
HAL Id: hal-01023618
https://hal.science/hal-01023618

Submitted on 25 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Finite memory state observer design for polytopic
systems. Application to sensor fault diagnosis
Souad Bezzaoucha, Benoît Marx, Didier Maquin, José Ragot

To cite this version:
Souad Bezzaoucha, Benoît Marx, Didier Maquin, José Ragot. Finite memory state observer design
for polytopic systems. Application to sensor fault diagnosis. IEEE Multi-Conference on Systems and
Control, MSC 2014, Oct 2014, Antibes, France. �10.1109/CCA.2014.6981335�. �hal-01023618�

https://hal.science/hal-01023618
https://hal.archives-ouvertes.fr


Finite Memory State Observer Design for Polytopic Systems.
Application to Actuator Fault Diagnosis

Souad Bezzaoucha1, Benoı̂t Marx2,3, Didier Maquin2,3 and José Ragot2,3∗
†‡

Abstract

This paper addresses the Finite Memory Observer
(FMO) design applied to polytopic models. After a brief
introduction on FMO for linear systems, the nonlinear
models represented in a Takagi-Sugeno (T-S) or Poly-
topic form are then considered. The considered ob-
server design will be applied to investigate the fault di-
agnosis for nonlinear discrete-time systems subject to
unknown input where joint system states and unknown
inputs estimation is proposed.

1. Introduction

In order to detect and isolate a sensor fault through
the estimation of system outputs using measurable sig-
nals and the model of the system, fault detection and
isolation (FDI) techniques based on the time-evolution
of the residual signals obtained by the comparison be-
tween the measured outputs and the estimated outputs
[1], [2] are commonly considered. The procedure is per-
formed by defining and generating some residual sig-
nal in order to detect the occurring fault(s). The resid-
ual signals often consist in output estimation error, pro-
vided by classical or unknown input observers. Then
the residual analysis and / or structuration may lead to
fault isolation. A way to do so is to establish the theo-
retical influence of each fault on each residual, namely
the signature table. Then, a decision logic is used to
generate fault indicators based on these residuals.
System states or outputs estimation is the basis for the
FDI methods. Among estimation techniques, those us-
ing Kalman filters or a Luenberger observer are widely
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used. These estimators are said to be infinite memory
and hence the state estimation error converges to zero in
infinite time. In contrast, the Finite Memory Observer
(FMO) has the advantage to ensure the convergence of
the state estimation in a finite time, at least in the ab-
sence of disturbances.
Despite the interest mentioned above, few studies have
been published on the FMO compared to those on infi-
nite memory observers. The pioneering works are due
to Jazwinski [3], [4] and [5] where a state estimation
formulation from a discrete or continuous integral form
of the inputs-outputs has been proposed. This form was
also considered by Medvedev [6], [7] and Byrski [8]
[9]. This filtering technique applied for the continuous
case [10], [11] as well as for the discrete one [12], [13],
offers a generic aspect in the sense that it is applied for
state estimation, parameter estimation and control with
sliding horizon. Note that the nonlinear case has been
less discussed, however one can refer to the following
works [14], [15], [16].
Several works based on sliding horizon for an exact
state reconstruction in a finite time (without measure-
ment noise nor model uncertainties) may be found in
the literature with different terminologies like exact ob-
servers, FMO, integral observers and ideal observers.
Most of these studies are academic, nevertheless some
of them are applied to electric power transmission net-
works [17], diesel engines diagnosis [18], fuel cell esti-
mation [19], state converters estimation [20] or general
applications in the diagnosis framework [21], [22].
Given the advantage of the FMO, it seems interesting to
extend its scope to nonlinear systems. As it was men-
tioned previously, few works deal with the nonlinear
case. This is why in the present paper a particular at-
tention is given to nonlinear systems represented in a
polytopic or Takagi-Sugeno (T-S) form. The polytopic
model may have different names, such as fuzzy model
(Takagi-Sugeno model), multi-model, local model net-
works, etc. It allows the representation of nonlinear be-
haviors by the interpolation of a set of linear submod-
els. Each submodel contributes to the global behavior of



the nonlinear system through a weighting function [23].
The T-S structure may be obtained by transforming the
original system into a polytopic linear model based on
the sector nonlinearity approach and the convex poly-
topic transformation. This transformation has the ma-
jor interest to exactly represent the system without any
loss of informations since the considered nonlinearities
are bounded (each parameter varies between two known
values).
In the present work, finite memory observer for nonlin-
ear systems represented in a T-S form are proposed. The
paper is organized as follows. Section II introduces the
state and unknown input estimation with finite memory
observer for linear systems. In section III the T-S sys-
tems are considered for both measurable and unmeasur-
able premise variables. Illustrative examples are pre-
sented in Section IV and conclusion results are detailed
in section V.

2. Preliminaries: Finite Memory Observer
for linear systems

The FMO is designed on a finite sliding horizon of
length r+1. From available measurements at time k+r
in a time interval [k : k+r], the system states are then es-
timated in finite time. The horizon is moved by one step
forward [k+ 1 : k+ r+ 1] which allows to estimate the
state at the instant k+ r+1. The next section details the
above procedure and expands it to the unknown inputs
estimation.

2.1. State estimation

Let us consider the following system:

{

xk+1 = Axk +Buk, x ∈ Rnx

yk = Cxk
(1)

where xk is the system state at the instant k, uk ∈ Rnu

the input and yk the output. A, B and C are the system
matrices with appropriate dimensions.
Using the system equation (1), the output expression at
time k+ r is given by:

yk+r =CArxk +CAr−1Buk + · · ·+CBuk+r−1 (2)

Gathering the outputs on the time horizon [k : k+ r], let
us note:

ỹk = Mxxk +Muũk (3)

with:
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Proposition 1 A FMO for system (1) is given by the
following structure:










x̂k+r = Ar x̂k +T ũk

x̂k = (MT
x W Mx)

−1MT
x W (ỹk −Muũk)

T =
[

Ar−1B Ar−2B . . .B
]

(4)

where W is a positive definite weighting matrix of ap-
propriate dimension chosen accordingly to the state
components for which some specific importance is
given.

One can easily verify that x̂k+r = xk+r by replacing
the expression of x̂k and (3) in x̂k+r (4):






























x̂k+r= Ar(MT
x W Mx)

−1MT
x W (ỹk −Muũk)+T ũk

=Ar(MT
x WMx)

−1MT
x W (Mxxk +Muũk −Muũk)

+T ũk

= Arxk +T ũk

= xk+r

Remark 1 Expression (4) shows that the state estimate
x̂k+r at the instant k+ r results from the input and out-
puts filtering on the time horizon [k : k+ r]. Since the
same procedure is applied one step forward [k + 1 :
k + r + 1], it is possible to establish a recurrence re-
lation between the state estimation x̂k+r and x̂k+r+1.

In the next subsection, an extension for joint state and
unknown input FMO is considered. The proposed struc-
ture is based on the same one given in (4).

2.2. State and unknown input finite memory
observer

Let us consider the following system subject to non
measurable unknown input p:
{

xk+1 = Axk +Buk +Ppk, x ∈ Rnx , p ∈ Rnp

yk = Cxk
(5)



The unknown input dynamic is given by:

pk+1 = pk +δk (6)

where δk is the unknown input variation at the instant k.

An augmented state xa
k =

(

xk

pk

)

is defined with the con-

catenation of the system state and the unknown input:
{

xa
k+1 = Aaxa

k +Bauk +Paδk

yk = Caxa
k

(7)

with:






























xa
k =

[

xk

pk

]

Aa =

[

A P

0 I

]

Ba =

[

B

0

]

Pa =

[

0

I

]

Ca =
[

C 0
]

(8)

Equation (3) may be extended in the form:

ỹk = Ma
x xa

k +Ma
u ũk +Ma

δ δ̃k (9)

with:
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By analogy with the previous subsection results, the
augmented state estimate x̂a

k is given by a similar ex-
pression than the one given in (4). Then from x̂a

k we
directly deduce the estimation of x̂k of the state and p̂k

of the unknown input. In the next section an extension
of the above finite memory observer is given for nonlin-
ear T-S systems.

3. Finite memory observers for T-S systems

The T-S representation of a nonlinear system con-
sists in a time-varying interpolation of a set of linear
submodels. Each submodel contributes to the global
behavior of the nonlinear system through a weighting
function µi(ξk) [23].
Let us consider the following T-S model [24]:

xk+1 = Ak xk +Bk uk (10)

with:

Ak =
r

∑
i=1

µi(ξk)Ai, Bk =
r

∑
i=1

µi(ξk)Bi (11)

where the weighting functions µi(ξk) depend on the so-
called premise variable ξk which may be a state, input,
or output combination. These weighting functions sat-
isfy the following convex sum property:

0 ≤ µi(ξk)≤ 1,
r

∑
i=1

µi(ξk) = 1 (12)

s.t. xk ∈ Rnx and uk ∈ Rnu .
Roughly speaking, the FMO design for T-S models is
the same as for the conventional linear case. However,
some difficulties occur when the premise variables are
not known.

3.1. Known premise variables

In the present subsection, the case of known
premise variables is considered. Based on the same
structure as for the linear case, for the time horizon
[k : k+ r], the output vector is given by:

ỹk = Mx(ξk)xk +Mu(ξk)ũk (13)

with the following definitions:

ỹT
k =

[

yT
k . . . yT

k+r

]

, ũT
k =

[

uT
k . . . uT

k+r−1

]

Mx(ξk) =
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, Mu(ξk) =













(M1
u(ξk))
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(M1
u(ξk))

T =
[

0 (CBk)
T (CAk+1Bk)

T

. . . (CAk+r−1 . . .Ak+1Bk)
T
]

(M2
u(ξk))

T =
[

0 0 (CBk+1)
T

. . . (CAk+r−1 . . .Ak+2Bk+1)
T
]

(Mr
u(ξk))

T =
[

0 0 . . . (CBk+r−1)
T
]

(14)

Note that the matrices Ak and Bk (11) are time depen-
dent (depend on the premise variables ξk) which implies
that the matrices Mx(ξk) and Mu(ξk) are also time de-
pendent.
At time k, let us consider the following criterion:

Φ(xk) =‖ ỹk −Mx(ξk)xk −Mu(ξk)ũk ‖
2
W (15)

where W is a positive definite weighting matrix of ap-
propriate dimension chosen accordingly to the state
components for which some specific importance is
given.
Supposing that Mx is full column rank, the state estima-
tor may be given in the following form:























x̂k=
(

MT
x (ξk)W Mx(ξk)

)−1
MT

x (ξk)W
(

ỹk −Mu(ξk)ũk
)

x̂k+r = Ak+r−1 . . .Akx̂k +T ũk

T=
[

Ak+r−1 . . .Ak+1Bk Ak+r−1 . . .Bk+1 . . . Bk+r−1
]

(16)
The state estimation at time k+ r is then deduced using
the data collected on the interval [k : k+ r]. Then, the
horizon is moved by one step forward [k+1 : k+ r+1]
which allows to estimate the state at the instant k+r+1.

3.2. State filtering

The model (1) does not take into account the noise
that frequently corrupts the outputs. Without a precise
modeling of that noise, it is however possible to reduce
its influence on the estimates by introducing, in the op-
timization criterion, a regularization term:

Φ(xr
k) =‖ ỹk −Mx(ξk)xr

k −Mu(ξk)ũk ‖
2
W

+ ‖ xr
k − xk−1 ‖

2
F

where F is a positive definite weighting matrix of ap-
propriate dimension which plays the same role as W
(chosen accordingly to accentuate the filtering on a con-
sidered state component).
The derivative of the above criterion with regard to the
state is given by:

∂Φ
∂xr

k
=−2MT

x (ξk)W (ỹk −Mx(ξk)x
r
k −Mu(ξk)ũk)

+2F (xr
k − xk−1)

(17)

The solution is given for:

x̂r
k = (MT

x (ξk)WMx(ξk)+F)−1

(

MT
x (ξk)W (ỹ−Mu ũ)+F x̂k−1

)

(18)

Remark 2 By developing the inverse of the matrix
MT

x (ξk)WMx(ξk) + F, the solution (18) may be ex-
pressed in terms of the non regularized solution given
in (16).

x̂r
k =

(

(MT
x (ξk)W Mx(ξk))

−1 F + I
)−1

(

x̂k +(MT
x (ξk)W Mx(ξk))

−1F x̂k−1
)

(19)

where x̂k correspond to the state estimation obtained
without filtering.
Unsurprisingly, from (19), we notice that if F → 0, then
x̂r

k → x̂k and if F → ∞ then x̂r
k → x̂k−1.

3.3. Unknown premise variables

Let us now consider the case where the the weight-
ing functions of the matrices Ak and Bk depend on the
(unknown) state of the system. Instead of the analytical
solution (18), an iterative solution is proposed.
For the time horizon [k : k+ r], let us note x̂0

k the initial
state estimation, which may be set equal to the previous
horizon state estimate x̂k−1. The state estimate is then
given by:











































x̂(1)k =
(

MT
x (x̂

(0)
k )W Mx(x̂

(0)
k )
)−1

MT
x (x̂

(0)
k )

W
(

ỹk −Mu(x̂
(0)
k )ũk

)

Mx(x̂
(0)
k ) = Mx(ξk) |ξk=x̂(0)k

Mu(x̂
(0)
k ) = Mu(ξk) |ξk=x̂(0)k

(20)
More generally, at iteration q+1 we get:



























































x̂(q+1)
k =

(

MT
x (x̂

(q)
k )W Mx(x̂

(q)
k )
)−1

MT
x (x̂

(q)
k )

W
(

ỹk −Mu(x̂
(q)
k )ũk

)

x̂(q+1)
k+r = Ak+r−1 . . .Akx̂(q+1)

k +T (x̂(q)k )ũk

Mx(x̂
(q)
k ) = Mx(ξk) |x̂k=x̂(q)k

Mu(x̂
(q)
k ) = Mu(ξk) |x̂k=x̂(q)k

(21)
The same idea is applied when considering the noise
filtering as explained in section III.B.



3.4. State and unknown input estimation

The extension of the proposed observer in section
II.B to the T-S case is deduced straightforwardly by re-
placing Ab, Bk and C in (14) by Aa

k , Ba
k and Ca defined

by (8) in which A, B and P are replaced by Ak, Bk and
Pk respectively.

4. Illustrative examples

In the following section, numerical examples are
given in order to illustrate the effectiveness of the pro-
posed observers.
Let us consider the T-S model with two submodels and
state dependent premise variables:
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C =
[

1 0 0
]

µ1(xk) =
1
2
(1+ tanh(x1(k)/0.5)), µ2(xk) = 1−µ1(k)

(22)

4.1. State estimation

In the considered example, the weighting functions
are state dependent (x1(k)). The formulation given by
(20) and (21) of section III.C is then applied.

In figure 1 are depicted the system states xi, i =
1,2,3 as well as their estimates. Only one state is mea-
sured and the considered time horizon length is equal to
3. Figure 2 depicts the system input u(k), output y(k)
and its estimate ŷ(k) as well as the weighting function
µ1(xk) which covers the two modes (submodels).
As seen on these figures, the states are well estimated
(but no measurement noise was considered).

4.2. Estimation with noise and unknown inputs

In this subsection, unknown inputs are also consid-
ered. In order to illustrate the efficiency of proposed fil-
tering algorithm, two simulations results are presented.
The first case is about state and unknown input estima-
tion, the measurement are subject to an additive mea-
surement noise but the filtering algorithm is not applied.
In the second case, the state filtering given in section
III.B is applied.
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Figure 1. System states xk and their estimates
x̂k
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Figure 2. Inputs uk, measured and estimated
outputs yk, ŷk and weighting function µ1(xk)

The unknown input matrix P is defined as:

P =
[

1 1 1
]T

(23)

In this second example, the matrix C is defined by:

C =

[

1 0 0

0 1 0

]

(24)

In figure 3 are depicted the system states and their es-
timates. The joint estimation state/unknown input was
done with measurement noise but without any filtering.
As the figure shows, the third state estimate x̂3(k) is



greatly affected by the noise. This result may be ex-
plained by the fact that since only the states x1 and x2

are measured, the estimation is made to the detriment of
the third one.
In order to improve the estimation, the filtering pro-
posed in section III.B is then applied. The figure 4
shows the unknown input δk and its estimate δ̂k as well
as the input uk. The filtering effect is clearly illustrated
in figures 5 and 6 where the improvement is clearly
shown for the third state.
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Figure 3. System states xk and their estimates
x̂k: with noise measurement and without filter-
ing
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Figure 4. The input uk and unknown input δk

and its estimate: with noise measurement and
without filtering

From the depicted figures, one can observe the ef-
ficiency of the proposed algorithms.

0 100 200 300 400 500

−0.1
0

0.1

x1(k) , x̂1(k)

0 100 200 300 400 500

−0.6

−0.2

0.2

x2(k) , x̂2(k)

0 100 200 300 400 500

−0.4

0

0.4
x3(k) , x̂3(k)

Figure 5. System states xk and their estimates
x̂k: with noise measurement and filtering
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Figure 6. The input uk and unknown input δk

and its estimate: with noise measurement and
filtering

5. Conclusion

In this paper, a Finite Memory Observer design for
nonlinear T-S model was considered. A joint state and
unknown input reconstruction algorithm was proposed
for both measurable and unmeasurable premise vari-
ables. The case of measurement noise was also studied
with the proposition of a filtering algorithm. Numerical
examples were presented in order to highlight the ap-
proach efficiency.
As futur work, it turns possible to to extend the pro-
posed approach to sensor fault detection and isolation
with the help of a bank of finite memory observers.
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