments that appear mostly in active molecules. It 
starts by identifying the statistically most significant fragment existing 
within the learning set. This first fragment is labeled as the top 
biophore, responsible for the activity of the largest possible number of 
active molecules. The active molecules containing this fragment are 
then removed from the database and the remaining ones are submitted 
to a new analysis leading to the identification of the next most 
significant fragment. This procedure is repeated until either the 
activity of all the molecules in the learning set have been accounted 
for or no additional statistically significant substructure can be found. 
For each set of molecules containing a specific biophore, MultiCASE 
identifies additional parameters, named modulators, which consists of 
the presence of certain fragments or the value of calculated parameters 
such as HOMO and LUMO energies, octanol–water partition 
coefficient, and so on. Finally, MultiCASE proposes fragment-based 
QSAR models by applying a QSAR methodology for each group of 
molecules containing a specific biophore. 

We can also mention that the same team has implemented the 
CASE/MultiCASE biophores in a genetic artificial neural network 
(GA-ANN). This new computer program was called Expert System 
Prediction (ESP).14 The purpose was to evaluate the significance of 
the biophores from a different point of view. The neural network 
learns the relationships between the patterns (represented in the form 
of a pattern vector) and the activities of the chemicals, and this 
knowledge is later used for activity prediction of new molecules. The 
effectiveness of the ESP approach was illustrated by studying the 
carcinogenicity of a diverse set of chemicals. 

 

The PASS program is based on a regression approach that 
provides predictions from the SAR analysis of a training set 
containing more than 30000 compounds. This noncongeneric 
database encompasses more than 500 different biological activities. 
The molecules were represented by "Multilevel Neighborhoods of 
Atoms" (MNA) descriptors,17 which are based on their 2D 
representation. Briefly, an MNA descriptors set is subdivided on levels 
and generated recursively. A zero-level MNA descriptor describes the 

atom itself and any next level MNA descriptor is the substructure 
notation A(D1D2...), where A is the atom A descriptor, and Di is the 
previous level MNA descriptor of the ith neighbor atom for the atom 
A. To estimate the activity for a new compound, its MNA descriptors 
have to be generated and then, the probabilities of belonging to the 
classes of active and inactive compounds are calculated. 
 

Starting from the Tripos Sybyl HQSAR module, each chemical is 
fragmented into all possible substructures. HQSAR allows the user to 
select attributes for fragment determination including atom count, 
bond types, atomic connections, hydrogen atoms, chirality, and 
hydrogen bond donor and acceptor groups. Fragments can be linear, 
branched, or cyclic moieties. Models developed contained fragments 
between three and seven atoms and considered atoms, bond types, and 
atomic connections. To ascertain an association between each 
fragment and activity (or inactivity), the first selection rule is the 
number of times a fragment is identified. The second rule relates to 
the proportion of active or inactive compounds that contribute to 
each fragment. Chemical fragments are considered meaningful if they 
are found in at least three compounds in the learning set and are 
comprised of either 90% or more active or inactive compounds. To 
make a prediction for a new compound, the cat-SAR program 
determined which fragments, from the model’s pool of significant 
fragments, the test compound contains. If none were present, no 
prediction of activity was made. If one or more fragments were 
present, the number of active and inactive compounds containing each 
fragment was determined. The probability of activity or inactivity was 
then calculated based on the total number of active and inactive 
compounds that went into deriving each of the fragments. For 
example (Figure 2), 4-aminodiphenyl was predicted to be active as a 
mammary carcinogen with a probability of 100%. This prediction 
was based on the occurrence of four similar fragments derived from 
nine carcinogens and zero noncarcinogens in the model's learning set. 
However, the example clearly highlights a redundancy issue with this 
program. 
 

 
 
 
 
 

Figure 1. Fragments related to the rat carcinogenicity of cyclic N-

nitrosamines according to Klopman et al.
12

 

 

Figure 2. Illustration of significant fragments used to predict the 

carcinogenic potential of 4-aminodiphenyl adapted from Cunningham et 

al.
18
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LAZAR, a tool for predictive toxicology, uses a simplified version 
of the MOLFEA algorithm, an inductive database system tailored 
toward discovering substructures within sets of small molecules. The 
considered substructures are linear molecular fragments, i.e. sequences 
of atoms and connecting bonds, and are based on a subset of the 
SMARTS language. Inductive databases are databases that can be 
queried not only for data but also for patterns and regularities 
(chemical fragments in this case) that occur within the data and fulfill 
a specific constraint defined by the user. For example, a frequency 
constraint could require that the fragment occurs in at least 
(respectively at most) x% of the molecules belonging to a given data 
set. A query in MOLFEA is composed of several conditions, each of 
which has to be fulfilled in order to make it a solution fragment. To 
efficiently compute the fragments that satisfy a given query, the 
generality relation on fragments is exploited. This property imposes 
two borders, a lower and an upper. A lower border (called the S-set) 
on the space of possible solutions contains all maximally specific 
fragments that satisfy the constraint. It was called a border because all 
fragments more general than an element of S will also satisfy the 
constraint and all fragments that are not more general than at least 
one fragment in S will not satisfy the constraint. Dually, the frequency 
constraint imposes also an upper border (called the G-set in their 
publication) on the space of possible solutions. To update the 
borders, MOLFEA applies the following algorithm. First, those 
fragments that do not satisfy the minimum constraint are deleted. 
Second, the elements of S are updated using a levelwise search 
algorithm. This algorithm keeps track of a list of candidates Ci and a 
list of solutions Li to the frequency constraint. Both lists are 
initialized with the maximally general element T and iteratively 
updated. During each iteration, the candidates (fragments) associating 
an atom type and a bond type at level i are computed by refining 
existing fragments at level i-1. Those candidates satisfying the 
frequency threshold are retained and used to generate the candidates 
in the next iteration. The process is continued until no more 
candidates can be generated. At this point, the S set is computed by 
taking the maximally specific elements among the solutions computed 
that are more specific than an element of G. As an example, the 
authors identified relevant fragments (Figure 3) from a data set 
containing 341 mutagenic and 343 nonmutagenic compounds using 
the query (freq(f, mutagens) ≥ t) Λ (freq(f, nonmutagens) ≤ t), where 
t varied from 0.01 (1%, 6 compounds) to 0.10 (10%, 68 
compounds). Three machine learning algorithms (C4.5, PART, 
SVM) were used to learn SAR models from these fragments. 

 
Developments of graph data mining algorithms based on a 
frequency constraint 

 
The tools described above have been implemented in expert 

system software which are generally commercial products. However, 
due to the evolution of the modern information methods and 
technology, collecting, combining, storing, and mining huge amounts 
of data can be done at very low costs. Indeed, several works have been 
developed in informatics to extract the frequent subgraphs from a 
dataset. Apply to the field of the chemoinformatics, those works allow 
to extract the frequent substructures. The frequency constraint is 
popular in data mining for its anti-monotonic20 property : if a 
substructure sub of size n (the size is the number of atoms) is not 
frequent in a dataset of molecular graphs, it means that all the 
substructure of size n+1 whose contain sub are not frequent in this 
dataset. The frequency is useful as it efficiently disregards infrequent 
substructures. However, as a simple remark, if according to the 

frequency constraint there are too few compounds that contain 
oxygen, then peroxide containing substructures are not explored.  

Several families of algorithms exist for extracting the frequent 
subgraphs from a dataset of graphs21. The Apriori approach22 used a 
Breadth-First search strategy to cross the search space associated to 
the frequent subgraphs. The discovery of the frequent atoms in the 
dataset is the first step, then it iterates until no more frequent 
substructures are discovered by increasing by one the size of the 
candidates. At each iteration, the substructures of size n+1 are 
obtained thanks to the fusion of the frequent substructures of size n. 
A fusion process merges two frequent substructures of size n whose 
differ by only one atom and provides all the substructures resulting 
from this fusion. By testing all the possible fusions, all the candidates 
of size n+1 are generated. Finally, the frequency is checked and only 
the frequent ones are kept. The initial algorithm (named AGM) to 
extract the frequent subgraphs from a dataset of graphs belongs to 
this family. The Pattern-Growth Based approach used a Depth-First 
search strategy to cross the search space of the candidates. A frequent 
substructure of size n is extended by adding a new chemical bond 
leading to a candidate substructure of size n+1. Only the 
substructures respecting the frequency constraint are stored. The first 
step of this method consists to collect all the frequent atoms, then 
each atom are extended until no more frequent subgraphs are 
generated. Only substructures with at least two atoms are stored. We 
described here applications exploiting the Pattern-Growth Based 
approach.  
 

 
 

 
 
 
 
 

The algorithm gSpan24 is one of the first using the Pattern-
Growth Based approach25 to generate the substructures. It is often 
used in chemoinformatics for two reasons : (i) it uses the quickstart 
principle : the set of the frequent substructures could be partitioning 
into three subsets, the subset of the paths (an atom cannot be linked 

Figure 3. The 20 strongest activating fragments (threshold of 0.05) for 

Salmonella mutagenicity derived from linear SVM, and according to Helma 

et al.
19
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to more than two other atoms), the subset of the trees (there is no 
cycle) and the subset of the graphs whose contain cycles and (ii) the 
authors make available its source code. For an illustration of the 
potential of Gaston, an elaborate method of graph-based chemical 
representation was developed by Kazius el al.,26 and tested for 
extracting substructures from a mutagenicity data set (4337 entries). 
At the start of this process, the initial substructure is mapped 
everywhere it fits into every molecule in the data set. For each such 
mapping, the atoms at the neighboring positions of this substructure 
are stored. For each substructure in such a collection, its statistical 
association with mutagenicity, expressed as the p-value, was 
determined from the amounts of mutagens and nonmutagens. It was 
then determined which substructure was most strongly associated with 
mutagenicity, that is, which substructure possessed the lowest p-value. 
This substructure was then selected to split the chemical data set into 
two subsets (linear decision trees). Each split generated one subset of 
compounds that contain this substructure and another subset of 
compounds that lack this substructure. This latter subset was used to 
recompute the p-values of all substructures. From these p-values, the 
next most mutagenic substructure was determined and then used to 
split this chemical subset in two, and so on. After six splits, all 
compounds from the original database are divided over seven subsets. 
The result is illustrated in Figure 4. The statistics of mutagenicity 
prediction based on 10 fold cross-validation showed a sensitivity of 
83% and a specificity of 74%. 

 

 
 

 
 

 

Concerning this program, the association rules start from an 
algorithm similar to Eclat28 (search trees). The process is well 
described in the publication and is illustrated on a set of molecules 
(Figure 5) with a minimum support (frequency) of 50%. First the 
sulfur atom is embedded forming the root of the search tree (Figure 

6), and then the embeddings are extended in all possible ways. Of 
course, subtrees of the search tree are pruned if they refer to 
substructures not having enough support. This leads to the definition 
of six frequent substructures starting from the example molecules 
(Figure 7). A crucial step concerns the definition of the starting point 
(sulfur in this example). We can start with a different atom, as long as 
this atom is rare in the molecule, or a specific core like an aromatic 
ring with one or two side chains for instance. Contrast structures are 
then extracted corresponding to substructures that are frequent in a 
predefined subset of the molecules and infrequent in the complement 
of this subset. Experimental results concerned HIV-1 infection and 
they extracted nitrogen based, sulfur-based, and selenium based 
fragments particularly. 
 

 
 
 

 
From frequent patterns to emerging patterns 

 
In informatics, the recent studies of pattern mining have given 

more attention to the discovery of patterns that are "significant", 
"emerging", "dominant" and so forth, than simply frequent. Indeed, 
it appears that frequent patterns alone have a limited applicability and 
usability in terms of building predictive models.29 Thus, methods of 
finding representative subsets of frequent patterns that could be 
effectively useful are appealing. In this part, we will focus on the 
notion of Emerging Patterns and its applications in the field of 
chemoinformatics. 
 

Emerging Patterns (EPs) were introduced by Dong and Li. The 
emerging constraint captures differentiating characteristics between 
two classes of data. An EP is defined as an itemset which support (i.e. 
its number of occurrences in the dataset) increases significantly from 
one dataset D1 to another D2. Dong and Li have proposed to use the 
growth rate measure to evaluate this increasing. The growth rate of a 
pattern pat from D2 to D1 is given by the ratio of the frequency of pat 
in D1 over the frequency of pat in D2. In this way, EPs capture 
contrasts between two data classes. An interesting point on this 
project is to discover EPs with small support. The authors precise that 
it is a challenge due to two reasons: i) the useful anti-monotonic 
property no longer holds for EPs, and ii) there are usually too many 
candidates. Naïve algorithms, which consider all itemsets, are not 
viable since it would be too costly. However, such collections of 
itemsets have a nice property corresponding to the notion of closed 
intervals.31 If X and Z are in S and Y is a set such that X ⊆ Y ⊆ Z 
then Y is in S. Thus, they described large interval-closed collections 
of itemsets using borders, defined as the pair of the sets of the 
minimal and the maximal itemsets. Clearly, borders are usually much 
smaller than the collections they represent. Such borders can be 
efficiently discovered by algorithms like Max-miner.32 For instance, on 
a mushroom dataset with a growth rate threshold of 2.5, 228 EPs are 
possible but they can be represented by only half a million borders. 
Otherwise, if the support of an EP in D2 is null then this pattern was 
called a Jumping Emerging Pattern (JEP). A JEP is defined as the 
most expressive EP.33 

Figure 4. Decision list extracted from a mutagenicity data set according to 

Kazius et al.
26

 

 

Figure 5. Set of six example molecules. 
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Figure 6. Search tree from the six previous molecules. 

 

Automated detection of structural alerts 

Volume No: 5, Issue: 6, February 2013, e201302013 Computational and Structural Biotechnology Journal | www.csbj.org 

5 



In 2006, Auer and Bajorath applied for the first time the concept 
of EPs in chemoinformatics. They introduced the notion of Emerging 
Chemical Patterns (ECP) as a novel approach to molecular 
classification. The authors used the subset of the JEP to conduct an 
experimental study. An hypergraph-based algorithm was applied to 
mine the JEPs from two classes of data, actives or inactives. The 
potential of this approach to classify derivatives was analyzed on four 
publicly available compound data sets. But in this case, they do not 
use molecular graphs, they used a set of sixty one 1D and 2D 
molecular descriptors with values ranges discretized into suitable 
intervals. On the basis of their results, ECPs are expected to broaden 
the spectrum of molecular classification methods, and complement 
computational methodologies like binary QSAR and decision trees. 
 

This study corresponds to the first application of EPs to a 
classification task in ecotoxicology. The authors assumed that the 
level of toxicity for a chemical may be influenced by the presence of a 
specific molecular fragment. Such a fragment has been called a 
Jumping Emerging Fragment (JEFs) since it has a strong foothold in 
the toxic chemicals and is missing from the non-toxic chemicals. A 
three-step algorithm that automatically extracts chemical fragments 
was designed. Let D be partitioned into two subsets D1 and D2. The 
first step is to extract the frequent connected subgraphs in D1 
according to the frequency threshold. For this step, a Pattern-Growth 
Based algorithm was used instead of an Apriori Based algorithms.36 
According to an experimental comparison of four Pattern-Growth 
Based algorithms,37 gSpan24 was chosen for a question of memory and 
speed. The second step consists in defining for each graph GD of D 
and for each connected graph G resulting from step 1, if G is a 
subgraph of GD. For that task, an in-house implementation of the J.R. 
Ullmann’s algorithm38 was used to solve the resulting multiple 
subgraph isomorphism problems. For the third step, the problem is 
described by items (presence or absence of each frequent connected 
graph) and Music-DFS algorithm39 was used to discover JEFs. The 
authors applied this methodology to discover JEFs from H402 
(harmful to aquatic life) to H400 (very toxic to aquatic life) 
chemicals, and parametrize the simplest possible decision rule based 
on these jumping fragments: a molecule is H400 just in case it 
contains a JEF. The analysis of the results obtained on the testing set, 
in function of the frequency and the coverage rate on H400 molecules 
(learning set) has shown that a JEF recorded at a high frequency 
threshold is meaningful to define the toxicity of a derivative (see the 
H402 success rate for 3-5%). 
 

 

In comparison with previous study, the authors consider now the 
conjunction of fragments, i.e. the combination of different moieties of 
a molecule in only one pattern. The new notion of Representative 
Pruned Molecular Patterns (RPMPs) was introduced. As a reminder, 

when a dataset is partitioned into targeted examples and non-targeted 
ones (also called “classes”), the growth-rate of a pattern is defined as 
the ratio between its frequency in the target class over its frequency 
outside the target class. The first step consists in the enumeration of 
all the frequent and emerging molecular patterns (FEMPs) according 
to frequency and growth rate constraints. In practice, FEMPs are 
often numerous and include redundant information, but they could be 
condensed by applying the notion of closed pattern.41 A closed 
pattern is a pattern for which no element can be added without 
decreasing its extent, i.e. the set of molecules in which the molecular 
pattern occurs. Thus, by retaining only closed FEMPs the authors can 
condense the important set of FEMPs without losing information. 
However, closed patterns tend to be very long (number of fragments) 
since a large part corresponds to subfragments of a larger fragment. 
These redundant subfragments can be pruned without losing 
information. These resulting shorter representations have been called 
Representative Pruned Molecular Patterns (RPMPs). The illustrative 
example corresponds to a dataset of 295 chemicals annotated by their 
toxicity to aquatic life (223 toxic and 172 non-toxic chemicals). The 
Table 2 indicates the evolution of the number and length of the 
corresponding patterns in function of the growth rate values 
(minimum frequency threshold of 2.8%). 

 

 
 

 
Besides, the interpretability of the RPMPs seems to be more 

obvious. A simple illustration deals with the impact of the length of 
an alkyl chain towards the ecotoxicity. The RPMPs show an evident 
relationship between the growth-rate values and the number of carbon 
atoms of the fragments (see Figure 8). The meaningful length of the 
alkyl chains begins for C6 (growth-rate of 2.7), it increases strongly 
for C7 (growth-rate of 6.9), to reach a maximum value for C11 
(growth-rate of ∞, corresponding to a Jumping Emerging Pattern). 
Thus, in terms of structure-activity relationships, this result highlights 
that the hydrophobicity of an alkyl chain is correlated with its length, 
and is in straight relation with its ecotoxic effect. Several other 
examples are given in the article. 

Recently, researchers of the Sheffield University collaborated with 
Derek Nexus developers to help automate the process of knowledge 
extraction from toxicity data sets. Their approach is based on the 
discovery of Jumping Emerging Patterns (JEPs). In this work, 
structural fingerprints are used as descriptors. The complete 
procedure for mining the JEPs is in 6 steps : i) generation of all atom 
pairs under user-defined constraints from the active compounds in the 
data set, ii) application of the Horizon-Miner algorithm to extract the 
maximal patterns for both the actives and the inactives, iii) application 
of the border-differential algorithm to mine the set of all possible 

Figure 7. Frequent fragments found from the example of Borgelt et al.
27

 

 

Figure 8. Growth-rate values of the alkyl chains according to their length. 
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minimal JEPs, iv) reduction of the set of minimal JEPs to those that 
occur in distinct sets of actives, v) identification of the relationships 
between the supporting actives of minimal JEPs and arrangement of 
them into hierarchies, and vi) extraction of the maximum set of 
commonly occurring atom pairs from the set of actives that support 
each minimal JEP. The illustrative examples deal with Ames 
mutagenicity, oestrogenicity, and hERG channel inhibition end 
points. The method is effective to cluster the data sets around 
minimal jumping-emerging structural patterns and finding 
descriptions of potentially activating structural features. Furthermore, 
the mined structural features have been shown to be related to some 
of the known alerts for all three tested end points. For example, 
Figure 9 highlights a JEP for well-known mutagenic alkylating agents. 

Conclusion 
 

The characterization of a chemical fragment or a chemical pattern 
associated to a toxicological profile is of first interest by considering 
the continuous development of chemoinformatics tools around this 
topic. Owing to the fact that a single chemical fragment is not always 
responsible for the overall toxicity of a chemical, the present objective 
is to analyze the combination of chemical fragments (chemical 
patterns) leading to an increase or a decrease of toxicity starting from 
a referential toxic fragment. The first described approach corresponds 
to the Klopmann’s method (CASE/MultiCASE) which extracts 
meaningful chemical fragments (named biophores) in function of 
their distribution between two datasets. Afterwards, these biophores 
were associated to QSARs or implemented in classification tools, 
leading to the first commercialized expert systems. Concerning the 
extraction of chemical fragments, a second generation of tools was 
more recently developed, corresponding to the Pattern Growth-Based 
algorithms (like Gaston). They led to very interesting results in terms 

of characterization of the fragments and statistical results for the 
estimation of the toxicity. The last evolution corresponds to the 
search of representative subsets of frequent patterns. In this review, we 
emphasize the notion of Emerging Patterns (EP), whose extraction is 
based on the notion of contrast (growth rate) between two datasets. 
We are at the beginning for EPs but, their potential in terms of 
statistics and interpretability related to the toxicological profile of 
chemical derivatives is really promising.43 The size of the EP set 
(number of patterns) in function of the size of the initial dataset is 
really an issue, and the notion of border does not seem to be sufficient 
to solve it. As described in the review, Representative Pruned 
Molecular Patterns (RPMPs) represents a first way to reduce this size 
without losing chemical information but to go further, an analysis of 
the relationships between the RPMPs must be carried out. This is 
underway. 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Example of JEPs (bottom) for mutagenic alkylating agents and 

supporting active compounds (top), according to Sherod et al.
42
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