
HAL Id: hal-01023816
https://hal.science/hal-01023816v2

Preprint submitted on 26 Mar 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cyclic production in regular robotic cells: A
counterexample to the 1-cycle conjecture

Florence Thiard, Nicolas Catusse, Nadia Brauner

To cite this version:
Florence Thiard, Nicolas Catusse, Nadia Brauner. Cyclic production in regular robotic cells: A
counterexample to the 1-cycle conjecture. 2014. �hal-01023816v2�

https://hal.science/hal-01023816v2
https://hal.archives-ouvertes.fr

Cyclic production in regular robotic cells:

A counterexample to the 1-cycle conjecture

Florence Thiard, Nicolas Catusse, Nadia Brauner

March 26, 2015

1 Linear and circular robotic cells

Robotic flow-shops consists in m machines disposed in linear, semi-circular or ciruclar layout,
served by a robotic arm. We focus on the case where all the parts to produce are identical. The
objective is to maximize the throughput of the cell. A survey on robotic cells can be found in
[2].

The robotic cells we consider are composed of m bufferless machines, denoted by M1,M2 . . .Mm,
an entry buffer IN and an exit buffer OUT . The parts must be processed on each of the machines
M1,M2 . . .Mm in that order. The parts are available in infinite quantity at buffer IN ; likewise,
the exit buffer OUT has infinite capacity.

We represent the entry buffer IN and the exit buffer OUT by two auxiliary machines, respectively
M0 and Mm+1. In a cell with circular layout, IN and OUT are in the same place: M0 = Mm+1.
Figure (1a) shows an example of a 3-machine semi-circular cell, while figure (1b) shows a 3-
machine circular cell.

(a) semi-circular layout (b) circular layout

Figure 1: 3-machine robotic cells

We focus on the single-gripper robot, bufferless case, which means the robot and the machines
M1 . . .Mm can only handle one part at a time. Thus, the robot has to be empty to pick up a
part from a machine.

The cell operates with unbounded waiting policy (once processed, a part can remain on a machine
as long as necessary) and additive travel times.

1

In this work, we make two further assumptions: we assume that the cell is balanced, meaning
that the processing times on machines M1 . . .Mm are the same, and regular, which means that
the distance between two consecutive machines is always the same. In this case, the problem’s
input consists in four numbers: m the number of machine, p the processing time, δ the travel
time between two consecutive machines, and ε the loading/unloading time.

In a cell with linear or semi-circular layout verifying these assumptions, the travel time between
2 machines Mi and Mj is δi,j = |i− j|δ. In a cell with circular layout, the travel time between 2
machines is defined by the shortest path along the circle, so δi,j = min(|i− j|,m+ 1− |i− j|)δ.
So far, circular layouts have been less studied than linear (or semi-circular) layouts, and some
important results on the latter are not applicable to the former.

We consider cyclic robot moves. A k-cycle is a production cycle of exactly k parts: during one
iteration of the cycle, k parts enter the cell through M0, k parts exit the cell through Mm+1,
and the cells returns to the same state (same machines loaded, same machines empty, and same
position of the robot). In particular, 1-cycles are production cycles of 1 part.

To describe the cycles we will use the concept of activities, introduced in [8]. For i ∈ {0 . . .m},
activity Ai refers to the following sequence of events:

• The robot unloads a part from Mi;

• The robot travels to Mi+1;

• The robot loads the part onto Mi+1.

A k-cycle can be described as a sequence of activities. The authors in [8] showed that a k-cycle is
a sequence in which each activity Ai occurs exactly k times, and there is exactly one occurrence
of Ai between Ai−1 and Ai+1 (in a cyclic sense), for i ∈ {1 . . .m− 1}. More specifically a 1-cycle
can be described as a permutation of activities A0, . . . , Am [11].

A cycle is optimal if it maximizes the throughput rate or equivalently minimizes the cycle time

over the number of parts produced in one iteration T (Ck)
k . A set S of cycles is dominant if, for

any instance, there exists a cycle of S that is optimal.

1-cycles are of a special interest as in a linear cell, the best 1-cycle can be found in polynomial
time [7]. However, this result is not applicable to circular cells. Rajapakshe et al. in fact proved
in [10] that finding the best 1-cycle is NP-hard, for cells with a similar circular-type layout.

2 Dominant set of cycles : the 1-cycle conjecture

In [11], the authors state the following conjecture, and prove it is valid for 2 machine cells:

Conjecture 2.1 (1-cycle conjecture) The set of 1-cycle is dominant

For linear, regular, unbounded cells, the authors in [8] and [4] proved that the conjecture is true
for 3 machines, but a counterexample for 4-machines is shown in [5]. In the balanced case, the
conjecture has been proven true for up to 6 machines [5, 3]. According to [2], the proof can be
extended up to 15 machines.

We provide a counterexample to the 1-cycle conjecture for the circular case.

Theorem 2.1 In a regular balanced unbounded 6-machine cell with circular layout, the 2-cycle

2

Ĉ = (A0A3A2A5A1A4A3A6A0A2A5A4A1A6)

dominates all 1-cycles for the following instance:

δ = 1 ε = 0 p = 11

.

In order to prove Theorem 2.1, we study some classical cycles and establish some necessary
properties of dominant cycles. In the following, we always assume that ε = 0 and neglect this
parameter. As the instance in Theorem 2.1 has ε = 0, this assumption is sufficient for the proof.

Since the 2-machine case has been completely solved for both linear and circular layout, we will
also always assume that m ≥ 3.

2.1 Lower bounds on the cycle times

First, we present two classical lower bounds, valid both for linear and circular layout. The
formulation is adapted to the regular balanced case.

Property 2.1 [6] Any k-cycle c verifies

T (c) ≥ k(p+ 4δ) (1)

This bound is the minimum time between two loadings of the same machine.

Property 2.2 [9] Any k-cycle c verifies

T (c) ≥ k((m+ 1)δ +mmin(p, δ)) (2)

Intuitively, if an activity Ai is immediately followed by the subsequent activity Ai+1, then the
robot waits p time units ; if not, it adds at least δ to its minimum travel time.

Now, we introduce the following notations, for every cycle c:

• ∆(c) is the total travel time of the robot,

• di,k(c) is the travel time of the robot between the k-th loading of machine Mi and its
subsequent unloading (in a cyclic sense).

• dmin(c) = min
i,k

(di,k(c))

The following lower bound is actually a lower bound on the cycle-time of a given cycle, depending
on this parameter.

Property 2.3 For any cycle c, the cycle time verifies

T (c) ≥ ∆(c) + max(0, p− dmin(c)) (3)

3

Proof

It is easy to see that T (c) ≥ ∆(c).

Let (i0, k0) = arg min
i,k

(di,k(c)). Between the k0-th loading of Mi0 and its subsequent unloading,

the robot travels dmin, but there must be at least p units of time for the part to be processed. So,
if p ≥ dmin, somewhere between the loading and the unloading, the robot must wait (additionally
to its travel time) at least p− dmin units of time. Hence T (c) ≥ ∆(c) + max(0, p− dmin(c)) �

2.2 Some classical cycles

Identity cycle

We call identity cycle (also named uphill permutation or forward cycle in the literature) the cycle
πid = (A0A1...Am). The cycle time of this cycle is

T (πid) = (m+ 1)δ +mp (4)

In this cycle, the robot circles the cell once. Intuitively, this cycle is interesting for instances for
which p is much smaller than δ. From the lower bound in Property 2.2, one can immediately
derive the following:

Property 2.4 If p ≤ δ, then the identity cycle πid is optimal.

Downhill cycle

We call downhill cycle (also named reverse cycle) the cycle πd = (A0AmAm−1...A1). The cycle
time of this cycle is

T (πd) = 3(m+ 1)δ + max(0, p− (3m− 1)δ) (5)

In this cycle, each spot is visited by the robot three times. Intuitively, this cycle is interesting
for instances for which p is much greater than δ. From the lower bound in Property 2.1, one can
easily derive the following:

Property 2.5 If p ≥ (3m− 1)δ, then the downhill cycle πd is optimal.

Odd-Even cycle

In circular cells, a third 1-cycle of particular interest is the odd-even cycle, defined as such:

For m even,
πoe = (A0A2A4 . . . AmA1A3A5 . . . Am−1)

And for m odd,
πoe = (A0A2A4 . . . Am−1A1A3A5 . . . Am).

In this cycle, the robot circles around the cell twice: the first time performing even activities (thus
loading odd machines), the second time performing odd activities (thus loading even machines).

The cycle time for the odd-even cycle is

T (πoe) = 2(m+ 1)δ +
2α− 1

α
max(0, p− (m+ 1)δ) with m =

{
2α if m even

2α− 1 if m odd

4

Proof

Consider α consecutive iterations of πoe. The robot travels 2(m+1)αδ, circling the cell 2α times.
Let us follow the path of one same part in the cell.

During the first loop, the part M1 is loaded with A0. It is then unloaded during the second loop
with A1. Between the loading and the unloading, the robot travels (m+ 1)δ and the piece must
stay on M1 at least p, so the robot must wait max(0, p− (m+ 1)δ). Similarly, during any loop,
the part is loaded on a machine, then unloaded and taken to the next machine during the next
loop, and the robot must wait max(0, p− (m+ 1)δ). If m is odd, the part exits on the last loop.
If m is even, it is loaded on Mm during the last loop.

Eventually, for this one part, the robot must wait at least (2α− 1) max(0, p− (m+ 1)δ) over α
iterations of the cycle. Therefore,

T (πoe) ≥ 2(m+ 1)δ +
2α− 1

α
max(0, p− (m+ 1)δ)

Now, let us call wij the waiting time of the robot at machine Mj during the i-th iteration of cycle

πoe, and W i = (wi1, . . . , w
i
m). Let a = p− (m+ 1)δ.

Case 1: m odd πoe = (A0A2A4 . . . Am−1A1A3A5 . . . Am) The waiting times at iteration i are :
wi2j = max(0, a−

α∑
k=1+j

wi−1
2k−1 −

j−1∑
k=1

wi2k)

wi2j−1 = max(0, a−
α−1∑
k=j

wi2k −
j−1∑
k=1

wi2k−1)

If a ≤ 0 then all waiting times w are zero, and the cycle time is 2(m+ 1)δ.

If not, we can easily check that the vector W0 = (aα , . . .
a
α) is a fixed point of W . The

corresponding cycle time is 2(m+ 1)δ + 2α−1
α a

Case 2: m even πoe = (A0A2A4 . . . AmA1A3A5 . . . Am−1)

Similarly, the waiting times at iteration i are
wi2j = max(0, a−

α∑
k=1+j

wi−1
2k−1 −

j−1∑
k=1

wi2k)

wi2j−1 = max(0, a−
α∑
k=j

wi2k −
j−1∑
k=1

wi2k−1)

If a ≤ 0 then W = 0, and the cycle time is 2(m+ 1)δ.

If not, we can check that the vector W0 = (0, aα , . . .
a
α) is a fixed point of W . The corre-

sponding cycle time is 2(m+ 1)δ + 2α−1
α a

Finally,

T (πoe) = 2(m+ 1)δ +
2α− 1

α
max(0, p− (m+ 1)δ)

�

5

2.3 Best 1-cycle

In this section, we focus on the problem of the best 1-cycle. We seek the region of optimality
(in the sense of optimality over all 1-cycles) of the three cycles presented in the previous section,
and show some necessary properties of optimal 1-cycles in the remaining region. As the best
1-cycles are known for m = 3 and m = 4 (see [1]), in the following we assume m ≥ 5.

In particular, for 6-machine cells satisfying our initial assumptions, we show that {πid, πoe, πd}
form a set a dominant 1-cycles.

To make the following proofs more readable, we will use this notation for activities:

Ai = Ai mod (m+1)

2.3.1 Another lower bound...

Additionally to the lower bounds presented in Section 2.1 , we establish the following lower bound
on 1-cycles:

Property 2.6 If p ≥ δ, and π is a 1-cycle with π 6= πid, then

T (π) ≥ 2(m+ 1)δ (6)

Proof Let π 6= πid be a 1-cycle different from the identity cycle.

Case 1: If π contains a sequence AiAj with j 6= i+ 2 and j 6= i+ 1, then we have

T (π) ≥ (m+ 1)δ + (m− 1) min(p, δ) + 2δ ≥ 2(m+ 1)δ

as it takes the robot at least 2δ to travel from Mi+1 to Mj while performing AiAj .

Case 2: If not, then π contains a sequence AiAi+2, and every other 2-element sub-sequence in
π can be written AjAj+1 or AjAj+2. Then, we know that:

• The robot always travels in the same direction, forward. With m ≥ 3, The shortest
circular path from a machine Mj to Mj+1 never requires to go backward.

• The robot travels at least 2 times between Mi+1 and Mi+2. Once loaded, while
performing activity Ai+1 and once empty, while performing the sequence AiAi+2.

Hence the robot circles the cell at least twice:

T (π) ≥ 2(m+ 1)δ

�

2.3.2 Regions of optimality for classical cycles

In this section, we determine some values of parameter p, depending on δ, for which one of the
3 cycles πid, πoe and πd dominates 1-cycles.

Property 2.7

(i) if p ≤ m+1
m δ, then the identity permutation πid is dominates 1-cycles.

6

(ii) if (m+1)
m δ ≤ p ≤ (m+ 1)δ, then the odd-even cycle πoe dominates 1-cycles.

(iii) if p ≥ 3(m− 1)δ, the downhill permutation πd is dominates1-cycles.

Proof

Property (iii) follows directly from bound 1.

For p ≤ δ, then from bound 2 πid is optimal.

For δ ≤ p ≤ m+1
m δ, we have

T (πid) = (m+ 1)δ +mp ≤ 2(m+ 1)δ

and, from Property 2.6, for any 1-cycle π:

T (π) ≥ 2(m+ 1)δ ≥ Tπid

which implies (i).

Finally, for (m+1)
m δ ≤ p ≤ (m+ 1)δ, we have

T (πoe) = 2(m+ 1)δ

T (πid) = (m+ 1)δ +mp ≥ 2(m+ 1)δ

and for any 1-cycle π 6= πid, from property 2.6:

T (π) ≥ 2(m+ 1)δ

which implies (ii). �

Now remains the case of instances where (m+ 1)δ ≤ p ≤ (3m− 1)δ. This is the issue we address
in the next section.

2.3.3 Necessary properties of optimal 1-cycles

We now assume that (m + 1)δ ≤ p ≤ (3m − 1)δ. We establish some properties a 1-cycle must
satisfy in order to do better than both the odd-even cycle and the downhill permutation in this
region.

Let π∗ be a 1-cycle verifying, for (m+ 1)δ ≤ p ≤ (3m− 1)δ,{
T (π∗) < T (πoe)
T (π∗) < T (πd) = 3(m+ 1)δ

Property 2.8 π∗ satisfies the following property:

(i) 2(m+ 1)δ < ∆(π∗) < 3(m+ 1)δ

(ii) π∗ doesn’t contain any sequence AiAi+1 with i 6= m

(iii) dmin(π∗) > ∆(π∗)− 3α−2
2α−1 (m+ 1)δ

We will prove this property through a series of claims.

7

Claim 2.1 π∗ contains no sequence AiAi+1 with i 6= m.

Proof First, π∗ contains at most one sub-sequence of two consecutive activities (except from
the sequence AmA0), otherwise T (π∗) ≥ (m+ 1)δ + 2p ≥ 3(m+ 1)δ.

Let us assume now that it exists one and only one i 6= m so that AiAi+1 is a sub-sequence of π∗.
We can already deduce that

T (π∗) ≥ (m+ 1)δ + (m+ 1)δ + (m− 1)δ (7)

Case 1: π∗ = A0A1 . . . Am

In this case, either π∗ contains the subsequence Am−1A2, or there exist indices j /∈ {m, 0}
and k /∈ {0, 1} so that Am−1Aj and AkA2 are two distinct sub-sequences of π∗. In both
cases, the robot travels at least an additional 2δ compared to (7).

Case 2: π∗ = A0 . . . Am−1Am

In this case, either π∗ contains the subsequence Am−2A1, or there exist indices j /∈ {m −
1,m} and k /∈ m, 0 so that Am−2Aj and AkA1 are two distinct sub-sequences of π∗. In
both cases, the robot travels at least an additional 2δ.

Case 3: π∗ = A0 . . . AiAi+1 . . . Am, with 1 ≤ i ≤ m− 2

In this case, either π∗ contains the subsequence Ai−1Ai+2, or there exist indices j, k /∈
{i, i + 1} so that Ai−1Aj and AkAi+2 are sub-sequences of π∗. In the second case, the
robot travels an additional 2δ. In the first case, π∗ can be written in one of the following
ways :

π∗ = A0 . . . AiAi+1SAi−1Ai+2 . . . Am (8)

π∗ = A0 . . . Ai−1Ai+2SAiAi+1 . . . Am (9)

Where S is an activity sequence, including the empty sequence.

The robot already travels an additional δ while performing Ai−1Ai+2. In order to have
no additional travel time, the sequence Ai+1SAi−1 in (8) or Ai+2SAi in (9) must be a
subsequence(in the cyclic sense) of the following sequences :{

A0A2A4 . . . Am−1 or A1A3A5 . . . Am if m is odd

A0A2A4 . . . AmA1A3A5 . . . Am−1 if m is even

which is impossible as S cannot contain A0 or Am. So, the robot travels at least an
additionnal 2δ compared to (7)

Case 4: π∗ = . . . AiAi+1 . . . and π∗ does not contain AmA0

In this case, either π∗ contains the sub-sequence AmA2, either there exist indices j, k /∈
{i, i+1} and l 6= 0 so that Ai−1Aj , AkAi+2 and AmAl are subsequences of π∗, with at least
2 of these subsequences distinct. In both cases, the robot travels at least an additional 2δ.

In all cases, we have T (π∗) ≥ (m+ 1)δ + (m+ 1)δ + (m− 1)δ + 2δ = 3(m+ 1)δ �

Claim 2.2 The travel time ∆(π∗) associated with π∗ verifies ∆(π∗) ≥ 2(m+ 1)δ.

8

Proof This is a consequence of 2.1. As π∗ contains no sequence of the form AiAi+1 with i 6= m,
there is two possibilities:

Case 1: There exists a sub-sequence AiAj with j 6= i + 2 in π∗. Then the travel time of the
robot is at least (m+ 1)δ +mδ + δ = 2(m+ 1)δ

Case 2: π∗ contains only subsequences of the form AiAi+ and maybe AmA0. Similarly to the
proof of 2.6, we can say that the robot always travels forward, and circles the cell twice:
∆(π∗) ≥ 2(m+ 1)δ. �

Claim 2.3 The travel time ∆(π∗) associated with π∗ verifies ∆(π∗) > 2(m+ 1)δ.

Proof Let us assume that ∆(π∗) = 2(m + 1)δ. We already know that π∗ can have no sub-
sequences AiAi+1 except for AmA0.

Case 1: π∗ doesn’t contain the sequence AmA0. Then all sub-sequences have to be of the form
AiAi+2 :the only possible cycle is of the form A0A2A4 . . . AmA1A3 . . . Am−1, which is πoe
if m is even, and not possible if m is odd.

Case 2: π∗ contains the sequence AmA0. π∗ contains only one sequence of the form AiAi+3 or
AiAi−1. The others are of the form AiAi+2. π∗ contains a sequence Am−1Aj with j 6= 0,
and a sequence AlA1 with l 6= m. Thus, π∗ must contain the sequence Am−1A1. The only
possible cycle is of the form A0A2A4 . . . Am−1A1A3 . . . Am, which is πoe if m is odd, and
not possible if m is even. �

Claim 2.4 The travel time ∆(π∗) associated with π∗ verifies ∆(π∗) < 3(m+ 1)δ

Proof Otherwise, we would have T (π∗) ≥ 3(m+ 1)δ = T (πd) �

Claim 2.5 dmin(π∗) verifies dmin(π∗) > ∆π − 3α−2
2α−1 (m+ 1)δ

Proof Assume δ is fixed, and call Tc(p) the cycle time of any cycle c depending on p. We assume
p ≤ (3m− 1)δ.

Let’s call pint = 3α−1
2α−1 (m+1)δ the value of parameter p for which πd and πoe have the same cycle

time.
Tπoe

(pint) = Tπd
(pint) = 3(m+ 1)δ

Let f the affine function with coefficient 1 verifying

f(pint) = Tπoe
(pint) = Tπd(pint) = 3(m+ 1)δ

.

The expression of f is

f(p) = p+
3α− 2

2α− 1
(m+ 1)δ

For (m+ 1)δ ≤ p ≤ pint,
f(p) ≥ Tπoe(p) ≥ Tpid(p)

For pint ≤ p ≤ (3m− 1)δ,
f(p) ≥ Tπd

(p) ≥ Tpioe(p)

9

Let us introduce

g(p) = ∆(π∗) + max

[
0, p− (∆(π∗)− 3α− 2

2α− 1
(m+ 1)δ)

]
.

If dmin(π∗) ≤ ∆(π∗)− 3α−2
2α−1 (m+ 1)δ, then, from 2.3 we can deduce:

Tπ∗(p) ≥ ∆(π∗) + max(0, p− dmin(π∗)) ≥ g(p) ≥ min(Tπoe(p), Tπd
(p))

.

So, dmin(π∗) > ∆(π∗)− 3α−2
2α−1 (m+ 1)δ. �

2.4 Dominant set of 1-cycles

We know that 1-cycles are permutations of activities. Given a 1-cycle, it is easy to check if it
complies with the conditions exposed in Property 2.8. Of course this can only be done for small
numbers of machines as the number of 1-cycles is exponential.

For 6 ≤ m ≤ 8, we computed all 1-cycles and found that no cycle matches the conditions in
Property 2.8.

Proposition 2.1 For a regular balanced cell, with 6 ≤ m ≤ 8 and ε = 0, the set {π0, πoe, πd}
dominates all 1-cycles.

2.4.1 Conclusion

Finally, we can prove Theorem 2.1.

Let us consider a 6-machine circular cell, with p = 11, δ = 1, ε = 0. From Proposition 2.1, we
know that {π0, πoe, πd} dominates all 1-cycles.

For these parameters, one has

T (πid) = 7 + 66 = 73 (10)

T (πoe) = 14 +
5

3
4 = 20 +

2

3
(11)

T (πdh) = 21 (12)

We just need to show that T (Ĉ)
k ≤ T (πoe) = 20 + 2

3 .

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
IN

OUT

1

2

3

4

5

6

t

m

Figure 2: An iteration of C, for p = 11 and δ = 1

During one iteration of Ĉ, the robot travels ∆(C) = 39.

10

For more commodity, let us rewrite C by simple rotation:

(A0A2A5A4A1A6A0A3A2A5A1A4A3A6)

We have d6,1 = d2,2 = 10, and for all other (i, k), di,k ≥ 11. As the first unloading of M6 takes
place between the first loading of M2 and its subsequent unloading, the robot only needs to wait
one unit of time, before unloading M6 (see Figure 2).

Thus, we have T (Ĉ) = 39 + 1 = 40

T (Ĉ)

2
= 20 < T (πoe)

In conclusion, Ĉ is strictly better than all 1-cycles on this instance. We proved Theorem 2.1,
thus showing that the 1-cycle conjectures is false for 6 machine.

References

[1] N. Brauner. Ordonnancement dans des cellules robotisées. Thèse de doctorat, Université
Joseph Fourier, Grenoble, France, 1999.

[2] N. Brauner. Identical part production in cyclic robotic cells: Concepts, overview and open
questions. Discrete Applied Mathematics, 156(13):2480–2492, 2008.

[3] N. Brauner, Y. Crama, and G. Finke. One-unit production cycles in balanced robotic cells. In
Proceedings IEPM’01, International Conference on Industrial Engineering and Production
Management, pages 508–518, Quebec City, Canada, 2001.

[4] N. Brauner and G. Finke. On a conjecture about robotic cells: new simplified proof for the
three-machine case. Journal of Information Systems and Operational Research - INFOR:
Scheduling in Computer and Manufacturing Systems, 37(1):20–36, 1999.

[5] N. Brauner and G. Finke. Cycles and permutations in robotic cells. Mathematical and
Computer Modelling, 34(5-6):565–591, 2001.

[6] Y. Crama and J. van de Klundert. Cyclic scheduling of identical parts in a robotic cell.
Operations Research, 45(6):952–965, 1997.

[7] Y. Crama and J. van de Klundert. Robotic flowshop scheduling is strongly NP-complete. In
O.J. Vrieze W.K. Klein Haneveld and L.C.M. Kallenberg, editors, Ten Years LNMB, pages
277–286, CWI Tract 122, Amsterdam, The Netherlands, 1997.

[8] Y. Crama and J. van de Klundert. Cyclic scheduling in 3-machine robotic flow shops.
Journal of Scheduling, 2:35–54, 1999.

[9] M. Dawande, C. Sriskandarajah, and S. Sethi. On throughput maximization in constant
travel-time robotic cells. Manufacturing and Service Operations Management, 4(4):296–312,
2002.

[10] T. Rajapakshe, M. Dawande, and C. Sriskandarajah. Quantifying the impact of layout on
productivity: An analysis from robotic-cell manufacturing. Operations Research, 59(2):440–
454, 2011.

11

[11] S. P. Sethi, C. Sriskandarajah, G. Sorger, J. Blazewicz, and W. Kubiak. Sequencing of parts
and robot moves in a robotic cell. International Journal of Flexible Manufacturing Systems,
4:331–358, 1992.

12

