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ABSTRACT

This paper is the first of a two-part study devoted to developing tools for a systematic classification of the wide
variety of atmospheric waves expected on slowly rotating planets with atmospheric superrotation. Starting with
the primitive equations for a cyclostrophic regime, we have deduced the analytical solution for the possible waves,
simultaneously including the effect of the metric terms for the centrifugal force and the meridional shear of the
background wind. In those cases when the conditions for the method of the multiple scales in height are met,
these wave solutions are also valid when vertical shear of the background wind is present. A total of six types of
waves have been found and their properties were characterized in terms of the corresponding dispersion relations
and wave structures. In this first part, only waves that are direct solutions of the generic dispersion relation are
studied—acoustic and inertia-gravity waves. Concerning inertia-gravity waves, we found that in the cases of short
horizontal wavelengths, null background wind, or propagation in the equatorial region, only pure gravity waves
are possible, while for the limit of large horizontal wavelengths and/or null static stability, the waves are inertial.
The correspondence between classical atmospheric approximations and wave filtering has been examined too, and
we carried out a classification of the mesoscale waves found in the clouds of Venus at different vertical levels of
its atmosphere. Finally, the classification of waves in exoplanets is discussed and we provide a list of possible
candidates with cyclostrophic regimes.
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1. INTRODUCTION

Slowly rotating planets with atmospheres seem to have
in common an intriguing phenomenon called superrotation,
consisting of an excess of atmospheric angular momentum at
the equator, compared with the angular momentum air would
have in the tropics in solid-body rotation with the underlying
surface (Read 2011). In our solar system, the most prominent
example of atmospheric superrotation is Venus which exhibits a
zonal retrograde superrotation with wind speeds up to 60 times
faster than the rotation of a solid planet (Schubert 1983). The
other body in the solar system known to possess superrotation
is Titan, a fact confirmed with in situ measurements (Bird
et al. 2005) and ground-based observations (Luz et al. 2006).
In slowly rotating bodies like Venus and Titan, the Coriolis
terms become small enough to be neglected in the momentum
equations (Schubert 1983; Flasar et al. 2010), and the dynamical
regime thus becomes dominated by a cyclostrophic balance
(i.e., the pressure gradient force is balanced by the metric terms
representing the centrifugal force due to strong winds), while
in the case of fast rotating planets like the Earth, Mars, and
the giant planets of the solar system, the geostrophic balance
dominates (pressure gradients are balanced by the Coriolis
force). Strong evidence of atmospheric superrotation has also
been found in modeling studies of exoplanets (Faigler et al.
2013), both on local and global scales for terrestrial (Joshi
et al. 1997; Merlis & Schneider 2010) and gas giant exoplanets
(Showman et al. 2009; Heng et al. 2011; Rauscher & Menou
2012). Experimental evidence of atmospheric superrotation has

also become available recently through Doppler measurements
with Spitzer observations (Knutson et al. 2007, 2009).

On top of this superrotation, Venus and Titan also exhibit
several types of wavelike motions within and above the clouds
(Seiff et al. 1992; Lorenz et al. 2014). In the specific case of
Venus, the variety of waves and periodicities is impressive,
and they have been detected with observations at different
wavelengths through their effects on lower clouds’ opacity to
thermal radiation and on the upper cloud patterns for reflected
sunlight at visible and ultraviolet wavelengths (Belton et al.
1976; Rossow et al. 1980; Del Genio & Rossow 1990; Peralta
et al. 2008; Piccialli et al. 2014); waves have also been detected
in winds (Rossow et al. 1990), thermal emission (Taylor et al.
1980; Apt & Leung 1982), and temperature profiles inferred by
probe and balloon motions (Seiff et al. 1992) as well as radio
occultation data (Hinson & Jenkins 1995; Tellmann et al. 2012).
Identically to what happens on Earth, atmospheric waves are
expected to play a crucial role in the atmospheric circulation and
must play a key role in explaining the atmospheric superrotation
(Hou & Farrell 1987), either by accelerating the atmosphere in
the case of some global-scale waves, or dragging it via the
absorption of waves (Gierasch et al. 1997). To evaluate the
waves for the Venus case, a number of analytical and numerical
works have been undertaken, studying a wide spectrum of
waves in some cases (Imamura 2006) or focusing on specific
types of waves such as the low-latitude Y-shaped feature
present in UV images (Schubert 1983). Different strategies
were followed in these studies: a simple approach in terms
of basic dispersion relations classically used for the Earth
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(Del Genio & Rossow 1990; Peralta et al. 2008; Tellmann
et al. 2012), coordinates fixed to the faster Venus winds in
order to get back a non-negligible Coriolis factor and, thus,
a system of equations resembling the terrestrial case (Covey &
Schubert 1981), equations fitting a cyclostrophic balance (Covey
& Schubert 1982; Smith et al. 1992, 1993), and the detailed
study of waves generated by complex general circulation models
(GCMs) for Venus (Yamamoto & Takahashi 2003; Lee et al.
2007; Lebonnois et al. 2010).

Despite the evident interest in the cyclostrophic regime in
the field of atmospheric dynamics, the analytical solutions for
the expected waves still remain to be fully explored. Unlike the
terrestrial case, where the background wind can be assumed
to be null as a first approximation, the cyclostrophic balance
reveals the superrotating zonal wind to be a key parameter for
wave solutions. Most efforts have been devoted to the case of
Venus, and even though recent Venus GCMs employ realistic
winds, the majority of strictly analytical works for atmospheric
waves make use of realistic vertical wind profiles but employ
a solid-body rotation approximation for the latitudinal wind
profile (Covey & Schubert 1982; Schubert & Walterscheid
1984; Schinder et al. 1990; Smith et al. 1993), which is
not consistent since real winds on Venus show significant
latitudinal, solar local time, and long temporal variations (Hueso
et al. 2012; Peralta et al. 2012; Luz et al. 2011; Machado
et al. 2012). Indeed, the horizontal shear of the wind is
usually included in the GCMs but its specific effect on the
waves—combined or not with the centrifugal force—has never
been explored in depth. Concerning the dispersion relations
for the different types of waves expected in an atmospheric
regime in cyclostrophic equilibrium, so far, only the relation for
acoustic-gravity waves has been obtained, in a work restricted
to small-scale waves and where neither centrifugal forces nor
meridional shear of the background wind were considered
(Schubert & Walterscheid 1984). More effort has been devoted
to gravity waves than to acoustic waves, mainly because the
latter are harder to detect through remote sensing and because
they are not expected to be significant in the net budget of
energy and momentum in the general circulation. However, by
comparing observations and modeling of the acoustic waves and
their expected propagation, it is possible to infer environmental
information such as the atmospheric structure, composition, or
even background dynamics (Petculescu & Lueptow 2007).

This article is the first of a two-part work in which we
present a detailed study of atmospheric waves on a planet with
cyclostrophic balance, and even though we focus mainly on
Venus, its results can be extended to Titan and exoplanets with
a cyclostrophic regime. In this first part, we demonstrate that,
under reasonable assumptions and applying the method of the
multiple scales in height (Boyd 1978), the dispersion relation
for acoustic and inertia-gravity waves can be obtained from a
cyclostrophic regime that includes solely the meridional shear
of the background zonal flow. The equations for the wave
perturbations are deduced in Section 2, and their solutions,
together with a generic dispersion relation, are obtained in
Section 3. The solutions for acoustic and inertia-gravity waves
and their dispersion relations are studied in detail in Section 4,
as well as their behavior in limiting cases. We explore some
of the classical atmospheric approximations and discuss their
validity for wave filtering in Section 5. Finally, we classify
some of the mesoscale waves found in the atmosphere of
Venus in Section 6, while the main conclusions are presented
in Section 7.

2. WAVE EQUATIONS FOR A CYCLOSTROPHIC
ATMOSPHERE

Assuming that the atmosphere can be described as an ideal
gas, atmospheric motions are adiabatic, friction is negligible,
and, after applying a proper scale analysis, the system of
equations for a cyclostrophic atmosphere are the following (see
Appendix A for the deduction in the case of Venus):

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= − 1

ρ

∂P

∂x
+

uv

a
tan φ, (1a)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= − 1

ρ

∂P

∂y
− u2

a
tan φ, (1b)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= − 1

ρ

∂P

∂z
− g, (1c)

∂ρ

∂t
+ u

∂ρ

∂x
+ v

∂ρ

∂y
+ w

∂ρ

∂z
= −ρ

(
∂u

∂x
+

∂v

∂y
+

∂w

∂z

)
, (1d)

∂Θ
∂t

+ u
∂Θ
∂x

+ v
∂Θ
∂y

+ w
∂Θ
∂z

= 0, (1e)

P = ρRT, (1f)

where Equation (1f) is the equation for ideal gases, and we have
expanded the material derivatives in the momentum equations
(Equations (1a)–(c)), continuity (Equation (1d)), and thermody-
namic equations (Equation (1e)). Here, (u, v,w) are the zonal,
meridional, and vertical components of the wind; P is the atmo-
spheric pressure; ρ is the density; g is the gravity acceleration;
φ is the latitude; z is the altitude over the planet’s surface; a
is the planet’s radius; and Θ ≡ ln θ , with θ being the potential
temperature. Note that in the case of Titan, Coriolis terms are
not as small as in Venus, and in some regions of its atmosphere,
they cannot be neglected anymore (Flasar et al. 2010), lead-
ing to a gradient flow regime (Holton et al. 2002) instead of
a cyclostrophic regime. This more generic situation involves a
higher complexity and will be tackled in the future.

To study waves, we follow the standard procedure of applying
the method of perturbations, with the disturbances being small
enough to neglect cross terms. Furthermore, for simplicity, we
will assume that the waves produce perturbations only in the
X–Z plane, so we will have ∂/∂y = 0 for all the disturbances.
In this case, the disturbances for each atmospheric parameter
will be

u = u0(y, z0) + u′(x, z, t)

v = v′(x, z, t)

w = w′(x, z, t)

ρ = ρ0(z) + ρ ′(x, z, t)

P = P0(y, z) + P ′(x, z, t)

Θ = Θ0(z) + Θ′(x, z, t), (2)

where we are considering the atmosphere locally at a certain
height z0, and where the atmosphere is at rest except for
a zonal background wind that varies only with latitude, i.e.,
u0 = u0(y, z0), v0 = w0 = 0. Unfortunately, keeping the term
∂u0/∂z in the equations considerably complicates the deduction
and precludes a strictly analytical solution for the waves in a
cyclostrophic regime—the main aim of this work—when no
further atmospheric assumptions are made. Except for those

2



The Astrophysical Journal Supplement Series, 213:17 (18pp), 2014 July Peralta et al.

Figure 1. Meridional (left) and vertical profiles (right) for the zonal wind according to our reference atmosphere of Venus (see Appendix A). In the left panel, it can
be seen that the strong meridional shear occurs poleward of 45o. In the right panel, we see that the vertical shear is important for lower latitudes, and the zonal wind
peaks at about 68 km. The zonal wind has been interpolated using the vertical profiles obtained by the Pioneer Venus probes and data obtained from cloud tracking at
the upper and lower clouds (levels marked with horizontal gray lines in the right panel).

regions where ∂u0/∂z is small enough to be neglected, further
assumptions are thus required as shown below. Note that in the
specific case of Venus (see Figure 1), the vertical shear can be
neglected only at high latitudes and close to the cloud tops at
about 67–68 km in height (where the vertical shear changes its
sign).

Let us consider now the more general case of non-negligible
vertical shear for the background wind, with two situations being
possible. The first situation occurs when waves are fast enough
not to be distorted by the vertical wind shear, which occurs when
the wave’s intrinsic phase velocity is higher than the zonal wind
change in one vertical wavelength, i.e., |c̄k| > λz · |∂u0/∂z| (Iga
& Matsuda 2005); when this happens, we can still omit the term
∂u0/∂z in the meridional momentum equation (see Figure 2
to check whether this condition is met in the cloud region of
Venus).

The second situation is when waves become distorted by
the vertical wind shear, forcing the usage of the vertical shear
of the background zonal wind. When this happens, we must
check for the applicability of the so-called method of multiple
scales in height (Boyd 1978). For those atmospheric regions
where this method is valid, we can proceed with dividing our
problem into two steps: first we obtain the wave solution at a
given height z0 for the problem of only meridional shear of the
wind, and second, we reconstruct the vertical structure of waves
with a modified version of the WKB method (in this case, with
the usual slowly varying WKB amplitude factor modified to
account for the effect of the vertical shear of the wind). Because

Figure 2. Wave distortion in terms of the intrinsic phase velocity and vertical
wavelength of the waves. The white and gray regions indicate, respectively,
where waves are unaffected and distorted by the vertical shear of the background
zonal wind. The boundary between both regions is defined by the condition
|c̄k | > λz · |∂u0/∂z| (Iga & Matsuda 2005), where we have used the maximum
value of the vertical shear given by our reference atmosphere.

of the extension of this work, we have restricted our study to the
first step, i.e., we obtain the wave solution for solely meridional
shear, which is sufficient to calculate all the wave properties at a
given height except for the overall amplitude and phase factors
(Boyd 1978). A summary of the applicability of the method
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of the multiple scales in Venus and its limitations is shown in
Appendix B.

Introducing perturbations (Equation (2)) in Equations ((1a)–
(1f)), neglecting all terms containing products of perturbations,
and defining a centrifugal frequency as Ψ ≡ (u0/a) tan φ,

∂u′

∂t
+ u0

∂u′

∂x
+

∂

∂x

(
P ′

ρ0

)
− Ψ · v′ +

∂u0

∂y
v′ = 0, (3a)

∂v′

∂t
+ u0

∂v′

∂x
+ 2Ψ · u′ = 0, (3b)

∂w′

∂t
+ u0

∂w′

∂x
+

1

ρ0

∂P ′

∂z
+

ρ ′

ρ0
g = 0, (3c)

∂ρ ′

∂t
+ u0

∂ρ ′

∂x
+ w′ ∂ρ0

∂z
= −ρ0

(
∂u′

∂x
+

∂w′

∂z

)
, (3d)

∂Θ′

∂t
+ u0

∂Θ′

∂x
+ w′ ∂Θ0

∂z
= 0, (3e)

P ′

P0
= ρ ′

ρ0
+

T ′

T0
, (3f)

where one of the terms in the meridional momentum equation
(Equation (3b)) has been cancelled out by the gravitational force
by rotating the coordinate system around the X-axis so that the
Z-axis lies along the vector sum of the gravitational acceleration
and the centrifugal force (see Appendix C).

Now, we define the density scale height as 1/H0 ≡
−∂ ln ρ0/∂z, and the atmospheric static stability as B ≡
∂ ln θ/∂z = ∂Θ/∂z, with N = √

g · B being the Brunt–Väisälä
frequency (Holton 2004). Equations (3a)–(3f) yield

∂u′

∂t
+ u0

∂u′

∂x
+

∂

∂x

(
P ′

ρ0

)
− Ψ · v′ +

∂u0

∂y
v′ = 0, (4a)

∂v′

∂t
+ u0

∂v′

∂x
+ 2Ψ · u′ = 0, (4b)

n4 ·
(

∂w′

∂t
+ u0

∂w′

∂x

)
+

∂

∂z

(
P ′

ρ0

)
−n3 ·B P ′

ρ0
−g ·Θ′ = 0, (4c)

n2·
[

∂

∂t

(
ρ ′

ρ0

)
+ u0

∂

∂x

(
ρ ′

ρ0

)]
+

∂u′

∂x
+

∂w′

∂z
−n1· w

′

H0
= 0, (4d)

∂Θ′

∂t
+ u0

∂Θ′

∂x
+ B · w′ = 0, (4e)

and the procedure for obtaining Equation (4c) is explained
in detail in Appendix D. Following a method suggested by
J. S. A. Green (1970, unpublished lecture notes, Imperial
College) and repeatedly used in the bibliography (Green 1999;
Norbury & Roulstone 2002), we marked with the parameters
(n1, n2, n3, n4) those terms that are key to applying important
approximations for the atmosphere: n1 and n2 (together with
n3, as will be seen later) account for the terms related to an
incompressible atmosphere (Dρ/Dt = 0) and n4 is related to
the hydrostatic approximation (Dw/Dt = 0). These parameters
are meaningless and just act as “tracers” of the terms, being
“dragged” along the mathematical procedure until they end up
incorporated in the final dispersion relation, thus helping one
to understand how each approximation affects the filtering of
waves (see Section 5). Their value will be one by default, and

combinations of them can be set to zero when we want to apply
a specific approximation, as will be shown later.

Finally, we assume that the disturbances due to waves
have a periodic behavior, with the form u′(x, z, t) = û(z) ·
exp [i · (kxx − ωt)], where the periodic behavior in the vertical
direction is included in û(z). We study only single modes; ω
is assumed to be real (“neutral” waves); and we regard the
atmosphere as unbounded in x, y, and z. Introducing these
disturbances and defining the intrinsic frequency as ω̄ ≡
ω − kxu0, we obtain a set of equations for the wave amplitudes
of the disturbances: û(z), v̂(z), ŵ(z), P̂ (z), ρ̂(z), and Θ̂(z):

− iω̄ · û +

(
∂u0

∂y
− Ψ

)
· v̂ + ikx · P̂

ρ0
= 0, (5a)

− iω̄ · v̂ + 2Ψ · û = 0, (5b)

− n4 · iω̄ · ŵ +
d

dz

(
P̂

ρ0

)
− n3 · B

P̂

ρ0
− g · Θ̂ = 0, (5c)

− n2 · iω̄ · ρ̂

ρ0
+ ikx · û +

dŵ

dz
− n1 · ŵ

H0
= 0, (5d)

− iω̄ · Θ̂ + B · ŵ = 0. (5e)

3. THE GENERAL DISPERSION RELATION FOR WAVES

In this section, we derive from Equations (5a)–(5e) a general
expression for the dispersion relation by following these steps:
(1) combining this set of equations to obtain a single differential
equation for the wave amplitude of the vertical velocity, ŵ(z),
(2) solving this equation and obtaining the dispersion relation
ω̄(kx,m), and (3) the solution ŵ(z) can be used in the remaining
equations to obtain a solution for the other dependent variables.

First, we solve Equations (5a) and (5b) for the zonal and
meridional velocity disturbances in terms of the pressure per-
turbations. In order to simplify these equations, we define a
squared frequency ξ 2 = 2Ψ (Ψ − ∂u0/∂y), i.e., ξ accounts for
the centrifugal frequency when it is modified by the meridional
shear of the background zonal wind. Also note that the condition
Ψ (Ψ − ∂u0/∂y) > 0 is always true; if the meridional shear of
the wind is negligible (∂u0/∂y ∼= 0), then ξ 2 ∼= 2Ψ2; and, for
the equatorial region of Venus, we have ξ 2 ∼= 0. Substituting
this squared frequency yields

û =
(

ω̄ · kx

ω̄2 − ξ 2

)
· P̂

ρ0
, (6a)

v̂ = −i ·
(

2Ψ · kx

ω̄2 − ξ 2

)
· P̂

ρ0
. (6b)

Second, we use the thermodynamic equation (Equation (5e))
to write the vertical momentum equation (Equation (5c)) in
terms of only ŵ and P̂ /ρ0, thus obtaining the following vertical
momentum and continuity equations:

− n4 · iω̄ · ŵ +
d

dz

(
P̂

ρ0

)
− n3 · B

P̂

ρ0
+ i

gB

ω̄
ŵ = 0, (7a)

− n2 · iω̄ · ρ̂

ρ0
+ ikx · û +

dŵ

dz
− n1 · ŵ

H0
= 0. (7b)
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It can be demonstrated (Holton 2004) that the amplitude for
the potential temperature can be expressed as Θ̂ ≡ γ −1P̂ /P0 −
ρ̂/ρ0 = c−2

S P̂ /ρ0 − ρ̂/ρ0 (where c2
S ≡ γRT0 is the speed

of sound, and γ = CP /CV ). Thus, using Equation (5e), we
obtain ρ̂/ρ0 = c−2

S P̂ /ρ0 + i · (B/ω̄) · ŵ, which allows one to
write the vertical momentum and continuity equations in terms
of ŵ and P̂ /ρ0 alone. Moreover, multiplying Equation (7a)
by iω̄, replacing û by its expression given in Equation (6a),
and sorting the different terms, the vertical momentum and
continuity equations can be written in the form

iω̄
d

dz

(
P̂

ρ0

)
− iω̄ · n3B

P̂

ρ0
+ (n4ω̄

2 − gB) · ŵ = 0, (8a)

dŵ

dz
+

(
n2B − n1

H0

)
·ŵ− iω̄

(
n2

c2
S

− k2
x

ω̄2 − ξ 2

)
· P̂

ρ0
= 0. (8b)

Defining a variable Γ which does not depend on z and contains
some of the terms in Equation (8b),

Γ = n2

c2
S

− k2
x

ω̄2 − ξ 2
, (9)

we obtain the following simpler expression for iω̄(P̂ /ρ0) and
iω̄ · d/dz(P̂ /ρ0):

iω̄ · P̂

ρ0
= 1

Γ
dŵ

dz
+

1

Γ

(
n2B − n1

H0

)
· ŵ, (10a)

iω̄ · d

dz

(
P̂

ρ0

)
= 1

Γ
d2ŵ

dz2
+

1

Γ

(
n2B − n1

H0

)
· dŵ

dz
+

n2

Γ
dB

dz
· ŵ,

(10b)
and, substituting these into Equation (8a), we obtain a single
equation in terms of ŵ(z):

d2ŵ

dz2
+

[
B(n2 − n3) − n1

H0

]
· dŵ

dz
+

[
n3B

(
n1

H0
− n2B

)

+ n2
dB

dz
+ Γ · (n4ω̄

2 − gB)

]
· ŵ = 0. (11)

In order to obtain a simpler differential equation with-
out first derivatives, we define ŵ(z) as ŵ(z) = w̃(z) ·
exp {− (1/2) · [B(n2 − n3) − n1/H0] · z}. Applying this change
of variables, we obtain the following second-order equation:

d2w̃

dz2
+

⎧⎨
⎩

n3B ·
(

n1
H0

− n2B
)

+
(

n2+n3
2

)
dB
dz

+ . . .

+Γ · (n4ω̄
2 − gB) − 1

4

[
B(n2 − n3) − n1

H0

]2

⎫⎬
⎭ · w̃ = 0.

(12)
The second-order equation (Equation (12)) has two different
solutions depending on whether we consider that the static
stability varies with the altitude or not. If we assume that B(z)
varies linearly with height and the generic case of all tracer
parameters being set to 1 (n1 = n2 = n3 = n4 = 1), then
Equation (12) adopts the form d2w̃/dz2 − (C · z + D) · w̃ = 0
which, by means of a simple change of variables (Zaitsev &
Polyanin 2002), can be transformed into an Airy equation whose
solution will be w̃ = C1·Ai(ζ )+C2·Bi(ζ ) where Ai(ζ ) and Bi(ζ )
are the Airy functions of the first and second kind, respectively.

For simplicity, hereafter, we assume that within the vertical
range covered by the atmospheric waves studied in this article
(acoustic and inertia-gravity waves) the static stability can be
taken as approximately constant with height. In this second
case, the solution for Equation (12) is a wave with the form
w̃(z) ∝ exp(i · m · z), whenever the constant multiplying w̃ is
real and positive. For this wave solution, we have the following
generic dispersion relation:

m2 = n3B ·
(

n1

H0
− n2B

)
+ (n4ω̄

2 − gB) ·
(

n2

c2
S

− k2
x

ω̄2 − ξ 2

)

− 1

4

[
B(n2 − n3) − n1

H0

]2

. (13)

The solution for the vertical wind disturbance is then

w′ ∝ exp

{
−1

2

[
B(n2 − n3) − n1

H0

]
· z

}
· ei(kx ·x+m·z−ω·t).

(14)

4. ACOUSTIC, GRAVITY, AND INERTIAL WAVES

In this section, we study the wave solutions that are derived
from the generic expression for the dispersion relation of the
atmospheric waves, requiring no additional approximations.
Setting all the tracer parameters to 1 (n1 = n2 = n3 = n4 = 1)
in the dispersion relation (Equation (13)), we obtain

m2 = k2
x · (gB − ω̄2)

ω̄2 − ξ 2
+

ω̄2

c2
S

− 1

4H 2
0

, (15)

where we took into account that B +g/c2
S = 1/H0 (Vallis 2006).

The dispersion relation (Equation (15)) is a more general form
of the dispersion relation previously obtained by Schubert &
Walterscheid (1984; see their Equation (9)) for acoustic-gravity
waves in Venus. The reason is that Equation (15) additionally
accounts for the centrifugal force combined with the meridional
shear of the background wind through the term ξ 2. Moreover,
there are clear similarities with the general dispersion relation
for the terrestrial case, where we have a null background zonal
wind (u0 = 0) and geostrophic balance (Eckart 1960), where the
squared frequency ξ 2 clearly plays a role similar to the Coriolis
factor on the Earth:

m2 = k2
x · (gB − ω2)

ω2 − f 2
+

ω2

c2
S

− 1

4H 2
0

. (16)

Solving for ω̄ in Equation (15), we obtain the following
biquadratic equation:

ω̄4 − ω̄2 ·
[
ξ 2 + c2

S

(
k2
x + m2 +

1

4H 2
0

)]

+ c2
S

[
gB · k2

x + ξ 2 ·
(

m2 +
1

4H 2
0

)]
= 0. (17)

Equation (17) can be written in the form of an ordinary quadratic
equation by means of a simple change of variables ω̄2 = χ , then
admitting two exact solutions for ω̄2:

ω̄2 = 1

2

[
ξ 2 + c2

S

(
k2
x + m2 +

1

4H 2
0

)]

×
⎧⎨
⎩1 ∓

√√√√1 − 4c2
S

[
k2
xgB + ξ 2 · (m2 + (2H0)−2)

]
[
ξ 2 + c2

S

(
k2
x + m2 + (2H0)−2

)]2
⎫⎬
⎭ .

(18)
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Table 1
Orders of Magnitude for the Terms Appearing in the Generic Dispersion

Relation for Venus

Terms in Dispersion Relation Source

Ψ ≈ 10−5 ↔ 10−6 s−1 → Ψ2 ≈ 10−10 ↔ 10−12 s−2 Peralta et al. (2007)
u0 ≈ 102 ↔ 100 m s−1 Peralta et al. (2007)
∂u0
∂y

≈ 10−5 ↔ 10−6 s−1 Peralta et al. (2007)

H0 ≈ 6380 m → 1
4H 2

0
≈ 10−9 m−2 Seiff et al. (1985)

cS ≈ 252 m s−1 → c2
S ≈ 6.4 × 104 m2 s−2 Seiff et al. (1985)

B ≈ 10−6 m−1 ↔ 10−5 m−1 Piccialli (2010)
g ≈ 8.87 m s−2 Seiff et al. (1985)
k2
x � 10−14 m−2

m2 � 10−9 m−2

ξ2 ≈ 10−10 s−2

Notes. They have been evaluated using data from the Venus International
Reference Atmosphere (VIRA), radio-occultation data from Venus Express,
and wind speeds measured with cloud tracking in remote sensing images.

At this stage of the demonstration, expression (18) can be
further simplified depending on the planet studied. If we apply
a scale analysis suitable for the atmosphere of Venus (see
Table 1), then the terms in the fraction under the square root
of Equation (18) can be simplified as c2

S · ξ 2 · (m2 + (2H0)−2) ∼
10−13 and c2

S · gB · k2
x ∼ 10−13, thus the numerator is ∼10−13.

On the other hand, we also have that c2
S · (k2

x + m2 + (2H0)−2) ∼
10−4, so the denominator is ∼10−8.

As a result, the square root term has the form
√

1 − X with
X � 1, which allows using a Taylor expansion around X = 0:

√
1 − X = 1 − X

2
+ O(X2) ≈ 1 − X

2
. (19)

The following solutions are obtained, one (ω̄g) corresponding
to the inertia-gravity waves, and another (ω̄a) to the acoustic
waves:

ω̄2
g ≈ gB · k2

x + ξ 2 · [m2 + (2H0)−2]

k2
x + m2 + (2H0)−2 , (20a)

ω̄2
a ≈ [k2

x + m2 + (2H0)−2
] · c2

S. (20b)

The dispersion relation (Equation (20a)) provides a kind
of wave that depends on both the static stability (B) and the
background zonal wind via ξ that is a function of the meridional
shear of the zonal wind (du0/dy) and the centrifugal force
(Ψ). As the restoring forces are, in this case, the buoyancy and
the inertial forces, these waves are classified as inertia-gravity
waves. They are displayed for different vertical wavenumbers
(m) in the dispersion graphs shown in Figure 3, which allows one
to determine the ranges of intrinsic phase velocity and horizontal
wavelengths for which these waves are possible in the case of
Venus. As the dispersion relation (Equation (20a)) also depends
on the magnitude of the background wind, its horizontal shear,
and the static stability, the dispersion graph will also vary with
latitude and altitude. It can be seen that the inertia-gravity waves,
as for the terrestrial case, are clearly limited by the adiabatic
speed of sound (cS), the Brunt–Väisälä frequency (

√
gB), and

the centrifugal frequency modified by the horizontal shear of
the zonal wind (ξ ). The area shadowed light gray corresponds
to the values where the assumption ω̄2  ξ 2 is no longer valid.

It is also of interest to study some limiting cases for the
inertia-gravity waves and how they affect the final form of the
dispersion relation (see Table 2), sometimes being pure gravity
waves and in other cases inertial waves, as observed in the

geostrophic case (Holton 2004). Indeed, pure inertial waves
are more apparent in the case of large horizontal wavelengths,
which can be influenced by the meridional shear of the zonal
wind and by the centrifugal force (inertial), while pure gravity
waves are more common for waves of smaller spatial scale. We
also highlight that inertial waves cannot exist at the equator or
when the atmosphere is at rest, while gravity waves are only
possible when B > 0.

Similarly, as is done for the inertial waves in a geostrophic
atmosphere (Holton 2004), the necessary conditions for the
existence of inertial waves on a cyclostrophic one can be studied
from the point of view of an inertial stability, depending on the
value of

Ψ ·
(

Ψ − ∂u0

∂y

)
≡
{

> 0 stable
= 0 neutral
< 0 unstable

. (21)

Note that this term is quite similar to the one defined in the
geostrophic case (Holton 2004) and defined as f ·(f − ∂ug/∂y)
with ug being the geostrophic zonal wind and f the Coriolis
factor. In fact, if we consider the generic form of Ertel’s potential
vorticity q = ρ−1

0 · [2
−→Ω +

−→∇ × −→
V ] · −→∇ θ0 (Holton et al. 2002)

expressed in spherical coordinates (Gill 1982), it can be directly
demonstrated that for a slowly rotating planet with atmospheric
superrotation in the zonal direction, Ertel’s potential vorticity
reduces to the expression q = ρ−1

0 · [Ψ − (∂u0/∂y)] · ∂θ0/∂z
and Equation (21) turns out to be part of the general expression
for the potential vorticity.

The dispersion relation (Equation (20b)) describes waves
that do not depend on the value of static stability but on the
adiabatic speed of sound (cS), i.e., these are acoustic waves
for which the restoring force is the atmospheric pressure. They
can be displayed for different vertical wavenumbers (m) in the
dispersion graph exhibited in Figure 3. Note that due to the
terms H0 and the adiabatic speed of sound (cS), the dispersion
relation (Equation (20b)) will also depend on the atmospheric
region to be studied, and the dispersion graph for acoustic
waves will slightly change with latitude and, especially, with
altitude. The acoustic waves are limited by the adiabatic speed
of sound (cS) and by the Brunt–Väisälä frequency. As was
done during the analysis of the inertia-gravity waves, we can
also study limiting cases for the acoustic waves (see Table 3).
For long wavelengths (i.e., K = √

k2
x + m2 is very small,

with K being the total wavenumber) the acoustic waves are
dispersive and the group velocity is zero (thus they are unable
to transport energy or momentum by themselves); moreover, it
is straightforward to demonstrate that the propagation is almost
vertical for acoustic waves with large horizontal wavelengths.
On the other hand, acoustic waves with small wavelengths (i.e.,
very large K) are described by the classical dispersion relation
for acoustic waves. Their intrinsic phase velocity is equal to
the adiabatic speed of sound (i.e., these waves are pressure
perturbations that propagate at the speed of sound relative to
the background zonal wind), they are non-dispersive, in the
horizontal plane their phase velocity and group velocity are
the same, they are longitudinal waves (air parcels are disturbed
perpendicularly to the wave fronts), and their propagation is
horizontal (cos αZ = kx/

√
k2
x + m2 ∼= 1).

4.1. Limitations from the Meridional Variation of ξ 2

The meridional shear of the background zonal wind has been
demonstrated to affect the wave solution for a cyclostrophic

6
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Figure 3. Dispersion graphs for acoustic and inertia-gravity waves on Venus for two locations: 5o latitude and 65 km height (top) and 70o latitude and 47 km height
(bottom). The acoustic waves are shown in red, pure gravity waves are in blue, and inertial waves are in green. Acoustic and gravity waves with several vertical
wavelengths are marked with different line styles. The Brunt–Väisälä frequency (BV), centrifugal frequency (Ψ), and centrifugal frequency modified by the meridional
shear of the background zonal wind (ξ ) are also shown with gray lines. The dark and light gray areas mark the limits for maximum zonal wavelength allowed at this
latitude and where we do not have ω̄2  ξ2, respectively. Note that the minimum intrinsic phase velocity for the acoustic waves corresponds to the adiabatic speed of
sound relative to the mean zonal flow at the marked altitude of Venus.

(A color version of this figure is available in the online journal.)

atmosphere by means of modifying the value of the centrifugal
frequency Ψ ≡ (u0/a) tan φ, this being a consequence of its
integration in the squared frequency ξ 2 = 2Ψ(Ψ − ∂u0/∂y) (see
Equations (6) and (15)). In fact, both the centrifugal frequency
and the meridional shear of the wind vary significantly with
latitude and, as they act together, we must study their effect
directly through the squared frequency ξ 2. For simplicity, and
similar to what we did for the vertical shear of the background
zonal wind, we have assumed that ξ 2 (and thus Ψ and ∂u0/∂y)
is locally constant with latitude within the horizontal extension
of the atmospheric waves, which is not generally true in the
cloud region of Venus, as can be seen in Figure 4(A). In

fact, the value of ξ 2 changes by several orders of magnitude
(10−12–10−9 s−2) from the equator to the poles at a fixed altitude,
which necessarily restricts the meridional extension of inertia-
gravity waves that arise as a solution when ξ 2 is considered to be
locally constant. Figure 4(B) exhibits the maximum meridional
length permitted for waves obtained under the assumption of
ξ 2 �= f (y). In this case, we have decided to use as criterion
the meridional distance needed for the squared frequency ξ 2 to
double its value, i.e., ξ 2

0 + (dξ 2/dy) ·Δy = 2ξ 2
0 . Two criteria can

be thus used to evaluate the validity of the dispersion relations
obtained under the assumption of ξ 2 being locally constant: (1)
cases of inertia-gravity waves with ω̄2  ξ 2 (see Figures 3

7
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Table 2
Dispersion Relation for Inertia-gravity Waves in a Cyclostrophic Atmosphere under Different Limiting Cases

Approximation Dispersion Relation Properties Type of Wave

. . . ω̄ ≈ ±

√√√√√ gB·k2
x +ξ2·

(
m2+ 1

4H2
0

)

k2
x +m2+ 1

4H2
0

Dispersive Inertia-gravity

B = 0 ω̄ ≈ ±ξ ·
√√√√ m2+ 1

4H2
0

k2
x +m2+ 1

4H2
0

Dispersive Inertial

k2
x � m2 + 1

4H 2
0

ω̄ ≈ ±ξ = ±
√

2Ψ2 − 2Ψ ∂u0
∂y

Dispersive

u0 ∼= 0 ω̄ ≈ ±
√

gB·kx√
k2
x +m2+ 1

4H2
0

Dispersive Gravity

{Lat} = 0∣∣k2
x + m2

∣∣ 1
4H 2

0
ω̄ ≈ ±

√
gB·kx√
k2
x +m2

Dispersive

k2
x  m2 + 1

4H 2
0

ω̄ ≈ ±√
gB Dispersive

Notes. Note that pure inertial waves cannot exist at the equator or when the atmosphere is at rest, while pure gravity
waves are only possible when B �= 0. Larger-scale waves are usually inertial, while pure gravity waves are the norm for
smaller spatial scales.

Table 3
Dispersion Relation for Acoustic Waves under Different Limiting Cases

Approximation Dispersion Relation Properties Type of Wave

______ ω̄ ≈ ±
√

k2
x + m2 + 1

4H 2
0

· cS Dispersive Acoustic∣∣k2
x + m2

∣∣� 1
4H 2

0
ω̄ ≈ ± cS

2H0
Dispersive Null group velocity

k2
x � m2 + 1

4H 2
0

ω̄ ≈ ±
√

m2 + 1
4H 2

0
· cS Dispersive Vertical propagation∣∣k2

x + m2
∣∣ 1

4H 2
0

ω̄ ≈ ±√k2
x + m2 · cS Non-dispersive Horiz. propagation

Notes. Note that longer acoustic waves are dispersive and tend to propagate vertically, while shorter acoustic waves are
non-dispersive, propagate with the adiabatic speed of sound relative to the background zonal wind, and their propagation
can be demonstrated to be practically vertical.

and 5) and (2) in the case of having ω̄2 ≈ ξ 2, then our equations
will be valid for inertia-gravity waves whose meridional length
is smaller than the maximum set in Figure 4.

5. FILTERING WAVES IN A CYCLOSTROPHIC
ATMOSPHERE

In Section 2, we introduced the tracer parameters
(n1, n2, n3, n4) multiplying in Equations (4a)–(4e) those terms
that are key for filtering specific types of waves. In this
section, we analyze the main implications of neglecting the
terms associated with these tracers in the dispersion relation
(Equation (13)), and then comparing the resulting dispersion
relations with the generic one for acoustic and inertia-gravity
waves (Equations (20a) and (20b)). We also investigate under
which conditions the different simplifications can be applied to
the set of equations. The relation between these tracer parame-
ters and some important dimensionless parameters (the Mach,
Richardson, and Froude numbers, as well as the aspect ratio
parameter) is explored with more detail in Appendix E.

5.1. The Hydrostatic Approximation

The hydrostatic balance implies Dw/Dt = 0 (Holton 2004),
i.e., the term affected by the tracer parameter n4 in the vertical
momentum equation (Equation (4c)). Setting n4 = 0 and
n1 = n2 = n3 = 1 in the generic dispersion relation (13)

is only justified if ω̄ � √
gB. For this reason, acoustic

waves (ω̄  √
gB) and gravity waves with short horizontal

wavelengths (ω̄ −−→k √
gB) cannot occur when the atmosphere

is in hydrostatic balance. Applying the hydrostatic balance and
B + g/c2

S = 1/H0, the dispersion relation (Equation (13))
becomes

ω̄2 = gB · k2
x + ξ 2 · [m2 + (2H0)−2]

m2 + (2H0)−2 , (22)

and when compared with the dispersion relation for the inertia-
gravity waves (Equation (20a)), it is clear that both expressions
are identical except for the term k2

x in the denominator, which
is absent in Equation (22). Consequently, the inertia-gravity
waves undergo a distortion under the hydrostatic approximation
except when k2

x � m2 + (2H0)−2. As a consequence, the
hydrostatic balance filters waves with horizontal scales similar
to or much smaller than the vertical one and also filters the
acoustic waves (what is obvious since no dispersion relation
resembling Equation (20b) is obtained in this case).

5.2. The Incompressible and Anelastic Atmospheres

A variety of different approximations have been classically
applied in order to filter the atmospheric acoustic waves (Durran
2008). One common assumption is that of the incompressible at-
mosphere, consisting of setting Dρ/Dt = 0 (n1 = n2 = 0), thus

8
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(A)

(B)

Figure 4. Profiles for the squared frequency ξ2 = 2Ψ (Ψ − ∂u0/∂y) with units
10−12 s−2 (panel (A)) and maximum meridional length (in kilometers) allowed
under the assumption of ξ2 �= f (y) (panel (B)). Note that as a consequence of the
variation of the centrifugal frequency and meridional shear of the background
wind, ξ2 increases from the equator to the poles from 10−12 s−2 to 10−9 s−2.
The meridional length in panel (B) corresponds to the distance required for ξ2 to
double its value. The numerical values have been extracted from our reference
atmosphere (see Appendix A).

(A color version of this figure is available in the online journal.)

the atmosphere behaving as nondivergent. From Equation (13),
it can be seen that applying this assumption leaves a non-null
value for the term B(n2 − n3), which makes no sense since
this term is spurious and does not exist when all the tracer pa-
rameters are set to 1. As a result, the only way of applying an
incompressible atmosphere is setting n1 = n2 = n3 = 0 and
n4 = 1, which leads to the following dispersion relation:

ω̄2 = gB · k2
x + ξ 2 · (m2)

k2
x + m2

. (23)

When compared with the generic dispersion relation
(Equation (20a)), the relation (Equation (23)) clearly shows
again a case of distorted inertia-gravity waves, with several
terms missing (1/4H 2

0 and a k2
x in the numerator). Thus, the

incompressible atmosphere approximation severely affects the
inertia-gravity waves, an unwanted result if our intention is to fil-
ter the acoustic waves and leave inertia-gravity waves unaltered.

Alternatively, another frequent assumption is considering that
the medium is anelastic, i.e., assuming that ∂ρ/∂t = 0 in the
continuity equation. However, in the case of a cyclostrophic

atmosphere, the advection term u0 (∂ρ/∂x) remaining in the
continuity equation (Equation (4d)) extremely complicates the
procedure for solving the wave disturbance equations. Alter-
natively, we propose considering that the atmosphere is intrin-
sically anelastic, i.e., that the atmosphere behaves as anelastic
relative to the background wind (note that this is equivalent
to assuming an almost incompressible atmosphere, except for
the non-negligible vertical gradient of the basic-state density).
This procedure for filtering the acoustic waves is quite similar
to the one applied for Venus by Leroy & Ingersoll (1995, see
their Equation (1d)). In this case, we set n2 = n3 = 0 and
n1 = n4 = 1, obtaining the next dispersion relation:

ω̄2 = gB · k2
x + ξ 2 · [m2 + (2H0)−2]

k2
x + m2 + (2H0)−2 , (24)

which is exactly the dispersion relation for inertia-gravity
waves (Equation (20a)). We can conclude that applying this
intrinsically anelastic atmosphere approximation permits one to
filter the acoustic waves while keeping the inertia-gravity waves
unaltered.

5.3. The Boussinesq Approximation and Hydrostatic Balance

In Sections 5.1 and 5.2, we showed that the approximations of
intrinsic-anelasticity and hydrostatic balance allow one to filter
the acoustic waves and all high-frequency waves, respectively.
This is achieved by removing the terms in the continuity and
vertical momentum equations that contain the tracer parameters
n2, n3, and n4. If we set n1 = 0, we would obtain an atmosphere
with null vertical variation for the density

∂ρ0

∂z
= 0 ⇔ 1

H0
≡ − 1

ρ0

∂ρ0

∂z
= 0 ⇔ n1 = 0. (25)

At this stage, we can explore the effect of canceling all the
tracer parameters (i.e., n1 = n2 = n3 = n4 = 0). Applying this
to the system of Equations ((4a)–(4d)) yields

∂u′

∂t
+ u0

∂u′

∂x
+

∂

∂x

(
P ′

ρ0

)
− Ψ · v′ +

∂u0

∂y
v′ = 0, (26a)

∂v′

∂t
+ u0

∂v′

∂x
+ 2Ψ · u′ = 0, (26b)

∂

∂z

(
P ′

ρ0

)
− g · Θ′ = 0, (26c)

∂u′

∂x
+

∂v′

∂y
+

∂w′

∂z
= 0, (26d)

which is the set of equations that we would expect after
jointly applying the Boussinesq approximation and hydrostatic
balance, and it can also be demonstrated that the axis rotation
made in Section 2 is no longer needed when the Boussinesq
approximation is used (see Appendix B in Peralta et al. 2014).

If we also set n1 = n2 = n3 = n4 = 0 in Equation (13), it is
straightforward to obtain the following dispersion relation:

ω̄2 = gB · k2
x + ξ 2 · (m2)

m2
, (27)

which is similar to the dispersion relation for the inertia-gravity
waves (Equation (20a)), except for the absence of k2

x and 1/4H 2
0

in some of its terms. A straightforward interpretation is that
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the dispersion relation (Equation (27)) describes again inertia-
gravity waves distorted by the different assumptions already
applied (hydrostatic and Boussinesq approximations), which
are clearly unable to filter acoustic and inertia-gravity waves at
the same time.

5.4. Wave Filtering on Cyclostrophic and
Geostrophic Atmospheres

Most of the atmospheric simplifications introduced in this
section have the same effect of filtering waves on the terres-
trial and Venusian conditions. For instance, in both geostrophic
and cyclostrophic regimes, the hydrostatic approximation
(Dw/Dt = 0) identically filters waves with horizontal scales
similar to or much smaller than vertical ones and filters the
acoustic waves (Norbury & Roulstone 2002), and the Boussi-
nesq and incompressibility approximations filter acoustic waves
but lead to distorted gravity waves (Durran 2008). On the other
hand, the anelastic approximation (∂ρ/∂t = 0) effectively fil-
ters acoustic waves while leaving the gravity waves unaltered;
to obtain the same result, we showed that it should be applied
differently by setting ∂ρ/∂t + u0∂ρ/∂x = 0, i.e., by assuming
that the atmosphere is anelastic relative to the background zonal
wind or intrinsically anelastic.

6. DISCUSSION

As stated in the introduction, atmospheric waves are expected
to play a crucial role in the generation and maintenance of su-
perrotation. In the case of Venus, its atmosphere is rich in wave
activity at many vertical levels and a wide range of spatial scales
(Seiff et al. 1992). Thus, developing a systematic and easy way
to classify these waves attending to their measurable character-
istics seems to be a crucial task towards a definitive explanation
of the mechanisms for superrotation and general circulation. The
dispersion relations (Equations (20a) and (20b)) derived for a
generic planet with an atmosphere in the cyclostrophic regime
can be used to obtain the dispersion graphs (see Figure 3) for
diverse regions of the atmosphere, provided that we know the
values of the atmospheric static stability, gravity acceleration,
speed of sound, and the background zonal wind. For Venus,
this can be easily carried out by making use of the reference
atmosphere presented in this work (see Appendix A).

In this sense, we can apply our dispersion graphs to clas-
sify the horizontal mesoscale waves found at different vertical
levels of the Venus atmosphere with the imaging spectrome-
ter VIRTIS-M and the Venus Monitoring Camera (VMC) on
board the spacecraft Venus Express (Peralta et al. 2008; Piccialli
et al. 2014). Basically, three levels of the Venus cloud region
were sensed with these instruments while seeking atmospheric
waves: the upper cloud at about 66 km in height with dayside
380 nm images, the base of the upper cloud at 61 km with day-
side 980 nm observations, and the lower clouds with nightside
images taken at 1.74 μm corresponding to the surface thermal
radiation attenuated by clouds between 44 and 48 km (Peralta
et al. 2008). In the case of the VIRTIS-M observations, these
were made covering the southern hemisphere and both the hori-
zontal wavelength and intrinsic phase velocities were measured
when possible (Peralta et al. 2008). On the other hand, wave ob-
servations by VMC were made during the periapsis of the orbit,
thus covering only the northern hemisphere and inhibiting the
estimate of the corresponding phase velocities as a consequence
of the high speed of the spacecraft (Piccialli et al. 2014). Fig-
ure 5 displays dispersion graphs of the upper and lower clouds

of Venus as well as the position of the horizontal mesoscale
waves found in the Venus Express mission:

One of the main conclusions we can extract is that our
dispersion graphs confirm the first hypotheses identifying these
mesoscale waves apparent in the clouds with non-dispersive
gravity waves. This conclusion is direct for those cases with both
horizontal wavelengths and intrinsic phase velocities measured
(asterisks). For the northern waves identified in the VMC
images, only the wavelength was measured (Piccialli et al. 2014)
and we cannot be sure whether we are dealing with acoustic or
gravity waves. If these waves are acoustic, they are probably
thermally induced compression waves, generated when a parcel
of air is heated, and then pressure increases within the air
parcel, causing it to expand and causing the adjacent air to
be compressed, thus generating a compression wave (Nicholls
& Pielke 2000). Both the density and temperature increase in
the compressed air, which would explain the cloud patterns
seen in the VMC images. On the other hand, if we assume
to be observing gravity waves as in the southern hemisphere,
our dispersion graph allows one to predict an upper limit to
the intrinsic phase velocity for each horizontal wavelength.
Regarding the waves apparent in the lower clouds (see Figure 5,
panel below), it is worth noting that, except for one case,
the predicted vertical wavelengths have values below 10 km,
consistent with the vertical extension of the static stability region
where these waves are confined (Peralta et al. 2008).

Finally, we would like to discuss the applicability of our
results to the increasing catalog of exoplanets discovered to
date (Schneider et al. 2011). In principle, the theory developed
for atmospheric waves can be applied to both “planet-wide”
cyclostrophic regimes (as in the cases of Venus, Titan, and
other slowly rotating exoplanets yet to be discovered) and
also “locally” considering that Coriolis terms vanish near
the equator or on smaller scales such as storm systems and
eddies (de Pater & Lissauer 2001). The possibility of a local
validity for the cyclostrophic balance at the equator is especially
relevant as both recent observations (Faigler et al. 2013) and
atmospheric circulation models (Showman & Polvani 2011)
display equatorial superrotation in tidally locked exoplanets
with short periods. On the other hand, we can make an attempt
to estimate an approximate number of exoplanets with “planet-
wide” cyclostrophic regimes by approximating the values of
the Rossby number, which are provided by the expression
Ro = V/(f · L), where V is the magnitude of the atmospheric
winds, f = 2Ω sin φ is the Coriolis factor (in this case, taken at
the latitude φ = 30), Ω is the rotation rate of the planet, and, for
the distance L, we assume the value of the exoplanet’s radius.
Given that the rotation rate is still unknown for exoplanets, we
restricted this to those cases that are expected to be tidally locked
to their star (i.e., those whose orbital semi-major axis is lower
than the tidal locking radius, RTidal) and for which the orbital
period can be estimated to match the rotation rate:

RTidal = 0.0483 · 6

√
τStar · M2

Star

ρPlanet
, (28)

where RTidal is given in AUs, τStar is the age of the star in
years, MStar is the mass of the star in solar masses, and ρPlanet
is the density of the exoplanet in tons dm–3. This formula
is a proxy for the one originally suggested by Peale (1977)
and later used in other works (Kasting et al. 1993). Table 4
exhibits the exoplanets which are the most serious candidates
for having a cyclostrophic regime among those listed on the
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Figure 5. Classification and sample images of Venus mesoscale waves found in the cloud tops (above) and in the lower clouds (below). The waves in the cloud tops
(∼60 km height) were found at latitudes around 70o S with dayside 380 nm images taken by VMC (Piccialli et al. 2014) and VIRTIS-M (Peralta et al. 2008). On the
other hand, the waves apparent in the lower clouds (∼47 km) were found with 1.74 μm images taken by the instrument VIRTIS-M (Peralta et al. 2008). Asterisks
represent waves whose horizontal wavelength and intrinsic phase velocity have been measured, while straight lines have been used for those waves with no phase
velocity available. The acoustic, inertial, and gravity waves are shown in different colors, and different line styles are used for several values of vertical wavelengths.
The Brunt–Väisälä frequency (BV), centrifugal frequency (Ψ), and centrifugal frequency modified by the meridional shear of the background zonal wind (ξ ) are also
shown with gray lines. The dark and light gray areas mark the limits for maximum zonal wavelength allowed at this latitude and where we do not have ω̄2  ξ2,
respectively.

(A color version of this figure is available in the online journal.)

Web site http://exoplanet.eu/. To this aim, we have calculated
the Rossby number for two possible orders of magnitude in
the atmospheric wind (100 and 1000 m s−1), with the highest
value having been taken from Doppler estimates in exoplanets
(Snellen et al. 2010). For reference, a geostrophic regime is
characterized by Ro � 1, while a cyclostrophic system has
Ro  1 (Schubert 1983). Assuming the same criteria for
Titan (Bird et al. 2005) and Venus (Schubert 1983), we will
consider L ∼ radius (LT = 2575 km and LV = 6052 km),
wind velocities of about 100 m s−1, and their own rotation rates

(ΩT = 4.56 × 10−6 rad s−1 & ΩV = 2.99 × 10−7 rad s−1).
Hence, the Rossby numbers for Titan and Venus are Ro ≈ 8
and Ro ≈ 55, respectively.

7. CONCLUSIONS

In slowly rotating planets, the Coriolis terms can be ne-
glected and their atmosphere can be described by a cyclostrophic
regime instead of a geostrophic one; then, the pressure gradi-
ent force is balanced by the centrifugal force. Under reasonable

11
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Table 4
List of Tidally Locked Exoplanets That are Candidates for Having an Atmosphere in Cyclostrophic Balance

Star Exoplanet

Mass Age Name Mass Radii Orbit Radii Orbit Period Tidal Lock Ro Ro
(MSun) (Gyr) (MJup) (RJup) (AU) (days) (AU) (102 m s−1) (103 m s−1)

0.95 8 Kepler-11 g 0.95 0.33 0.46 118 1.17 7.1 71
1.1 7.5 Kepler-87 c 0.02 0.55 0.66 192 3.36 6.9 69
1.165 3.44 Kepler-79 e 0.013 0.31 0.39 81 2.77 5.1 51
0.95 8 Kepler-11 f 0.006 0.22 0.25 46 2.54 4.1 41
0.98 7.63 HD 80606 b 3.94 0.92 0.45 111 2.82 2.4 24
1.079 6.3 Kepler-68 c 0.015 0.08 0.09 9 1.23 2.3 23
1.113 6.923 Kepler-36 b 0.014 0.13 0.11 13 2.42 2.1 21
0.99 4 CoRoT-9 b 0.84 0.94 0.41 95 2.76 2.0 20
1.25 3.9 Kepler-89 e 0.04 0.55 0.30 54 3.27 1.9 19
1.1 7.5 Kepler-87 b 1.02 1.21 0.47 115 3.14 1.9 19
1.165 3.44 Kepler-79 c 0.05 0.33 0.19 27 2.36 1.6 16
0.95 8 Kepler-11 d 0.02 0.28 0.16 22 2.61 1.6 16
1.165 3.44 Kepler-79 d 0.07 0.64 0.29 52 2.85 1.6 16
0.95 8 Kepler-11 e 0.02 0.40 0.19 32 2.89 1.5 15
1.038 1 Kepler-66 b 0.31 0.25 0.13 18 1.15 1.4 14
0.95 8 Kepler-11 b 0.006 0.16 0.09 10 2.12 1.3 13
0.865 1 Kepler-67 b 0.31 0.26 0.12 15 1.13 1.2 12
1.25 2.9 Kepler-65 d 0.006 0.14 0.08 8 1.60 1.2 12
0.95 8 Kepler-11 c 0.009 0.26 0.11 13 2.48 1.0 10

Notes. Data are taken from http://exoplanet.eu/. Titan and Venus are Ro ≈ 8 and Ro ≈ 55, respectively. Geostrophic regimes occur for Ro � 1 while
the atmosphere is cyclostrophic when Ro  1 (Schubert 1983).

assumptions, we have deduced, for the first time, analytical so-
lutions for acoustic and inertia-gravity waves for a cyclostrophic
atmosphere, simultaneously considering the metric terms for the
centrifugal force and the meridional shear of the background
wind. The corresponding dispersion relations are of special in-
terest for the classification of the numerous waves found with
remote sensing data and whose nature is still unclear. Further-
more, they can help one to restrict the possible candidates for
the periodicities observed in many atmospheric parameters and
to characterize the wave amplitude, structure, and direction of
propagation once its nature has been determined.

Acoustic and inertia-gravity waves have been found to be so-
lutions of the equations describing a cyclostrophic atmosphere,
and we checked that their properties are identical to those of
their geostrophic counterparts. It has also been shown that the
centrifugal force can be redefined as a centrifugal frequency
that plays a role similar to the Coriolis factor on the geostrophic
case, and this centrifugal frequency determines a lower limit
to the intrinsic frequencies for gravity waves. The meridional
shear of the mean zonal flow has been shown to be a modifier of
the centrifugal frequency by restricting the region where inertia-
gravity waves are possible in the dispersion graph. As a result
of the prevailing cyclostrophic regime, inertial waves are found
to be possible on a cyclostrophic regime, and their existence is
subject to an inertial stability defined in terms of the difference
between the centrifugal frequency and the meridional shear of
the background wind.

Acoustic and inertia-gravity waves have amplitudes that
decrease exponentially with height. Large-scale acoustic waves
are clearly dispersive, have intrinsic frequencies that do not
depend on the wavenumber, and they have a high phase velocity
and a null group velocity, so they cannot transport energy
or momentum. For very small wavelengths, we recover the
classical dispersion relation for acoustic waves, which are non-
dispersive and with an intrinsic phase velocity equal to the
adiabatic speed of sound. Concerning the inertia-gravity waves,

we found that in the case of short horizontal wavelengths, null
background wind, or in the equatorial region, only pure gravity
waves are possible. For large horizontal wavelengths and/or null
static stability, the waves are inertial, dispersive, and acquire
large horizontal phase speeds.

Additionally, some of the classical atmospheric approxima-
tions have been examined in order to determine their effect on
the wave solutions. This helps one to determine their role in
filtering waves and it is also crucial to improve and simplify, for
example, current GCMs for Venus and Titan. It has been found
that, as in the geostrophic case, the hydrostatic approximation
filters all the high-frequency waves, while an incompressible at-
mosphere allows filtering the acoustic waves but severely mod-
ifies the inertia-gravity waves. We have also demonstrated that
applying an intrinsically anelastic atmosphere approximation—
assuming that the atmosphere behaves as anelastic but only
when observed relative to the background wind—the acoustic
waves can be successfully filtered out, while the inertia-gravity
waves remain unchanged.

Finally, we have applied our results for a systematic classifi-
cation of the mesoscale waves that are apparent on the clouds
at different vertical levels of Venus’s atmosphere. To accom-
plish this, a reference model atmosphere of Venus has been
created by combining atmospheric data from previous missions
(Venus International Reference Atmosphere (VIRA)) with re-
cent data from Venus Express, which allowed us to obtain dis-
persion relations for waves between the equator and 85o and
altitudes between 45 and 80 km (see Appendix A). We confirm
that these waves are non-dispersive gravity waves, while those
found in the lower clouds have vertical wavelengths compatible
with the vertical extension of the stability region where they are
propagating.
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APPENDIX A

REFERENCE ATMOSPHERE AND
SCALE ANALYSIS FOR VENUS

In order to simplify as much as possible the equations to
be used for the deduction of the waves in the cyclostrophic
atmosphere of Venus, a scale analysis of the primitive equa-
tions is required. To describe a standard atmosphere, primitive
momentum, continuity, and thermodynamic equations in local
east–north–up (ENU) coordinates were chosen (Holton 2004).
It is important to note, however, that these coordinates only
behave like genuine Cartesian ones over small spatial ranges
in latitude (thus they are generally suitable for acoustic- and
inertia-gravity waves):

Du

Dt
= − 1

ρ

∂P

∂x
+

uv

r
tan φ − uw

r
+ 2Ω · v sin φ

− 2Ω · w cos φ + Frx, (A1a)

Dv

Dt
= − 1

ρ

∂P

∂y
− u2

r
tan φ − vw

r
− 2Ω · u sin φ + Fry, (A1b)

Dw

Dt
= − 1

ρ

∂P

∂z
− g +

u2 + v2

r
+ 2Ω · u cos φ + Frz, (A1c)

Dρ

Dt
= −ρ

(
∂u

∂x
+

∂v

∂y
+

∂w

∂z

)
, (A1d)

Ds

Dt
= Q

T
, with s = CP ln θ, (A1e)

where (u, v,w) are the zonal, meridional, and vertical com-
ponents of the wind; P is the atmospheric pressure; ρ is the
density; g is the gravity acceleration on Venus; Ω is the solid
planet rotation rate; φ is the latitude; Fr is the molecular friction;
r = a + z, with z being the altitude over the planet surface and a
the Venus radius; s is the entropy; and θ is the potential temper-
ature. We will assume that Venus’s radius a is much larger than
the altitude over the surface z, so we can consider that r ∼= a.
Moreover, the molecular friction is about 10−12 m s−2 and can be
neglected for all the motions except the smallest scale turbulent
ones (Piccialli 2010). Finally, considering that the atmospheric
motions are adiabatic Q = 0 in the cloud region of Venus
(Tellmann et al. 2009), and redefining the potential temperature
as Θ ≡ ln θ , we will then have

Du

Dt
= − 1

ρ

∂P

∂x
+

uv

a
tan φ − uw

a
+ 2Ω · (v sin φ − w cos φ) ,

(A2a)

Dv

Dt
= − 1

ρ

∂P

∂y
− u2

a
tan φ − vw

a
− 2Ω · u sin φ, (A2b)

Dw

Dt
= − 1

ρ

∂P

∂z
− g +

u2 + v2

a
+ 2Ω · u cos φ, (A2c)

Figure 6. Zonal wind (top) and atmospheric Brunt–Väisälä frequency (bottom)
for the model reference atmosphere. The zonal wind has been interpolated using
data from cloud tracking (Hueso et al. 2012) and the vertical profiles obtained
during the Veneras and Pioneer Venus missions (Gierasch et al. 1997). The
Brunt–Väisällä frequency comes from results by VEX-VeRA (Tellmann et al.
2009).

Dρ

Dt
= −ρ

(
∂u

∂x
+

∂v

∂y
+

∂w

∂z

)
, (A2d)

DΘ
Dt

= 0. (A2e)

In order to estimate orders of magnitude for perform-
ing a deeper scale analysis to the momentum equations
(Equations (A2a)–(A2c)), we constructed a simple reference
model for the atmosphere of Venus at the level of the clouds,
combining and interpolating data from the Pioneer Venus mis-
sion (Seiff et al. 1985) and recent results from Venus Express
(Tellmann et al. 2009; Piccialli 2010; Hueso et al. 2012). This
reference model is axisymmetric, covering latitudes between
the equator and the pole with steps of 5o, and heights be-
tween 45 and 80 km with steps of 100 m. Typical values
of zonal wind and Brunt–Väisälä frequency are displayed in
Figure 6. The static stability and pressure data come from Venus
Express radio occultation measurements (Tellmann et al. 2009;
Piccialli 2010), while the density, temperature, and heat ca-
pacities at constant pressure and volume were extracted from
VIRA. The zonal wind was the result of an interpolation using
the meridional profiles at two altitudes extracted from cloud-
tracking analysis of Venus Express/VIRTIS images (Hueso et al.
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Table 5
Order of Magnitude for Some of the Most Relevant Atmospheric Parameters

for Venus and Earth (Piccialli 2010)

Scale Symbol Venus Earth

Vertical scale (m) H 104 103

Zonal velocity (m s−1) U 102 10
Meridional velocity (m s−1) V 10 10
Vertical Velocity (m s−1) W 1 10−2

Radius (m) a 6 · 106 6 · 106

Rotation rate (rad s−1) Ω 10−7 10−5

Acceleration of gravity (m s−2) g 8.8 9.8
Timescale (s) T 106 105

2012) combined with the vertical profiles extracted with Pioneer
Venus and Venera probes at specific latitudes (Seiff et al. 1985;
Gierasch et al. 1997).

Table 5 shows the typical scales for Venus at the region of the
clouds (Schubert 1983) compared to the Earth (Holton 2004):

Using our reference atmosphere for Venus, we can consider
the maximum value within the cloud region for all the terms ap-
pearing on the right-hand side of Equations ((A2a) and (A2c)).
From Table 6, the maximum magnitude is 10−3 for the zonal
and meridional momentum equations and 101 for the vertical
momentum. As the advection terms within the material deriva-
tive D/Dt are not sufficiently constrained from measurements,
they were not evaluated for the scale analysis.

Thus, according to Table 6, we will make the following
assumptions to apply the scale analysis to the momentum
equations.

1. Only those terms with the maximum scale will be
considered.

2. All the advection terms will be included.
3. In order to study the atmospheric waves of Venus with a

set of equations similar to the momentum equations for the
terrestrial case, the minor metric term (uv/a) tan φ will be
included in the zonal equation.

We finally obtain

Du

Dt
= − 1

ρ

∂P

∂x
+

uv

a
tan φ, (A3a)

Dv

Dt
= − 1

ρ

∂P

∂y
− u2

a
tan φ, (A3b)

Dw

Dt
= − 1

ρ

∂P

∂z
− g, (A3c)

Dρ

Dt
= −ρ

(
∂u

∂x
+

∂v

∂y
+

∂w

∂z

)
, (A3d)

DΘ
Dt

= 0. (A3e)

APPENDIX B

APPLICABILITY OF THE METHOD OF MULTIPLE
SCALES ON VENUS

The method of multiple scales in height allows one to
simplify the procedure to solve the wave equations under
the combined effect of vertical and horizontal shear of the
background wind (Boyd 1978). When this method is valid, we
can first obtain the solution for waves under solely horizontal

Table 6
Orders of Magnitude of the Highest Value Found for the Main Terms in the

Momentum Equations for the Cloud Region of Venus

Zonal Equation Meridional Equation Vertical Equation

Term (m s−2) Term (m s−2) Term (m s−2)
1
ρ

∂P
∂x

10−3 1
ρ

∂P
∂y

10−3 1
ρ

∂P
∂z

101

uv
a

tan φ 10−5 u2

a
tan φ 10−3 g 101

uw
a

10−5 vw
a

10−6 u2+v2

a
10−3

2Ω · v sin φ 10−6 2Ω · u sin φ 10−6 2Ω · u cos φ 10−5

2Ω · w cos φ 10−7

Note. These values have been obtained using our updated Venus reference
atmosphere.

shear, thus determining the local wave structure at the local
wind profile (“local” means here “at a given height”). Once
these local solutions are extracted, the wave’s overall amplitude
is calculated using the wave action equation which directly
introduces the vertical variation in the wind (Boyd 1978). Boyd
also demonstrated that the knowledge of the meridional shear
of the background wind is sufficient to calculate all the wave
properties at a given height except for the overall amplitude and
phase factors.

The method of multiple scales can be applied if the vertical
wave scale Hwave (i.e., one vertical wavelength divided by 2π )
is small compared with the vertical scale of the variation for
the background zonal wind (Hwind = |zf − zi |). The parameter
Hwind can be reasonably defined as the vertical distance for
which the zonal wind doubles its value (|u0(zf )| = 2 · |u0(zi)|),
and it is displayed for the region of study in panel (A) of Figure 7:

2 · |u0(zi)| − |u0(zi)|
Hwind

=
∣∣∣∣∂u0

∂z

∣∣∣∣ ⇒ Hwind =
∣∣∣∣ u0(zi)

∂u0/∂z

∣∣∣∣ .
(B1)

Unfortunately, measurements of the vertical wavelength for
the atmospheric waves on Venus are scarce. Seiff et al. (1992)
presented an excellent summary of the waves of Venus, high-
lighting that vertical wavelengths in the range 700 m–1 km
were found during the descent of the Pioneer Venus probes.
Later radio-occultation measurements by the Magellan (Hinson
& Jenkins 1995) and Venus Express orbiters (Tellmann et al.
2012) also found wave activity with typical vertical wavelengths
less than 8 km in the former and even smaller (around 3 km)
in the latter. According to these results, we can define a maxi-
mum vertical wave scale of approximately Hwave ≈ 1.3 km and
compare it with the vertical scale of the background zonal wind
in order to find the regions where Hwave is small compared to
Hwind, typically the region where 5 · Hwave < Hwind. The maxi-
mum vertical wavelength which allows one to apply the method
of multiple scales on Venus is displayed in panel (B) of Figure 7,
where we check that in most of the regions vertical wavelengths
higher than 10 km are allowed.

APPENDIX C

OPTIMUM AXIS ROTATION

If we apply the method of perturbations to the momentum
equations of a cyclostrophic atmosphere defined in local ENU
coordinates, we obtain for the zonal, meridional, and vertical
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(A)

(B)

Figure 7. Applicability of the method of the multiple scales on Venus. Panel
(A) displays the vertical scale of variation for the zonal wind, while panel (B)
exhibits the maximum values of vertical wavelength permitted so that a wave
can be described with the dispersion relations deduced in this work.

directions
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+

ρ ′

ρ0
g = 0, (C1c)

where the terms −Ψ · v′ and 2Ψ · u′ in the zonal and meridional
momentum equations (Equations (C1a) and (C1b)) represent
the change of the metric or curvature terms due to the velocity
perturbations projected onto the x-axis and y-axis, respectively.
These metric terms do not alter the gravitational force and are
hardly influenced by the rotation of the coordinate system.
On the other hand, the terms Ψu0 · ρ ′/ρ0 and g · ρ ′/ρ0 in
the meridional and vertical momentum equations represent the
influence of the density perturbation on the y-component of the
centrifugal force associated with the background wind (u0) and
on the gravitational force. Specifically, the term Ψu0 · ρ ′/ρ0
from Equation (C1b) introduces an undesirable dependence on
the density perturbation in the meridional momentum equation
that severely complicates the analytical solution of the wave
disturbances.

A workaround to this problem is to have the term Ψu0 ·ρ ′/ρ0
canceled by g · ρ ′/ρ0 by rotating the coordinate system of the
ENU frame around the x-axis so that the z-axis lies along the
vector sum of the gravitational acceleration and the centrifugal
force, similar to the convention of standard meteorology where
the centrifugal force arises from the rotation of the planet
(Holton 2004; Vallis 2006). Thus, by rotating the coordinate
system by an angle Δϕ, we obtain the following projections of
the centrifugal and gravitational forces on the new y-axis:

� ⊗ Fcf =
(

1 0 0
0 cos Δϕ − sin Δϕ
0 sin Δϕ cos Δϕ

)
⊗
⎛
⎝−(uv/a) · tan φ

(u2/a) · tan φ

(u2 + v2)/a

⎞
⎠ ,

(C2a)

� ⊗ g =
(

1 0 0
0 cos Δϕ − sin Δϕ
0 sin Δϕ cos Δϕ

)
⊗
(

0
0

−g

)
, (C2b)

where � is the rotation matrix. If we let Δϕ be the angle nec-
essary for the gravitational force to compensate the centrifugal
force, we have

− u2

a
tan φ · cos Δϕ − u2 + v2

a
· sin Δϕ = g · sin Δϕ. (C3)

If we now sort the terms and apply the scale analysis derived
for the cyclostrophic atmosphere of Venus in Table 6 (see
Appendix A), we obtain

− u2

a
tan φ · cos Δϕ =

(
g +

u2 + v2

a

)
· sin Δϕ ∼= g · sin Δϕ,

(C4)
and, dividing by cos Δϕ, it is straightforward to obtain the angle
for the optimum frame rotation:

tan Δϕ = u2
0 tan φ

a · g
. (C5)

Considering the order of magnitude for the parameters involved
in the equation (see Table 6 in Appendix A) this angle is
|Δϕ| ∼= 6 × 10−3 degrees. Once the system of coordinates
has been rotated, the new meridional and vertical momentum
equations will contain terms multiplied by sin Δϕ ∼= 10−4 and
cos Δϕ ∼= 1, and it is simple to show that the equations for the
wave disturbances become
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APPENDIX D

THE VERTICAL MOMENTUM EQUATION IN TERMS OF
WAVE DISTURBANCES

The vertical momentum and ideal gas equations for a cy-
clostrophic atmosphere are

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
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∂w

∂z
= − 1

ρ

∂P

∂z
− g, (D1a)
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P = ρRT . (D1b)

Applying the theory of perturbations to linearize these equations
and neglecting products of perturbations, we get
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, (D2b)

where we have considered that the undisturbed atmosphere is in
hydrostatic balance, i.e., ∂P0/∂z+ρ0g = 0. Taking into account
that
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it follows that
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Now, manipulating Poisson’s equation for the basic state, we
can obtain the following:
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Replacing the term ∂ ln ρ0/∂z in Equation (D4a) and considering
that the atmospheric stability is B ≡ ∂ ln θ/∂z,

∂w′

∂t
+ u0

∂w′

∂x
+

∂

∂z

(
P ′

ρ0

)
− B

P ′

ρ0

+
P ′

ρ0

(
1 − R

CP

)
∂ ln P0

∂z
+

ρ ′

ρ0
g = 0, (D6a)

P ′

P0
= ρ ′

ρ0
+

T ′

T0
. (D6b)

Using the hydrostatic balance again,

∂w′

∂t
+ u0

∂w′

∂x
+

∂

∂z

(
P ′

ρ0

)
− B

P ′

ρ0

− P ′

P0

(
1 − R

CP

)
· g +

ρ ′

ρ0
g = 0 (D7a)

P ′

P0
= ρ ′

ρ0
+

T ′

T0
. (D7b)

Joining all the terms multiplied by the acceleration of gravity
in Equation (D7a) and using Equation (D7b), we arrive at the
following expression for the vertical momentum equation:

∂w′

∂t
+ u0

∂w′

∂x
+

∂

∂z

(
P ′

ρ0

)
− B

P ′

ρ0
− g

(
T ′

T0
− R

CP

P ′

P0

)
= 0.

(D8)

Then, dividing Poisson’s equations for disturbed and undis-
turbed states and operating,

θ0 + θ ′

θ0
=
(
T0 + T ′) · [Pref /

(
P0 + P ′)]R/CP

T0 · (Pref /P0
)R/CP

⇒

1 +
θ ′

θ0
=
(

1 +
T ′

T0

)
·
(

1 +
P ′

P0

)−R/CP

⇒

ln

(
1 +

θ ′

θ0

)
= ln

(
1 +

T ′

T0

)
− R

CP

ln

(
1 +

P ′

P0

)
. (D9)

Taking into account that ln (1 + x) ∼= x when x � 1, we can
modify Equation (D8) and get

∂w′

∂t
+ u0

∂w′

∂x
+

∂

∂z

(
P ′

ρ0

)
− B

P ′

ρ0
− g

θ ′

θ0
= 0. (D10)

Finally, defining Θ ≡ ln θ , we can demonstrate that Θ′ ∼= θ ′/θ0
by again applying ln (1 + x) ∼= x when x � 1:

Θ0 + Θ′ = ln
(
θ0 + θ ′) = ln θ0 + ln

(
1 +

θ ′

θ0

)
∼= ln θ0 +

θ ′

θ0
.

(D11)
We finally obtain for the vertical momentum equation

∂w′

∂t
+ u0

∂w′

∂x
+

∂

∂z

(
P ′

ρ0

)
− B

P ′

ρ0
− g · Θ′ = 0. (D12)

APPENDIX E

TRACER PARAMETERS IN SCALED EQUATIONS

We demonstrated that the perturbed vertical momentum and
continuity equations had the form

n4·
(

∂w′

∂t
+ u0

∂w′

∂x

)
+

∂

∂z

(
P ′

ρ0

)
−n3·B P ′

ρ0
−g·Θ′ = 0, (E1a)

n2 ·
[

∂

∂t

(
ρ ′

ρ0

)
+ u0

∂

∂x

(
ρ ′

ρ0

)]
+

∂u′

∂x
+

∂w′

∂z
− n1 · w′

H0
= 0,

(E1b)
where (u′, w′, ρ ′, P ′, Θ′ ∼= θ ′/θ0) are the wave perturbations
for the zonal and vertical wind velocity, atmospheric density,
pressure, and potential temperature. On the other hand, ρ0(z)
and u0(y, z0) are the atmospheric density and zonal wind in
their basic states, H0 is the density scale height, g is the
acceleration of gravity, and B is the atmospheric static stability
(B ≡ ∂ ln θ/∂z) with N = √

gB being the Brunt–Väisälä
frequency. Finally, (n1, n2, n3, n4) are the tracer parameters
multiplying those terms in the wave disturbance equations that
are related to the most relevant assumptions to filter waves (see
Section 5): the hydrostatic approximation (Dw/Dt = 0) is
applied when setting n4 = 0, an incompressible atmosphere
(Dρ/Dt = 0) is applied when n1 = n2 = n3 = 0, the
atmosphere behaves as intrinsically anelastic (i.e., anelastic
relative to the background zonal wind) if we set n2 = n3 = 0,
while applying n1 = n2 = n3 = n4 = 0 can be demonstrated to
be equivalent to applying the Boussinesq approximation.

These tracer parameters can be shown to be linked to cer-
tain dimensionless variables related to the atmospheric approx-
imations they involve. We can non-dimensionalize the physical
variables (Vallis 2006) involved in Equations (E1):(

u′, v′) = U · (ũ′, ṽ′) , (E2a)
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w′ = W · w̃′ = H · U

L
· w̃′ = α · U · w̃′, (E2b)

(x, y, z) = (x̃ · L, ỹ · L, z̃ · H ) , (E2c)

t = t̃ · τ = t̃ · L

U
, (E2d)

P ′ = P̃ ′ · ρ0 · U 2, (E2e)

where τ, U,L,W,H are the timescale, horizontal velocity
and length scales, and vertical velocity and length scales,
respectively, and α is the aspect ratio parameter. Introducing the
expressions (E2) into the perturbed equations (Equation (E1)),
we obtain

n4 · α · U 2

L
·
(

∂w̃′

∂t̃
+ ũ0

∂w̃′

∂x̃

)
+

U 2

H
· ∂P̃ ′

∂z̃

− n3 · U 2 N2

g
P̃ ′ − g · Θ′ = 0, (E3a)

n2 · U

L
·
[

∂

∂t̃

(
ρ ′

ρ0

)
+ ũ0

∂

∂x̃

(
ρ ′

ρ0

)]
+

U

L
· ∂ũ′

∂x̃

+ α · U

H
· ∂w̃′

∂z̃
− n1 · α · U · w̃′

H0
= 0. (E3b)

Several dimensionless parameters can be introduced now: the
Mach number (M2 ≈ ρ ′/ρ0), which defines the degree of com-
pressibility of the fluid, the Richardson number (Ri ≡ gH/U 2),
which expresses the ratio of potential to kinetic energy, and
the vertical Froude number (FrV ≡ U/[H · N ]), which pro-
vides a measure of the stratification of the flow. Operating on
Equations (E3) we finally have the vertical momentum and con-
tinuity equations without dimensions:

n4FrV α ·
(

∂w̃′

∂t̃
+ ũ0

∂w̃′

∂x̃

)
+

FrV
α

· ∂P̃ ′

∂z̃

− M2

α
·
(

n3

FrV · Ri
· P̃ ′ + FrV · Ri · Θ′

)
= 0, (E4a)

n2 · M2 ·
[

∂

∂t̃

(
ρ ′

ρ0

)
+ ũ0

∂

∂x̃

(
ρ ′

ρ0

)]
+

∂ũ′

∂x̃
+

∂w̃′

∂z̃

− n1 · M2 · α · L

H0
· w̃′ = 0, (E4b)

where the Mach number appears in Equation (E4b) multiplying
those terms coming from D

(
ρ ′/ρ0

)
/Dt , and in the case of

Equation (E4a) coming from a term containing ρ ′/ρ0 (see
Equation (3c) and Appendix D). For subsonic fluids (M2 � 1),
the fluid can be considered as incompressible and setting a small
value for the Mach number is, thus, equivalent to setting n1 =
n2 = n3 = 0, precisely the tracer parameters multiplying the
Mach number. The hydrostatic balance is associated with a small
value of the aspect ratio parameter (α2 � 1) and, in the more
generic case of a stratified fluid, to small values of the product
between the Froude number and the aspect ratio (α2 · Fr2

V � 1)
(Vallis 2006). This is clearly linked to setting n4 = 0 in the
vertical momentum equation (Equation (E4a)) in order to apply
the hydrostatic balance. Concerning the Richardson number,
when this is much lower than unity, buoyancy is negligible in
the flow, while when being of the order of unity or higher, the
flow is likely to be buoyancy-driven. Observe that, consistently,
the Richardson number appears in the vertical momentum

equation (Equation (E4a)), multiplying the perturbations on the
atmospheric potential temperature.
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Tellmann, S., Pätzold, M., Häusler, B., Bird, M. K., & Tyler, G. L. 2009, JGRE,

114, E00B36
Vallis, G. K. 2006, Atmospheric and Oceanic Fluid Dynamics (Cambridge:

Cambridge Univ. Press)
Yamamoto, M., & Takahashi, M. 2003, JAtS, 60, 561
Zaitsev, V. F., & Polyanin, A. D. 2002, Handbook of Exact Solutions for Ordinary

Differential Equations (2nd ed.; Boca Raton, FL: CRC Press), 816

18

http://adsabs.harvard.edu/abs/1984JAtS...41.1202S
http://adsabs.harvard.edu/abs/1984JAtS...41.1202S
http://adsabs.harvard.edu/abs/1985AdSpR...5....3S
http://adsabs.harvard.edu/abs/1985AdSpR...5....3S
http://dx.doi.org/10.1088/0004-637X/699/1/564
http://adsabs.harvard.edu/abs/2009ApJ...699..564S
http://adsabs.harvard.edu/abs/2009ApJ...699..564S
http://dx.doi.org/10.1088/0004-637X/738/1/71
http://adsabs.harvard.edu/abs/2011ApJ...738...71S
http://adsabs.harvard.edu/abs/2011ApJ...738...71S
http://dx.doi.org/10.1126/science.256.5057.652
http://adsabs.harvard.edu/abs/1992Sci...256..652S
http://adsabs.harvard.edu/abs/1992Sci...256..652S
http://adsabs.harvard.edu/abs/1993JAtS...50.4080S
http://adsabs.harvard.edu/abs/1993JAtS...50.4080S
http://dx.doi.org/10.1038/nature09111
http://adsabs.harvard.edu/abs/2010Natur.465.1049S
http://adsabs.harvard.edu/abs/2010Natur.465.1049S
http://dx.doi.org/10.1029/JA085iA13p07963
http://adsabs.harvard.edu/abs/1980JGR....85.7963T
http://adsabs.harvard.edu/abs/1980JGR....85.7963T
http://dx.doi.org/10.1016/j.icarus.2012.08.023
http://adsabs.harvard.edu/abs/2012Icar..221..471T
http://adsabs.harvard.edu/abs/2012Icar..221..471T
http://dx.doi.org/10.1029/2008JE003204
http://adsabs.harvard.edu/abs/2009JGRE..114.0B36T
http://adsabs.harvard.edu/abs/2009JGRE..114.0B36T
http://adsabs.harvard.edu/abs/2003JAtS...60..561Y
http://adsabs.harvard.edu/abs/2003JAtS...60..561Y

	1. INTRODUCTION
	2. WAVE EQUATIONS FOR A CYCLOSTROPHIC ATMOSPHERE
	3. THE GENERAL DISPERSION RELATION FOR WAVES
	4. ACOUSTIC, GRAVITY, AND INERTIAL WAVES
	4.1. Limitations from the Meridional Variation of 2

	5. FILTERING WAVES IN A CYCLOSTROPHIC ATMOSPHERE
	5.1. The Hydrostatic Approximation
	5.2. The Incompressible and Anelastic Atmospheres
	5.3. The Boussinesq Approximation and Hydrostatic Balance
	5.4. Wave Filtering on Cyclostrophic and Geostrophic Atmospheres

	6. DISCUSSION
	7. CONCLUSIONS
	APPENDIX A. REFERENCE ATMOSPHERE AND SCALE ANALYSIS FOR VENUS
	APPENDIX B. APPLICABILITY OF THE METHOD OF MULTIPLE SCALES ON VENUS
	APPENDIX C. OPTIMUM AXIS ROTATION
	APPENDIX D. THE VERTICAL MOMENTUM EQUATION IN TERMS OF WAVE DISTURBANCES
	APPENDIX E. TRACER PARAMETERS IN SCALED EQUATIONS
	REFERENCES

