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A RADEMACHER-MENCHOV APPROACH FOR RANDOM
COEFFICIENT BIFURCATING AUTOREGRESSIVE PROCESSES

BERNARD BERCU AND VASSILI BLANDIN

Abstract. We investigate the asymptotic behavior of the least squares estima-
tor of the unknown parameters of random coefficient bifurcating autoregressive
processes. Under suitable assumptions on inherited and environmental effects, we
establish the almost sure convergence of our estimates. In addition, we also prove
a quadratic strong law and central limit theorems. Our approach mainly relies
on asymptotic results for vector-valued martingales together with the well-known
Rademacher-Menchov theorem.

1. Introduction

The purpose of this paper is to study random coefficient bifurcating autoregressive
processes (RCBAR). One can see those processes in two different ways. The first one
is to see them as random coefficient autoregressive processes (RCAR) adapted to
binary tree structured data, the second one is to consider those processes as the as-
sociation of RCAR processes and bifurcating autoregressive processes (BAR). BAR
processes have been first studied by Cowan and Staudte [10] while RCAR processes
have been first investigated by Nicholls and Quinn [26, 27]. The RCBAR structure
allows us to reckon with environmental and inherited effects in order to better take
into account the evolution of the characteristic under study. One shall see cell divi-
sion as an example of binary tree structured data.

Let us detail what a RCBAR process is. The first individual is designated as the
individual 1 and each individual n leads to individuals 2n and 2n+ 1. The random
variable Xn will stand for the characteristic under study of individual n. We can
now make explicit the first-order RCBAR process which is given, for all n ≥ 1, by

(1.1)

{
X2n = anXn + ε2n,

X2n+1 = bnXn + ε2n+1,

where the driven noise sequence (ε2n, ε2n+1) represents the environmental effect while
the random coefficient sequence (an, bn) represents the inherited effect. The example
of the cell division incites us to suppose that ε2n ans ε2n+1 are correlated since the
environmental effect on two sister cells can reasonably be seen as correlated. Denote
by a and b the conditional means of the random coefficient sequences (an) and (bn).
Moreover, let c and d be the conditional means of the driven noises (ε2n) and (ε2n+1),

respectively. If θ̂n stands for the least squares estimator of the unknown vector of
means θt = (a, b, c, d), we shall prove, under suitable assumptions on inherited and
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environmental effects, that θ̂n converges almost surely to θ with the almost sure rate
of convergence

‖θ̂n − θ‖2 = O
( n
2n

)
a.s.

In addition, we shall also establish the asymptotic normality
√
2n(θ̂n − θ)

L−→ N (0,Γ−1LΓ−1)

where the matrices L and Γ will be explicitely calculated.

Our theoretical approach is motivated by experiments on the single celled organ-
ism Escherichia coli which reproduces by dividing itself into two poles, one being
called the new pole, the other being called the old pole. We refer the reader to the
pioneer work on statistical analysis of Escherichia coli carried out by Stewart et
al. [30] and Guyon et al. [18], as well as to the recent contribution of De Saporta
et al. [12, 14]. It was empirically shown in these statistical analysis of experimental
data that some variables among cell lines, such as the life span of the cells, does
not evolve in the same way whether it is related to the new or the old pole. The
difference in the evolution leads us to consider an asymmetric RCBAR. Consider-
ing a RCBAR process instead of a BAR process [13] allows us to assume that the
inherited effect is no more deterministic, as randomness often appears in nature.
Moreover, we can consider both deterministic and random inherited effects since we
also allow the random variables modeling the inherited effect to be deterministic,
making this study usable for RCBAR as well as BAR.

Our goal is to investigate the asymptotic behavior of the least squares estima-
tors of the unknown parameters of first-order RCBAR processes. In contrast with
the previous work of Blandin [9] where the asymptotic behavior of weighted least
squares estimators were investigated, we propose here to make use of a totally differ-
ent strategy based on the standard least squares (LS) estimators together with the
well-known Rademacher-Menchov theorem. The martingale approach for BAR pro-
cesses has been first suggested by Bercu et al. [6], followed by De Saporta et al. [11].
We also refer the reader to Bercu and Blandin [5] for the study of bifurcating integer-
valued autoregressive processes and to Bansaye [3] for the study of its asymptotic
behavior, as well as to the recent contribution of Djellout and Bitseki Penda [8] on
moderate deviation principles for the LS estimators of the unknown parameters of
BAR processes. Our approach relies on the Rademacher-Menchov theorem which
allows us to study the LS estimates in a different way as in de Saporta et al. [13].
In particular, it enables us to significantly reduce the moment assumptions on the
random coefficient sequence (an, bn) and on the driven noise sequence (ε2n, ε2n+1).
We shall also make use of the strong law of large numbers and the central limit
theorem for martingales [16, 19] in order to study the asymptotic behavior of our
LS estimates. The martingale approach of this paper has also been used by Basawa
and Zhou [4, 37, 38].

Since several methods have been proposed for the study of BAR processes, we
tried to take into consideration each of them. In this way, we took into account the
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classical BAR approach as used by Huggins and Basawa [21, 22] and by Huggins
and Staudte [23] who investigated the evolution of cell diameters and lifetimes. We
were also inspired by the bifurcating Markov chain approach brought in by Guyon
[17] and applied by Delmas and Marsalle [15]. We also reckoned with the analogy
with the Galton-Watson processes as in Delmas and Marsalle [15] and Heyde and
Seneta [20]. Even though we chose to use LS estimates, different methods have been
investigated for parameter estimation in RCAR processes. We have chosen to make
use of the least squares approach instead of quasi-maximum likelihood method pro-
posed by Aue et al. [1, 2] as well as Berkes et al. [7]. The reason why we have chosen
LS estimates is towfold. On the one hand, the LS method allows us to avoid the
maximization step of the quasi-likelihood method, which could be time-consuming
and costly. On the other hand, except in Theorem 3 of [7], it is necessary to know
the variance σ2 of the driven noise, in order to estimate the RCA parameters. More-
over, σ2 cannot be estimated by quasi-maximum likelihood method. Via our least
squares approach, it is possible to consistently estimate all the conditional variances
of the random coefficients and driven noises. We also refer the reader to Koul and
Schick [24] for the M-estimation method, see also Vanecek [35] and Schick [29].

The paper is organized as follows. We will explain more accurately the model we
will consider in Section 2, leading to Section 3 where we will give explicitly our LS
estimates of the unknown parameters under study. The martingale point of view
chosen in this paper will be highlighted in Section 4. All our results about the
asymptotic behavior of our LS estimates will be stated in Section 5, in particular
the almost sure convergence, the quadratic strong law and the asymptotic normality.
Section 6 is devoted to the Rademacher-Menchov theorem. All technical proofs are
postponed to the last sections.

2. Random coefficient bifurcating autoregressive processes

We will study the first-order RCBAR process given, for all n ≥ 1, by

(2.1)

{
X2n = anXn + ε2n,

X2n+1 = bnXn + ε2n+1,

where X1 is the ancestor of the process and (ε2n, ε2n+1) is the driven noise of the
process. We will suppose that E[X16

1 ] <∞ and we will also assume that the two se-
quences (an, bn) and (ε2n, ε2n+1) are independent and identically distributed and
that X1, (an, bn) and (ε2n, ε2n+1) are mutually independent. RCBAR processes
can be seen as a first-order random coefficient autoregressive process on a binary
tree, each node of this tree representing an individual and the first node being the
ancestor. For all n ≥ 0, Gn will stand for the n-th generation, that is to say
Gn = {2n, 2n +1, . . . , 2n+1 − 1}. We will also denote by Tn the set of all individuals
up to the n-th generation, namely

Tn =
n⋃

k=0

Gk.
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One can see that the cardinality |Gn| of Gn is 2n, while that of Tn is 2n+1 − 1.
Grn will denote the generation of individual n with rn = [log2(n)] where [x] stands
for the integer part of x. Let us recall that the two offspring of individual n are
individuals 2n and 2n+ 1.

G0

G1

G2

Gn

Tn

1

2 3

4 5 6 7

i2
n

2i 2i+ 1

2n+1 − 1

Figure 1. The tree associated with the RCBAR

3. Least squares estimators

Let (Fn) be the natural filtration associated with the generations of our first-order
RCBAR (Xn), namely Fn = σ{Xk, k ∈ Tn} for all n ∈ N. In all the sequel, we will
assume that for all n ≥ 0 and for all k ∈ Gn,

(3.1)
E[ak|Fn] = a, E[bk|Fn] = b,

E[ε2k|Fn] = c, E[ε2k+1|Fn] = d a.s.

Consequently, (2.1) can be rewritten as

(3.2)

{
X2n = aXn + c+ V2n,

X2n+1 = bXn + d+ V2n+1,

where, for all k ∈ Gn, V2k = X2k − E[X2k|Fn] and V2k+1 = X2k+1 − E[X2k+1|Fn].
We can rewrite the system (3.2) in a classic autoregressive form

(3.3) χn = θtΦn +Wn

where

χn =

(
X2n

X2n+1

)
, Φn =

(
Xn

1

)
, Wn =

(
V2n
V2n+1

)
,

and the matrix parameter θ given by

θ =

(
a b
c d

)
.
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One of our goal is to estimate θ from the observation of the n+ 1 first generations,

namely Tn. We will use the least squares estimator θ̂n of θ which minimizes

∆n(θ) =
∑

k∈Tn−1

‖χk − θtΦk‖2.

Hence, we clearly have

(3.4) θ̂n = S−1
n−1

∑

k∈Tn−1

Φkχ
t
k where Sn =

∑

k∈Tn

ΦkΦ
t
k.

In order to avoid any invertibility assumption, we will suppose that Sn is invertible.
Otherwise, we only have to add the identity matrix of order 2, I2, to Sn. Moreover,

we will make a slight abuse of notation by identifying θ and θ̂n to

vec(θ) =




a
c
b
d


 and vec(θ̂n) =




ân
ĉn
b̂n
d̂n


 .

In this vectorial form, we have

θ̂n = Σ−1
n−1

∑

k∈Tn−1




XkX2k

X2k

XkX2k+1

X2k+1


 ,

where Σn = I2⊗Sn and ⊗ stands for the standard Kronecker product. Hence, (3.3)
yields to

(3.5) θ̂n − θ = Σ−1
n−1

∑

k∈Tn−1




XkV2k
V2k

XkV2k+1

V2k+1


 .

In all this paper, we will make use of the following hypotheses on the moments of the
random coefficient sequence (an, bn) and on the driven noise sequence (ε2n, ε2n+1).
One can observe that for all n ≥ 0 and for all k ∈ Gn, the random coefficients ak,
bk and the driven noise ε2k, ε2k+1 are Fn+1-measurable.

(H.1) For all n ≥ 1,

E[a16n ] < 1 and E[b16n ] < 1,

E[ε162n] <∞ and E[ε162n+1] <∞.

(H.2) For all n ≥ 0 and for all k ∈ Gn

Var[ak|Fn] = σ2
a ≥ 0 and Var[bk|Fn] = σ2

b ≥ 0 a.s.

Var[ε2k|Fn] = σ2
c > 0 and Var[ε2k+1|Fn] = σ2

d > 0 a.s.
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(H.3) It exists ρ2ab ≤ σ2
aσ

2
b and ρ2cd < σ2

cσ
2
d such that for all n ≥ 0 and for all k ∈ Gn

E[(ak − a)(bk − b)|Fn] = ρab a.s.

E[(ε2k − c)(ε2k+1 − d)|Fn] = ρcd a.s.

Moreover, for all n ≥ 0 and k, l ∈ Gn with k 6= l, (ε2k, ε2k+1) and (ε2l, ε2l+1)
as well as (ak, bk) and (al, bl) are conditionally independent given Fn.

(H.4) One can find µ4
a ≥ σ4

a, µ
4
b ≥ σ4

b , µ
4
c > σ4

c and µ4
d > σ4

d such that, for all n ≥ 0
and for all k ∈ Gn

E
[
(ak − a)4 |Fn

]
= µ4

a and E
[
(bk − b)4 |Fn

]
= µ4

b a.s.

E
[
(ε2k − c)4 |Fn

]
= µ4

c and E
[
(ε2k+1 − d)4 |Fn

]
= µ4

d a.s.

E[ε42k] > E[ε22k]
2 and E[ε42k+1] > E[ε22k+1]

2.

In addition, it exists ν2ab ≥ ρ2ab and ν2cd > ρ2cd such that, for all k ∈ Gn

E[(ak − a)2(bk − b)2|Fn] = ν2ab and E[(ε2k − c)2(ε2k+1 − d)2|Fn] = ν2cd a.s.

(H.5) There exists some α > 4 such that

sup
n≥0

sup
k∈Gn

E[|ak − a|α|Fn] <∞, sup
n≥0

sup
k∈Gn

E[|bk − b|α|Fn] <∞ a.s.

sup
n≥0

sup
k∈Gn

E[|ε2k − c|α|Fn] <∞, sup
n≥0

sup
k∈Gn

E[|ε2k+1 − d|α|Fn] <∞ a.s.

One can observe that hypothesis (H.2) allows us to consider a classical BAR process
where ak = a and bk = b a.s. Moreover, under assumptions (H.2) and (H.3), we
have for all n ≥ 0 and for all k ∈ Gn

E[V 2
2k|Fn] = σ2

aX
2
k + σ2

c , E[V 2
2k+1|Fn] = σ2

bX
2
k + σ2

d a.s.(3.6)

E[V2kV2k+1|Fn] = ρabX
2
k + ρcd a.s.(3.7)

We deduce from (3.6) that, for all n ≥ 1, V 2
2n = ηtψn + v2n where v2n = V 2

2n −
E [V 2

2n|Frn ],

η =
(
σ2
a σ2

c

)t
and ψn =

(
X2

n 1
)t
.

It leads us to estimate the vector of variances η by the least squares estimator

(3.8) η̂n = Q−1
n−1

∑

k∈Tn−1

V̂ 2
2kψk where Qn =

∑

k∈Tn

ψkψ
t
k

and for all k ∈ Gn, {
V̂2k = X2k − ânXk − ĉn,

V̂2k+1 = X2k+1 − b̂nXk − d̂n.

We clearly have a similar expression for the estimator of the vector of variances

ζ =
(
σ2
b σ2

d

)t
by replacing V̂2k by V̂2k+1 into (3.8). It also follows from (3.7) that,

for all n ≥ 1, V2nV2n+1 = νtψn + w2n where w2n = V2nV2n+1 − E [V2nV2n+1|Frn ] and
ν is the vector of covariances

ν =
(
ρab ρcd

)t
.
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Therefore, we can estimate ν by

(3.9) ν̂n = Q−1
n−1

∑

k∈Tn−1

V̂2kV̂2k+1ψk.

4. A martingale approach

We already saw that relation (3.5) can be rewritten as

(4.1) θ̂n − θ = Σ−1
n−1Mn where Mn =

∑

k∈Tn−1




XkV2k
V2k

XkV2k+1

V2k+1


 .

The key point of this study is to remark that (Mn) is a locally square integrable
martingale, which allows us to make use of asymptotic results for martingales. This
justifies our vectorial notation introduced previously since most of those asymptotic
results have been established for vector-valued martingales. In order to study this
martingale, let us rewrite Mn in a more convenient way. Let Ψn = I2 ⊗ ϕn where
ϕn is the 2× 2n matrix given by

ϕn =

(
X2n X2n+1 . . . X2n+1−1

1 1 . . . 1

)
.

The first line of ϕn gathers the individuals of the n-th generation, ϕn can also be
seen as the collection of all Φk, k ∈ Gn. Let ξn be the random vector of dimension
2n gathering the noise variables of Gn, namely

ξtn =
(
V2n V2n+2 . . . V2n+1−2 V2n+1 V2n+3 . . . V2n+1−1

)
.

The special ordering separating odd and even indices has been made in Bercu et al.
[6] in order to rewrite Mn as

Mn =
n∑

k=1

Ψk−1ξk.

It clearly follows from (H.1) to (H.3) that (Mn) is a locally square integrable
martingale with increasing process given, for all n ≥ 1, by

〈M〉n =
n−1∑

k=0

ΨkE[ξk+1ξ
t
k+1|Fk]Ψ

t
k =

n−1∑

k=0

Lk a.s.(4.2)

where

(4.3) Ln =
∑

k∈Gn

(
P (Xk) Q(Xk)
Q(Xk) R(Xk)

)
⊗
(
X2

k Xk

Xk 1

)

with

(4.4)





P (X) = σ2
aX

2 + σ2
c ,

Q(X) = ρabX
2 + ρcd,

R(X) = σ2
bX

2 + σ2
d.
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The first step of our approach will be to establish the convergence of 〈M〉n properly
normalized, from which we will be able to deduce several asymptotic results for our
RCBAR estimates.

5. Main results

Lemma 5.1. Assume that (H.1) is satisfied. Then, we have for all p ∈ {1, 2, . . . , 8},

(5.1) lim
n→∞

1

|Tn|
∑

k∈Tn

Xp
k = sp a.s.

where sp is a constant depending only on the moments of a1, b1, ε2 and ε3 up to the

p-th order.

Remark 5.2. In particular, we have

s1 =
c+ d

2− (a+ b)
,

s2 =
2

2− (σ2
a + σ2

b + a2 + b2)

(
(ac+ bd)(c+ d)

2− (a+ b)
+
σ2
c + σ2

d + c2 + d2

2

)
,

and explicit expressions for s3 to s8 are given at the end of Section 7.

Proposition 5.3. Assume that (H.1) to (H.3) are satisfied. Then, we have

(5.2) lim
n→∞

〈M〉n
|Tn−1|

= L a.s.

where L is the positive definite matrix given by

L =

(
σ2
c ρcd

ρcd σ2
d

)
⊗ C +

(
σ2
a ρab

ρab σ2
b

)
⊗D,

where

(5.3) C =

(
s2 s1
s1 1

)
and D =

(
s4 s3
s3 s2

)
.

Remark 5.4. One can observe in the proof of Lemma 5.1 that we only need to

assume for convergence (5.2) that

E[a8n] < 1, E[b8n] < 1, sup
n≥1

E[ε82n] <∞, sup
n≥1

E[ε82n+1] <∞.

Our first result deals with the almost sure convergence of the LS estimator θ̂n. We
will denote by ‖x‖ the euclidean norm of a vector x.

Theorem 5.5. Assume that (H.1) to (H.3) are satisfied. Then, θ̂n converges

almost surely to θ with the almost sure rate of convergence

‖θ̂n − θ‖2 = O
(

n

|Tn−1|

)
a.s.

In addition, we also have the quadratic strong law

(5.4) lim
n→∞

1

n

n∑

k=1

|Tk−1|(θ̂k − θ)tΓΛ−1Γ(θ̂k − θ) = Tr(Λ−1/2LΛ−1/2) a.s.
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where

Λ = I2 ⊗ (C +D) and Γ = I2 ⊗ C.

Our second result concerns the almost sure asymptotic properties of our least squares

variance and covariance estimators η̂n, ζ̂n and ν̂n. We need to introduce some new
variables

ηn = Q−1
n−1

∑

k∈Tn−1

V 2
2kψk, ζn = Q−1

n−1

∑

k∈Tn−1

V 2
2k+1ψk, νn = Q−1

n−1

∑

k∈Tn−1

V2kV2k+1ψk.

Theorem 5.6. Assume that (H.1) to (H.3) are satisfied. Then, η̂n and ζ̂n both

converge almost surely to η and ζ respectively. More precisely,

‖η̂n − ηn‖ = O
(

n

|Tn−1|

)
a.s.(5.5)

‖ζ̂n − ζn‖ = O
(

n

|Tn−1|

)
a.s.(5.6)

In addition, ν̂n converges almost surely to ν with

(5.7) ‖ν̂n − νn‖ = O
(

n

|Tn−1|

)
a.s.

Remark 5.7. We also have the less precise almost sure rates of convergence to the

true parameters

‖η̂n−η‖2 = O
(

n

|Tn−1|

)
, ‖ζ̂n−ζ‖2 = O

(
n

|Tn−1|

)
, ‖ν̂n−ν‖2 = O

(
n

|Tn−1|

)
a.s.

Finally, our last result is devoted to the asymptotic normality of our least squares

estimates θ̂n, η̂n, ζ̂n and ν̂n.

Theorem 5.8. Assume that (H.1) to (H.5) are satisfied. Then, we have the

asymptotic normality

(5.8)
√

|Tn−1|(θ̂n − θ)
L−→ N (0,Γ−1LΓ−1).

In addition, we also have

√
|Tn−1| (η̂n − η)

L−→ N (0, A−1MacA
−1),(5.9)

√
|Tn−1|

(
ζ̂n − ζ

) L−→ N (0, A−1MbdA
−1),(5.10)

where

A =

(
s4 s2
s2 1

)
,

Mac = (µ4
a − σ4

a)

(
s8 s6
s6 s4

)
+ 4σ2

aσ
2
c

(
s6 s4
s4 s2

)
+ (µ4

c − σ4
c )

(
s4 s2
s2 1

)
,

Mbd = (µ4
b − σ4

b )

(
s8 s6
s6 s4

)
+ 4σ2

bσ
2
d

(
s6 s4
s4 s2

)
+ (µ4

d − σ4
d)

(
s4 s2
s2 1

)
.
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Finally,

(5.11)
√

|Tn−1| (ν̂n − ν)
L−→ N

(
0, A−1HA−1

)

where

H = (ν2ab−ρ2ab)

(
s8 s6
s6 s4

)
+(σ2

aσ
2
d +σ

2
bσ

2
c +2ρabρcd)

(
s6 s4
s4 s2

)
+(ν2cd−ρ2cd)

(
s4 s2
s2 1

)
.

The rest of the paper is dedicated to the proof of our main results.

6. On the Rademacher-Menchov theorem

Our almost sure convergence results rely on the Rademacher-Menchov theorem for
orthonormal sequences of random variables given by Rademacher [28] and Menchoff
[25], see Stout [31] and also Tandori [33, 34] and an unpublished note of Talagrand
[32] for some extensions of this result.

Theorem 6.1. Let (Xn) be an orthonormal sequence of square integrable random

variables which means that for all n 6= k, E[XnXk] = 0 and E[X2
n] = 1. Assume that

a sequence of real numbers (an) satisfies

(6.1)
∞∑

n=1

a2n(log n)
2 <∞.

Then, the following series converges almost surely

(6.2)
∞∑

n=1

anXn.

Remark 6.2. One can observe that (Xn) is a square integrable sequence but is

neither a sequence of independent random variables nor a sequence of uncorrelated

random variables since (Xn) is not necessarily centered. In addition, in the case

where (Xn) is an orthogonal sequence of random variables, we have the same result

(6.2), replacing (6.1) by
∞∑

n=1

a2nE[X
2
n](log n)

2 <∞.

If an = 1/n, it follows from (6.2) and Kronecker’s lemma that

lim
n→∞

1

n

n∑

k=1

Xk = 0 a.s.

7. Proof of the keystone Lemma 5.1

We shall introduce some suitable notations. Let (βn) be the sequence defined, for
all n ≥ 1, by β2n = an and β2n+1 = bn. Then, (2.1) can be rewritten as

{
X2n = β2nXn + ε2n,

X2n+1 = β2n+1Xn + ε2n+1.
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Consequently, for all n ≥ 2

Xn = βnX[n2 ]
+ εn.

First of all, let us prove that

lim
n→∞

1

|Tn|
Ln = s1 where Ln =

∑

k∈Tn

Xk.

One can observe that

Ln = X1 +
∑

k∈Tn\T0

(
βkX[ k2 ]

+ εk

)

= X1 + (a+ b)Ln−1 + An−1 +Bn−1 + En−1,

where

An =
∑

k∈Tn

Xk(ak − a), Bn =
∑

k∈Tn

Xk(bk − b), En =
∑

k∈Tn

(ε2k + ε2k+1).

Hence, we obtain that

Ln

2n+1
=

X1

2n+1
+
a+ b

2

Ln−1

2n
+
An−1

2n+1
+
Bn−1

2n+1
+
En−1

2n+1

=

(
a+ b

2

)n
L0

2
+

n∑

k=1

(
a+ b

2

)n−k (
X1

2k+1
+
Ak−1

2k+1
+
Bk−1

2k+1
+
Ek−1

2k+1

)
.(7.1)

Recalling that |Tn| = 2n+1−1, the standard strong law of large numbers immediately
implies that

lim
n→∞

En

2n+1
= E[ε2 + ε3] = c+ d a.s.

Let us tackle the limit of An using the Rademacher-Menchov theorem given in
Theorem 6.1. Let Yn and Rn be defined as

Yn = Xn(an − a) and Rn =
n∑

k=1

Yk.

For all n ≥ 0 and for all k ∈ Gn, E[ak − a|Fn] = 0. Moreover, we clearly have for
all n ≥ 2 and for all different k, l ∈ Gn,

E[YkYl] = E [E[XkXl(ak − a)(al − a)|Fn]]

= E [XkXlE[ak − a|Fn]E[al − a|Fn]] = 0.

It means that (Yn) is a sequence of orthogonal random variables. In addition we
have, for all n ≥ 0 and for all k ∈ Gn,

E[Y 2
k ] = E

[
E[X2

k(ak − a)2|Fn]
]

= E
[
X2

kE[(ak − a)2|Fn]
]
= σ2

aE[X
2
k ].



12 BERNARD BERCU AND VASSILI BLANDIN

In order to calculate E[X2
n], let us remark, with the convention that a product over

an empty set is equal to 0, that for all n ≥ 1,

Xn =

(
rn−1∏

k=0

β[ n

2k
]

)
X1 +

rn−1∑

k=0

(
k−1∏

i=0

β[ n

2i
]

)
ε[ n

2k
].

Consequently,

E[X2
n] = E

[(
rn−1∏

k=0

β2

[ n

2k
]

)
X2

1

]
+ 2

rn−1∑

k=0

E

[(
rn−1∏

l=0

β[ n

2l
]

)
X1

(
k−1∏

i=0

β[ n

2i
]

)
ε[ n

2k
]

]

+ E



(

rn−1∑

k=0

(
k−1∏

i=0

β[ n

2i
]

)
ε[ n

2k
]

)2

 .

First of all,

E

[(
rn−1∏

k=0

β2

[ n

2k
]

)
X2

1

]
= E[X2

1 ]
rn−1∏

k=0

E

[
β2

[ n

2k
]

]
≤ E[X2

1 ] max(E[a21],E[b
2
1])

rn ≤ E[X2
1 ].

Next, for the cross term
∣∣∣∣∣
rn−1∑

k=0

E

[(
rn−1∏

l=0

β[ n

2l
]

)
X1

(
k−1∏

i=0

β[ n

2i
]

)
ε[ n

2k
]

]∣∣∣∣∣

=

∣∣∣∣∣E[X1]
rn−1∑

k=0

(
k−1∏

i=0

E

[
β2

[ n

2i
]

])( rn−1∏

l=k+1

E

[
β[ n

2l
]

])
E

[
β[ n

2k
]ε[ n

2k
]

]∣∣∣∣∣

≤ E[|X1|] max(|ac|, |bd|)max(|a|, |b|)rn −max(E[a21],E[b
2
1])

rn

max(|a|, |b|)−max(E[a21],E[b
2
1])

≤ E[|X1|] max(|ac|, |bd|) 1

|max(|a|, |b|)−max(E[a21],E[b
2
1])|

.

By the same token, it is not hard to see that the last term is also bounded. Conse-
quently, we proved that it exists some positive constant µ such that, for all n ≥ 0,
E[X2

n] ≤ µ, leading to

∞∑

n=1

1

n2
E[Y 2

n ](log n)
2 ≤ σ2

aµ

∞∑

n=1

(log n)2

n2
<∞.

Therefore, it follows from the Rademacher-Menchov theorem that the series
∞∑

n=1

1

n
Yn

converges a.s. Consequently, Kronecker’s lemma implies that

lim
n→∞

1

n

n∑

k=1

Yk = lim
n→∞

1

n
Rn = 0 a.s.
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In particular

lim
n→∞

1

|Tn|
R|Tn| = lim

n→∞

1

|Tn|
An = 0 a.s.

Hence, we find that

lim
n→∞

1

2n+1
An = 0 a.s.

By the same token, we also have

lim
n→∞

1

2n+1
Bn = 0 a.s.

To sum up, we obtain that

(7.2) lim
n→∞

X1

2n+1
+
An−1

2n+1
+
Bn−1

2n+1
+
En−1

2n+1
=
c+ d

2
a.s.

Therefore, we deduce from (7.1) and (7.2) together with the assumption that max(|a|, |b|) <
1 and Lemma A.3 of [6], that

(7.3) lim
n→∞

Ln

2n+1
=
c+ d

2

1

1− a+ b

2

a.s.

which means that

lim
n→∞

1

|Tn|
∑

k∈Tn

Xk =
c+ d

2− (a+ b)
a.s.

Let us now tackle the study of

Kn =
∑

k∈Tn

X2
k .

First, one can observe that

Kn =
∑

k∈Tn

X2
k = X2

1 +
∑

k∈Tn\T0

(
βkX[ k2 ]

+ εk

)2

= X2
1 +


 ∑

k∈Tn\T0

β2
kX

2

[ k2 ]


+ 2


 ∑

k∈Tn\T0

βkεkX[ k2 ]


+


 ∑

k∈Tn\T0

ε2k




= X2
1 + (σ2

a + σ2
b + a2 + b2)Kn−1 + 2(ac+ bd)Ln−1 + An−1 +Bn−1 + En−1,

where

An =
∑

k∈Tn

X2
k(a

2
k + b2k − (σ2

a + σ2
b + a2 + b2)),

Bn =
∑

k∈Tn

Xk(akε2k + bkε2k+1 − (ac+ bd)) and En =
∑

k∈Tn

(ε22k + ε22k+1).

Hence, we obtain, as for Ln

Kn

2n+1
= µnK0

2
+

n∑

k=1

µn−k

(
X2

1

2k+1
+ ν

Lk−1

2k
+
Ak−1

2k+1
+
Bk−1

2k+1
+
Ek−1

2k+1

)
,
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where, since E[a2k] = σ2
a + a2 < 1 and E[b2k] = σ2

b + b2 < 1,

µ =
σ2
a + σ2

b + a2 + b2

2
< 1 and ν = ac+ bd.

As previously, the strong law of large numbers leads to

(7.4) lim
n→∞

1

|Tn|
En = σ2

c + σ2
d + c2 + d2 a.s.

Moreover, it follows once again from the Rademacher-Menchov theorem with Kro-
necker’s lemma, (7.3), (7.4) and Lemma A.3 of [6] that

lim
n→∞

Kn

2n+1
=

1

1− µ

(
ν

c+ d

2− (a+ b)
+
σ2
c + σ2

d + c2 + d2

2

)
a.s.

leading to convergence (5.1) for p = 2. We shall not carry out the proof of (5.1) for
3 ≤ p ≤ 8 inasmuch as it follows essentially the same lines that those for p = 2. One
can observe that, in order to prove (5.1) for 3 ≤ p ≤ 8, it is necessary to assume
that E[a2p1 ] < 1, E[b2p1 ] < 1, E[ε2p2 ] < ∞ and E[ε2p3 ] < ∞. The limiting values s3 to
s8 may be explicitly calculated. More precisely, for all p ∈ {1, 2, . . . , 8}, denote

Ap = E[ap1], Bp = E[bp1], Cp = E[εp2], Dp = E[εp3].

We already saw that

s1 =
C1 +D1

2− (A1 +B1)
and s2 =

2

2− (A2 +B2)

(
(A1C1 +B1D1)s1 +

C2 +D2

2

)
.

The other limiting values s3 to s8 of convergence (5.1) can be recursively calculated
via the linear relation

sp =
2

2− (Ap +Bp)

(
p−1∑

k=1

1

2

(
p

k

)
(AkCp−k +BkDp−k)sk +

Cp +Dp

2

)
.

8. Proof of Proposition 5.3

The almost sure convergence (5.2) is immediate through (4.2), (4.3) and Lemma
5.1. Let us now prove that L is a positive definite matrix. First, the matrices

(
σ2
a ρab

ρab σ2
b

)
and

(
σ2
c ρcd

ρcd σ2
d

)

are clearly positive semidefinite and positive definite under (H.3). Moreover, D is
clearly positive semidefinite since

lim
n→∞

1

|Tn|
∑

k∈Tn

(
X4

k X3
k

X3
k X2

k

)
= D a.s.

Finally, let us prove that C is positive definite. Its trace is clearly greater than 1,
hence we only have to prove that its determinant is positive. Its determinant is



A RADEMACHER-MENCHOV APPROACH FOR RCBAR PROCESSES 15

given by

s2 − s21 =
σ2
c + σ2

d

2− (σ2
a + σ2

b + a2 + b2)
+

(
c+ d

2− (a+ b)

)2
σ2
a + σ2

b

2− (σ2
a + σ2

b + a2 + b2)

+
2

2− (σ2
a + σ2

b + a2 + b2)

(ad− bc+ c− d)2

(2− (a+ b))2
.

The first term of this sum is positive since under (H.1) σ2
a + σ2

b + a2 + b2 < 2
and since under (H.2) σ2

c + σ2
d > 0. Moreover, the two other terms are clearly

nonnegative, which proves that this matrix is positive definite. Since the Kronecker
product of two positive semidefinite (respectively positive definite) matrices is a
positive semidefinite (respectively positive definite) matrix, we can conclude that L
is positive definite.

9. Proofs of the almost sure convergence results

We shall make use of a martingale approach, as the one developed by Bercu et
al. [6] or de Saporta et al. [13]. For all n ≥ 1, let

Vn =M t
nP

−1
n−1Mn = (θ̂n − θ)tΣn−1P

−1
n−1Σn−1(θ̂n − θ)

where

Pn =
∑

k∈Tn

(1 +X2
k)I2 ⊗

(
X2

k Xk

Xk 1

)
.

By the same calculations as in [6], we can easily see that if ∆Mn =Mn −Mn−1,

(9.1) Vn+1 +An = V1 + Bn+1 +Wn+1,

where

An =
n∑

k=1

M t
k(P

−1
k−1 − P−1

k )Mk,

Bn+1 = 2
n∑

k=1

M t
kP

−1
k ∆Mk+1 and Wn+1 =

n∑

k=1

∆M t
k+1P

−1
k ∆Mk+1.

Lemma 9.1. Assume that (H.1) to (H.3) are satisfied. Then, we have

(9.2) lim
n→∞

Wn

n
=

1

2
tr((I2 ⊗ (C +D))−1/2L(I2 ⊗ (C +D))−1/2) a.s.

where C and D are the matrices given by (5.3). In addition, we also have

(9.3) Bn+1 = o(n) a.s.

and

(9.4) lim
n→∞

Vn+1 +An

n
=

1

2
tr((I2 ⊗ (C +D))−1/2L(I2 ⊗ (C +D))−1/2) a.s.
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Proof. The proof of convergence (9.2) is left to the reader inasmuch as it follows
essentially the same arguments as the proof of Lemma B.3 in [6]. In particular, we
also find that

(9.5) lim
n→∞

Pn

|Tn|
= I2 ⊗ (C +D) a.s.

We shall proceed to the proof of (9.3). We clearly have

Bn+1 = 2
n∑

k=1

M t
kP

−1
k ∆Mk+1 = 2

n∑

k=1

M t
kP

−1
k Ψkξk+1.

Hence, (Bn) is a square integrable martingale. In addition, we have

∆Bn+1 = 2M t
nP

−1
n ∆Mn+1.

Consequently,

E[(∆Bn+1)
2|Fn] = 4E[M t

nP
−1
n ∆Mn+1∆M

t
n+1P

−1
n Mn|Fn] a.s.

= 4M t
nP

−1
n E[∆Mn+1∆M

t
n+1|Fn]P

−1
n Mn a.s.

= 4M t
nP

−1
n LnP

−1
n Mn a.s.

However, we already saw from (4.3) that

Ln =
∑

k∈Gn

(
P (Xk) Q(Xk)
Q(Xk) R(Xk)

)
⊗
(
X2

k Xk

Xk 1

)
.

Moreover,

∆Pn = Pn − Pn−1 =
∑

k∈Gn

(1 +Xk)
2I2 ⊗

(
X2

k Xk

Xk 1

)
.

For α = max(σ2
a, σ

2
c ) + max(σ2

b , σ
2
d) + max(|ρab|, |ρcd|), denote

∆n =

(
α(1 +X2

n)− P (Xn) −Q(Xn)
−Q(Xn) α(1 +X2

n)−R(Xn)

)

where P (Xn), Q(Xn) and R(Xn) are given by (4.4). It is not hard to see that

α∆Pn − Ln =
∑

k∈Gn

∆k ⊗
(
X2

k Xk

Xk 1

)

and that ∆n is positive definite which immediately implies that Ln ≤ α∆Pn. More-
over, we can use Lemma B.1 of [6] to say that

P−1
n−1∆PnP

−1
n−1 ≤ P−1

n−1 − P−1
n .

Hence

E[(∆Bn+1)
2|Fn] = 4M t

nP
−1
n LnP

−1
n Mn a.s.

≤ 4αM t
nP

−1
n ∆PnP

−1
n Mn a.s.

≤ 4αM t
n(P

−1
n−1 − P−1

n )Mn a.s.
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leading to 〈B〉n ≤ 4αAn. Therefore it follows from the strong law of large numbers
for martingales that Bn = o(An). Hence, we deduce from decomposition (9.1) that

Vn+1 +An = o(An) +O(n) a.s.

leading to Vn+1 = O(n) and An = O(n) a.s. which implies that Bn = o(n) a.s. Fi-
nally we clearly obtain convergence (9.4) from the main decomposition (9.1) together
with (9.2) and (9.3), which completes the proof of Lemma 9.1. �

Lemma 9.2. Assume that (H.1) to (H.3) are satisfied. For all δ > 1/2, we have

‖Mn‖2 = o(|Tn|nδ) a.s.

Proof. Let us recall that

Mn =
∑

k∈Tn−1




XkV2k
V2k

XkV2k+1

V2k+1


 .

Denote
Tn =

∑

k∈Tn−1

XkV2k and Un =
∑

k∈Tn−1

V2k.

On the one hand, Tn can be rewritten as

Tn =
n∑

k=1

√
|Gk−1|fk where fn =

1√
|Gn−1|

∑

k∈Gn−1

XkV2k.

We already saw in Section 3 that, for all n ≥ 0 and for all k ∈ Gn,

E[V2k|Fn] = 0 and E[V 2
2k|Fn] = σ2

aX
2
k + σ2

c = P (Xk) a.s.

In addition, for all k ∈ Gn, E[V
4
2k|Fn] = µ4

aX
4
k + 6σ2

aσ
2
cX

2
k + µ4

c a.s. which implies
that

(9.6) E[V 4
2k|Fn] ≤ µ4

ac(1 +X2
k)

2 a.s.

where µ4
ac = max(µ4

a, 3σ
2
aσ

2
c , µ

4
c). Consequently, E[fn+1|Fn] = 0 a.s. In addition,

E[f 4
n+1|Fn] =

1

|Gn|2
∑

k∈Gn

X4
kE[V

4
2k|Fn]

+
3

|Gn|2
∑

k∈Gn

∑

l∈Gn

l 6=k

X2
kX

2
l E[V

2
2k|Fn]E[V

2
2l|Fn],

which implies from (9.6) together with the Cauchy-Schwarz inequality that

E[f 4
n+1|Fn] ≤

µ4
ac

|Gn|2
∑

k∈Gn

X4
k(1 +X2

k)
2 + 3max(σ2

a, σ
2
c )

2

(
1

|Gn|
∑

k∈Gn

X2
k(1 +X2

k)

)2

.

Therefore, we infer from Lemma 5.1 that

sup
n≥0

E[f 4
n+1|Fn] <∞ a.s.
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Hence, we obtain from Wei’s lemma given in [36] page 1672, together with Lemma
A.2 of [6], that for all δ > 1/2,

T 2
n = o(|Tn−1|nδ) a.s.

On the other hand, Un can be rewritten as

Un =
n∑

k=1

√
|Gk−1|gk where gn =

1√
|Gn−1|

∑

k∈Gn−1

V2k.

Via the same calculation as before, E[gn+1|Fn] = 0 a.s. and

E[g4n+1|Fn] ≤
µ4
bd

|Gn|2
∑

k∈Gn

(1 +X2
k)

2 + 3max(σ2
b , σ

2
d)

2

(
1

|Gn|
∑

k∈Gn

(1 +X2
k)

)2

.

where µ4
bd = max(µ4

b , 3σ
2
bσ

2
d, µ

4
d). Hence, we deduce once again from Lemma 5.1 and

Wei’s Lemma, together with Lemma A.2 of [6], that for all δ > 1/2,

U2
n = o(|Tn−1|nδ) a.s.

In the same way, we obtain the same result for the two last components of Mn,
which completes the proof of Lemma 9.2. �

9.1. Proof of Theorem 5.5. We recall that Vn = (θ̂n − θ)tΣn−1P
−1
n−1Σn−1(θ̂n − θ)

which implies that

‖θ̂n − θ‖2 ≤ Vn

λmin(Σn−1P
−1
n−1Σn−1)

.

where λmin(A) stands for the smallest eigenvalue of A. On the one hand, it follows
from (9.4) that Vn = O(n) a.s. On the other hand, we deduce from Lemma 5.1 that

(9.7) lim
n→∞

Σn

|Tn|
= I2 ⊗ C = Γ a.s.

where C is the positive definite matrix given by (5.3). Therefore, we obtain from
(9.5) and (9.7) that

lim
n→∞

λmin(Σn−1P
−1
n−1Σn−1)

|Tn−1|
= λmin(C(C +D)−1C) > 0 a.s.

Consequently, we find that

‖θ̂n − θ‖2 = O
(

n

|Tn−1|

)
a.s.

We are now in position to prove the quadratic strong law (5.4). First of all, a direct
application of Lemma 9.2 ensures that Vn = o(nδ) a.s. for all δ > 1/2. Hence, we
obtain from (9.4) that

(9.8) lim
n→∞

An

n
=

1

2
tr((I2 ⊗ (C +D))−1/2L(I2 ⊗ (C +D))−1/2) a.s.
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Let us rewrite An as

An =
n∑

k=1

M t
k

(
P−1
k−1 − P−1

k

)
Mk =

n∑

k=1

M t
kP

−1/2
k−1 AkP

−1/2
k−1 Mk,

where Ak = I4 − P
1/2
k−1P

−1
k P

1/2
k−1. We already saw from (9.5) that

(9.9) lim
n→∞

Pn

|Tn|
= I2 ⊗ (C +D) a.s.

which ensures that

lim
n→∞

An =
1

2
I4 a.s.

In addition, we deduce from (9.4) that An = O(n) a.s. which implies that

(9.10)
An

n
=

(
1

2n

n∑

k=1

M t
kP

−1
k−1Mk

)
+ o(1) a.s.

Moreover, we also have from (9.7) and (9.9) that

1

n

n∑

k=1

M t
kP

−1
k−1Mk =

1

n

n∑

k=1

(θ̂k − θ)tΣk−1P
−1
k−1Σk−1(θ̂k − θ)

=
1

n

n∑

k=1

|Tk−1|(θ̂k − θ)t
Σk−1

|Tk−1|
|Tk−1|P−1

k−1

Σk−1

|Tk−1|
(θ̂k − θ)

=
1

n

n∑

k=1

|Tk−1|(θ̂k − θ)tΓ(I2 ⊗ (C +D)−1)Γ(θ̂k − θ) + o(1) a.s.(9.11)

Therefore, (9.8) together with (9.10) and (9.11) lead to (5.4). �

9.2. Proof of Theorem 5.6. We only prove (5.5) inasmuch as the proof of (5.6)
follows exactly the same lines. Relation (3.8) immediately leads to

Qn−1(η̂n − ηn) =
n−1∑

l=0

∑

k∈Gl

(V̂ 2
2k − V 2

2k)ψk

=
n−1∑

l=0

∑

k∈Gl

(
(V̂2k − V2k)

2 + 2(V̂2k − V2k)V2k

)
ψk.(9.12)

Moreover, we clearly have from Section 3 that, for all n ≥ 0 and for all k ∈ Gn

V̂2k − V2k = −
(
ân − a
ĉn − c

)t

Φk,

which implies that

(V̂2k − V2k)
2 ≤

(
(ân − a)2 + (ĉn − c)2

)
‖Φk‖2 =

(
(ân − a)2 + (ĉn − c)2

)
(1 +X2

k).
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In addition, since ‖ψk‖2 = 1 +X4
k ≤ (1 +X2

k)
2, we have

∥∥∥∥∥
n−1∑

l=0

∑

k∈Gl

(V̂2k − V2k)
2ψk

∥∥∥∥∥ ≤
n−1∑

l=0

(
(âl − a)2 + (ĉl − c)2

)∑

k∈Gl

(1 +X2
k)

2.

However, it follows from Lemma 5.1 that
∑

k∈Gl

(1 +X2
k)

2 = O(|Gl|) a.s.

and since Λ is positive definite, (5.4) leads to

n−1∑

l=0

(
(âl − a)2 + (ĉl − c)2

)
|Gl| = O(n) a.s.

Hence, we find that

(9.13)

∥∥∥∥∥
n−1∑

l=0

∑

k∈Gl

(V̂2k − V2k)
2ψk

∥∥∥∥∥ = O(n) a.s.

Let us now tackle

Pn =
n−1∑

l=0

∑

k∈Gl

(V̂2k − V2k)V2kψk.

It is clear that

∆Pn+1 = Pn+1 − Pn =
∑

k∈Gn

(V̂2k − V2k)V2kψk = −
∑

k∈Gn

V2kψkΦ
t
k

(
ân − a
ĉn − c

)
.

Since, for al k ∈ Gn, E[V2k|Fn] = 0 a.s. and E[V 2
2k|Fn] = P (Xk) a.s., we have

E[∆Pn+1∆P
t
n+1|Fn] =

∑

k∈Gn

P (Xk)ψkΦ
t
k

(
ân − a
ĉn − c

)(
ân − a
ĉn − c

)t

Φkψ
t
k a.s.

which allows to say that (Pn) is a square integrable martingale with increasing
process 〈P 〉n given by

〈P 〉n =
n−1∑

l=0

E[∆Pl+1∆P
t
l+1|Fn]

=
n−1∑

l=0

∑

k∈Gl

P (Xk)ψkΦ
t
k

(
âl − a
ĉl − c

)(
âl − a
ĉl − c

)t

Φkψ
t
k a.s.

Consequently, if α = max(σ2
a, σ

2
c ), we obtain that

‖〈P 〉n‖ ≤ α

n−1∑

l=0

(
(âl − a)2 + (ĉl − c)2

)∑

k∈Gl

(1 +X2
k)‖ψk‖2‖Φk‖2 a.s.

≤ α
n−1∑

l=0

(
(âl − a)2 + (ĉl − c)2

)∑

k∈Gl

(1 +X2
k)

4 a.s.
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leading, as previously via Lemma 5.1 and (5.4), to ‖〈P 〉n‖ = O(n) a.s. The strong
law of large numbers for martingale given e.g. in Theorem 1.3.15 of [16] implies that

(9.14) Pn = o(n) a.s.

Then, we deduce from (9.12), (9.13) and (9.14) that

(9.15) ‖Qn−1(η̂n − ηn)‖ = O(n) a.s.

Moreover, we obtain through Lemma 5.1 that

(9.16) lim
n→∞

1

|Tn|
Qn =

(
s4 s2
s2 1

)
= A a.s.

and we can prove, through tedious calculations, that this limiting matrix is positive
definite. Therefore, (9.15) immediately implies (5.5). We shall now proceed to the
proof of (5.7). Denote

Rn =
∑

k∈Tn−1

(Ŵk −Wk)
tJWkψk,

where

Ŵk =

(
V̂2k
V̂2k+1

)
and J =

(
0 1
1 0

)
.

It follows from (3.9) that

Qn(ν̂n − νn) =
∑

k∈Tn−1

(V̂2k − V2k)(V̂2k+1 − V2k+1)ψk +Rn.

Furthermore, one can observe that (Rn) is a square integrable martingale with in-
creasing process

〈R〉n =
n−1∑

l=0

∑

k∈Gl

E[(Ŵk −Wk)
tJWkW

t
kJ(Ŵk −Wk)ψkψ

t
k|Fl] a.s.

=
n−1∑

l=0

∑

k∈Gl

(Ŵk −Wk)
tJE[WkW

t
k|Fl]J(Ŵk −Wk)ψkψ

t
k a.s.

=
n−1∑

l=0

∑

k∈Gl

(Ŵk −Wk)
tJ

(
P (Xk) Q(Xk)
Q(Xk) R(Xk)

)
J(Ŵk −Wk)ψkψ

t
k a.s.

=
n−1∑

l=0

∑

k∈Gl

(Ŵk −Wk)
t

(
R(Xk) Q(Xk)
Q(Xk) P (Xk)

)
(Ŵk −Wk)ψkψ

t
k a.s.



22 BERNARD BERCU AND VASSILI BLANDIN

Then, as previously, Lemma 5.1 and (5.4) lead to ‖〈R〉n‖ = O(n) a.s. which allows
us to say that Rn = o(n) a.s. Furthermore
∥∥∥
∑

k∈Tn−1

(V̂2k − V2k)(V̂2k+1 − V2k+1)ψk

∥∥∥

≤ 1

2

∑

k∈Tn−1

(
(V̂2k − V2k)

2 + (V̂2k+1 − V2k+1)
2
)
‖ψk‖

≤ 1

2

n−1∑

l=0

‖θ̂l − θ‖2
∑

k∈Gl

‖Φk‖2‖ψk‖,

which implies, thanks to Lemma 5.1 and (5.4), that
∥∥∥
∑

k∈Tn−1

(V̂2k − V2k)(V̂2k+1 − V2k+1)ψk

∥∥∥ = O(n) a.s.

Finally, we infer from (9.16) that

‖ν̂n − νn‖ = O
(

n

|Tn−1|

)
a.s.

It remains to prove the a.s. convergence of ηn, ζn and νn to η, ζ and ν, respectively
which would immediately imply the a.s. convergence of our estimates through (5.5),
(5.6) and (5.7). Denote

(9.17) Nn = Qn−1(ηn − η) =
∑

k∈Tn−1

v2kψk

where v2n = V 2
2n−ηtψn. One can observe that (Nn) is a square integrable martingale

with increasing process 〈N〉n given by

〈N〉n =
n−1∑

l=0

∑

k∈Gl

E[v22k|Fl]ψkψ
t
k a.s.

Hence, if γ = max(µ4
a − σ4

a, 2σ
2
aσ

2
c , µ

4
c − σ4

c ), we obtain that

‖〈N〉n‖ ≤
∥∥∥∥∥
n−1∑

l=0

∑

k∈Gl

γ(1 +X2
k)

2ψkψ
t
k

∥∥∥∥∥ a.s.

≤ γ
∑

k∈Tn−1

(1 +X2
k)

2‖ψk‖2 = γ
∑

k∈Tn−1

(1 +X2
k)

4 a.s.

which leads, via Lemma 5.1, to ‖〈N〉n‖ = O(|Tn−1|) a.s. Consequently,

‖Nn‖2 = O(n|Tn−1|) a.s.

Then, we deduce from (9.16) and (9.17) that ηn converges a.s. to η with the a.s. rate
of convergence given in Remark 5.7. The proof concerning the a.s. convergence
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of ζn to ζ and the second rate of convergence in Remark 5.7 is exactly the same.
Hereafter, denote

(9.18) Hn = Qn−1(νn − ν) =
∑

k∈Tn−1

w2kψk

where w2n = V2nV2n+1 − νtψn. Once again, the sequence (Hn) is a square integrable
martingale with increasing process

〈H〉n =
n−1∑

l=0

∑

k∈Gl

E[w2
2k|Fl]ψkψ

t
k a.s.

Moreover, if α = max(ν2ab, ν
2
cd, (σ

2
a + σ2

c )(σ
2
b + σ2

d)), we find that

‖〈H〉n‖ ≤
∥∥∥∥∥
n−1∑

l=0

∑

k∈Gl

α(1 +X2
k)

2ψkψ
t
k

∥∥∥∥∥ a.s.

≤ α
∑

k∈Tn−1

(1 +X2
k)

2‖ψk‖2 = α
∑

k∈Tn−1

(1 +X2
k)

4 a.s.

which allows us to say, as previously, that

‖Hn‖2 = O(n|Tn−1|) and ‖νn − ν‖2 = O
(

n

|Tn−1|

)
a.s.

It clearly proves the a.s. convergence of νn to ν with the last a.s. rate of convergence
given in Remark 5.7, which completes the proof of Theorem 5.6. �

10. Proofs of the asymptotic normalities

The key point of the proof of the asymptotic normality of our estimators is the
central limit theorem for triangular array of vector martingale given e.g. in Theorem
2.1.9 of [16]. With this aim in mind, we will change the filtration considering, instead
of the generation wise filtration (Fn), the sister-pair wise filtration (Gn) given by

Gn = σ {X1, (X2k, X2k+1), 1 ≤ k ≤ n} .

10.1. Proof of convergence (5.8). We will consider the triangular array of vector

martingale (M
(n)
k ) defined as

(10.1) M
(n)
k =

1√
|Tn|

k∑

l=1

Dl where Dl =




XlV2l
V2l

XlV2l+1

V2l+1


 .

It is obvious that
(
M (n)

)
is a square integrable vector valued martingale with respect

to the filtration (Gk). Moreover, we can observe that

(10.2) M
(n)
tn =

1√
|Tn|

tn∑

l=1

Dl =
1√
|Tn|

Mn+1
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where tn = |Tn| = 2n+1 − 1. In addition, the increasing process of this square
integrable martingale is given by

〈M (n)〉k =
1

|Tn|
k∑

l=1

E[DlD
t
l |Gl−1]

=
1

|Tn|
k∑

l=1

(
P (Xl) Q(Xl)
Q(Xl) R(Xl)

)
⊗
(
X2

l Xl

Xl 1

)
a.s.

Then, (5.2) leads to

lim
n→∞

〈M (n)〉tn = L a.s.

We will now establish Lindeberg’s condition thanks to Lyapunov’s condition. Let

φn =
tn∑

k=1

E

[
‖M (n)

k −M
(n)
k−1‖4

∣∣∣Gk−1

]
.

It follows from (10.1) that

φn =
1

|Tn|2
tn∑

k=1

E
[
(1 +X2

k)
2(V 2

2k + V 2
2k+1)

2
∣∣Gk−1

]

≤ 2

|Tn|2
tn∑

k=1

E
[
(1 +X2

k)
2(V 4

2k + V 4
2k+1)

∣∣Gk−1

]
.

Since we already saw in Section 9 that

E
[
V 4
2k|Fn

]
≤ µ4

ac(1 +X2
k)

2 and E[V 4
2k+1|Fn] ≤ µ4

bc(1 +X2
k)

2 a.s.

where µ4
ac = max(µ4

a, 3σ
2
aσ

2
c , µ

4
c) and µ4

bd = max(µ4
b , 3σ

2
bσ

2
d, µ

4
d), we have that

φn ≤ 2(µ4
ac + µ4

bd)

|Tn|2
tn∑

k=1

(1 +X2
k)

4 a.s.

leading, via Lemma 5.1, to the a.s. convergence of φn to 0. Consequently, Lyapunov’s
condition is satisfied and Theorem 2.1.9 of [16] together with (10.2) imply that

1√
|Tn−1|

Mn
L−→ N (0, L).

Moreover, we easily obtain from Lemma 5.1 that

(10.3) lim
n→∞

Σn

|Tn|
= I2 ⊗ C = Γ a.s.

where C is the positive definite matrix given by (5.3). Finally, we deduce from (4.1)
together with (10.3) and Slutsky’s lemma that

√
|Tn−1|(θ̂n − θ)

L−→ N (0,Γ−1LΓ−1).
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10.2. Proof of convergences (5.9) and (5.11). The proof of convergences (5.9)
and (5.11) are left to the reader as it follows essentially the same lines as the one of
convergence (5.8).
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