Florence Thiard

Nicolas Catusse

Nadia Brauner

Cyclic production in regular robotic cells: A counterexample to the 1-cycle conjecture

come

Linear and circular robotic cells

Robotic flow-shops consists in m machines disposed in linear, semi-circular or ciruclar layout, served by a robotic arm. We focus on the case where all the parts to produce are identical. The objective is to maximize the throughput of the cell. A survey on robotic cells can be found in [START_REF] Brauner | Identical part production in cyclic robotic cells: Concepts, overview and open questions[END_REF].

The robotic cells we consider are composed of m bufferless machines, denoted by M 1 , M 2 . . . M m , an entry buffer IN and an exit buffer OU T . The parts must be processed on each of the machines M 1 , M 2 . . . M m in that order. The parts are available in infinite quantity at buffer IN ; likewise, the exit buffer OU T has infinite capacity.

We represent the entry buffer IN and the exit buffer OU T by two auxiliary machines, respectively M 0 and M m+1 . In a cell with circular layout, IN and OU T are in the same place: M 0 = M m+1 . We focus on the single-gripper robot, bufferless case, which means the robot and the machines M 1 . . . M m can only handle one part at a time. Thus, the robot has to be empty to pick up a part from a machine.

The cell operates with unbounded waiting policy (once processed, a part can remain on a machine as long as necessary) and additive travel times.

In this work, we make two further assumptions: we assume that the cell is balanced, meaning that the processing times on machines M 1 . . . M m are the same, and regular, which means that the distance between two consecutive machines is always the same. In this case, the problem's input consists in four numbers: m the number of machine, p the processing time, δ the travel time between two consecutive machines, and the loading/unloading time.

In a cell with linear or semi-circular layout verifying these assumptions, the travel time between 2 machines M i and M j is δ i,j = |i -j|δ. In a cell with circular layout, the travel time between 2 machines is defined by the shortest path along the circle, so δ i,j = min(|i -j|, m + 1 -|i -j|)δ. So far, circular layouts have been less studied than linear (or semi-circular) layouts, and some important results on the latter are not applicable to the former.

We consider cyclic robot moves. A k-cycle is a production cycle of exactly k parts: during one iteration of the cycle, k parts enter the cell through M 0 , k parts exit the cell through M m+1 , and the cells returns to the same state (same machines loaded, same machines empty, and same position of the robot). In particular, 1-cycles are production cycles of 1 part.

To describe the cycles we will use the concept of activities, introduced in [START_REF] Crama | Cyclic scheduling in 3-machine robotic flow shops[END_REF]. For i ∈ {0 . . . m}, activity A i refers to the following sequence of events:

• The robot unloads a part from M i ;

• The robot travels to M i+1 ;

• The robot loads the part onto M i+1 .

A k-cycle can be described as a sequence of activities. The authors in [START_REF] Crama | Cyclic scheduling in 3-machine robotic flow shops[END_REF] showed that a k-cycle is a sequence in which each activity A i occurs exactly k times, and there is exactly one occurrence of A i between A i-1 and A i+1 (in a cyclic sense), for i ∈ {1 . . . m -1}. More specifically a 1-cycle can be described as a permutation of activities A 0 , . . . , A m [START_REF] Sethi | Sequencing of parts and robot moves in a robotic cell[END_REF].

A cycle is optimal if it maximizes the throughput rate or equivalently minimizes the cycle time over the number of parts produced in one iteration T (C k) k . A set S of cycles is dominant if, for any instance, there exists a cycle of S that is optimal.

1-cycles are of a special interest as in a linear cell, the best 1-cycle can be found in polynomial time [START_REF] Crama | Robotic flowshop scheduling is strongly NP-complete[END_REF]. However, this result is not applicable to circular cells. Rajapakshe et al. in fact proved in [START_REF] Rajapakshe | Quantifying the impact of layout on productivity: An analysis from robotic-cell manufacturing[END_REF] that finding the best 1-cycle is NP-hard, for cells with a similar circular-type layout.

Dominant set of cycles : the 1-cycle conjecture

In [START_REF] Sethi | Sequencing of parts and robot moves in a robotic cell[END_REF], the authors state the following conjecture, and prove it is valid for 2 machine cells:

Conjecture 2.1 (1-cycle conjecture) The set of 1-cycle is dominant
For linear, regular, unbounded cells, the authors in [START_REF] Crama | Cyclic scheduling in 3-machine robotic flow shops[END_REF] and [START_REF] Brauner | On a conjecture about robotic cells: new simplified proof for the three-machine case[END_REF] proved that the conjecture is true for 3 machines, but a counterexample for 4-machines is shown in [START_REF] Brauner | Cycles and permutations in robotic cells[END_REF]. In the balanced case, the conjecture has been proven true for up to 6 machines [START_REF] Brauner | Cycles and permutations in robotic cells[END_REF][START_REF] Brauner | One-unit production cycles in balanced robotic cells[END_REF]. According to [START_REF] Brauner | Identical part production in cyclic robotic cells: Concepts, overview and open questions[END_REF], the proof can be extended up to 15 machines. We provide a counterexample to the 1-cycle conjecture for the circular case.

Ĉ = (A 0 A 3 A 2 A 5 A 1 A 4 A 3 A 6 A 0 A 2 A 5 A 4 A 1 A 6)
dominates all 1-cycles for the following instance:

δ = 1 = 0 p = 11
.

In order to prove Theorem 2.1, we study some classical cycles and establish some necessary properties of dominant cycles. In the following, we always assume that = 0 and neglect this parameter. As the instance in Theorem 2.1 has = 0, this assumption is sufficient for the proof.

Since the 2-machine case has been completely solved for both linear and circular layout, we will also always assume that m ≥ 3.

Lower bounds on the cycle times

First, we present two classical lower bounds, valid both for linear and circular layout. The formulation is adapted to the regular balanced case.

Property 2.1 [6] Any k-cycle c verifies T (c) ≥ k(p + 4δ) (1)
This bound is the minimum time between two loadings of the same machine.

Property 2.2 [9] Any k-cycle c verifies T (c) ≥ k((m + 1)δ + m min(p, δ)) (2)
Intuitively, if an activity A i is immediately followed by the subsequent activity A i+1 , then the robot waits p time units ; if not, it adds at least δ to its minimum travel time. Now, we introduce the following notations, for every cycle c:

• ∆(c) is the total travel time of the robot,

• d i,k (c)
is the travel time of the robot between the k-th loading of machine M i and its subsequent unloading (in a cyclic sense).

• d min (c) = min i,k (d i,k (c))
The following lower bound is actually a lower bound on the cycle-time of a given cycle, depending on this parameter.

Property 2.3 For any cycle c, the cycle time verifies

T (c) ≥ ∆(c) + max(0, p -d min (c)) (3)

Proof

It is easy to see that T (c) ≥ ∆(c).

Let (i 0 , k 0) = arg min i,k (d i,k (c)).
Between the k 0 -th loading of M i0 and its subsequent unloading, the robot travels d min , but there must be at least p units of time for the part to be processed. So, if p ≥ d min , somewhere between the loading and the unloading, the robot must wait (additionally to its travel time) at least p -d min units of time. Hence T (c) ≥ ∆(c) + max(0, p -d min (c))

Some classical cycles

Identity cycle

We call identity cycle (also named uphill permutation or forward cycle in the literature) the cycle

π id = (A 0 A 1 ...A m).
The cycle time of this cycle is

T (π id) = (m + 1)δ + mp (4)
In this cycle, the robot circles the cell once. Intuitively, this cycle is interesting for instances for which p is much smaller than δ. From the lower bound in Property 2.2, one can immediately derive the following:

Property 2.4 If p ≤ δ, then the identity cycle π id is optimal.

Downhill cycle

We call downhill cycle (also named reverse cycle) the cycle

π d = (A 0 A m A m-1 ...A 1). The cycle time of this cycle is T (π d) = 3(m + 1)δ + max(0, p -(3m -1)δ) (5)
In this cycle, each spot is visited by the robot three times. Intuitively, this cycle is interesting for instances for which p is much greater than δ. From the lower bound in Property 2.1, one can easily derive the following:

Property 2.5 If p ≥ (3m -1)δ, then the downhill cycle π d is optimal.

Odd-Even cycle

In circular cells, a third 1-cycle of particular interest is the odd-even cycle, defined as such:

For m even,

π oe = (A 0 A 2 A 4 . . . A m A 1 A 3 A 5 . . . A m-1)
And for m odd,

π oe = (A 0 A 2 A 4 . . . A m-1 A 1 A 3 A 5 . . . A m).
In this cycle, the robot circles around the cell twice: the first time performing even activities (thus loading odd machines), the second time performing odd activities (thus loading even machines).

The cycle time for the odd-even cycle is

T (π oe) = 2(m + 1)δ + 2α -1 α max(0, p -(m + 1)δ) with m = 2α if m even 2α -1 if m odd

Proof

Consider α consecutive iterations of π oe . The robot travels 2(m + 1)αδ, circling the cell 2α times. Let us follow the path of one same part in the cell.

During the first loop, the part M 1 is loaded with A 0 . It is then unloaded during the second loop with A 1 . Between the loading and the unloading, the robot travels (m + 1)δ and the piece must stay on M 1 at least p, so the robot must wait max(0, p -(m + 1)δ). Similarly, during any loop, the part is loaded on a machine, then unloaded and taken to the next machine during the next loop, and the robot must wait max(0, p -(m + 1)δ). If m is odd, the part exits on the last loop. If m is even, it is loaded on M m during the last loop.

Eventually, for this one part, the robot must wait at least (2α -1) max(0, p -(m + 1)δ) over α iterations of the cycle. Therefore,

T (π oe) ≥ 2(m + 1)δ + 2α -1 α max(0, p -(m + 1)δ)
Now, let us call w i j the waiting time of the robot at machine M j during the i-th iteration of cycle π oe , and

W i = (w i 1 , . . . , w i m). Let a = p -(m + 1)δ. Case 1: m odd π oe = (A 0 A 2 A 4 . . . A m-1 A 1 A 3 A 5 . . . A m)
The waiting times at iteration i are :

         w i 2j = max(0, a - α k=1+j w i-1 2k-1 - j-1 k=1 w i 2k) w i 2j-1 = max(0, a - α-1 k=j w i 2k - j-1 k=1 w i 2k-1)
If a ≤ 0 then all waiting times w are zero, and the cycle time is 2(m + 1)δ.

If not, we can easily check that the vector W 0 = (a α , . . . a α) is a fixed point of W . The corresponding cycle time is 2(m + 1)δ + 2α-1 α a Case 2: m even

π oe = (A 0 A 2 A 4 . . . A m A 1 A 3 A 5 . . . A m-1)
Similarly, the waiting times at iteration i are

         w i 2j = max(0, a - α k=1+j w i-1 2k-1 - j-1 k=1 w i 2k) w i 2j-1 = max(0, a - α k=j w i 2k - j-1 k=1 w i 2k-1)
If a ≤ 0 then W = 0, and the cycle time is 2(m + 1)δ.

If not, we can check that the vector

W 0 = (0, a α , . . . a α) is a fixed point of W . The corre- sponding cycle time is 2(m + 1)δ + 2α-1 α a
Finally,

T (π oe) = 2(m + 1)δ + 2α -1 α max(0, p -(m + 1)δ)

Best 1-cycle

In this section, we focus on the problem of the best 1-cycle. We seek the region of optimality (in the sense of optimality over all 1-cycles) of the three cycles presented in the previous section, and show some necessary properties of optimal 1-cycles in the remaining region. As the best 1-cycles are known for m = 3 and m = 4 (see [START_REF] Brauner | Ordonnancement dans des cellules robotisées[END_REF]), in the following we assume m ≥ 5.

In particular, for 6-machine cells satisfying our initial assumptions, we show that {π id , π oe , π d } form a set a dominant 1-cycles.

To make the following proofs more readable, we will use this notation for activities:

A i = A i mod (m+1) 2.
T (π) ≥ 2(m + 1)δ (6)
Proof Let π = π id be a 1-cycle different from the identity cycle.

Case 1: If π contains a sequence A i A j with j = i + 2 and j = i + 1, then we have

T (π) ≥ (m + 1)δ + (m -1) min(p, δ) + 2δ ≥ 2(m + 1)δ
as it takes the robot at least 2δ to travel from M i+1 to M j while performing A i A j .

Case 2: If not, then π contains a sequence A i A i+2 , and every other 2-element sub-sequence in π can be written A j A j+1 or A j A j+2 . Then, we know that:

• The robot always travels in the same direction, forward. With m ≥ 3, The shortest circular path from a machine M j to M j+1 never requires to go backward.

• The robot travels at least 2 times between M i+1 and M i+2 . Once loaded, while performing activity A i+1 and once empty, while performing the sequence A i A i+2 .

Hence the robot circles the cell at least twice:

T (π) ≥ 2(m + 1)δ 2.

Regions of optimality for classical cycles

In this section, we determine some values of parameter p, depending on δ, for which one of the 3 cycles π id , π oe and π d dominates 1-cycles.

Property 2.7

(i) if p ≤ m+1 m δ, then the identity permutation π id is dominates 1-cycles.

(ii) if (m+1) m δ ≤ p ≤ (m + 1)δ, then the odd-even cycle π oe dominates 1-cycles. (iii) if p ≥ 3(m -1)δ, the downhill permutation π d is dominates1-cycles.

Proof

Property (iii) follows directly from bound 1.

For p ≤ δ, then from bound 2 π id is optimal.

For δ ≤ p ≤ m+1 m δ, we have

T (π id) = (m + 1)δ + mp ≤ 2(m + 1)δ
and, from Property 2.6, for any 1-cycle π:

T (π) ≥ 2(m + 1)δ ≥ T π id which implies (i).
Finally, for (m+1) m δ ≤ p ≤ (m + 1)δ, we have

T (π oe) = 2(m + 1)δ T (π id) = (m + 1)δ + mp ≥ 2(m + 1)δ
and for any 1-cycle π = π id , from property 2.6:

T (π) ≥ 2(m + 1)δ which implies (ii).
Now remains the case of instances where (m + 1)δ ≤ p ≤ (3m -1)δ. This is the issue we address in the next section.

Necessary properties of optimal 1-cycles

We now assume that (m + 1)δ ≤ p ≤ (3m -1)δ. We establish some properties a 1-cycle must satisfy in order to do better than both the odd-even cycle and the downhill permutation in this region.

Let π * be a 1-cycle verifying, for (m + 1)δ ≤ p ≤ (3m -1)δ,

T (π *) < T (π oe) T (π *) < T (π d) = 3(m + 1)δ
Property 2.8 π * satisfies the following property:

(i) 2(m + 1)δ < ∆(π *) < 3(m + 1)δ (ii) π * doesn't contain any sequence A i A i+1 with i = m (iii) d min (π *) > ∆(π *) -3α-2 2α-1 (m + 1)δ
We will prove this property through a series of claims.

Claim 2.1 π * contains no sequence A i A i+1 with i = m.

Proof First, π * contains at most one sub-sequence of two consecutive activities (except from the sequence A m A 0), otherwise T (π *) ≥ (m + 1)δ + 2p ≥ 3(m + 1)δ.

Let us assume now that it exists one and only one i = m so that A i A i+1 is a sub-sequence of π * . We can already deduce that

T (π *) ≥ (m + 1)δ + (m + 1)δ + (m -1)δ (7)
Case 1:

π * = A 0 A 1 . . . A m
In this case, either π * contains the subsequence A m-1 A 2 , or there exist indices j / ∈ {m, 0} and k / ∈ {0, 1} so that A m-1 A j and A k A 2 are two distinct sub-sequences of π * . In both cases, the robot travels at least an additional 2δ compared to [START_REF] Crama | Robotic flowshop scheduling is strongly NP-complete[END_REF].

Case 2: π * = A 0 . . . A m-1 A m
In this case, either π * contains the subsequence A m-2 A 1 , or there exist indices j / ∈ {m -1, m} and k / ∈ m, 0 so that A m-2 A j and A k A 1 are two distinct sub-sequences of π * . In both cases, the robot travels at least an additional 2δ.

Case 3: π

* = A 0 . . . A i A i+1 . . . A m , with 1 ≤ i ≤ m -2
In this case, either π * contains the subsequence A i-1 A i+2 , or there exist indices j, k / ∈ {i, i + 1} so that A i-1 A j and A k A i+2 are sub-sequences of π * . In the second case, the robot travels an additional 2δ. In the first case, π * can be written in one of the following ways :

π * = A 0 . . . A i A i+1 SA i-1 A i+2 . . . A m (8)
π * = A 0 . . . A i-1 A i+2 SA i A i+1 . . . A m (9)
Where S is an activity sequence, including the empty sequence.

The robot already travels an additional δ while performing A i-1 A i+2 . In order to have no additional travel time, the sequence A i+1 SA i-1 in (8) or A i+2 SA i in (9) must be a subsequence(in the cyclic sense) of the following sequences :

A 0 A 2 A 4 . . . A m-1 or A 1 A 3 A 5 . . . A m if m is odd A 0 A 2 A 4 . . . A m A 1 A 3 A 5 . . . A m-1 if m is even
which is impossible as S cannot contain A 0 or A m . So, the robot travels at least an additionnal 2δ compared to [START_REF] Crama | Robotic flowshop scheduling is strongly NP-complete[END_REF] Case 4: π * = . . . A i A i+1 . . . and π * does not contain A m A 0

In this case, either π * contains the sub-sequence A m A 2 , either there exist indices j, k / ∈ {i, i + 1} and l = 0 so that A i-1 A j , A k A i+2 and A m A l are subsequences of π * , with at least 2 of these subsequences distinct. In both cases, the robot travels at least an additional 2δ. Proof This is a consequence of 2.1. As π * contains no sequence of the form A i A i+1 with i = m, there is two possibilities: Case 1: There exists a sub-sequence A i A j with j = i + 2 in π * . Then the travel time of the robot is at least (m + 1)δ + mδ + δ = 2(m + 1)δ

Case 2: π * contains only subsequences of the form A i A i+ and maybe A m A 0 . Similarly to the proof of 2.6, we can say that the robot always travels forward, and circles the cell twice: ∆(π *) ≥ 2(m + 1)δ. Proof Let us assume that ∆(π *) = 2(m + 1)δ. We already know that π * can have no subsequences A i A i+1 except for A m A 0 .

Case 1: π * doesn't contain the sequence A m A 0 . Then all sub-sequences have to be of the form

A i A i+2 :the only possible cycle is of the form A 0 A 2 A 4 . . . A m A 1 A 3 . . . A m-1 ,
f (p int) = T πoe (p int) = T π d (p int) = 3(m + 1)δ . The expression of f is f (p) = p + 3α -2 2α -1 (m + 1)δ For (m + 1)δ ≤ p ≤ p int , f (p) ≥ T πoe (p) ≥ T pi d (p) For p int ≤ p ≤ (3m -1)δ, f (p) ≥ T π d (p) ≥ T pioe (p) Let us introduce g(p) = ∆(π *) + max 0, p -(∆(π *) - 3α -2 2α -1 (m + 1)δ) . If d min (π *) ≤ ∆(π *) -3α-2
2α-1 (m + 1)δ, then, from 2.3 we can deduce:

T π * (p) ≥ ∆(π *) + max(0, p -d min (π *)) ≥ g(p) ≥ min(T πoe (p), T π d (p)) . So, d min (π *) > ∆(π *) -3α-2 2α-1 (m + 1)δ.

Dominant set of 1-cycles

We know that 1-cycles are permutations of activities. Given a 1-cycle, it is easy to check if it complies with the conditions exposed in Property 2.8. Of course this can only be done for small numbers of machines as the number of 1-cycles is exponential.

For 6 ≤ m ≤ 8, we computed all 1-cycles and found that no cycle matches the conditions in Property 2.8.

Proposition 2.1 For a regular balanced cell, with 6 ≤ m ≤ 8 and = 0, the set {π 0 , π oe , π d } dominates all 1-cycles.

Conclusion

Finally, we can prove Theorem 2.1.

Let us consider a 6-machine circular cell, with p = 11, δ = 1, = 0. From Proposition 2.1, we know that {π 0 , π oe , π d } dominates all 1-cycles.

For these parameters, one has We just need to show that For more commodity, let us rewrite C by simple rotation:

(A 0 A 2 A 5 A 4 A 1 A 6 A 0 A 3 A 2 A 5 A 1 A 4 A 3 A 6)
We have d 6,1 = d 2,2 = 10, and for all other (i, k), d i,k ≥ 11. As the first unloading of M 6 takes place between the first loading of M 2 and its subsequent unloading, the robot only needs to wait one unit of time, before unloading M 6 (see Figure 2).

Thus, we have T (Ĉ) = 39 + 1 = 40

T (Ĉ) 2 = 20 < T (π oe)
In conclusion, Ĉ is strictly better than all 1-cycles on this instance. We proved Theorem 2.1, thus showing that the 1-cycle conjectures is false for 6 machine.

 Figure (1a) shows an example of a 3-machine semi-circular cell, while figure (1b) shows a 3machine circular cell.

Figure 1 : 3 -

 13 Figure 1: 3-machine robotic cells

Theorem 2 . 1

 21 In a regular balanced unbounded 6-machine cell with circular layout, the 2-cycle

Claim 2 . 2

 22 In all cases, we have T (π *) ≥ (m + 1)δ + (m + 1)δ + (m -1)δ + 2δ = 3(m + 1)δ The travel time ∆(π *) associated with π * verifies ∆(π *) ≥ 2(m + 1)δ.

Claim 2 . 3

 23 The travel time ∆(π *) associated with π * verifies ∆(π *) > 2(m + 1)δ.

Claim 2 . 4

 24 The travel time ∆(π *) associated with π * verifies ∆(π *) < 3(m + 1)δ Proof Otherwise, we would have T (π *) ≥ 3(m + 1)δ = T (π d) Claim 2.5 d min (π *) verifies d min (π *) > ∆π -3α-2 2α-1 (m + 1)δ Proof Assume δ is fixed, and call T c (p) the cycle time of any cycle c depending on p. We assume p ≤ (3m -1)δ. Let's call p int = 3α-1 2α-1 (m + 1)δ the value of parameter p for which π d and π oe have the same cycle time. T πoe (p int) = T π d (p int) = 3(m + 1)δ Let f the affine function with coefficient 1 verifying

T (π id) = 7

 7

Figure 2 :

 2 Figure 2: An iteration of C, for p = 11 and δ = 1 During one iteration of Ĉ, the robot travels ∆(C) = 39.

 3.1 Another lower bound...

	Additionally to the lower bounds presented in Section 2.1 , we establish the following lower bound
	on 1-cycles:

Property 2.6 If p ≥ δ, and π is a 1-cycle with π = π id , then

 which is π oe if m is even, and not possible if m is odd.Case 2: π * contains the sequence A m A 0 . π * contains only one sequence of the formA i A i+3 or A i A i-1 .The others are of the form A i A i+2 . π * contains a sequence A m-1 A j with j = 0, and a sequence A l A 1 with l = m. Thus, π * must contain the sequence A m-1 A 1 . The only possible cycle is of the formA 0 A 2 A 4 . . . A m-1 A 1 A 3 . . . A m ,which is π oe if m is odd, and not possible if m is even.