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We investigate the asymptotic behavior of the least squares estimator of the unknown parameters of random coefficient bifurcating autoregressive processes. Under suitable assumptions on inherited and environmental effects, we establish the almost sure convergence of our estimates. In addition, we also prove a quadratic strong law and central limit theorems. Our approach mainly relies on asymptotic results for vector-valued martingales together with the well-known Rademacher-Menchov theorem.

Introduction

The purpose of this paper is to study random coefficient bifurcating autoregressive processes (RCBAR). One can see those processes in two different ways. The first one is to see them as random coefficient autoregressive processes (RCAR) adapted to binary tree structured data, the second one is to consider those processes as the association of RCAR processes and bifurcating autoregressive processes (BAR). BAR processes have been first studied by Cowan and Staudte [START_REF] Cowan | The bifurcating autoregressive model in cell lineage studies[END_REF] while RCAR processes have been first investigated by Nicholls and Quinn [START_REF] Nicholls | Random coefficient autoregressive models: an introduction[END_REF][START_REF] Quinn | The estimation of random coefficient autoregressive models[END_REF]. The RCBAR structure allows us to reckon with environmental and inherited effects in order to better take into account the evolution of the characteristic under study. One shall see cell division as an example of binary tree structured data.

Let us detail what a RCBAR process is. The first individual is designated as the individual 1 and each individual n leads to individuals 2n and 2n + 1. The random variable X n will stand for the characteristic under study of individual n. We can now make explicit the first-order RCBAR process which is given, for all n ≥ 1, by (1.1)

X 2n = a n X n + ε 2n , X 2n+1 = b n X n + ε 2n+1 ,
where the driven noise sequence (ε 2n , ε 2n+1 ) represents the environmental effect while the random coefficient sequence (a n , b n ) represents the inherited effect. The example of the cell division incites us to suppose that ε 2n ans ε 2n+1 are correlated since the environmental effect on two sister cells can reasonably be seen as correlated. Denote by a and b the conditional means of the random coefficient sequences (a n ) and (b n ). Moreover, let c and d be the conditional means of the driven noises (ε 2n ) and (ε 2n+1 ), respectively. If θ n stands for the least squares estimator of the unknown vector of means θ t = (a, b, c, d), we shall prove, under suitable assumptions on inherited and environmental effects, that θ n converges almost surely to θ with the almost sure rate of convergence

θ n -θ 2 = O n 2 n a.s.
In addition, we shall also establish the asymptotic normality

√ 2 n ( θ n -θ) L -→ N (0, Γ -1 LΓ -1 )
where the matrices L and Γ will be explicitely calculated.

Our theoretical approach is motivated by experiments on the single celled organism Escherichia coli which reproduces by dividing itself into two poles, one being called the new pole, the other being called the old pole. We refer the reader to the pioneer work on statistical analysis of Escherichia coli carried out by Stewart et al. [START_REF] Stewart | Aging and death in an organism that reproduces by morphologically symmetric division[END_REF] and Guyon et al. [START_REF] Guyon | Statistical study of cellular aging[END_REF], as well as to the recent contribution of De Saporta et al. [START_REF] De Saporta | Asymmetry tests for bifurcating auto-regressive processes with missing data[END_REF][START_REF] De Saporta | Statistical study of asymmetry in cell lineage data[END_REF]. It was empirically shown in these statistical analysis of experimental data that some variables among cell lines, such as the life span of the cells, does not evolve in the same way whether it is related to the new or the old pole. The difference in the evolution leads us to consider an asymmetric RCBAR. Considering a RCBAR process instead of a BAR process [START_REF] De Saporta | Random coefficients bifurcating autoregressive processes[END_REF] allows us to assume that the inherited effect is no more deterministic, as randomness often appears in nature. Moreover, we can consider both deterministic and random inherited effects since we also allow the random variables modeling the inherited effect to be deterministic, making this study usable for RCBAR as well as BAR.

Our goal is to investigate the asymptotic behavior of the least squares estimators of the unknown parameters of first-order RCBAR processes. In contrast with the previous work of Blandin [START_REF] Blandin | Asymptotic results for bifurcating random coefficient autoregressive processes[END_REF] where the asymptotic behavior of weighted least squares estimators were investigated, we propose here to make use of a totally different strategy based on the standard least squares (LS) estimators together with the well-known Rademacher-Menchov theorem. The martingale approach for BAR processes has been first suggested by Bercu et al. [START_REF] Bercu | Asymptotic analysis for bifurcating autoregressive processes via a martingale approach[END_REF], followed by De Saporta et al. [START_REF] De Saporta | Parameters estimation for asymmetric bifurcating autoregressive processes with missing data[END_REF]. We also refer the reader to Bercu and Blandin [START_REF] Bercu | Limit theorems for bifurcating integer-valued autoregressive processes[END_REF] for the study of bifurcating integervalued autoregressive processes and to Bansaye [START_REF] Bansaye | Cell contamination and branching processes in a random environment with immigration[END_REF] for the study of its asymptotic behavior, as well as to the recent contribution of Djellout and Bitseki Penda [START_REF] Bitseki Penda | Deviation inequalities and moderate deviations for estimators of parameters in bifurcating autoregressive models[END_REF] on moderate deviation principles for the LS estimators of the unknown parameters of BAR processes. Our approach relies on the Rademacher-Menchov theorem which allows us to study the LS estimates in a different way as in de Saporta et al. [START_REF] De Saporta | Random coefficients bifurcating autoregressive processes[END_REF]. In particular, it enables us to significantly reduce the moment assumptions on the random coefficient sequence (a n , b n ) and on the driven noise sequence (ε 2n , ε 2n+1 ). We shall also make use of the strong law of large numbers and the central limit theorem for martingales [START_REF] Duflo | Random iterative models[END_REF][START_REF] Hall | Martingale limit theory and its application[END_REF] in order to study the asymptotic behavior of our LS estimates. The martingale approach of this paper has also been used by Basawa and Zhou [START_REF] Basawa | Non-Gaussian bifurcating models and quasi-likelihood estimation[END_REF][START_REF] Zhou | Least-squares estimation for bifurcating autoregressive processes[END_REF][START_REF] Zhou | Maximum likelihood estimation for a first-order bifurcating autoregressive process with exponential errors[END_REF].

Since several methods have been proposed for the study of BAR processes, we tried to take into consideration each of them. In this way, we took into account the classical BAR approach as used by Huggins and Basawa [START_REF] Huggins | Extensions of the bifurcating autoregressive model for cell lineage studies[END_REF][START_REF] Huggins | Inference for the extended bifurcating autoregressive model for cell lineage studies[END_REF] and by Huggins and Staudte [START_REF] Huggins | Variance components models for dependent cell populations[END_REF] who investigated the evolution of cell diameters and lifetimes. We were also inspired by the bifurcating Markov chain approach brought in by Guyon [START_REF] Guyon | Limit theorems for bifurcating Markov chains. Application to the detection of cellular aging[END_REF] and applied by Delmas and Marsalle [START_REF] Delmas | Detection of cellular aging in a Galton-Watson process[END_REF]. We also reckoned with the analogy with the Galton-Watson processes as in Delmas and Marsalle [START_REF] Delmas | Detection of cellular aging in a Galton-Watson process[END_REF] and Heyde and Seneta [START_REF] Heyde | Estimation theory for growth and immigration rates in a multiplicative process[END_REF]. Even though we chose to use LS estimates, different methods have been investigated for parameter estimation in RCAR processes. We have chosen to make use of the least squares approach instead of quasi-maximum likelihood method proposed by Aue et al. [START_REF] Aue | Quasi-likelihood estimation in stationary and nonstationary autoregressive models with random coefficients[END_REF][START_REF] Aue | Estimation in random coefficient autoregressive models[END_REF] as well as Berkes et al. [START_REF] Berkes | Estimation in nonstationary random coefficient autoregressive models[END_REF]. The reason why we have chosen LS estimates is towfold. On the one hand, the LS method allows us to avoid the maximization step of the quasi-likelihood method, which could be time-consuming and costly. On the other hand, except in Theorem 3 of [START_REF] Berkes | Estimation in nonstationary random coefficient autoregressive models[END_REF], it is necessary to know the variance σ 2 of the driven noise, in order to estimate the RCA parameters. Moreover, σ 2 cannot be estimated by quasi-maximum likelihood method. Via our least squares approach, it is possible to consistently estimate all the conditional variances of the random coefficients and driven noises. We also refer the reader to Koul and Schick [START_REF] Koul | Adaptive estimation in a random coefficient autoregressive model[END_REF] for the M-estimation method, see also Vanecek [START_REF] Vaněček | Rate of convergence for a class of RCA estimators[END_REF] and Schick [START_REF] Schick | √ n-consistent estimation in a random coefficient autoregressive model[END_REF].

The paper is organized as follows. We will explain more accurately the model we will consider in Section 2, leading to Section 3 where we will give explicitly our LS estimates of the unknown parameters under study. The martingale point of view chosen in this paper will be highlighted in Section 4. All our results about the asymptotic behavior of our LS estimates will be stated in Section 5, in particular the almost sure convergence, the quadratic strong law and the asymptotic normality. Section 6 is devoted to the Rademacher-Menchov theorem. All technical proofs are postponed to the last sections.

Random coefficient bifurcating autoregressive processes

We will study the first-order RCBAR process given, for all n ≥ 1, by (2.1)

X 2n = a n X n + ε 2n , X 2n+1 = b n X n + ε 2n+1 ,
where X 1 is the ancestor of the process and (ε 2n , ε 2n+1 ) is the driven noise of the process. We will suppose that E[X 16 1 ] < ∞ and we will also assume that the two sequences (a n , b n ) and (ε 2n , ε 2n+1 ) are independent and identically distributed and that X 1 , (a n , b n ) and (ε 2n , ε 2n+1 ) are mutually independent. RCBAR processes can be seen as a first-order random coefficient autoregressive process on a binary tree, each node of this tree representing an individual and the first node being the ancestor. For all n ≥ 0, G n will stand for the n-th generation, that is to say G n = {2 n , 2 n + 1, . . . , 2 n+1 -1}. We will also denote by T n the set of all individuals up to the n-th generation, namely

T n = n k=0 G k .
One can see that the cardinality |G n | of G n is 2 n , while that of T n is 2 n+1 -1. G rn will denote the generation of individual n with r n = [log 2 (n)] where [x] stands for the integer part of x. Let us recall that the two offspring of individual n are individuals 2n and 2n + 1.

G 0 G 1 G 2 G n T n 1 2 3 4 5 6 7 i 2 n 2i 2i + 1 2 n+1 -1 Figure 1.
The tree associated with the RCBAR

Least squares estimators

Let (F n ) be the natural filtration associated with the generations of our first-order RCBAR (X n ), namely F n = σ{X k , k ∈ T n } for all n ∈ N. In all the sequel, we will assume that for all n ≥ 0 and for all k ∈ G n ,

(3.1) E[a k |F n ] = a, E[b k |F n ] = b, E[ε 2k |F n ] = c, E[ε 2k+1 |F n ] = d a.s.
Consequently, (2.1) can be rewritten as

(3.2) X 2n = aX n + c + V 2n , X 2n+1 = bX n + d + V 2n+1 , where, for all k ∈ G n , V 2k = X 2k -E[X 2k |F n ] and V 2k+1 = X 2k+1 -E[X 2k+1 |F n ].
We can rewrite the system (3.2) in a classic autoregressive form

(3.3) χ n = θ t Φ n + W n where χ n = X 2n X 2n+1 , Φ n = X n 1 , W n = V 2n V 2n+1 ,
and the matrix parameter θ given by θ = a b c d .

One of our goal is to estimate θ from the observation of the n + 1 first generations, namely T n . We will use the least squares estimator θ n of θ which minimizes

∆ n (θ) = k∈T n-1 χ k -θ t Φ k 2 .
Hence, we clearly have

(3.4) θ n = S -1 n-1 k∈T n-1 Φ k χ t k where S n = k∈Tn Φ k Φ t k .
In order to avoid any invertibility assumption, we will suppose that S n is invertible.

Otherwise, we only have to add the identity matrix of order 2, I 2 , to S n . Moreover, we will make a slight abuse of notation by identifying θ and θ n to

vec(θ) =     a c b d     and vec( θ n ) =     a n c n b n d n     .
In this vectorial form, we have

θ n = Σ -1 n-1 k∈T n-1     X k X 2k X 2k X k X 2k+1 X 2k+1     ,
where Σ n = I 2 ⊗ S n and ⊗ stands for the standard Kronecker product. Hence, (3.3) yields to

(3.5) θ n -θ = Σ -1 n-1 k∈T n-1     X k V 2k V 2k X k V 2k+1 V 2k+1     .
In all this paper, we will make use of the following hypotheses on the moments of the random coefficient sequence (a n , b n ) and on the driven noise sequence (ε 2n , ε 2n+1 ).

One can observe that for all n ≥ 0 and for all k ∈ G n , the random coefficients a k , b k and the driven noise ε 2k , ε 2k+1 are F n+1 -measurable.

(H.1) For all n ≥ 1, E[a 16 n ] < 1 and E[b 16 n ] < 1, E[ε 16 2n ] < ∞ and E[ε 16 2n+1 ] < ∞. (H.2) For all n ≥ 0 and for all k ∈ G n Var[a k |F n ] = σ 2 a ≥ 0 and Var[b k |F n ] = σ 2 b ≥ 0 a.s. Var[ε 2k |F n ] = σ 2 c > 0 and Var[ε 2k+1 |F n ] = σ 2 d > 0 a.s. (H.3) It exists ρ 2 ab ≤ σ 2 a σ 2 b and ρ 2 cd < σ 2 c σ 2 d such that for all n ≥ 0 and for all k ∈ G n E[(a k -a)(b k -b)|F n ] = ρ ab a.s. E[(ε 2k -c)(ε 2k+1 -d)|F n ] = ρ cd a.s.
Moreover, for all n ≥ 0 and k, l ∈ G n with k = l, (ε 2k , ε 2k+1 ) and (ε 2l , ε 2l+1 ) as well as (a k , b k ) and (a l , b l ) are conditionally independent given

F n . (H.4) One can find µ 4 a ≥ σ 4 a , µ 4 b ≥ σ 4 b , µ 4 c > σ 4 c and µ 4 d > σ 4 d such that, for all n ≥ 0 and for all k ∈ G n E (a k -a) 4 |F n = µ 4 a and E (b k -b) 4 |F n = µ 4 b a.s. E (ε 2k -c) 4 |F n = µ 4 c and E (ε 2k+1 -d) 4 |F n = µ 4 d a.s. E[ε 4 2k ] > E[ε 2 2k ] 2 and E[ε 4 2k+1 ] > E[ε 2 2k+1 ] 2 . In addition, it exists ν 2 ab ≥ ρ 2 ab and ν 2 cd > ρ 2 cd such that, for all k ∈ G n E[(a k -a) 2 (b k -b) 2 |F n ] = ν 2 ab and E[(ε 2k -c) 2 (ε 2k+1 -d) 2 |F n ] = ν 2 cd a.s.
(H.5) There exists some α > 4 such that

sup n≥0 sup k∈Gn E[|a k -a| α |F n ] < ∞, sup n≥0 sup k∈Gn E[|b k -b| α |F n ] < ∞ a.s. sup n≥0 sup k∈Gn E[|ε 2k -c| α |F n ] < ∞, sup n≥0 sup k∈Gn E[|ε 2k+1 -d| α |F n ] < ∞ a.s.
One can observe that hypothesis (H. 

∈ G n E[V 2 2k |F n ] = σ 2 a X 2 k + σ 2 c , E[V 2 2k+1 |F n ] = σ 2 b X 2 k + σ 2 d a.s. (3.6) E[V 2k V 2k+1 |F n ] = ρ ab X 2 k + ρ cd a.s. (3.7)
We deduce from (3.6) that, for all n ≥ 1,

V 2 2n = η t ψ n + v 2n where v 2n = V 2 2n - E [V 2 2n |F rn ], η = σ 2 a σ 2 c t and ψ n = X 2 n 1 t .
It leads us to estimate the vector of variances η by the least squares estimator

(3.8) η n = Q -1 n-1 k∈T n-1 V 2 2k ψ k where Q n = k∈Tn ψ k ψ t k and for all k ∈ G n , V 2k = X 2k -a n X k -c n , V 2k+1 = X 2k+1 -b n X k -d n .
We clearly have a similar expression for the estimator of the vector of variances

ζ = σ 2 b σ 2 d t by replacing V 2k by V 2k+1 into (3.8). It also follows from (3.7) that, for all n ≥ 1, V 2n V 2n+1 = ν t ψ n + w 2n where w 2n = V 2n V 2n+1 -E [V 2n V 2n+1 |F rn ] and ν is the vector of covariances ν = ρ ab ρ cd t .
Therefore, we can estimate ν by (3.9)

ν n = Q -1 n-1 k∈T n-1 V 2k V 2k+1 ψ k .

A martingale approach

We already saw that relation (3.5) can be rewritten as

(4.1) θ n -θ = Σ -1 n-1 M n where M n = k∈T n-1     X k V 2k V 2k X k V 2k+1 V 2k+1     .
The key point of this study is to remark that (M n ) is a locally square integrable martingale, which allows us to make use of asymptotic results for martingales. This justifies our vectorial notation introduced previously since most of those asymptotic results have been established for vector-valued martingales. In order to study this martingale, let us rewrite M n in a more convenient way. Let Ψ n = I 2 ⊗ ϕ n where ϕ n is the 2 × 2 n matrix given by

ϕ n = X 2 n X 2 n +1 . . . X 2 n+1 -1 1 1 . . . 1 .
The first line of ϕ n gathers the individuals of the n-th generation, ϕ n can also be seen as the collection of all Φ k , k ∈ G n . Let ξ n be the random vector of dimension 2 n gathering the noise variables of G n , namely

ξ t n = V 2 n V 2 n +2 . . . V 2 n+1 -2 V 2 n +1 V 2 n +3 . . . V 2 n+1 -1 .
The special ordering separating odd and even indices has been made in Bercu et al. [START_REF] Bercu | Asymptotic analysis for bifurcating autoregressive processes via a martingale approach[END_REF] in order to rewrite M n as

M n = n k=1 Ψ k-1 ξ k .
It clearly follows from (H.1) to (H.3) that (M n ) is a locally square integrable martingale with increasing process given, for all n ≥ 1, by

M n = n-1 k=0 Ψ k E[ξ k+1 ξ t k+1 |F k ]Ψ t k = n-1 k=0 L k a.s. (4.2) where (4.3) L n = k∈Gn P (X k ) Q(X k ) Q(X k ) R(X k ) ⊗ X 2 k X k X k 1 with (4.4)      P (X) = σ 2 a X 2 + σ 2 c , Q(X) = ρ ab X 2 + ρ cd , R(X) = σ 2 b X 2 + σ 2 d .
The first step of our approach will be to establish the convergence of M n properly normalized, from which we will be able to deduce several asymptotic results for our RCBAR estimates.

Main results

Lemma 5.1. Assume that (H.1) is satisfied. Then, we have for all p ∈ {1, 2, . . . , 8},

(5.1)

lim n→∞ 1 |T n | k∈Tn X p k = s p a.s.
where s p is a constant depending only on the moments of a 1 , b 1 , ε 2 and ε 3 up to the p-th order.

Remark 5.2. In particular, we have

s 1 = c + d 2 -(a + b) , s 2 = 2 2 -(σ 2 a + σ 2 b + a 2 + b 2 ) (ac + bd)(c + d) 2 -(a + b) + σ 2 c + σ 2 d + c 2 + d 2 2 ,
and explicit expressions for s 3 to s 8 are given at the end of Section 7.

Proposition 5.3. Assume that (H.1) to (H.3) are satisfied. Then, we have

(5.2) lim n→∞ M n |T n-1 | = L a.s.
where L is the positive definite matrix given by

L = σ 2 c ρ cd ρ cd σ 2 d ⊗ C + σ 2 a ρ ab ρ ab σ 2 b ⊗ D, where (5.3) C = s 2 s 1 s 1 1 and D = s 4 s 3 s 3 s 2 .
Remark 5.4. One can observe in the proof of Lemma 5.1 that we only need to assume for convergence (5.2) that

E[a 8 n ] < 1, E[b 8 n ] < 1, sup n≥1 E[ε 8 2n ] < ∞, sup n≥1 E[ε 8 2n+1 ] < ∞.
Our first result deals with the almost sure convergence of the LS estimator θ n . We will denote by x the euclidean norm of a vector x.

Theorem 5.5. Assume that (H.1) to (H.3) are satisfied. Then, θ n converges almost surely to θ with the almost sure rate of convergence

θ n -θ 2 = O n |T n-1 | a.s.
In addition, we also have the quadratic strong law

(5.4) lim n→∞ 1 n n k=1 |T k-1 |( θ k -θ) t ΓΛ -1 Γ( θ k -θ) = Tr(Λ -1/2 LΛ -1/2 ) a.s.
where

Λ = I 2 ⊗ (C + D) and Γ = I 2 ⊗ C.
Our second result concerns the almost sure asymptotic properties of our least squares variance and covariance estimators η n , ζ n and ν n . We need to introduce some new variables

η n = Q -1 n-1 k∈T n-1 V 2 2k ψ k , ζ n = Q -1 n-1 k∈T n-1 V 2 2k+1 ψ k , ν n = Q -1 n-1 k∈T n-1 V 2k V 2k+1 ψ k .
Theorem 5.6. Assume that (H.1) to (H.3) are satisfied. Then, η n and ζ n both converge almost surely to η and ζ respectively. More precisely,

η n -η n = O n |T n-1 | a.s. (5.5) ζ n -ζ n = O n |T n-1 | a.s. (5.6)
In addition, ν n converges almost surely to ν with

(5.7) ν n -ν n = O n |T n-1 | a.s.
Remark 5.7. We also have the less precise almost sure rates of convergence to the true parameters

η n -η 2 = O n |T n-1 | , ζ n -ζ 2 = O n |T n-1 | , ν n -ν 2 = O n |T n-1 | a.s.
Finally, our last result is devoted to the asymptotic normality of our least squares estimates θ n , η n , ζ n and ν n .

Theorem 5.8. Assume that (H.1) to (H.5) are satisfied. Then, we have the asymptotic normality

(5.8) |T n-1 |( θ n -θ) L -→ N (0, Γ -1 LΓ -1
).

In addition, we also have

|T n-1 | ( η n -η) L -→ N (0, A -1 M ac A -1
), (5.9)

|T n-1 | ζ n -ζ L -→ N (0, A -1 M bd A -1 ), (5.10) where A = s 4 s 2 s 2 1 , M ac = (µ 4 a -σ 4 a ) s 8 s 6 s 6 s 4 + 4σ 2 a σ 2 c s 6 s 4 s 4 s 2 + (µ 4 c -σ 4 c ) s 4 s 2 s 2 1 , M bd = (µ 4 b -σ 4 b ) s 8 s 6 s 6 s 4 + 4σ 2 b σ 2 d s 6 s 4 s 4 s 2 + (µ 4 d -σ 4 d ) s 4 s 2 s 2 1 .
Finally,

(5.11) |T n-1 | ( ν n -ν) L -→ N 0, A -1 HA -1
where

H = (ν 2 ab -ρ 2 ab ) s 8 s 6 s 6 s 4 + (σ 2 a σ 2 d + σ 2 b σ 2 c + 2ρ ab ρ cd ) s 6 s 4 s 4 s 2 + (ν 2 cd -ρ 2 cd ) s 4 s 2 s 2 1 .
The rest of the paper is dedicated to the proof of our main results.

On the Rademacher-Menchov theorem

Our almost sure convergence results rely on the Rademacher-Menchov theorem for orthonormal sequences of random variables given by Rademacher [START_REF] Rademacher | Einige Sätze über Reihen von allgemeinen Orthogonalfunktionen[END_REF] and Menchoff [START_REF] Menchoff | Sur les séries de fonctions orthogonales[END_REF], see Stout [START_REF] Stout | Almost sure convergence[END_REF] and also Tandori [START_REF] Tandori | Über die Divergenz der Orthogonalreihen[END_REF][START_REF] Tandori | Bemerkung zur Konvergenz der Orthogonalreihen[END_REF] and an unpublished note of Talagrand [START_REF] Talagrand | Convergence of orthogonal series using stochastic processes[END_REF] for some extensions of this result. Theorem 6.1. Let (X n ) be an orthonormal sequence of square integrable random variables which means that for all

n = k, E[X n X k ] = 0 and E[X 2 n ] = 1.
Assume that a sequence of real numbers (a n ) satisfies

(6.1) ∞ n=1 a 2 n (log n) 2 < ∞.
Then, the following series converges almost surely

(6.2) ∞ n=1 a n X n .
Remark 6.2. One can observe that (X n ) is a square integrable sequence but is neither a sequence of independent random variables nor a sequence of uncorrelated random variables since (X n ) is not necessarily centered. In addition, in the case where (X n ) is an orthogonal sequence of random variables, we have the same result (6.2), replacing (6.1) by

∞ n=1 a 2 n E[X 2 n ](log n) 2 < ∞.
If a n = 1/n, it follows from (6.2) and Kronecker's lemma that

lim n→∞ 1 n n k=1 X k = 0 a.s.
7. Proof of the keystone Lemma 5.1

We shall introduce some suitable notations. Let (β n ) be the sequence defined, for all n ≥ 1, by β 2n = a n and β 2n+1 = b n . Then, (2.1) can be rewritten as

X 2n = β 2n X n + ε 2n , X 2n+1 = β 2n+1 X n + ε 2n+1 . Consequently, for all n ≥ 2 X n = β n X [ n 2 ] + ε n . First of all, let us prove that lim n→∞ 1 |T n | L n = s 1 where L n = k∈Tn X k .
One can observe that

L n = X 1 + k∈Tn\T 0 β k X [ k 2 ] + ε k = X 1 + (a + b)L n-1 + A n-1 + B n-1 + E n-1 ,
where

A n = k∈Tn X k (a k -a), B n = k∈Tn X k (b k -b), E n = k∈Tn (ε 2k + ε 2k+1 ).
Hence, we obtain that

L n 2 n+1 = X 1 2 n+1 + a + b 2 L n-1 2 n + A n-1 2 n+1 + B n-1 2 n+1 + E n-1 2 n+1 = a + b 2 n L 0 2 + n k=1 a + b 2 n-k X 1 2 k+1 + A k-1 2 k+1 + B k-1 2 k+1 + E k-1 2 k+1 . (7.1)
Recalling that |T n | = 2 n+1 -1, the standard strong law of large numbers immediately implies that

lim n→∞ E n 2 n+1 = E[ε 2 + ε 3 ] = c + d a.s.
Let us tackle the limit of A n using the Rademacher-Menchov theorem given in Theorem 6.1. Let Y n and R n be defined as

Y n = X n (a n -a) and R n = n k=1 Y k .
For all n ≥ 0 and for all k ∈ G n , E[a k -a|F n ] = 0. Moreover, we clearly have for all n ≥ 2 and for all different k, l ∈ G n ,

E[Y k Y l ] = E [E[X k X l (a k -a)(a l -a)|F n ]] = E [X k X l E[a k -a|F n ]E[a l -a|F n ]] = 0.
It means that (Y n ) is a sequence of orthogonal random variables. In addition we have, for all n ≥ 0 and for all k ∈ G n ,

E[Y 2 k ] = E E[X 2 k (a k -a) 2 |F n ] = E X 2 k E[(a k -a) 2 |F n ] = σ 2 a E[X 2 k ].
In order to calculate E[X 2 n ], let us remark, with the convention that a product over an empty set is equal to 0, that for all n ≥ 1,

X n = rn-1 k=0 β [ n 2 k ] X 1 + rn-1 k=0 k-1 i=0 β [ n 2 i ] ε [ n 2 k ] .
Consequently,

E[X 2 n ] = E rn-1 k=0 β 2 [ n 2 k ] X 2 1 + 2 rn-1 k=0 E rn-1 l=0 β [ n 2 l ] X 1 k-1 i=0 β [ n 2 i ] ε [ n 2 k ] + E   rn-1 k=0 k-1 i=0 β [ n 2 i ] ε [ n 2 k ] 2   .
First of all,

E rn-1 k=0 β 2 [ n 2 k ] X 2 1 = E[X 2 1 ] rn-1 k=0 E β 2 [ n 2 k ] ≤ E[X 2 1 ] max(E[a 2 1 ], E[b 2 1 ]) rn ≤ E[X 2 1 ].
Next, for the cross term

rn-1 k=0 E rn-1 l=0 β [ n 2 l ] X 1 k-1 i=0 β [ n 2 i ] ε [ n 2 k ] = E[X 1 ] rn-1 k=0 k-1 i=0 E β 2 [ n 2 i ] rn-1 l=k+1 E β [ n 2 l ] E β [ n 2 k ] ε [ n 2 k ] ≤ E[|X 1 |] max(|ac|, |bd|) max(|a|, |b|) rn -max(E[a 2 1 ], E[b 2 1 ]) rn max(|a|, |b|) -max(E[a 2 1 ], E[b 2 1 ]) ≤ E[|X 1 |] max(|ac|, |bd|) 1 |max(|a|, |b|) -max(E[a 2 1 ], E[b 2 1 ])|
.

By the same token, it is not hard to see that the last term is also bounded. Consequently, we proved that it exists some positive constant µ such that, for all n ≥ 0,

E[X 2 n ] ≤ µ, leading to ∞ n=1 1 n 2 E[Y 2 n ](log n) 2 ≤ σ 2 a µ ∞ n=1 (log n) 2 n 2 < ∞.
Therefore, it follows from the Rademacher-Menchov theorem that the series

∞ n=1 1 n Y n converges a.s. Consequently, Kronecker's lemma implies that lim n→∞ 1 n n k=1 Y k = lim n→∞ 1 n R n = 0 a.s.
In particular

lim n→∞ 1 |T n | R |Tn| = lim n→∞ 1 |T n | A n = 0 a.s.
Hence, we find that

lim n→∞ 1 2 n+1 A n = 0 a.s.
By the same token, we also have

lim n→∞ 1 2 n+1 B n = 0 a.s.
To sum up, we obtain that

(7.2) lim n→∞ X 1 2 n+1 + A n-1 2 n+1 + B n-1 2 n+1 + E n-1 2 n+1 = c + d 2 a.s.
Therefore, we deduce from (7.1) and (7.2) together with the assumption that max(|a|, |b|) < 1 and Lemma A.3 of [START_REF] Bercu | Asymptotic analysis for bifurcating autoregressive processes via a martingale approach[END_REF], that

(7.3) lim n→∞ L n 2 n+1 = c + d 2 1 1 - a + b 2 a.s.
which means that

lim n→∞ 1 |T n | k∈Tn X k = c + d 2 -(a + b) a.s.
Let us now tackle the study of

K n = k∈Tn X 2 k .
First, one can observe that

K n = k∈Tn X 2 k = X 2 1 + k∈Tn\T 0 β k X [ k 2 ] + ε k 2 = X 2 1 +   k∈Tn\T 0 β 2 k X 2 [ k 2 ]   + 2   k∈Tn\T 0 β k ε k X [ k 2 ]   +   k∈Tn\T 0 ε 2 k   = X 2 1 + (σ 2 a + σ 2 b + a 2 + b 2 )K n-1 + 2(ac + bd)L n-1 + A n-1 + B n-1 + E n-1 , where A n = k∈Tn X 2 k (a 2 k + b 2 k -(σ 2 a + σ 2 b + a 2 + b 2 )), B n = k∈Tn X k (a k ε 2k + b k ε 2k+1 -(ac + bd)) and E n = k∈Tn (ε 2 2k + ε 2 2k+1 ).
Hence, we obtain, as for L n

K n 2 n+1 = µ n K 0 2 + n k=1 µ n-k X 2 1 2 k+1 + ν L k-1 2 k + A k-1 2 k+1 + B k-1 2 k+1 + E k-1 2 k+1 , where, since E[a 2 k ] = σ 2 a + a 2 < 1 and E[b 2 k ] = σ 2 b + b 2 < 1, µ = σ 2 a + σ 2 b + a 2 + b 2 2 < 1 and ν = ac + bd.
As previously, the strong law of large numbers leads to (7.4)

lim n→∞ 1 |T n | E n = σ 2 c + σ 2 d + c 2 + d 2 a.s.
Moreover, it follows once again from the Rademacher-Menchov theorem with Kronecker's lemma, (7.3), (7.4) and Lemma A.3 of [START_REF] Bercu | Asymptotic analysis for bifurcating autoregressive processes via a martingale approach[END_REF] that

lim n→∞ K n 2 n+1 = 1 1 -µ ν c + d 2 -(a + b) + σ 2 c + σ 2 d + c 2 + d 2 2 a.s.
leading to convergence (5.1) for p = 2. We shall not carry out the proof of (5.1) for 3 ≤ p ≤ 8 inasmuch as it follows essentially the same lines that those for p = 2. One can observe that, in order to prove (5.1) for 3

≤ p ≤ 8, it is necessary to assume that E[a 2p 1 ] < 1, E[b 2p 1 ] < 1, E[ε 2p 2 ] < ∞ and E[ε 2p 3 ] < ∞.
The limiting values s 3 to s 8 may be explicitly calculated. More precisely, for all p ∈ {1, 2, . . . , 8}, denote

A p = E[a p 1 ], B p = E[b p 1 ], C p = E[ε p 2 ], D p = E[ε p 3 ].
We already saw that

s 1 = C 1 + D 1 2 -(A 1 + B 1 )
and

s 2 = 2 2 -(A 2 + B 2 ) (A 1 C 1 + B 1 D 1 )s 1 + C 2 + D 2 2 .
The other limiting values s 3 to s 8 of convergence (5.1) can be recursively calculated via the linear relation

s p = 2 2 -(A p + B p ) p-1 k=1 1 2 p k (A k C p-k + B k D p-k )s k + C p + D p 2 .

Proof of Proposition 5.3

The almost sure convergence (5.2) is immediate through (4.2), (4.3) and Lemma 5.1. Let us now prove that L is a positive definite matrix. First, the matrices 

lim n→∞ 1 |T n | k∈Tn X 4 k X 3 k X 3 k X 2 k = D a.s.
Finally, let us prove that C is positive definite. Its trace is clearly greater than 1, hence we only have to prove that its determinant is positive. Its determinant is given by

s 2 -s 2 1 = σ 2 c + σ 2 d 2 -(σ 2 a + σ 2 b + a 2 + b 2 ) + c + d 2 -(a + b) 2 σ 2 a + σ 2 b 2 -(σ 2 a + σ 2 b + a 2 + b 2 ) + 2 2 -(σ 2 a + σ 2 b + a 2 + b 2 ) (ad -bc + c -d) 2 (2 -(a + b)) 2 .
The first term of this sum is positive since under (H.1)

σ 2 a + σ 2 b + a 2 + b 2 < 2 and since under (H.2) σ 2 c + σ 2 d > 0.
Moreover, the two other terms are clearly nonnegative, which proves that this matrix is positive definite. Since the Kronecker product of two positive semidefinite (respectively positive definite) matrices is a positive semidefinite (respectively positive definite) matrix, we can conclude that L is positive definite.

Proofs of the almost sure convergence results

We shall make use of a martingale approach, as the one developed by Bercu et al. [START_REF] Bercu | Asymptotic analysis for bifurcating autoregressive processes via a martingale approach[END_REF] or de Saporta et al. [START_REF] De Saporta | Random coefficients bifurcating autoregressive processes[END_REF]. For all n ≥ 1, let

V n = M t n P -1 n-1 M n = ( θ n -θ) t Σ n-1 P -1 n-1 Σ n-1 ( θ n -θ) where P n = k∈Tn (1 + X 2 k )I 2 ⊗ X 2 k X k X k 1 .
By the same calculations as in [START_REF] Bercu | Asymptotic analysis for bifurcating autoregressive processes via a martingale approach[END_REF], we can easily see that if

∆M n = M n -M n-1 , (9.1) V n+1 + A n = V 1 + B n+1 + W n+1 ,
where

A n = n k=1 M t k (P -1 k-1 -P -1 k )M k , B n+1 = 2 n k=1 M t k P -1 k ∆M k+1 and W n+1 = n k=1 ∆M t k+1 P -1 k ∆M k+1 .
Lemma 9.1. Assume that (H.1) to (H.3) are satisfied. Then, we have

(9.2) lim n→∞ W n n = 1 2 tr((I 2 ⊗ (C + D)) -1/2 L(I 2 ⊗ (C + D)) -1/2 ) a.s.
where C and D are the matrices given by (5.3). In addition, we also have

(9.3) B n+1 = o(n) a.s. and (9.4) lim n→∞ V n+1 + A n n = 1 2 tr((I 2 ⊗ (C + D)) -1/2 L(I 2 ⊗ (C + D)) -1/2 ) a.s.
Proof. The proof of convergence (9.2) is left to the reader inasmuch as it follows essentially the same arguments as the proof of Lemma B.3 in [START_REF] Bercu | Asymptotic analysis for bifurcating autoregressive processes via a martingale approach[END_REF]. In particular, we also find that (9.5)

lim n→∞ P n |T n | = I 2 ⊗ (C + D) a.s.
We shall proceed to the proof of (9.3). We clearly have

B n+1 = 2 n k=1 M t k P -1 k ∆M k+1 = 2 n k=1 M t k P -1 k Ψ k ξ k+1 .
Hence, (B n ) is a square integrable martingale. In addition, we have

∆B n+1 = 2M t n P -1 n ∆M n+1 . Consequently, E[(∆B n+1 ) 2 |F n ] = 4E[M t n P -1 n ∆M n+1 ∆M t n+1 P -1 n M n |F n ] a.s. = 4M t n P -1 n E[∆M n+1 ∆M t n+1 |F n ]P -1 n M n a.s. = 4M t n P -1 n L n P -1 n M n a.s.
However, we already saw from (4.3) that

L n = k∈Gn P (X k ) Q(X k ) Q(X k ) R(X k ) ⊗ X 2 k X k X k 1 .
Moreover,

∆P n = P n -P n-1 = k∈Gn (1 + X k ) 2 I 2 ⊗ X 2 k X k X k 1 . For α = max(σ 2 a , σ 2 c ) + max(σ 2 b , σ 2 d ) + max(|ρ ab |, |ρ cd |), denote ∆ n = α(1 + X 2 n ) -P (X n ) -Q(X n ) -Q(X n ) α(1 + X 2 n ) -R(X n ) where P (X n ), Q(X n )
and R(X n ) are given by (4.4). It is not hard to see that

α∆P n -L n = k∈Gn ∆ k ⊗ X 2 k X k X k 1
and that ∆ n is positive definite which immediately implies that L n ≤ α∆P n . Moreover, we can use Lemma B.1 of [START_REF] Bercu | Asymptotic analysis for bifurcating autoregressive processes via a martingale approach[END_REF] to say that

P -1 n-1 ∆P n P -1 n-1 ≤ P -1 n-1 -P -1 n . Hence E[(∆B n+1 ) 2 |F n ] = 4M t n P -1 n L n P -1 n M n a.s. ≤ 4αM t n P -1 n ∆P n P -1 n M n a.s. ≤ 4αM t n (P -1 n-1 -P -1 n )M n a.s.
leading to B n ≤ 4αA n . Therefore it follows from the strong law of large numbers for martingales that B n = o(A n ). Hence, we deduce from decomposition (9.1) that

V n+1 + A n = o(A n ) + O(n) a.s. leading to V n+1 = O(n) and A n = O(n) a.s. which implies that B n = o(n) a.s.
Finally we clearly obtain convergence (9.4) from the main decomposition (9.1) together with (9.2) and (9.3), which completes the proof of Lemma 9.1.

Lemma 9.2. Assume that (H.1) to (H.3) are satisfied. For all δ > 1/2, we have

M n 2 = o(|T n |n δ ) a.s.
Proof. Let us recall that

M n = k∈T n-1     X k V 2k V 2k X k V 2k+1 V 2k+1     . Denote T n = k∈T n-1 X k V 2k and U n = k∈T n-1 V 2k .
On the one hand, T n can be rewritten as

T n = n k=1 |G k-1 |f k where f n = 1 |G n-1 | k∈G n-1 X k V 2k .
We already saw in Section 3 that, for all n ≥ 0 and for all k ∈ G n ,

E[V 2k |F n ] = 0 and E[V 2 2k |F n ] = σ 2 a X 2 k + σ 2 c = P (X k ) a.s. In addition, for all k ∈ G n , E[V 4 2k |F n ] = µ 4 a X 4 k + 6σ 2 a σ 2 c X 2 k + µ 4 c a.s. which implies that (9.6) E[V 4 2k |F n ] ≤ µ 4 ac (1 + X 2 k ) 2 a.s.
where

µ 4 ac = max(µ 4 a , 3σ 2 a σ 2 c , µ 4 c ). Consequently, E[f n+1 |F n ] = 0 a.s. In addition, E[f 4 n+1 |F n ] = 1 |G n | 2 k∈Gn X 4 k E[V 4 2k |F n ] + 3 |G n | 2 k∈Gn l∈Gn l =k X 2 k X 2 l E[V 2 2k |F n ]E[V 2 2l |F n ],
which implies from (9.6) together with the Cauchy-Schwarz inequality that

E[f 4 n+1 |F n ] ≤ µ 4 ac |G n | 2 k∈Gn X 4 k (1 + X 2 k ) 2 + 3 max(σ 2 a , σ 2 c ) 2 1 |G n | k∈Gn X 2 k (1 + X 2 k ) 2 .
Therefore, we infer from Lemma 5.1 that

sup n≥0 E[f 4 n+1 |F n ] < ∞ a.s.
Hence, we obtain from Wei's lemma given in [START_REF] Wei | Adaptive prediction by least squares predictors in stochastic regression models with applications to time series[END_REF] page 1672, together with Lemma A.2 of [START_REF] Bercu | Asymptotic analysis for bifurcating autoregressive processes via a martingale approach[END_REF], that for all δ > 1/2,

T 2 n = o(|T n-1 |n δ ) a.s.
On the other hand, U n can be rewritten as

U n = n k=1 |G k-1 |g k where g n = 1 |G n-1 | k∈G n-1 V 2k .
Via the same calculation as before, E[g n+1 |F n ] = 0 a.s. and

E[g 4 n+1 |F n ] ≤ µ 4 bd |G n | 2 k∈Gn (1 + X 2 k ) 2 + 3 max(σ 2 b , σ 2 d ) 2 1 |G n | k∈Gn (1 + X 2 k ) 2 .
where

µ 4 bd = max(µ 4 b , 3σ 2 b σ 2 d , µ 4 d ).
Hence, we deduce once again from Lemma 5.1 and Wei's Lemma, together with Lemma A.2 of [START_REF] Bercu | Asymptotic analysis for bifurcating autoregressive processes via a martingale approach[END_REF], that for all δ > 1/2,

U 2 n = o(|T n-1 |n δ ) a.s.
In the same way, we obtain the same result for the two last components of M n , which completes the proof of Lemma 9.2. 9.1. Proof of Theorem 5.5. We recall that

V n = ( θ n -θ) t Σ n-1 P -1 n-1 Σ n-1 ( θ n -θ) which implies that θ n -θ 2 ≤ V n λ min (Σ n-1 P -1 n-1 Σ n-1 )
.

where λ min (A) stands for the smallest eigenvalue of A. On the one hand, it follows from (9.4) that V n = O(n) a.s. On the other hand, we deduce from Lemma 5.1 that (9.7)

lim n→∞ Σ n |T n | = I 2 ⊗ C = Γ a.s.
where C is the positive definite matrix given by (5.3). Therefore, we obtain from (9.5) and (9.7) that

lim n→∞ λ min (Σ n-1 P -1 n-1 Σ n-1 ) |T n-1 | = λ min (C(C + D) -1 C) > 0 a.s.
Consequently, we find that

θ n -θ 2 = O n |T n-1 | a.s.
We are now in position to prove the quadratic strong law (5.4). First of all, a direct application of Lemma 9.2 ensures that V n = o(n δ ) a.s. for all δ > 1/2. Hence, we obtain from (9.4) that (9.8)

lim n→∞ A n n = 1 2 tr((I 2 ⊗ (C + D)) -1/2 L(I 2 ⊗ (C + D)) -1/2 ) a.s.
Let us rewrite A n as

A n = n k=1 M t k P -1 k-1 -P -1 k M k = n k=1 M t k P -1/2 k-1 A k P -1/2 k-1 M k , where A k = I 4 -P 1/2 k-1 P -1 k P 1/2
k-1 . We already saw from (9.5) that (9.9)

lim n→∞ P n |T n | = I 2 ⊗ (C + D) a.s.
which ensures that

lim n→∞ A n = 1 2 I 4 a.s.
In addition, we deduce from (9.4) that A n = O(n) a.s. which implies that (9.10)

A n n = 1 2n n k=1 M t k P -1 k-1 M k + o(1) a.s.
Moreover, we also have from (9.7) and (9.9) that

1 n n k=1 M t k P -1 k-1 M k = 1 n n k=1 ( θ k -θ) t Σ k-1 P -1 k-1 Σ k-1 ( θ k -θ) = 1 n n k=1 |T k-1 |( θ k -θ) t Σ k-1 |T k-1 | |T k-1 |P -1 k-1 Σ k-1 |T k-1 | ( θ k -θ) = 1 n n k=1 |T k-1 |( θ k -θ) t Γ(I 2 ⊗ (C + D) -1 )Γ( θ k -θ) + o(1)
a.s. (9.11) Therefore, (9.8) together with (9.10) and (9.11) lead to (5.4). 9.2. Proof of Theorem 5.6. We only prove (5.5) inasmuch as the proof of (5.6) follows exactly the same lines. Relation (3.8) immediately leads to

Q n-1 ( η n -η n ) = n-1 l=0 k∈G l ( V 2 2k -V 2 2k )ψ k = n-1 l=0 k∈G l ( V 2k -V 2k ) 2 + 2( V 2k -V 2k )V 2k ψ k . (9.12)
Moreover, we clearly have from Section 3 that, for all n ≥ 0 and for all k ∈ G n

V 2k -V 2k = - a n -a c n -c t Φ k ,
which implies that

( V 2k -V 2k ) 2 ≤ ( a n -a) 2 + ( c n -c) 2 Φ k 2 = ( a n -a) 2 + ( c n -c) 2 (1 + X 2 k ).
In addition, since

ψ k 2 = 1 + X 4 k ≤ (1 + X 2 k ) 2 , we have n-1 l=0 k∈G l ( V 2k -V 2k ) 2 ψ k ≤ n-1 l=0 ( a l -a) 2 + ( c l -c) 2 k∈G l (1 + X 2 k ) 2 .
However, it follows from Lemma 5.1 that

k∈G l (1 + X 2 k ) 2 = O(|G l |) a.s.
and since Λ is positive definite, (5.4) leads to

n-1 l=0 ( a l -a) 2 + ( c l -c) 2 |G l | = O(n) a.s.
Hence, we find that (9.13)

n-1 l=0 k∈G l ( V 2k -V 2k ) 2 ψ k = O(n) a.s.
Let us now tackle

P n = n-1 l=0 k∈G l ( V 2k -V 2k )V 2k ψ k .
It is clear that

∆P n+1 = P n+1 -P n = k∈Gn ( V 2k -V 2k )V 2k ψ k = - k∈Gn V 2k ψ k Φ t k a n -a c n -c . Since, for al k ∈ G n , E[V 2k |F n ] = 0 a.s. and E[V 2 2k |F n ] = P (X k ) a.s., we have E[∆P n+1 ∆P t n+1 |F n ] = k∈Gn P (X k )ψ k Φ t k a n -a c n -c a n -a c n -c t Φ k ψ t k a.s.
which allows to say that (P n ) is a square integrable martingale with increasing process P n given by

P n = n-1 l=0 E[∆P l+1 ∆P t l+1 |F n ] = n-1 l=0 k∈G l P (X k )ψ k Φ t k a l -a c l -c a l -a c l -c t Φ k ψ t k a.s. Consequently, if α = max(σ 2 a , σ 2 
c ), we obtain that

P n ≤ α n-1 l=0 ( a l -a) 2 + ( c l -c) 2 k∈G l (1 + X 2 k ) ψ k 2 Φ k 2 a.s. ≤ α n-1 l=0 ( a l -a) 2 + ( c l -c) 2 k∈G l (1 + X 2 k ) 4 a.s.
leading, as previously via Lemma 5.1 and (5.4), to P n = O(n) a.s. The strong law of large numbers for martingale given e.g. in Theorem 1.3.15 of [START_REF] Duflo | Random iterative models[END_REF] implies that (9.14)

P n = o(n) a.s.
Then, we deduce from (9.12), (9.13) and (9.14) that (9.15)

Q n-1 ( η n -η n ) = O(n) a.s.
Moreover, we obtain through Lemma 5.1 that (9. [START_REF] Duflo | Random iterative models[END_REF])

lim n→∞ 1 |T n | Q n = s 4 s 2 s 2 1 = A a.s.
and we can prove, through tedious calculations, that this limiting matrix is positive definite. Therefore, (9.15) immediately implies (5.5). We shall now proceed to the proof of (5.7). Denote

R n = k∈T n-1 ( W k -W k ) t JW k ψ k ,
where

W k = V 2k V 2k+1 and J = 0 1 1 0 . It follows from (3.9) that Q n ( ν n -ν n ) = k∈T n-1 ( V 2k -V 2k )( V 2k+1 -V 2k+1 )ψ k + R n .
Furthermore, one can observe that (R n ) is a square integrable martingale with increasing process

R n = n-1 l=0 k∈G l E[( W k -W k ) t JW k W t k J( W k -W k )ψ k ψ t k |F l ] a.s. = n-1 l=0 k∈G l ( W k -W k ) t JE[W k W t k |F l ]J( W k -W k )ψ k ψ t k a.s. = n-1 l=0 k∈G l ( W k -W k ) t J P (X k ) Q(X k ) Q(X k ) R(X k ) J( W k -W k )ψ k ψ t k a.s. = n-1 l=0 k∈G l ( W k -W k ) t R(X k ) Q(X k ) Q(X k ) P (X k ) ( W k -W k )ψ k ψ t k a.s.
Then, as previously, Lemma 5.1 and (5.4) lead to R n = O(n) a.s. which allows us to say that R n = o(n) a.s. Furthermore

k∈T n-1 ( V 2k -V 2k )( V 2k+1 -V 2k+1 )ψ k ≤ 1 2 k∈T n-1 ( V 2k -V 2k ) 2 + ( V 2k+1 -V 2k+1 ) 2 ψ k ≤ 1 2 n-1 l=0 θ l -θ 2 k∈G l Φ k 2 ψ k ,
which implies, thanks to Lemma 5.1 and (5.4), that

k∈T n-1 ( V 2k -V 2k )( V 2k+1 -V 2k+1 )ψ k = O(n) a.s.
Finally, we infer from (9.16) that

ν n -ν n = O n |T n-1 | a.s.
It remains to prove the a.s. convergence of η n , ζ n and ν n to η, ζ and ν, respectively which would immediately imply the a.s. convergence of our estimates through (5.5), (5.6) and (5.7). Denote (9.17)

N n = Q n-1 (η n -η) = k∈T n-1 v 2k ψ k
where v 2n = V 2 2n -η t ψ n . One can observe that (N n ) is a square integrable martingale with increasing process N n given by It clearly proves the a.s. convergence of ν n to ν with the last a.s. rate of convergence given in Remark 5.7, which completes the proof of Theorem 5.6.

N n = n-1 l=0 k∈G l E[v 2 2k |F l ]ψ k ψ t k a.s. Hence, if γ = max(µ 4 a -σ 4 a , 2σ 2 a σ 2 c , µ 4 c -σ 4 c ), we obtain that N n ≤ n-1 l=0 k∈G l γ(1 + X 2 k ) 2 ψ k ψ t k a.s. ≤ γ k∈T n-1 (1 + X 2 k ) 2 ψ k 2 = γ k∈T n-1 (1 + X 2 k ) 4 a.

Proofs of the asymptotic normalities

The key point of the proof of the asymptotic normality of our estimators is the central limit theorem for triangular array of vector martingale given e.g. in Theorem 2.1.9 of [START_REF] Duflo | Random iterative models[END_REF]. With this aim in mind, we will change the filtration considering, instead of the generation wise filtration (F n ), the sister-pair wise filtration (G n ) given by G n = σ {X 1 , (X 2k , X 2k+1 ), 1 ≤ k ≤ n} . 10.1. Proof of convergence (5.8). We will consider the triangular array of vector martingale (M (n) k ) defined as (10.1)

M (n) k = 1 |T n | k l=1 D l where D l =     X l V 2l V 2l X l V 2l+1 V 2l+1     .
It is obvious that M (n) is a square integrable vector valued martingale with respect to the filtration (G k ). Moreover, we can observe that (10.2)

M (n) tn = 1 |T n | tn l=1 D l = 1 |T n | M n+1
where t n = |T n | = 2 n+1 -1. In addition, the increasing process of this square integrable martingale is given by

M (n) k = 1 |T n | k l=1 E[D l D t l |G l-1 ] = 1 |T n | k l=1 P (X l ) Q(X l ) Q(X l ) R(X l ) ⊗ X 2 l X l X l 1
a.s.

Then, (5.2) leads to lim n→∞ M (n) tn = L a.s.

We will now establish Lindeberg's condition thanks to Lyapunov's condition. Let

φ n = tn k=1 E M (n) k -M (n) k-1 4 G k-1 .
It follows from (10.1) that

φ n = 1 |T n | 2 tn k=1 E (1 + X 2 k ) 2 (V 2 2k + V 2 2k+1 ) 2 G k-1 ≤ 2 |T n | 2 tn k=1 E (1 + X 2 k ) 2 (V 4 2k + V 4 2k+1 ) G k-1 .
Since we already saw in Section 9 that E V leading, via Lemma 5.1, to the a.s. convergence of φ n to 0. Consequently, Lyapunov's condition is satisfied and Theorem 2.1.9 of [START_REF] Duflo | Random iterative models[END_REF] together with (10.2) imply that

1 |T n-1 | M n L -→ N (0, L).
Moreover, we easily obtain from Lemma 5.1 that

(10.3) lim n→∞ Σ n |T n | = I 2 ⊗ C = Γ a.s.
where C is the positive definite matrix given by (5.3). Finally, we deduce from (4.1) together with (10.3) and Slutsky's lemma that

|T n-1 |( θ nθ) L -→ N (0, Γ -1 LΓ -1 ).

10.2. Proof of convergences (5.9) and (5.11). The proof of convergences (5.9) and (5.11) are left to the reader as it follows essentially the same lines as the one of convergence (5.8).

2 )

 2 allows us to consider a classical BAR process where a k = a and b k = b a.s. Moreover, under assumptions (H.2) and (H.3), we have for all n ≥ 0 and for all k

ρ cd σ 2 d

 2 are clearly positive semidefinite and positive definite under (H.3). Moreover, D is clearly positive semidefinite since

  s. which leads, via Lemma 5.1, to N n = O(|T n-1 |) a.s. Consequently, that η n converges a.s. to η with the a.s. rate of convergence given in Remark 5.7. The proof concerning the a.s. convergence of ζ n to ζ and the second rate of convergence in Remark 5.7 is exactly the same. Hereafter, denote (9.18)H n = Q n-1 (ν nν) = k∈T n-1 w 2k ψ kwhere w 2n = V 2n V 2n+1ν t ψ n . Once again, the sequence (H n ) is a square integrable martingale with increasing process

	n-1	
	N n ab , ν 2 Moreover, if α = max(ν 2 cd , (σ 2 2 = O(n|T n-1 |) l=0 k∈G l E[w 2 2k |F l ]ψ k ψ t a.s. k a + σ 2 c )(σ 2 b + σ 2 d )), we find that a.s. H n ≤ n-1 l=0 k∈G l α(1 + X 2 k ) 2 ψ k ψ t k a.s. ≤ α k∈T n-1 (1 + X 2 k ) 2 ψ k 2 = α k∈T n-1 (1 + X 2 k ) 4 which allows us to say, as previously, that Then, we deduce from (9.16) and (9.17) H n = H n 2 = O(n|T n-1 |) and ν n -ν 2 = O n |T n-1 |	a.s. a.s.
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