De la didactique des usages numériques
Stéphane Brunel

► To cite this version:

Stéphane Brunel. De la didactique des usages numériques. ÉDITIONS UNIVERSITAIRES EUROPÉENNES, pp.220, 2014, 978-3-8417-3473-0. hal-01023590v2

HAL Id: hal-01023590
https://hal.science/hal-01023590v2
Submitted on 22 Sep 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
De la didactique des Usages Numériques
Les premières pistes pour l’émergence d’une discipline et réflexion cohérente …

Je tiens à remercier tout particulièrement mon ami José Iriarte pour sa relecture attentive.
1. **Introduction** ... 7
 1.1. Un chaos organisé ... 8
 1.2. Des remèdes pour aucune maladie ... 9
 1.3. Vers un nouvel âge avec prétention ..10
2. **Etat des lieux** .. 11
 2.1. Les rapports officiels ..11
 2.2. Équipement ..12
 2.3. Temps passé ..16
 2.4. Matériel utilisé ..18
 2.5. Comportement ...19
3. **De la pédagogie en général et de la didactique en particulier et inversement** 25
 3.1. Préambule ..25
 3.2. Pédagogie ..25
 3.3. Exégèse personnelle ..29
 3.4. Didactique ..31
 3.5. Transmettre est un acte réfléchi ...32
 3.6. Définitions de mots utiles pour la suite ...34
 3.6.1. Le guidage ...34
 3.6.2. Les Technologies de l’Information et de la Communication (TIC) ..35
 3.6.3. La théorie de la charge cognitive ..35
 3.7. Conclusion ..38
 3.8. Pour aller plus loin et rassembler ..41
 3.8.1. Guidage et usages numériques ...41
 3.8.2. 1ère partie : Une transformation liée au changement de support ...42
 3.8.3. 2ème partie : Une transformation liée aux développements des applications47
 3.8.4. Le guidage à partir de problèmes résolus ..48
 3.8.5. Le guidage numérique ..51
 3.8.6. 3ème partie : Intérêt du guidage dans les usages numériques ..53
4. **Une approche américaine des dispositifs d’apprentissage numériques** 57
 4.1. Theoretical Foundations: Ten Core Learning Principles ...57
 4.2. Background of the Ten Core Learning Principles ...59
 4.3. Ten Core Learning Principles ..61
 4.3.1. Principle 1: Every Structured Learning Experience Has ...62
 4.3.2. Principle 2: Learners Bring Their Own Personalized and Customized Knowledge, Skills, and Attitudes to the Experience ...67
 4.3.3. Principle 3: Faculty Mentors Are the Directors of the Learning Experience70
 4.3.4. Principle 4: All Learners Do Not Need to Learn All Course Content; All Learners Do Need to Learn the Core Concepts ...73
 4.3.5. Principle 5: Every Learning Experience Includes the ..78
 4.3.6. Principle 6: Every Learner Has a Zone of Proximal Development That Defines the Space That a Learner Is Ready to Develop into Useful Knowledge ..80
 4.3.7. Principle 7: Concepts Are Not Words But Organized and Interconnected Knowledge82
 4.3.8. Principle 8: Different Instruction Is Required for Different Learning Outcomes84
 4.3.9. Principle 9: Everything Else Being Equal, More Time on Task Equals More Learning86
 4.3.10. Principle 10: We Shape Our Tools, and Our Tools Shape Us ..88
 4.4. Summary — and What’s Next ...90
5. **Interaction interactivité** .. 91
 5.1. Introduction ... 91
 5.2. Interactivité .. 92
 5.2.1. Interactivité machinique ou fonctionnelle ...92
 5.2.2. Interactivité intentionnelle ou mentale ... 92
 5.3. Interaction ..93
 5.4. Distinction entre interactivité et interaction : ...94
5.5. L’enquête: observation, comparaison et analyse de séquences vidéos enregistrées dans des classes avec et sans TNI: ... 94
5.6. Les classes lieu d’observation et les maitresses. ... 95
 5.6.1. La Maitresse de la classe 1:.. 95
 5.6.2. La Maitresse de la classe 2: ... 95
 5.6.3. Conditions de prises de vue et de son: .. 96
 5.6.4. Les séances: .. 96
 Séance 1, Maitresse 1: Recueillir les représentations premières des élèves sur le corps. .. 97
 Séance 1, Maitresse 2: Recueillir les représentations premières des élèves sur le corps. .. 97
 Séance 2, Maitresse 1: identifier le nom de certains os. .. 99
 Commentaire général: ... 99
 Séance 2, Maitresse 2: identifier le nom de certains os. ... 100
 Séance 3, Maitresse 1: connaitre la fonction d’une articulation. .. 101
 Séance 3, Maitresse 2: connaître la fonction d’une articulation. ... 102
5.7. Résultats et discussions: .. 103
 5.8. Conclusion... 111
 5.8.1. La problématique ... 112
 5.8.2. Ce qui est avéré: .. 113
 5.8.3. Limites de cette recherche: .. 113
 5.8.4. Prolongements possibles et à envisager: .. 114

6. Le numérique en classe: émancipation ou double peine? .. 119
 6.1. Introduction .. 119
 6.2. Le numérique un moyen d’émancipation de l’apprenant .. 121
 6.2.1. Contexte et questionnement: la compréhension de l’oral en langue seconde.... 121
 6.2.2. Compte-rendu d’expérimentations.. 122
 6.3. Résultats et premières conclusions .. 123
 6.4. Contexte et questionnement ... 125
 6.5. Compte-rendu d’expérimentation ... 129
 6.6. Résultats et conclusions ... 132
 6.7. Re-concevoir une situation didactique autour de l’outil numérique............................ 134
 6.8. Conclusion... 137

7. Changement de posture enseignante: un passage obligé ... 141
 7.1. Introduction .. 141
 7.2. Les grands axes qui semblent se dégager. .. 141
 7.3. Usages des TICE: .. 144
 7.4. Méthodologie de recueil des corpus .. 145
 7.5. Les TICE et la formation ... 146
 7.5.1. Le rôle de l’institution .. 146
 7.6. État de la formation initiale en TIC pour les PES ... 151
 7.6.1. Le C2i Niveau 1 ... 151
 7.6.2. Le C2i Niveau 2 E .. 151
 7.7. État de la formation TIC en Formation Continue ... 152
 7.8. Usages numériques et apprentissages ... 154
 7.9. Le rôle du maître ... 156
 7.10. Modèle POSTUN: Posture des Usages Numériques. .. 161
 7.11. Définition et fonctionnement du modèle ... 162
 7.11.1. Analyse de la posture d’un enseignant confirmé via le modèle 164
 7.11.2. Analyse des postures des PES via le modèle ... 170
 7.12. Du côté des ressources: ... 171
 7.14. Conclusion comparative entre enseignant confirmé et PES 175
 7.14.1. Une meilleure maîtrise des outils chez les PES .. 175
 7.14.2. Les mêmes difficultés rencontrées .. 175
 7.14.3. La conception de l’institution .. 177
 7.15. Analyse d’un entretien avec des conseillers pédagogiques TICE 179
 7.16. Éléments de proposition à intégrer dans la formation initiale et continue 181
8. Exemples concrets et expériences de classe : l’apprentissage de la classification des êtres vivants .. 189
 8.1.1. L'utilisation du microscope ... 190
 8.1.2. Activités « caractère commun aux êtres vivants à l’échelle microscopique » 190
 8.1.3. Prolongement de l’activité .. 192
 8.1.4. 193
 8.1.5. Exemple 2 : Expérimentation menée autour des effets du guidage sur l’enseignement de la classification des êtres vivants en classe de 6ème .. 194
 8.1.6. La classification phylogénétique des végétaux : première étude 196
 8.1.7. La classification phylogénétique des animaux : deuxième étude 199
 8.2. Apports pour la conclusion ... 202

9. Le tableau blanc interactif, un instrument pour la classe de mathématiques ? 205
 9.1. Présentation générale ... 205
 9.2. Enjeux et méthodologie de l’étude .. 206
 9.3. Résultats de l’étude .. 209
 9.3.1. La dimension orchestrative .. 212
 9.4. Usagers expérimentés et spécificités des usages ... 221
 9.5. Des choix didactiques pesant sur la construction du paysage orchestratif chez Bernard. 222
 9.6. Bilan de l’étude .. 225
 9.6.1. Des problèmes instrument aux faisant obstacle à la diversité 225
 9.6.2. Adaptations spontanées, adaptations ultérieures .. 226
 9.6.3. Des schémas orchestratifs qui soulèvent des questions .. 227
 9.6.4. Des premières tendances orchestratives qui pèsent sur le contrat de classe 227

10. Détournement d’un réseau socio-numérique pour l’école : Twitter comme micro-format d’apprentissage .. 231
 10.1. Introduction ... 231
 10.2. Outillage technologique, contexte social d’apprentissage et construction de communautés 234
 10.2.1. La création d’une communauté : les avantages d’un espace limité pour un travail collaboratif 235
 10.2.2. L’épanouissement de la communauté dans des usages partagés des réseaux socio-numériques 238
 10.3. Un renouvellement des pratiques pédagogiques à l’université sur un schéma collaboratif : proposition de typologie des usages pédagogiques 242
 10.3.1. L’évaluation du dispositif : la mise en place d’une dynamique innovante 243
 10.4. Les conditions pédagogiques de l’innovation et la place des enseignants 248
 10.5. La diversité des usages pédagogiques possibles à partir des formats numériques des réseaux sociaux ... 250
 10.6. Conclusion .. 252

11. Stratégies pour améliorer les usages numériques dans l’apprentissage en ligne 253
 11.1. Introduction ... 253
 11.2. De l’enseignement par correspondance à l’apprentissage en ligne 254
<table>
<thead>
<tr>
<th>11.3.</th>
<th>Un contexte marqué par la croissance de l’apprentissage en ligne</th>
<th>259</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.4.</td>
<td>Persévérance, réussite et stratégies</td>
<td>263</td>
</tr>
<tr>
<td>11.5.</td>
<td>Conclusion</td>
<td>267</td>
</tr>
</tbody>
</table>

12. Apprentissage des langues | 269 |
| 12.1. | Un exemple : La compréhension orale en espagnol | 269 |

13. Aller plus loin | 277 |
13.2.	Transposition provenant des techniques de conception de produit	277
13.3.	Relations Expert-Novice vs Enseignant-Elève	278
13.4.	Un environnement propice	280
13.5.	Un modèle pour construire	281
13.6.	Conclusion	282

14. Liste des figures | 287 |

15. Liste des Tableaux | 289 |
1. Introduction

Beaucoup de travaux universitaires, beaucoup d’outils, d’expériences, énormément de retours d’expériences sont proposés sur les Usages Numériques. Les TIC, les TICE, les TUIC, les TUICE, semblent se porter eux mêmes par un flot continu de productions. Cependant, quand on y regarde de plus près, il y a peu de travaux sur les méthodologies, les techniques, les didactiques adaptées aux usages numériques. Il est un point particulier et essentiel, c’est que le terme même de Didactique des Usages Numériques est absent pratiquement de toutes les publications de premier plan dans l’univers de la didactique et de la pédagogie.

La prétention de cet ouvrage est double. Dans un premier temps, montrer que la Didactique des Usages Numériques est un champ à questionner en urgence (nous verrons plus loin pourquoi il y a urgence) et dans un deuxième temps, montrer au travers d’expériences de terrain les problèmes que pose l’intégration des Usages Numériques dans la pratique enseignante, et plus largement encore quels sont les ressorts dont dispose chaque individu aujourd’hui dans les apprentissages assistés par le numérique.

\[^1\text{Stéphane Brunel, Maître de Conférence, 61ème section (Génie Informatique, Productique), Université de Bordeaux.}\]
1.1. Un chaos organisé

Il semble que ce soit à première vue ce que l'on peut ressentir lorsqu'on se donne la peine d'observer les pratiques dans les classes, dans les établissements, dans les services administratifs des systèmes d’éducation et plus largement dans les pratiques des enfants, adolescents et étudiants.

Personne, aujourd'hui, n'est capable de mesurer le taux de pénétration des systèmes numériques dans les établissements scolaires en France. Je ne parle bien évidemment pas du nombre d'ordinateurs par classe ou par élèves. Sur ce point là, les chiffres sont à peu près précis, bien que …

Je veux parler du temps de pratique dans la classe, du temps d'interactions, du temps d’échanges médiés (échanges avec l’outil ou échanges au travers d’outils …). En fin, je veux parler du temps passé par un élève, un étudiant, un individu sur un système numérique pour appréhender une connaissance. Le chaos règne et il n'est pas près de se stabiliser.

Chacun y va de son système, de ses applications, de ses trouvailles pour un résultat toujours hypothétique et toujours pas ou peu mesuré. Si l'ordinateur est entré dans la classe, il y est aujourd'hui pour des raisons qui parfois ont peu de lien avec un apprentissage réfléchi et véritable. La présentation assistée devient le minimum minimorum utilisée à toutes les sauces. Dans bien des cas d’ailleurs, la présentation chronophage détourne purement et simplement l'objet du cours pour peu que l’enseignant soit un adepte des animations en tout genre.
1.2. Des remèdes pour aucune maladie.

Beaucoup d’interlocuteurs proposent des solutions clefs en main, des tours de passe-passe numériques qui sont tous plus alléchants les uns que les autres. Lorsque vous posez la question : À quoi ça sert ? Bien des outils se découvrent obsolètes de par le raisonnement qui a prévalu à leur naissance ; pour des raisons qui tiennent souvent plus à des formes de transmission informelles qu’à des formalisations rationnellement adaptées.

Les expériences de terrain réputées vraies et performantes parce qu’elles ont la preuve du résultat tangible n’en sont pas moins suspectes parfois ; une bonne intention, une bonne volonté ne sont toujours pas synonyme de « compétence ». La pratique basée sur un accouchement aux forceps d’une pratique réputée performante donc transférable à tous ne fait pas long feu. Combien de fois entend-on :

« Avec mes élèves je fais ça et ça marche ». Cette phrase rituelle valide à priori toutes les démarches, tous les postulats. Plus de question à se poser puisque c’est tellement beau que tout ne peut être que beau.

Si nous continuons à utiliser le numérique comme nous l’utilisons, je crains fort que la pensée du zapping ne fasse force de loi sur la structuration, la maturation lente et mouvante en forme et fond dont ont besoin les cerveaux lors d’un apprentissage. Ce n’est pas parce que je vois quelque chose, que ce « quelque chose » va pénétrer ad vitam aeternam dans le cortex et surtout y rester. Les usages numériques ne sont pas que les vecteurs de je ne sais quel dernier spectacle à la mode. Ils doivent, en principe, montrer et
permettre de voir ce qui à priori ne peut s’observer ni s’appréhender facilement. Ils permettent de se projeter dans le temps, d’explorer les zones interdites à l’œil nu, de revenir et stopper sur un élément d’un discours pour se questionner et réfléchir.

1.3. Vers un nouvel âge avec prétention.

Ce que nous essaierons de montrer dans cet ouvrage est de trois ordres. Premièrement, la didactique disciplinaire a quelque chose à faire dans une pratique de classe en relation avec des usages numériques, et une didactique des usages numériques est une discipline à part entière. Deuxièmement, les modèles utilisés par l’équipe rédactrice de cet ouvrage peuvent être utilisés, transformés, modifiés, adaptés pour en faire des modèles spécifiques. Ces modèles d’apprentissage issus des modèles spécifiques de la didactique des sciences et de la technologie ont été suffisamment explicités pour qu’ils soient utilisés très simplement. Dans un dernier temps, nous montrerons au travers d’exemples « en classe » ou au cours de « travaux de laboratoire » en cours, comment cette didactique des usages numériques peut se déployer et apporter non pas une solution définitive mais au moins un questionnement systématique.

Pour terminer cette brève introduction, je souhaite que cet ouvrage puisse devenir une première pierre à un questionnement encore plus riche et passionnant.
2. Etat des lieux

2.1. Les rapports officiels

L’un des derniers rapports qui m’ait été donné de lire est le rapport de la mission Fourgous. (Fourgous, 12) Plusieurs paragraphes sont très intéressants.

« Cependant, comme je le soulignais déjà dans ce rapport, équiper les classes en tableau numérique interactif (TNI), ordinateurs et environnement numérique de travail (ENT) ne suffit pas. Il est également nécessaire d’accompagner les enseignants afin qu’ils s’approprient ces supports, qu’ils s’en servent comme leviers pour innover dans leurs pratiques pédagogiques, pour développer chez les élèves la confiance, le goût de l’apprentissage et pour leur permettre à tous de réussir. » …

« L’irruption de l’outil numérique, le flot d’informations qu’il véhicule, les échanges et partages qu’il facilite, nous contraint à revisiter nos modèles d’apprentissage et nos pratiques d’enseignement. »

Il met en exergue un paradigme qui nous est cher.

La culture numérique nécessite une « culture technique » et une « intelligence des outils », des compétences numériques qui trouveront une place dans la somme des compétences que les individus devront embarquer tout au long de leur vie. Il met en évidence la nécessité d’une culture de l’adaptabilité qui est très liée à la notion de compétence. Nous le savons ; la capacité à réinvestir

et transférer son savoir est une des conditions de la réussite du processus d’apprentissage. Enfin, une culture de l’innovation est nécessaire pour ne pas subir les à-coups intempestifs des innovations technologiques.

Ces éléments combinés entre eux font émerger une capabilité numérique intégrée au concept de capabilité de Amartya Sen (Amartya Sen, 92)³.

Le rapport Fourgous, qui parfois s’éloigne des recommandations que nous pourrions accepter en tant que praticien, a le mérite de poser une somme de questions qui semblent se perdre dans la complexité du système dans lequel il tente de se frayer un chemin.

En conclusion de sa lecture, la place prépondérante de l’action motivante de l’enseignant dans le processus d’utilisation du numérique au cours des apprentissages est montrée comme fondamentale. C’est bien là le point que nous tentons d’affiner dans cet ouvrage.

2.2. Equipement

Un rapport très intéressant du CREDOC (CREDOC, 11)⁴, montre clairement les tendances. Si la tendance d’équipement se situe dans une très bonne moyenne, la France peut encore progresser.

Très certainement que le coût d’acquisition d’un ordinateur reste assez élevé voire encore trop élevé, le prix moyen étant largement au dessus de la moitié d’un salaire minimum. Il semble également

que les propositions commerciales concernant l’accès à internet restent au-delà du possible pour un bon nombre de personnes. Le coût de la connexion est l’un des plus élevés d’Europe. Les ententes diverses entre opérateurs pour « stabiliser » les prix ne démentent pas cette affirmation.

Figure 1: Proportion des ménages disposant d’une connexion internet, en %

De plus, le « fossé numérique » Figure 2 identifie clairement que l’accès à ces médias est très conditionné au niveau de revenu et diplômes. La typologie fait apparaître de grandes disparités entre les gens aisés et donc en permanence connectés et les autres qui regardent les gens aisés se connecter.
En ce qui nous concerne, on peut s’interroger grandement sur la réalité des pratiques des étudiants. On voit sur la Figure 3 que les étudiants travaillent plus sur leur système chez eux que sur les lieux d'études. La question qui reste ouverte est de savoir pourquoi. Est ce un défaut d'accès ou de matériel stables ? Est ce, comme nous le présupposons, l’incapacité des étudiants à se connecter sur leur lieu d’étude faute de conditions d’accès satisfaisantes ? (Horaires, assistance, accompagnement, …)
Pour terminer ce premier volet de l’état des lieux. Il convient de noter que le taux d’équipement est en constante évolution depuis 1998. On peut également noter que 2011 marque une inflexion de la courbe qui annonce peut-être une stagnation des investissements. Gageons que le taux d’équipement en ordinateurs portables sera encore en pleine progression alors que la courbe des équipements des ordinateurs fixes va commencer à stagner voire baisser. L’attention sera alors portée sur le taux d’équipement tout confondu. Nous sommes arrivés à un point de maturité des équipements avec un transfert des équipements d’ordinateurs fixes vers les ordinateurs portables. La courbe générale cumulée montre de toute façon une maturité du marché. Les tablettes et autres appendices numériques viendront en complément des utilisations nomades des systèmes numériques.

Figure 3 : Accès des étudiants à internet
Nous sommes capables aujourd'hui de mesurer des quantités de comportements le plus finement du monde. Figure 5

Les garçons passent en moyenne 3 heures 58 minutes sur les deux médias (ordinateur et télévision). Les filles n’y passent pas loin de 3 heures 21 minutes. Les jeux en ligne font la différence. Le pourcentage de garçons jouant en ligne est largement supérieur à celui des filles sur la même activité.

Nous savons mesurer le temps physiologique, professionnel, domestique, le temps consacré aux loisirs, à la sociabilité, au temps libre, aux transports, ainsi que le temps de sommeil, repas, toilettes. Nous pouvons assez facilement mesurer le temps passé à l’école, devant les écrans et y compris à ne rien faire. Par contre je mets au défi le lecteur de trouver le temps passé par un élève sur un ordinateur lors d’un cours en classe. Personne ne mesure,
personne ne voit la réalité en face. Il y a une grande dichotomie entre les investissements d'équipements dans les systèmes éducatifs et le temps effectif d'utilisation de ces outils. Le TBI et autres ustensiles, n'y changent rien. C'est encore trop souvent l'enseignant qui manipule et les élèves qui regardent le spectacle. Par contre à la maison et sur leur temps non scolaire, ce sont eux qui prennent la main.

Figure 5 : Temps passé par un individu sur un ordinateur seul, la télévision seule, les deux en même temps. (en heure)

Ce qui est à noter et qui se remarque par déduction de cet histogramme, c’est que la télévision devient un outil obsolète. On remarque que la génération qui a vu la naissance de l’ordinateur, soit les 55 ans et plus, restent attachés à ce média. La prochaine génération va renverser la table en imposant l’ordinateur comme seul support de son activité. Les téléviseurs connectés au réseau sont des alternatives que nous voyons fleurir.
C’est aussi pour nous un gage de certitude sur la nature des supports à déployer.

2.4. Matériel utilisé

La courbe de la Figure 7 montre quelque chose qui peut paraître une énigme quand on la compare avec celle de la Figure 6. En effet l’augmentation exponentielle des supports permettant les apprentissages est en complète contradiction avec les moyens effectifs que les individus possèdent pour y accéder. En fait, à y regarder de plus près, il est important de remarquer que la très grande majorité des développements sont du registre du software et non du hardware. Donc le support peut rester ce qu’il est, ce sont uniquement les modalités d’intégration et les interfaces de restitution des connaissances qui évoluent dans ces proportions.
19

Figure 7 : Evolution des technologies intégrées au E-learning.

2.5. Comportement

Il est à noter une chose essentielle, Figure 8 c’est que la part de la formation ou de l’utilisation dans les pratiques numériques restent faibles au regard de toutes les autres activités. Comme si le système numérique était devenu une aide à la résolution de problèmes administratifs et la possibilité de devenir une télévision et une radio mondiales et uniquement cela. Les usages numériques sont réduits à des activités de loisirs ou celles de facilitateur de démarches longues et fastidieuses. Si nous résumons de façon grossière, les usages numériques servent à gagner du temps face à une machine administrative supposée en faire perdre beaucoup, pour regarder des films téléchargés ou écouter de la musique.

Apprendre, échanger du savoir, des connaissances, améliorer le sens critique, et parfaire ses connaissances des autres est optionnel dans bon nombre de situations.
Un vaste chantier s’ouvre alors à nous.

De plus une enquête extrêmement intéressante (Profetic, 12) montre que les usages numériques sont encore loin du régime nominal espéré. Nous nous permettons de nous arrêter un moment pour tenter d’analyser les résultats au filtre de notre propre perception.

5 Enquête PROFETIC auprès de 6 000 enseignants du second degré Synthèse 14 juin 2012
Ce qui est frappant, Figure 9 ce sont les deux premières lignes de données. Le matériel informatique est en très grande majorité dédié et orienté pour la pratique enseignante et non pas la pratique et l'autonomie des élèves. L'intégration du numérique pour des apprentissages différenciés n'est pas ou peu pris en compte. En fait on peut dire de façon quelque peu caricaturale que l’enseignant se dote de moyens techniques pour améliorer ses cours mais n’intègre pas les élèves à celui-ci en tant qu’acteurs de leur propre apprentissage. Le numérique facilite ou intensifie la pratique et la transmission de connaissance par l’enseignant mais celui qui apprend n’est pas ou très peu intégré dans le dispositif.

D’autres graphiques tous plus édifiants les uns des autres suivent.
Sur l’histogramme de la Figure 10, il est clairement identifié que le système numérique sert à améliorer des tâches de préparation de cours, donc une pratique de l’enseignant. Il semble qu’ils aient bien perçus l’intérêt de gérer leurs connaissances, de les stocker, les réactualiser pour les réinjecter lorsqu’ils sont en cours de préparation de leur séance. Leur usage est ensuite très administratif mais lorsqu’on vient au cœur de ce que le numérique peut et doit faire, les élèves sont alors mis à distance de la pratique. Les usages numériques sont alors déconnectés de la phase apprentissage.

On voit que ce que permet le numérique, à savoir, l’individualisation des apprentissages n’est pas du tout intégré voire en recul net. C’est plutôt de notre part, un constat affligeant. Nous pressentions la dégradation et nous en avons la confirmation.
Il en est de même avec l'histogramme présenté ci dessus, Figure 11. Il montre de façon explicite que les enseignants ont encore une très grande réticence à communiquer avec les élèves, à faire entrer le numérique dans les processus d’apprentissage, de recherche d’informations, d’interactions et dans les modalités d’échanges. Alors que l’on commence à observer des comportements addictifs des élèves avec leur Smartphone, les relations enseignants-élèves sont très loin de cette réalité. On pourrait appeler cela une distanciation relationnelle du même type que malade et thérapeute.

Ce graphique nous dit aussi que les enseignants ne le font pas parce qu’il n’y a pas de temps dédié à cette activité. Cette activité ne peut s’envisager que sur un temps hors classe. Les services des enseignants ne sont pas organisés en conséquence. Un des leviers possibles à cette intégration est très certainement l’intégration d’un modèle économique différent, prenant en compte le tutorat et l’animation des groupes via le système numérique. Le modèle économique associé est pour le moment beaucoup trop gourmand en temps et rémunération pour que le législateur se lance dans cette dynamique.
Le modèle économique sur lequel nous travaillons dans notre institut montre rapidement que l’heure de cours coûte 3 à 4 fois plus que le cours dit classique. La distance c’est intéressant, mais à condition d’être riche.

Deux choses importantes apparaissent. La première concerne la taille des groupes à gérer. La manipulation de systèmes numériques dans des groupes dépassant allègrement les trente individus rend de fait impossible la manipulation et l’intégration du numérique de façon simple et efficiente.

De plus et cela me paraît plus inquiétant, c’est l’obsolescence programmée ou non du matériel à disposition. Les capacités de génération de ce matériel devraient être analysées plus finement. Nous sentons là encore poindre un fiasco annoncé si les institutions ne provisionnent pas pour assurer l’amortissement de plus en plus court des matériels.
3. De la pédagogie en général et de la didactique en particulier et inversement⁶

3.1. Préambule

Lors de mes enseignements concernant l’ingénierie pédagogique, je reviens de façon assez systématique sur des concepts de base que bien des enseignants ont vu ou entrevu dans leur formation. Cependant, je remarque que ces éléments restent souvent flous voire assez obscurs. Je me permets donc de rappeler quelques fondamentaux qui ont au moins le mérite, si ce n’est de parler de la même chose, sinon de dire quelle langue nous utilisons, quels mots nous partageons. Une autre vertu possible est de poser ensemble des mots sur des façons d’être, de penser, de voir. Une conférence de référence sur la question est accessible sur Canal U (Brunel, 11)⁷.

3.2. Pédagogie

Le terme de «pédagogie» provient du terme grec παιδαγωγία, de παιδός, «l’enfant», et ἅγω, «conduire, mener, accompagner, élever». Ferdinand Buisson⁸ propose une définition affirmant sans ambiguïté que la pédagogie entre définitivement dans la sphère des sciences. «Science de l'éducation, tant physique qu'intellectuelle et

⁶ Stéphane Brunel, Maître de Conférence, 61ème section (Génie Informatique, Productique), Université de Bordeaux
morale ». Émile Durkheim a apporte un complément qui ne dément pas la première proposition mais qui à mon sens ne la stabilise pas de façon aussi ferme. «La pédagogie est une «réflexion» appliquée aussi méthodiquement que possible aux choses de l'éducation». On voit bien par là que Emile Durkheim hésite presque à faire entrer la pédagogie comme objet autonome constitutif d'un savoir en tant que tel. Peut être est ce là la naissance de tous les hiatus originels sur le terme pédagogie. Depuis, trouver une définition précise de la pédagogie est une gageure.

La maturation des concepts pédagogiques vit une accélération continuelle, tant par la production d’écrits que par les différentes théories qui se propagent partout sur la planète.

Il n’est pas question ici d’en faire la liste exhaustive mais simplement de montrer que les éléments que nous travaillons aujourd’hui ont subi des transformations à travers les âges. Nous en avons gardé parfois les héritages et parfois nous avons carrément oublié les filiations et parentés dont nous sommes les descendants directs.

Un de nos grands précurseurs au 16ème siècle, Rabelais, propose par l’enseignement, un idéal du dépassement de soi. C’est une notion que nous retrouverons bien des années plus tard dans les théories de la psychologie comportementale. En 1547, Ignace de Loyola, signe le Ratio Studiorum. Une somme colossale qui sera à la base de l’enseignement porté par les Jésuites ainsi que quelques ennuis avec la papauté. Pour Comenius, la pédagogie doit être utile et pour tous. La dimension universaliste de ce penseur

9 David Émile Durkheim (1858 - 1917) est l'un des fondateurs de la sociologie moderne.

Nous devons donner quelques éléments supplémentaires concernant des personnages qui fondent notre démarche. Ainsi, Freinet, Piaget17 et Vygosky18 sont pour nous les auteurs qui fondent ce que la didactique des usages numériques est. Les

11 Jean-Baptiste de La Salle (1651 - 1719) est un ecclésiastique français et un innovateur dans le domaine de la pédagogie, qui a consacré sa vie à éduquer les enfants pauvres.
12 Jean-Jacques Rousseau, (1712 - 1778) à Ermenonville, est un écrivain, philosophe et musicien genevois francophone.
13 Adolphe Ferrière (1879 - 1960) est un pédagogue suisse, un des fondateurs du mouvement de l'éducation nouvelle.
15 Ovide Decroly (1871 - 1932), est un pédagogue, médecin, et psychologue belge, Il lutta pour une réforme profonde de l'enseignement basée sur la «méthode globale» d'apprentissage de la lecture et de l'écriture.
17 Jean Piaget, (1896 - 1980) à Genève, est un psychologue, biologiste, logicien et épistémologue suisse connu pour ses travaux en psychologie du développement et en épistémologie à travers ce qu'il a appelé l'épistémologie génétique.
18 Lev Vygotski (1861 - 1934), est un psychologue russe connu pour ses recherches en psychologie du développement et sa théorie historico-culturelle du psychisme. C'est un penseur qui a introduit la notion du développement intellectuel de l'enfant comme une fonction des groupes humains plutôt que comme un processus individuel.
promenades scolaires (1922), le surf sur le net, la veille, l'imprimerie à l'école (1924), la publication d'articles sur des blogs, la coopérative scolaire (1924), le fonctionnement et échanges en réseau, la correspondance inter-scolaire (1926), les courriels entre élèves et classes disséminées sur la planète, la publication de textes et de dessins d'enfants (1927), encore une fois la publication sur les blogs ou galeries ou musées virtuels, le dessin libre (1931), les fichiers autocorrectifs (1932), les forums échanges d'informations, le tâtonnement expérimental (1943), la simulation expérientielles et le prototypage rapide sont autant de principes et dispositifs éducatifs qui se retrouvent dans les dispositifs numériques à notre disposition.

Enfin, nous devons prendre un moment pour rappeler l'apport essentiel de ce qu'est aujourd'hui le socioconstructivisme de Lev Vygotsky. Ceci repose sur l'idée selon laquelle l'acquisition de connaissances durables est favorisée par la prise en compte du champ social dans laquelle elle est située. Un individu s'adapte à un changement en s'accommodant à cette nouveauté (accommodation) d'une manière qui introduit des différences dans les schémas cognitifs dont il était auparavant porteur (assimilation). L'influence positive que des individus plus âgés ou plus expérimentés (aînés, adultes, etc) exercent sur l'individu en cours de formation. Cette seconde voie de l'apprentissage consiste dans les effets des pressions sociales et culturelles, extérieures. C'est ce qu'il appellera la Zone Proximale de développement.

L'ensemble de ces éléments n'est bien évidemment que la reprise de multiples sources glanées de-ci de-là. En aucun cas nous n'avons transformé par interprétations ce que nous pouvions
comprendre des auteurs. Nous n’avons fait que lister ce que la communauté des pédagogues s’entend à discuter avant tout commentaire.

3.3. **Exégèse personnelle**

Ce que je tente de montrer avec cette reproduction de sculpture, Figure 13 c’est la définition ou du moins ce qu’évoque pour moi le terme pédagogie. Cette sculpture montre non pas un maître et son élève, ni le père et son fils mais de façon très précise, un esclave conduisant le fils du maître de la maison à l’école. Le pédagogue est celui qui comme l’esclave de cette sculpture permet à l’enfant de poursuivre sa quête sur le chemin de la connaissance. La particularité de l’abnégation qu’exige la conduite d’un enfant est la principale qualité que je présuppose chez un enseignant.

Se mettre au service de cet enfant dans une règle acceptée et commune permet à celui-ci de progresser et le moment venu de se libérer du guide. De là, à penser que nous sommes esclaves des enfants que nous formons, je ne m’y risquerai pas mais il y a de cette manière d’être qui correspond me semble-t’il à cette volonté farouche, parfois mal définie de faire progresser coûte que coûte tous les enfants qui nous sont confiés. C’est encore à l’honneur des enseignants de l’école républicaine et laïque. En relisant ces mots, je mesure aussi, n’en soyez pas surpris, l’écart que parfois creusent ces lycées dits «d’élite» dans notre école de l’égalité. Et je mesure encore mieux les affirmations de certains enseignants : «Cette classe, ils sont nuls» Tous les enfants ne sont pas accompagnés de la même façon.
La pédagogie est « l'ensemble des savoirs scientifiques et pratiques, des compétences relationnelles et sociales qui sont mobilisées pour concevoir et mettre en œuvre des stratégies d'enseignement ». La pédagogie est généraliste (posture de celui qui transmet, …)

Elle permet le traitement et la transformation de l'information en savoir par la pratique relationnelle et l'action de l'enseignant en classe, par l'organisation de situations pédagogiques pour l'apprenant.

Pour cela, il faut évidemment un enseignant qui possède une personnalité, un style. Pour Altet (Altet, 96)19, les styles pédagogiques (ou profils) sont les attitudes du maître qui enseigne. On distingue alors les pédagogies formelles (structurées), ou

informelles (souples), directives (autoritaires), ou non directives (démocratiques ou permissives). Elles s'appuient sur des styles différents : styles transmissif (le maître dispense des savoirs), appropriatif (le maître aide l'élève à construire son savoir), modélisant (l'élève reproduit ou imite un modèle).

3.4. Didactique

La didactique est spécifique à la discipline. La didactique identifie clairement le domaine de la gestion de l'information, de la structuration du savoir par l'enseignant et de leur appropriation par l'apprenant. Il y a donc une didactique pour chaque discipline et par conséquent la didactique des usages numériques est une des didactiques à interroger.

Le propos qui suit est en cohérence avec les écrits nombreux concernant la didactique des sciences et techniques. Nous y apporterons quelques éléments complémentaires concernant les compétences et la gestion des connaissances. Pour mieux asseoir notre propos et mieux identifier la dynamique dans laquelle nous nous situons, il convient, non seulement de montrer que la didactique des usages numériques n’est pas un système ex nihilo mais bien un héritage construit et constitué. Il convient également de montrer que la didactique des usages numériques impose un regard plus précis sur les compétences construites sur les bases de (Le Boterf20, 10) et d’envisager en complément une gestion des données, d’informations et de connaissances sur les bases des travaux de l’équipe ICO du laboratoire IMS de l’Université de Bordeaux. Ces travaux sont aujourd’hui au cœur des

20 Le Boterf, 10, Construire les compétences individuelles & collectives. © 2014 Lavoisier S.A.S.
questionnements de tout système numérique voué aux apprentissages.

3.5. Transmettre est un acte réfléchi

La transmission de connaissance n’est pas le simple fait de dire ou donner ce que je sais. C’est un processus lent et long de composition du savoir. Il en va de son organisation, de sa gestion comme de la vérification de son acquisition.

Le message transmis passe d’un émetteur à un récepteur (Figure 14). Cette relation est d’ailleurs bijective. Si les deux protagonistes de cet échange de sont pas en phase l’un avec l’autre, la transmission est impossible. De plus, je montre régulièrement qu’un système de simplification ou d’intermédiation symbolique peut faciliter l’échange entre deux personnes. Si je m’adresse à une classe de chinois et je leur demande de résoudre une équation simple écrite de la façon suivante : deux plus deux égal … je n’ai pas de résultat. Par contre, l’écriture conventionnelle : 2+2= … donne un résultat immédiat.

On voit bien que l’on ne parle pas ici de la difficulté de la résolution mais de la médiation par laquelle doit passer la connaissance pour être appréhendée. Ce cas caricatural, s’il en est, montre bien que dans des situations bien plus complexes, les deux protagonistes de la transmission des connaissances on beaucoup de soucis à se faire.
Transmettre des connaissances, il faut le rappeler souvent, n’est pas seulement pour apprendre des notions ou concepts pour se différencier du voisin dans une compétition scolaire qui dénature souvent les apprentissages..

Apprendre c’est aussi et surtout devenir compétent. Cette vision utilitariste peut choquer mais elle impose une réalité intangible et qui a l’avantage de prendre en compte la réalité du terrain et du marché de l’emploi. Former un citoyen, c’est lui ouvrir les yeux sur le monde et également lui permettre d’exercer de la façon la plus efficiente possible, ses compétences dans des domaines les plus variés. Ainsi le schéma ci-dessus proposé par (Le Boterf, 00) convient parfaitement aux propos de cet ouvrage.

![Diagramme](image)

Figure 14 : Vérification de la cohérence de l’émission et de la réception

Figure 15 : La compétence selon Le Boterf
3.6. Définitions de mots utiles pour la suite

3.6.1. Le guidage

Le guidage peut d’une part être implicite c’est-à-dire un guidage de la forme. Dans le domaine des technologies de l’information et de la communication, il est l’outil de meilleures conceptions et structurations des documents proposés à l’apprenant (Jamet, 2008). Ce guidage peut être d’autre part explicite c’est-à-dire de fond (Chall, 2000). Il peut par exemple prendre la forme d’analyse de problèmes résolus (Worked examples) (Clark, Nguyen, & Sweller, 2006). Ainsi, que ce soit dans une forme directive ou intermédiaire, le guidage peut permettre la construction de véritables scénarios pédagogiques. Dans tous les cas, le guidage proposé repose sur les performances des outils de l’information et de la communication.
3.6.2. Les Technologies de l’Information et de la Communication (TIC)

Elles comprennent un ensemble d’outils conçus et utilisés pour produire, traiter, entreposer, échanger, classer, retrouver et lire des documents numériques, à des fins d’enseignement et d’apprentissage. Pour des situations d’apprentissage, le terme d’« usages numériques » est préféré à celui d’« utilisation des techniques numériques ». En effet, les usages désignent les utilisations observées en situation éducative et encadrées par des enseignants experts alors que les utilisations sont celles prévues ou prescrites par les concepteurs des outils informatiques (Baron & Bruillard, 1996 ; Basque & Lundgren-Cayrol, 2002).

3.6.3. La théorie de la charge cognitive.

La charge cognitive ou charge mentale correspond à la quantité de ressources mentales mobilisées au cours de la réalisation d’une tâche. Elle est donc à la fois fonction des difficultés de traitement et des caractéristiques imposées par la tâche et à la fois des ressources mentales que l’individu alloue à la réalisation de cette tâche (Tricot & Chanquoy, 1996). La difficulté imposée par la tâche serait liée à ses caractéristiques, au nombre de pas (e.g., d’étapes) pour en atteindre le but et aux moyens nécessaires à sa réalisation (Chandler & Sweller, 1991; Sweller, 1988, 1994). Ainsi, quand l’effort mental est trop fort (surcharge) ou trop faible (sous-charge), les performances d’apprentissage de l’apprenant diminuent (Tricot, 1998). Or, il semble possible de manipuler cette charge afin de
rendre les apprentissages plus efficaces (Chanquoy, Tricot, & Sweller, 2007).

Cette théorie psychologique prend également en compte la manière de présenter l'information sur les supports d'apprentissage afin d'éviter toute surcharge cognitive inutile à l'acquisition de schémas (Sweller, 1988). En effet, la conception de situations d'enseignement fait appel à des supports didactiques variés et les stratégies d'enseignement peuvent évoluer en fonction du contenu à apprendre mais aussi en fonction du support didactique choisi (Sweller & Cooper, 1985). Or, on sait que les stratégies d'enseignement ont un impact différent sur l'apprentissage selon les outils et les stratégies utilisés (Mousavi, Low, & Sweller, 1995; Sweller & Chandler, 1991) et qu'elles sont susceptibles d'être inefficaces, à moins qu'elles ne prennent en compte l'architecture cognitive sous-jacente de l'apprenant au cours de l'enseignement (Clark, Nguyen, & Sweller, 2006).

La théorie de la charge cognitive est étroitement liée à l'évolution des technologies de l'information et de la communication. En effet, ces technologies sont susceptibles de proposer de nouveaux supports d'enseignement qui diminueraient la charge cognitive inhérente à la tâche et seraient ainsi bénéfique en termes d'apprentissage.

La théorie de la charge cognitive considère actuellement trois types de charge cognitive : la charge cognitive intrinsèque (intrinsic), la charge cognitive inutile (extraneous) et la charge cognitive pertinente (germane) (Paas, Renkl, & Sweller, 2003 ; Van Merriënboer & Sweller, 2005).
La charge cognitive intrinsèque est propre à l’information que traite l’apprenant (Sweller, 1994). Elle est alors déterminée par la quantité d’éléments à traiter simultanément et par leurs niveaux d’interactivité lors de la réalisation de la tâche d’apprentissage. Autrement dit, plus il y a d’informations et plus leurs interrelations sont complexes, plus la charge cognitive intrinsèque est élevée.

La charge cognitive extrinsèque est la charge cognitive qui est imposée par la structure même du matériel pédagogique utilisé (Sweller, 1994 ; Chandler & Sweller, 1991) et par des stratégies d’enseignement peu ou non appropriées qui peuvent alors interférer avec l’apprentissage.

Les charges cognitives intrinsèque et extrinsèque peuvent être manipulées au cours de la phase de conception d’activités pédagogiques pour la classe par des guidages de forme et de fond grâce aux outils de l’information et de la communication (Tricot, 2007 ; Tanguy, 2011). La présentation de l’information permet alors aux individus de focaliser leur attention sur les informations pertinentes à la résolution du problème en générant cette fois une charge cognitive « utile ». Cette charge cognitive utile est nécessaire à l’apprentissage et à l’enrichissement des connaissances et aide l’apprenant à passer progressivement du statut de débutant à celui d’expert (Kalyuga, 2011 ; Schnottz & Kürschner, 2007 ; Sweller, Van Merriënboer, & Paas, 1998).
3.7. Conclusion

En conclusion de cette partie introductive, nous vous proposons une vision générale des modèles d'apprentissage en vigueur dans le monde actuellement.

Sur la Figure 16, ci-dessous, nous distinguons trois grands blocs de théories portant des conceptions différentes les unes des autres en terme d'apprentissage. Aujourd'hui les théories les plus en pointe de par les moyens déployés pour en assurer la promotion et l'étude, sont sans conteste les théories génétiques. La psycho-cognitique est de par l'utilisation de moyens techniques d'observations des ondes cérébrales, celle qui donne le plus d'éléments d'interrogation. En effet, voir le cerveau en action démonte déjà les perceptions établies et de fait erronées sur le fonctionnement orienté et localisé (droite-gauche) de notre cerveau. Les études sur la plasticité cérébrale montrées de façon magistrale par Catherine Vidal (Vidal, Institut Pasteur) donnent des réponses sur le fonctionnement du cerveau et interrogent dans les mêmes proportions sur les énigmes qu'il propose.
Pour conclure, nous faisons apparaître le modèle d’apprentissage qui a notre faveur et qui est en complète cohérence avec notre sujet et comment nous l’abordons, il s’agit du modèle allostérique de (Giordan21, 96).

Il nous faudrait un ouvrage complet pour l’étude de ce modèle et les travaux de Giordan sont tellement clairs et limpides qu’il ne serait pas possible de le concurrencer. Le seul fait de le mentionner et de le montrer en référence peut indiquer au lecteur quelles sont les phases préparatoires par lesquelles il peut passer pour envisager dans sa globalité cet ouvrage.

\begin{flushright}
21 A Giordan, G De Vecchi, 96, Lavoisier
\end{flushright}
Une des dimensions essentielles pour nous et qui apparaît dans ce modèle, est : l’intentionnalité. Les apprentissages ne sont possibles que si les freins psychiques et autres freins psychologiques, comportementaux, les « a priori » sont dépassés. Être capable de se dire « que les choses que je sais » sont potentiellement obsolètes. C’est la première des postures pour envisager d’apprendre. L’intentionnalité est la posture qui déclenche un apprentissage sans en présupposer par avance la pertinence mais au moins elle décide de la posture bienveillante et première requise à l’acte d’apprendre.

Apprendre = f (P, C, O, R, S)

Problème, Contexte, Opérations mentales, Réseau sémantique, Signifiants

Figure 17 : Modèle allostitrique de l'apprentissage
3.8. **Pour aller plus loin et rassembler**

3.8.1. **Guidage et usages numériques**

Les Technologies de l'Information et de la Communication nous semblent propices au développement d'un guidage de l'élève en situation d'apprentissage. Nous développerons ici une méthode d'enseignement intégrant les TIC à travers trois axes de réflexion.

Le premier est celui de la transformation des supports d'apprentissage liée aux outils numériques où le guidage est un guidage par la forme : l’enseignant met à profit son expertise pour concevoir et utiliser des supports didactiques adaptés pour l’élève et pour les activités liées à la classe (si l’on se réfère à la théorie de Sweller, l’objectif ici est de diminuer la charge cognitive extrinsèque). Le second ajoute au guidage par la forme précédemment évoqué un guidage de fond où l’enseignant expert réfléchit à la création de scénarios numérique d’apprentissage et d’applications utilisant des outils de la communication et de l’information (si l’on se réfère à la théorie de Sweller, l’idée ici est de diminuer aussi la charge cognitive intrinsèque). Le dernier axe montre comment le guidage allié à cette forme de « technopédagogie » peut générer des situations de cours efficaces et adaptées aux apprentissages de tous les élèves.
3.8.2. 1ère partie : Une transformation liée au changement de support

La notion de guidage de la forme propre à la construction de supports d’apprentissages performants repose sur la synthèse de Jamet (2008). Dans son ouvrage, il aborde la façon dont les outils de la communication et de l’information peuvent être utilisés afin d’améliorer les processus de compréhension, de mémorisation de textes et de limiter le partage attentionnel inhérent à la tâche d’apprentissage. Nous parlerons tout d’abord de la conception de cours textuels, puis des illustrations, ensuite des matériels intégrés et enfin des illustrations dynamiques.

Premièrement, au cours de la conception de supports de cours textuels, l’enseignant considéré comme un expert de l’apprentissage peut réduire les difficultés de compréhension du texte par l’apprenant en améliorant la mise en forme matérielle du document (pour une synthèse, Gajria, Jitendra, Sood & Sacks, 2007) et augmenter de manière significative la mémorisation des informations importantes du texte. Cette forme de guidage peut se caractériser par :

- la mise en évidence des informations importantes du texte par l’ajout d’informations (titre ou résumé), par l’utilisation de marqueurs typographiques (gras, soulignement) et par la numérotation des différentes parties d’un texte (e.g., Lorch & Lorch, 2001) ;
- la présence d’organisateurs graphiques tels les diagrammes ou les matrices qui font apparaître les différents éléments du texte afin de mettre en évidence la structure globale du texte (e.g., Vekiri, 2002) ;
- l’énoncé de sommaires, de cartes de concepts interactives qui permettent aux lecteurs en cliquant dessus de naviguer dans l’hypertexte (e.g., Shapiro, 2005) ;
- des questions insérées dans le texte afin d’attirer l’attention des lecteurs sur des informations importantes du texte ce qui le contraint à traiter le document de manière active ;
- une diminution de la quantité d’informations non pertinentes présentes dans un texte (charge intrinsèque) comme les détails, les anecdotes qui ont pour effet d’entraîner des difficultés d’extraction de la macrostructure du texte et de complexifier son traitement (Mayer & Jackson, 2005) ;
• le renforcement de la cohérence en modifiant le texte pour rendre les liaisons explicites et diminuer le nombre d’inférences. Cela se traduit par l’expression des liens causaux (en conséquence, c’est parce que, …) et par les reprises anaphoriques en limitant l’usage des pronoms ou des synonymes (e.g., Ainsworth & Burchman, 2007) ;
• une réflexion sur les facteurs qui augmentent la facilité de lecture et la lisibilité des textes présentés sur un écran. À ce jour, la recherche dans ce domaine semble se prononcer pour des textes écrits en « arial » de taille 12 avec un contraste de luminescence fort (noir sur fond blanc) pour des polarités positives (Chaparro, Mills & Halcomb, 2002 ; Hall & Hanna, 2004). De plus, la compréhension du document numérique est amplifié lorsque les lignes sont de taille moyenne (500 caractères) (Dyson, 2004 ; pour une revue portant sur les aspects structurels des textes au primaire, voir Williams et al., 2005) ;
• la création de textes avec hyperliens qui offrent au lecteur la possibilité de passer d’une page à l’autre en cours de lecture. Cela le contraint à traiter de manière active le document (pour une synthèse, Scheiter & Gerjets, 2007). La flexibilité de lecture engagée permettrait en outre aux lecteurs de décider ce qu’ils lisent et dans quel ordre ils lisent les informations, ce qui augmenterait leur motivation et serait un miroir de la manière dont nos connaissances sont organisées en mémoire.

Deuxièmement, les documents pédagogiques ou techniques utilisés en classe par l’enseignant sont souvent illustrés. A cet effet, les techniques de l’information et de la communication permettent aujourd’hui de proposer de nouvelles illustrations, animées ou interactives (e.g., Jamet, 2002). Ici encore, un guidage sur la conception peut être opéré par l’enseignant. Il s’agit de réaliser des documents complémentaires à l’apprentissage avec des illustrations qui améliorent la compréhension et la représentation des textes proposés aux apprenants.

D’une manière générale, la présence d’une illustration dans un document améliore le rappel des éléments explicatifs du texte mais aussi sa compréhension. L’illustration aurait ici un rôle de répétition de l’information et permettrait un renforcement des liens implicites entre les éléments du texte (e.g., Mayer, 1989). Cela contribuerait à une répétition mentale des différentes parties du texte et à l’élaboration d’un modèle mental plus pertinent de la situation.
Dans le cas des apprentissages multimédias, la répétition de l’information dans des médias différents (texte-illustrations ; texte-illustration commentée) serait bénéfique à la compréhension des consignes et à l’apprentissage. Cela s’expliquerait en termes de double codage de l’information (e.g., Lieury, 2005 ; Mayer, 2005). Néanmoins, en condition de modalité auditive, afin de limiter le partage de l’attention visuelle entre le texte et l’illustration, il semble préférable de présenter oralement des explications accompagnant une autre information visuelle (texte ou illustration) (Ginns, 2005 ; Moussavi, Low & Sweller, 1995).

En conclusion, le guidage lié à la présence d’une illustration explicative renforce la mémorisation et la compréhension d’un texte. Les bénéfices liés à l’illustration sont expliqués en termes de support à l’organisation des connaissances notamment parce que la structure analogique de l’illustration la rend compatible avec la nature de certaines représentations mentales élaborées pendant la compréhension du texte.

Le guidage de l’apprentissage par l’ajout d’illustration au texte peut se prolonger par une réflexion sur la mise en forme matérielle de ces supports d’apprentissage. Ainsi, pour Weidemann (1994), un apprentissage effectif dépend de la compétence de l’apprenant à « lire » l’illustration dans le sens voulu par le concepteur. Pour Jamet (2008), deux types de codes peuvent être distingués et décrits :

- les codes « dépictifs » qui sont des dispositifs pour construire une représentation de surface traitée de manière analogue à la perception du monde réel.
- Les codes « directifs » ou codes de guidage qui sont utilisés pour proposer une information visuelle supplémentaire qui n’apparaît pas dans la représentation réelle de l’objet. Il s’agit de dispositifs implicites visant à guider le traitement de l’illustration (flèches, changement de couleur, informations clignotantes, etc.). Le guidage peut être directif par le biais d’informations textuelles qui guident le lecteur.
vers l’illustration. Le déplacement d’éléments du texte sur l’endroit pertinent de l’illustration a pour effet de faciliter les processus d’élaboration des liens référentiels « en poussant » le lecteur à consulter l’illustration à des moments clés de son activité d’apprentissage. (e.g., Jamet, 2008).

Troisièmement, la structuration spatiale des documents présentant à la fois des données textuelles et des illustrations en un matériel pédagogique intégré (intégration de textes aux figures, intégration de la solution dans le problème, etc.) constitue un guidage sur la forme pour limiter le processus de partage attentionnel (Chandler & Sweller, 1996). Ce partage est gênant voire inutile pour l’apprentissage. Dans le cas de la présentation d’un énoncé avec la solution dissociée, l’apprenant partage son attention (split effect attention) entre la solution et le problème, alors qu’enversément, si les énoncés et les solutions sont physiquement intégrés, ce partage est limité et l’apprentissage facilité (Tricot, 1998).

Cet effet de la présentation a notamment été répliqué dans le domaine des mathématiques (Figure 18) et de la biologie (Cooper, 1998 ; Sweller & Chandler, 1994).

Pour bonifier les effets positifs de cette présentation auprès des apprenants novices, permettre une meilleure mémorisation du texte avec une élaboration d’un modèle mental plus pertinent et une augmentation de l’investissement attentionnel, on peut renforcer l’amélioration de la qualité des documents par :

- l’ajout des liens hypermédias : lorsqu’ils sont activés par l’utilisateur, ils vont faire apparaître une flèche pointant vers l’élément correspondant de l’illustration (Seufert, Janen & Brünchen, 2007);
- l’intégration active : il s’agit pour l’apprenant d’intégrer lui-même des zones de texte sur l’illustration au fur et à mesure de sa lecture (Bodemer & Faust, 2006) ;
- des fenêtres ponctuelles qui apparaissent à la demande de l’utilisateur (Jamet & Erhel, 2006).

Enfin, l’enseignant peut utiliser un guidage pour améliorer la compréhension des illustrations dynamiques. Ces animations sont présentes dans de très nombreux documents électroniques mais leur efficacité pédagogique reste encore à démontrer notamment par rapport aux illustrations statiques (pour une revue de littérature, voir Bétrancourt & Tversky, 2000). Leur effet est bénéfique sur la
compréhension si on guide explicitement le regard de l’apprenant par des indices (flèches) au moment du traitement du phénomène dynamique (Jamet, 2008).

3.8.3.2ème partie : Une transformation liée aux développements des applications

Les applications sont des outils techniques pédagogiques dont on distingue plusieurs: les applications ludo-éducatives, les exerciceurs, les espaces documentaires, les micro-mondes, les plateformes d’apprentissage collaboratif, les documents de présentation électronique, les simulations, les tuteurs intelligents et la pédagogie par projet (de Vries, 2001).

Ces applications peuvent permettre à l’enseignant de proposer un guidage pour créer des situations adaptées à l’apprentissage de tous les élèves. Dans ce cas, le guidage est double : il porte sur la forme de l’apprentissage avec l’utilisation et la création de supports réfléchis par l’enseignant et il porte sur le fond cognitif de l’apprentissage si il met son expertise au service de la création de séances d’apprentissage.

Nous prendrons tout d’abord l’exemple de séances d’apprentissage à partir de problèmes résolus (Worked examples) puis nous aborderons les scénarios numériques d’apprentissage qui proposent un guidage numérique c’est-à-dire utilisant les techniques de l’information et de la communication.
3.8.4. Le guidage à partir de problèmes résolus

Le guidage à partir de problèmes résolus ou d’exemples travaillés est un guidage explicite qui s’appuie sur des applications numériques spécifiques : il s’agit d’un enseignement assisté par ordinateur où la résolution d’un problème est simulée informatiquement. Pour Clark et al. (2006), un exemple travaillé est « une démonstration étape par étape de comment effectuer une tâche ou de comment résoudre un problème » (p. 190). Un problème résolu présente ainsi la solution du problème en même temps que l’énoncé de ce problème (Cooper & Sweller, 1987). Étudier des exemples est une stratégie efficace pour enseigner la complexité et la diversité des compétences liées à la résolution de problèmes (Renkl, 1997). En effet, certains problèmes ont, dans leur résolution, un nombre très important d’étapes pour arriver à la solution dont beaucoup seraient inutiles et pourraient être évitées par le recours aux problèmes résolus. Ces derniers sont conçus comme un moyen de limiter la phase de recherche inutile dans une résolution classique de problèmes (Sweller & Cooper, 1985) : le problème n’est qu’un moyen d’apprendre, ce qui est utile, c’est d’élaborer une connaissance nouvelle à propos de la situation-problème. Le but n’est pas d’apprendre la solution mais de comprendre comment on arrive à la solution. Eviter les déplacements inutiles dans l’espace du problème, gain de temps (Zhu & Simon, 1987 : gain de près de un an dans une programmation de mathématiques qui en compte trois), on guide vers la solution puis automatisation (Tricot, 2007). Automatisation avec des exerciceurs.
Ward et Sweller (1990) ont montré la supériorité de l'apprentissage à partir d'exemples travaillés dans le cadre scolaire. Cet effet a été mis en évidence dans des enseignements de musique, en athlétisme, dans la programmation informatique ou encore aux échecs (Atkinson, Derry, Renkl, & Wortham, 2000). Son effet le plus saillant se trouve dans le domaine des mathématiques où les performances de l'apprentissage basée sur des problèmes résolus sont supérieurs à des apprentissages reposants sur la résolution de problèmes (e.g., Nogry & Didierjean, 2006 ; Paas, 1992).

Clark et Mayer (2003) concluent aussi sur le fait que « la formation avec des problèmes résolus en partie ou complètement travaillés conduit à des performances de transfert plus efficaces en temps, en termes de réussite et moins exigeants en termes d’efforts » (p. 433).

Cet « effet » de l’exemple travaillé serait en lien avec la charge cognitive inhérente à toute résolution de problème. Le guidage proposé ici diminuerait la charge cognitive relative à la quantité d’informations liée à la tâche d’apprentissage mais aussi à la structure même du dispositif d’apprentissage. Cette double diminution aurait pour conséquence de libérer suffisamment de ressources cognitives de l’apprenant pour diriger son attention vers les états du problème et leurs opérations associées, ce qui est une condition nécessaire à l’acquisition de schémas (Sweller, 1988). Ainsi, l’effort investi n’est pas tourné uniquement vers la compréhension de la tâche mais est dévolu à sa réalisation, ce qui permet d’apprendre de nouvelles connaissances (Sweller, 2006). Cet effet sera renforcé si l’exemple travaillé est structuré de manière
efficace permettant ainsi d’abord une amélioration du traitement du contenu et ensuite l’acquisition de schémas (Sweller et al., 1998 ; Ward & Sweller, 1990). De plus, le traitement cognitif de l’exemple travaillé est amplifié si l’apprenant se livre à des auto-explications des résolutions proposées (Sweller, 2010, Renkl, 1997). Il est susceptible alors de discriminer les informations les plus pertinentes et les règles inhérentes au problème. Enfin, dans le sens où les exemples travaillés réduisent toute surcharge cognitive incompatible, ils permettent des rappels de connaissances plus immédiats et des transferts d’habiletés à plus long terme beaucoup plus efficaces que l’absence de guidage (Kirschner et al., 2006).

intensités de guidages variables adaptés au niveau de connaissances de l’apprenant (Tanguy, 2011 ; Tricot, 2004).

3.8.5. Le guidage numérique

Le guidage numérique dans le sens d’un enseignement assisté par ordinateur doit tenir compte, d’une part, du niveau d’expertise de l’apprenant et, d’autre part, des caractéristiques de la tâche à accomplir et de la connaissance visée. Cette dernière observation montre que le problème posé par le guidage dans les apprentissages est son dosage. En effet, si l’apprenant doit réaliser une tâche trop facile pour lui, il n’apprend pas car il n’a rien à apprendre. De plus, dans une tâche trop difficile pour lui, si d’une part, il n’est pas suffisamment guidé, il ne parvient pas à la réaliser et, par conséquent, il n’apprend pas et si d’autre part il est trop guidé, il n’apprend pas ou peu, ayant par exemple beaucoup de difficultés à réaliser ultérieurement une tâche analogue de façon autonome ou ne sachant pas réutiliser la connaissance acquise dans un contexte différent (Pierce et al., 1993). A partir de là, plusieurs scénarios d’administration du guidage ont été étudiés (Sweller, 1999 ; Sweller et al., 1998).

Un premier scénario de guidage consiste à alterner le travail sur des problèmes résolus avec des problèmes similaires non résolus. Cette démarche permet d’engager véritablement l’apprenant dans le traitement du problème car l’apprentissage visé sera immédiatement évalué par un problème isomorphe à résoudre. De plus, ce type de scénario fournit à l’apprenant un retour direct sur son apprentissage, tel un feed-back correctif, en lui signalant les écarts par rapport à la connaissance visée (Van Merriënboer,

Un deuxième scénario de guidage est l’effet de disparition progressive du guidage (guidance fading effect). Au fur et à mesure que l’apprenant progresse et apprend, il acquiert des connaissances dans un domaine et il est donc de moins en moins nécessaire de lui fournir un guidage (Renkl, Atkinson, Maier, & Staley, 2002). Paas (1992) a formalisé ce scénario de disparition progressive du guidage en trois temps essentiels :

- un temps d’apprentissage d’une tâche basée sur l’étude d’un problème résolu. Dans cette phase, le guidage est directif. L’utilisation d’un support pédagogique adapté, avec une faible charge cognitive extrinsèque, va améliorer le traitement du contenu du problème (charge intrinsèque) (Amadieu et al., 2004). Dans ce cas, l’apprenant possède suffisamment de charge cognitive pertinente pour acquérir des schémas ;
- un temps similaire tourné vers la résolution d’un problème identique où l’apprenant travaille seul, sans guidage. Il s’agit ici pour l’apprenant de mobiliser les schémas nouvellement acquis sur un même type de problème ;
- un temps consacré au transfert de l’apprentissage sur des problèmes isomorphes.

Le guidage doit donc prendre une forme individuelle pour plus d’efficacité. Il est ainsi question de construire des scénarios de guidage proches des capacités et des connaissances de l’apprenant (Tricot, 2004). Ces scénarios de guidage différencié s’appuient sur le modèle de Paas (1992) et permettent de moduler le guidage proposé afin que l’apprenant :

- s’engage dans la tâche d’apprentissage
- ne perde pas sa motivation du fait d’une mauvaise compréhension de la tâche à réaliser (Brown & Campione, 1994) ;
- ne fasse pas de faux départs dans son apprentissage ;
- conserve des ressources attentionnelles et des ressources cognitives pour faire la tâche
- acquiert davantage de connaissances en termes de quantité, du fait de la qualité du scénario pédagogique proposé (Moreno, 2004).
3.8.6.3ème partie : Intérêt du guidage dans les usages numériques

Nous avons vu précédemment que le guidage pédagogique proposé grâce aux outils de l’information et de la communication a des effets bénéfiques sur la compréhension et l’attention des élèves. Nous abordons ici quelques notions générales de pédagogie à partir d’observations réalisées en classe.

Tout d’abord, on parle d’un effet stabilisateur de l’outil informatique et de sa fonction contenante pour des enfants actifs. Il permettrait en outre le développement de la concentration. On a remarqué aussi son intérêt dans une possibilité réelle de différenciation du travail en classe. En effet, les outils de l’information et de la communication permettraient de proposer par le biais du guidage des situations d’apprentissage adaptées, au plus proche de la zone proximale de développement de chaque élève. En ce sens, ce sont des médiateurs par rapport à la surcharge cognitive générée par la tâche d’apprentissage. Ils offrirait un contexte favorable à l’apprentissage, l’élève étant exonéré temporairement de procédures cognitives de bas niveau pour développer des compétences cognitives de haut niveau (Colin, 2000). Grâce à cette « technopédagogie » directe, l’élève serait toujours capable de faire plus que s’il avait à faire seul (Kirschner et al., 2006)

Avec le guidage ainsi défini, on constate que les élèves s’engagent dans la tâche (même si elle semble coûteuse) et décident de persévérer dans la réalisation de cette tâche (même si celle-ci s’avère plus difficile que prévu). Les technologies de
l’information et de la communication ont une incidence sur la motivation de l’apprenant (e.g., Mayer, 2003; Pintrich, 2000)

D’après les travaux de Paas (1992), le guidage numérique permet d’engager les élèves dans la tâche. Cette assertion trouve une justification dans les écrits récents de Reeve (2012) pour qui l’engagement est « un terme qui capte l’intensité et la qualité émotionnelle que les gens montrent lorsqu’ils entreprennent et exercent des activités, telles que l’apprentissage scolaire ». Lorsqu’ils sont hautement engagés, les gens se comportent d’une manière active (Patrick, Skinner, & Connell, 1993) et montrent des niveaux élevés d’attention, d’effort, de persistance, de participation verbale. Cela s’explique par le fait que les outils de l’information et de la communication soutiennent l’autonomie, la structure et l’implication de l’apprenant. L’autonomie tout d’abord est la quantité.
de liberté qu’une personne donne à une autre de sorte qu’elle puisse trouver les moyens de connecter son comportement (à l’école) à des objectifs, des intérêts et des valeurs personnels. Ce soutien à l’autonomie s’exprime par l’écoute et par le fait de permettre à l’autre de travailler à sa manière, comme ce que permet le guidage par le biais des outils de l’information et de la communication. Quant à la structure, elle fait référence à la quantité et à la clarté de l’information qu’une personne, comme un enseignant, fournit à l’autre à propos des meilleurs moyens d’atteindre les compétences et les comportements recherchés. Elle s’exprime par la communication d’attentes claires et par un guidage tant sur le fond que sur la forme de l’activité d’enseignement-apprentissage. L’implication pour finir correspond à la qualité de la relation interpersonnelle entre deux personnes (un enseignant et un élève). Elle est fondée par le don de ressources psychologiques (temps, intérêt, attention) à l’autre ; elle consiste à avoir connaissance du niveau d’expertise de son apprenant pour mieux le guider.
4. Une approche américaine des dispositifs d’apprentissage numériques

4.1. Theoretical Foundations: Ten Core Learning Principles

This chapter lays out the theoretical foundations of pedagogy—the science of teaching and learning. Why is this necessary? It is generally assumed that you as faculty know the fundamentals of teaching and learning theory, but undoubtedly you haven’t had a chance to learn the discipline of pedagogy and are generally practitioners rather than theorists. As Derek Bok, a former president of Harvard University, noted, faculty are “rarely exposed to research on teaching during graduate school” (05). It is also worth noting that faculty hiring and promotion processes generally focus on research and content knowledge, regardless of the practical fact that young faculty generally spend just as much time teaching as conducting research.

The result is that you generally teach the way you have been taught. This has not been overly problematic in the past, but the proliferation of new technologies and new environments such as blended and online learning and the rise of the new wave of digital native students who are comfortable with mobile digital communications are creating new teaching challenges. Rather than wanting to listen to lectures, students want to be doing and creating.

22 Judith Boettcher http://www.designingforlearning.info/
Stéphane Brunel, Associate Professor in Bordeaux University.
This means a change in pedagogical strategies both online and in a traditional campus classroom.

Most campuses that are fortunate enough to have centers that support faculty in the use of technology for teaching and learning recognize this challenge and combine teaching pedagogy with technology in most workshops and teaching and learning sessions. The common belief is that faculty are resistant to change when pushed to teach online or revise traditional teaching methods. Our experience over decades of working with faculty, however, is that they are eager to learn but have great difficulty finding the time, energy, and the easy access to tools they need. The best antidotes to these challenges are support and yet more support, combined with reliable technology institutional infrastructures. The bottom line is that it is important to evaluate what type of support you might need and ask for it. You might not get all that you ask for, but the probability is good that you will get some of it. Deans and administrators, after all, want online programs to succeed. Studying the science of teaching and learning processes is best done as a lifelong pursuit for those teaching in higher education. For instructors who have the time and inclination to pursue the study of pedagogy, this chapter provides a good foundation and useful starting point for designing effective and efficient learning experiences. Instructors who only want or only have the time now for a simple set of basic learning principles for effective teaching and learning, this chapter provides a pedagogical foundation and the vocabulary for a deeper understanding of the best practices and tips in this book.
4.2. Background of the Ten Core Learning Principles

The recent explosion of research on the brain and learning processes combined with the power of the new mobile communications technologies is stimulating a reexamination of traditional approaches to designing teaching and learning experiences. Insights into how the brain works (Bransford, Brown, & Cocking, 2000; Damasio, 1999; Pinker, 1997) and the impact of collaborative and social networking tools on communication and dialogue are not only deepening our understanding of traditional core learning principles; they are also helping to provide practical guidance on how we design and manage learning experiences (Bransford et al., 2000; Gibson & Swan 2006; Richardson & Swan 2003; Swan & Shih 2005). Deriving and integrating a simple set of principles from the large body of research and the body of educational and philosophical theories can be daunting.

These principles have been drawn from and inspired by the work of leading educational theorists of the twentieth century such as John Dewey, Jean Piaget, and Jerome Bruner. However, the most significant inspiration has come from the writings of Lev Vygotsky, whose influence among education continues to grow. Vygotsky’s *Thought and Language* (62) and *Mind in Society: The Development of Higher Psychological Processes* (78) are now classics and probably the most significant and influential of his writings. Vygotsky is most often described as a social constructivist, emphasizing his belief in learning occurring in the interaction of the learner with the
environment and a constructivist from his enlightened description of the concept of a learner’s individual zone of proximal development.

The set of ten core learning principles that follows is not necessarily the last word on core learning principles; they are not the result of a survey or any committee process, for example. Rather, it is the set of principles that we have assembled over time in our work with faculty because we feel they particularly help guide the processes of designing and managing effective teaching and learning experiences for online environments. They combine principles from the disciplines of instructional design, teaching and learning theory, and the field of technology change. Each is accompanied by examples of how they can guide the design of teaching and learning processes in online environments.
4.3. Ten Core Learning Principles

The ten core learning principles that can guide the design of your online course and the delivery of your course.

Principle 1: Every structured learning experience has four elements with the learner at the center.

Principle 2: Learners bring their own personalized and customized knowledge, skills, and attitudes to the experience.

Principle 3: Faculty mentors are the directors of the learning experience.

Principle 4: All learners do not need to learn all course content; all learners do need to learn the core concepts.

Principle 5: Every learning experience includes the environment or context in which the learner interacts.

Principle 6: Every learner has a zone of proximal development that defines the space that a learner is ready to develop into useful knowledge.

Principle 7: Concepts are not words but organized and interconnected knowledge clusters.

Principle 8: Different instruction is required for different learning outcomes.

Principle 9: Everything else being equal, more time on task equals more learning.

Principle 10: We shape our tools, and our tools shape us.
4.3.1. Principle 1: Every Structured Learning Experience Has

Four Elements with the Learner at the Center

The first core learning principle asserts that all structured learning experiences are created by the interaction of four elements:

- The learner as the center of the teaching and learning process
- The faculty mentor who directs, supports, and assesses the learner
- The content knowledge, skills, and perspectives that the learner is to develop and acquire
- The environment or context within which the learner is experiencing the learning event

This principle is illustrated in the learning experiences framework shown in Figure 19. Learning experiences designed with this framework feature the learner “on stage” actively doing something under the direction of the mentor/faculty member using learning resources guiding the acquisition of knowledge, skills, and perspective within an environment of a particular time and place.
This framework simplifies the process of designing and managing instructional experiences. The framework captures a complex set of interactions among the four elements in an instructional event and the role those elements play in a learning experience. Faculty can use this framework to analyze planned learning experiences, focusing on learner and faculty behaviors and actions; the knowledge, skill, or attitudes being developed; and the where, when, with whom, and with what resources the event is occurring.

This framework can guide the planning and designing of the sixty to one hundred or more learning experiences that comprise a course. (Of course, these experiences may build on a favorite set of five to eight or more different types of experiences, such as reading or listening assignments, posting and collaborating experiences, and research experiences.)

Figure 19: Cadre de l’apprentissage par expérience
There are many variations of learning experiences of course, but all structured learning experiences fit this framework. The first element, the learner, may be an individual learner or small or large groups of learners. In collaborative and group learning experiences, for example, multiple learners may well be on stage at the same time, but every learner is experiencing the learning experience somewhat differently.

The second element is the mentor or faculty member who manages instruction and provides support to the learner. The mentor may be physically present on stage or in the classroom, but just as likely may be in the wings directing the learner. The faculty mentor may not be anywhere close to the learning experience, but may be present only implicitly by virtue of having designed the experience.

The faculty or mentor element may also be contained in an inanimate learning object that provides content, instructions, or guidance as suggested by the definition of pedagogy by Bernstein in Chapter One. One futuristic example of an inanimate faculty element is the Holodeck from *Star Trek* that provides an environment for learning without a physical mentor being present (Boettcher, 1998). More likely examples in the near term include simulations, animations, tutorials, and virtual world experiences. In such cases, the mentor is present by virtue of having selected or created the learning object and provided instructions for the use of the object. Note that mentor is our preferred term for the instructor or faculty member who is directing the students' learning experiences. Mentor captures more accurately the role that the faculty member plays in the learning experience for the learner.
The third element in the learning experiences framework is the knowledge, the content, or the problem that is the focus of the learning experience. In instructional design terms, the knowledge component is the answer to the question, “What is the knowledge, what is the skill, and what is the attitude that the instructional experience is intended to facilitate in each of the students?” In a geology course, for example, the knowledge or skill may involve student proficiency in identifying distinctive rock formations in order to reconstruct the natural history of a particular setting.

The fourth element is that of the environment. Mobile handheld communications technologies make it possible to learn anytime, anywhere, and even as learners are exercising, driving, or while doing other tasks, but learners need to determine exactly when and where learning will occur for them. The fourth element, the environment, answers this question: “When will the learning experience take place, with whom, where, and with what resources?” For example, the result of an instructional experience might be for a student to accurately identify the different types of sedimentary rocks, the locations where they might be found, and the processes required to find them. This might be done in a virtual environment where the student can examine a rock in three dimensions or the student may be tasked to collect real specimens in the field, photograph them, and contribute these specimens and photographs to a collection using mobile handheld photography technology. Another example of a context may be a group of students gathering in a study group, either in the same physical space or a virtual space.
Whatever the scenario, the core of this first principle is that the learner is at the center of his or her individual learning experience. The learner is on stage, guided by the experience designed by the mentor, accessing whatever resources might be needed, and acquiring useful knowledge, skill, or perspectives from the experience within a particular and specific context. Learning does not just happen in our heads in a “sometime” manner. It happens somewhere at a particular time and place. This fact echoes Vygotsky’s insistence on learning being a sociocultural activity.
4.3.2. Principle 2: Learners Bring Their Own Personalized and Customized Knowledge, Skills, and Attitudes to the Experience

This core learning principle focuses on the learner as an individual. The goal of any learning experience is for learners to grow their knowledge bases. Every course has a set of core concepts and knowledge for the students to learn, and if learners and their faculty mentors work together well, the students integrate core concepts into their unique knowledge structures. Each learner’s brain is as unique as his or her fingerprints and DNA. Our students’ knowledge bases thus become more different rather than less different over time. Students may share experiences and concepts, but how these experiences and concepts are encoded, linked, and structured in their individual brains will be different. Our goal is not standardized brains, but richly differentiated, creative brains with shared experiences.

In designing learning experiences, faculty mentors generally are working from general expectations of their learners’ zones of proximal development. This concept from Vygotsky has so much impact on the design of learning experiences that it is described as another core learning principle. In brief, it is similar to the traditional readiness principle — the knowledge and concepts that a learner is ready to learn.

Getting to know learners in a course means getting to know the existing knowledge structure of their brains. Some students probably arrive at the course with a “jungle” brain, replete with intricate patterns of knowledge about art, biology, electricity, and
communications; other students may arrive with a brain characterized by isolated, unrelated bits and pieces of information resembling scraggily weeds, scrawny bushes, or a sparse, bare tundra (Kandel, 2006; Boettcher, 2007). It’s important to know how well developed our students’ networks of neurons and dendrites are and how detailed and flush are the patterns and images in their brains.

Learners who are encountering not just one concept but perhaps a confluence of new terms and concepts naturally work to make sense of this new information by attaching this incoming knowledge to existing nodes and patterns. A traditional educational principle asserts, “

Build on what students already know." Memory research is confirming the significance of this principle by demonstrating the impact of student’ existing mental models on incoming knowledge (Damasio23, 99). Damasio explains that the process of learning might be defined as that of our brain’s finding receptor nodes for bits of new information and then arranging that information into a useful mental model. A simple rule of thumb is, “The more you know, the more you can know.

" The more concepts, the more patterns, and the more interconnectedness in the brain structure, the more receptor nodes exist. By knowing what students already know, faculty can design experiences to ensure an accurate knowledge structure and growth of that structure. One of the ways faculty can tap into students’ existing knowledge is to begin a learning experience by asking them what they already know or think they know about the topic. Some of

23 Damasio, 99, Le sentiment même de soi, éditions Odile Jacob
the tools that can be used for this are the discussion boards or forums, simple inquiries, and sample problems and case studies to assess their current problem-solving skills.
4.3.3. Principle 3: Faculty Mentors Are the Directors of the Learning Experience

Recent trends have encouraged a focus on learners and learner-centered experiences. The learning experiences framework reaffirms the importance of learners by placing them center stage; however, the framework also affirms the critical role of the faculty mentor in the learning experience.

The faculty mentor provides direction and purpose to learning experiences by doing the following:

- Designing and structuring the course experiences
- Directing and supporting learners through the instructional experiences
- Assessing learner outcomes

To continue the theater metaphor, the faculty mentor is the director of learning experience, not a sage on the stage transmitting knowledge or a guide on the side with minimal input into the learning experience. When the faculty member steps out in front of learners as a sage, the learner tends to retreat and be more passive unless the faculty is encouraging interaction and engagement with the content every few minutes and providing time for reflection and integration. When a faculty is preparing mini-lectures, demonstrations, and summaries of content discussion, it is he or she who is reaping the benefits from working with the content, structuring the content, and then communicating the content. One important goal in designing learning is to get the students engaged with the content at that intense level. Strategies that support this
shift in responsibilities include assigning students roles in moderating forums; preparing concept explanations, summaries, and examples for other students; and even occasionally assuming responsibility for being the frontline moderator. A faculty member need not be present at 2:00 a.m. or 2:00 p.m. on a Saturday for monitoring questions and discussions; students can support other students, either formally or informally at almost any time. Students tend to be working and learning at the same time as each other. The role of the faculty member in this learning experiences framework is to mentor, monitor, examine, and challenge the thinking of students doing these types of teaching and learning activities.

The learning experiences framework assumes that the designing, managing, and assessing functions are the responsibilities of the faculty. This does not mean that all teaching functions need to be embodied in one person. Many distance and online education administrative models technologies unbundle these responsibilities, so that a faculty member can concentrate on the best use of his or her expertise. For example, the design and development of online courses might be done by an instructional designer collaborating with a faculty member. In this case, a faculty new to online teaching and learning will be teaching a course that is already designed and already has a significant portion of the teaching facilitation and direction materials prepared. The faculty member is then responsible for course delivery, including the functions of directing, supporting, and assessing the learning of students. The need for some level of technical support at all times is accelerating a shift away from the “lone ranger” faculty member to the model of learning supported by an instructional team. A larger instructional team
means that the faculty member has more time to mentor the learning processes of students. Less time is spent on addressing technological, administrative, and content access issues and more time on the formation of thought and knowledge.

Mobile and collaborative technologies also free a faculty mentor from the need to be physically in any particular place at any particular time. New synchronous collaborative tools are accelerating this flexibility. A faculty mentor can monitor student learning and facilitate discussions from anywhere that has a high-bandwidth connection: a home office, a coffee shop, or a hotel or office on the other side of the world. Members of the extended instructional team can also support students for the faculty member for selected periods of time as well if schedule or emergencies occur.
4.3.4. Principle 4: All Learners Do Not Need to Learn All Course Content; All Learners Do Need to Learn the Core Concepts

This core learning principle focuses on content and the knowledge, skill, attitude, or perspective to be learned, acquired, or developed. All content is not equal. Only a portion of the content of any course is core concept knowledge; the bulk of course content is the application and use of core concepts in various scenarios and contexts.

Imagine the usual set of course content resources arrayed as a set of concentric circles similar to a pie (Figure 20). The innermost circle represents the core concepts; the next circle represents the content resources that learners use in initial practice experiences as they apply the core concepts to relatively straightforward problems where the answers are known. The third circle represents content resources that learners use to solve more complex problems that are novel to them. The fourth circle represents the content used in experiences of students’ own choosing in applying concepts to difficult and complex problems where the answer may or may not be known.
The goal for each student is to master a slice of the pie, but to be sure that the slice includes the whole of the center with the core concepts and principles. The slice of the course content that the student would master is shown by these dotted lines. The next layer is experience at applying the core concepts, then moving to the third layer that focuses on using those core concepts in ever more complex and novel scenarios and the fourth layer is the student choice in terms of students' selecting and directing much of their own experience with the content. As students develop expertise in the content experiences, they increasingly direct and customize their learning according to their own needs, interests, and priorities.

A key element of design for effective learning is designing for the set of resources that students will use for each of these layers of content. In this content model, the faculty member is not responsible for defining and making all the content accessible. It is a team effort that includes the campus resource infrastructure: the library team and information technology team and the student.
The most obvious answer of how to provide this level of content flexibility and customization is the Web. No longer is the choice and availability of content necessarily circumscribed by the size or cost of a textbook. If mentored well, students will naturally gravitate to the content resources and experiences that match their zones of personal proximal development.

This does mean that designing a course includes providing access to a rich database of content and experiences. These databases and their integration into course resources may need to evolve, but the principle of a wide and varied set of materials to meet all students’ needs and interests should guide our decisions.

Although a bounty of content resources is readily accessible, faculty members should still designate core required content that students will make their own and integrate into their thinking. This required content will also be the core of the shared content for the experiences in common for community building. This required core content should be digital, if at all possible, and also in various formats, such as video, audio, and text. Students need to be required to have access to this core content. Another set of content resources contains those that are highly recommended. These are content resources that may well be the favorites of the faculty member as well as traditional classics or seminal articles within the discipline that professionals regularly make reference to. In the third set of resources are those that support customized and personalized learning and thus can come from almost anywhere. Learners may be required to justify their selection, however. Web applications are enabling content creation at an amazing rate, and these new content resources, along with the steady daily increase in
news from all over the world, mean unlimited resources for teaching and learning. Both learners and faculty are energized with the ability to quickly and easily become producers and creators of content resources as they think about them. Here are just two brief examples. By the time this book is in print, there will no doubt be many more. Be sure to watch for them and plan on using them. These tools and suggestions for how to use them for teaching and learning are in some of the tips:

- Small videocams, such as Flip Video, have flip-out USB connectors making it possible to connect the videocam to a laptop or mobile phone and upload shareable videos to YouTube, the video-sharing site, in minutes.

- Blog and Twitter applications bring today’s (in fact, this minute’s) happenings and thoughts to what are becoming shared daily journals, making it possible to keep up with what’s happening in selected communities of interest.

- VoiceThread, an asynchronous Web place for incorporating mixed media, such as video, graphics, pictures, voice, and text into student projects and discussions, is a good tool for short, interactive presentations.

A good rule of thumb for faculty is to select required course content focusing on the core concept that is available both digitally and able to be printed or purchased in print if desired. Having the core content in multiple packaged digital formats increases the likelihood that students will use and learn the content. Because students will be playing an active role in identifying and evaluating content resources, faculty mentors should design courses so that
students develop metacognitive awareness of how they learn and the strategies and materials that work for them and why.
4.3.5. Principle 5: Every Learning Experience Includes the Environment or Context in Which the Learner Interacts

This core learning principle completes the four key elements of any learning experience: every learning experience occurs in an environment in which the learner interacts with the content, knowledge, skill, or an expert. The environment might be simple, as in a learner using one resource independently, possibly at home, or out and about while jogging or driving, or working in a popular “third place” (Oldenburg, 1999). Or the environment might be complex. Several learners may be gathered together working on problems or a project in a face-to-face study group, or several may be on a conference call or in a collaborative virtual setting. Or the environment might be a synchronous virtual meeting place, such as one of the live classroom areas or collaborating wirelessly with word documents or spreadsheets or presentations while on their cell phones. Again, the faculty member may or may not be physically present.

The types of questions to be anticipated by a faculty member when designing a set of course experiences include the following:

- Where, when, with whom, and with what resources will any particular instructional experience be likely to occur?
- What are the expected learning outcomes or interim points of learning?
• Will the learning experience be a small group meeting planning a team project using one of the new synchronous meeting tools or synchronous collaborative tools?

• Will this event be a real-life experience such as one in which one or two student’s interview restaurant workers about their knowledge of public health regulations?

• Will this experience be an individual experience where the student is working through a complex and lengthy simulation?

A well-planned course balances the three dialogues of faculty to learner, learner to learner, and learner to resources (Moore, 1997). A well-planned course also balances individual, small, and large group activities.

These different groupings and dialogues bring stimulating and varied interactions with people and with content resources.
4.3.6. Principle 6: Every Learner Has a Zone of Proximal Development That Defines the Space That a Learner Is Ready to Develop into Useful Knowledge

Vygotsky’s concept of the zone of proximal development (ZPD) is one of the foundation concepts within the theories of constructivism. It is a concept that significantly influences the design of teaching and learning experiences. According to (Vygotsky24, 78), a student’s ZPD is “the distance between the actual developmental level as determined by independent problem solving and the level of potential development as determined through problem solving under the adult guidance or in collaboration with more capable peers” (p. 86). This generally means that the goal of learning experiences is growth, echoing the familiar dictum of John Dewey as well. The concept of the ZPD emphasizes that all learning experiences need to pull learners forward and “that the only good learning is in advance of development” (p. 89).

It means that students should be encountering problems and concepts beyond that which they already know, which is their actual developmental level and helping them to work on their “potential development.” So the ZPD is quite literally the space between what students can do independently and what they can do successfully with the help or guidance of a person who might be an expert or simply a more capable peer.

Vygotsky’s concept of the ZPD is similar to the familiar concept of readiness that is often used in instructional design processes.

thinking about the probable level of readiness of a group. The concept narrows the focus to the individual and suggests that a learner’s zone or openness to a particular learning experience might be fairly narrow. In other words, the window of learning opportunity may be smaller than we think. When students say they are “totally lost,” they are probably expressing the feeling of being outside their effective ZPD. When they sit back and obviously disengage, they have probably lost the link — the relationship of one idea to the other. When this happens in a group situation or a discussion board, the teaching and learning community, or the culture, needs to support the student in asking a question and having someone “back up” to where the student got lost so that he can get “linked” again. Otherwise the time will probably be lost to the learner; the learner will disengage and have difficulty catching up to what might be called the “group zone.” The concept of the ZPD is simultaneously comforting and overwhelming. What are the elements of the learning community that support students’ comfort level in asking questions or in the mentor truly checking in with each learner? How do faculty mentors determine a learner’s ZPD, and how do they determine what kinds of problems students can solve now?

This ZPD principle emphasizes the need to be alert to students’ state of understanding and capabilities on a continuing basis. This principle encourages embedding feedback and demonstrations from students earlier and more consistently throughout a course experience. Student questions, comments, participation, and outputs are means of determining more precisely the progress or state of concept development in students.
4.3.7. Principle 7: Concepts Are Not Words But Organized and Interconnected Knowledge Clusters

This principle, also inspired by and drawn from Vygotsky’s work, is simple but profound. Concept formation is not a one-time event. Vygotsky, for example, describes concept formation as a series of intellectual operations including the centering of attention, abstracting, synthesizing, and symbolizing (1962). Similarly, noted neuroscientist Walter Freeman observes that meanings are assimilated as a process of “successive approximations in conversation” (2000, p. 15). Freeman’s work focuses on how the brain puts a priority on meaning rather than data and notes that meanings reside only in observers, not in objects. His work thus affirms the role of interaction and dialogue in the creation of meanings.

What does this mean for designing learning experiences and courses? Students who are facing a new field or discipline often focus on learning the vocabulary of that discipline, but it is often done in isolation from the concepts that give the words meaning. Without the underlying concepts, words are akin to isolated weeds and seeds likely to be blown away by the winds of time, usually mere hours after an exam. Students can in fact become quite proficient at using vocabulary while not having the ability to really think with the words. They have the words but not the underlying rich concepts.

Discussion forums, blogs, wikis, journals, and small group work are all excellent strategies for engaging learners in clarifying and
enriching their mental models and concepts and identifying and establishing meaningful links and relationships. Online tools are particularly useful for building concepts because they provide a public forum in which the cumulative, step-by-step process of concept formation, refinement, application, and revision is fully visible to student peers as well as their mentors. By providing a comprehensive record of how concepts take form as multiple clusters of knowledge, such tools can promote the development of more complex and lasting knowledge and competencies in students.
4.3.8. Principle 8: Different Instruction Is Required for Different Learning Outcomes

(Gagné25, 96), widely considered the father of instructional design, observed that all instruction is not equal and that different types of instruction are required for different learning outcomes. This is not a groundbreaking concept today, but the idea was quite novel when he wrote \textit{The Conditions of Learning} in 196. This principle means that what a faculty mentor does makes a difference in what students do — that is, in what students learn and in what concepts and skills students may or may not develop. This principle also reinforces the instructional design practice of planning student assessments simultaneously with the planning of instructional experiences, and then embedding and integrating assessments within instructional experiences. This principle encourages beginning all program and course planning with the well-known instructional design question: “What knowledge and set of skills, attitudes, and perspectives do you want your students to develop competence in by means of the instructional experiences of a particular course or program?” Once that question is answered, the task of the designer or faculty member is to design and develop the teaching and learning events to accomplish those goals.

A simple and effective example of this principle is the apprenticeship model. If the desired outcome is for students to be great chefs, they need to cook; if the desired set of skills is to become an entrepreneur, students probably need to apprentice themselves into an internship environment or at least practice

entrepreneurial activities. This principle is also at work with pilots training on simulators and students practicing lab techniques in a model environment. The types of learning experiences do affect what is learned and what students feel competent in doing. In short, courses designed to transmit knowledge do just that; courses designed to develop competencies design experiences using the knowledge. Knowledge can sometimes be transmitted, but experience and competence must be developed.
4.3.9. Principle 9: Everything Else Being Equal, More Time on Task Equals More Learning

This principle has traditional roots and is probably the best known of all the principles. It is basically the time-on-task principle: as students spend more time interacting with, creating, and manipulating information and applying concepts and skills, the more facile, accomplished, and confident they will be. Time on task helps students to make the knowledge their own and create the linkages and relationships within their own data knowledge structures. Learning and developing new ideas and skills is intrinsically rewarding and enjoyable. (Imagine the delight of a one year old at repeatedly pushing light switches on and off or a sixteen year old with a driver’s permit and her excitement at driving and driving and more driving.) If we design great experiences, students will spend more time interacting with and developing more complex, better-structured knowledge bases and efficient automatic behaviors. Faculty mentors, as directors of instructional events, can encourage time on task by searching out and identifying well-structured materials that assist in concept formation, practice, and problem solving. This includes identifying engaging, inviting, and stimulating content at the right ZPD. Matching content and practice to each student’s ZPD is still inexact, so the best way of ensuring a match is for the set of course materials and experiences to be rich and diverse. Another way of ensuring a match is to teach students to be metacognitively aware and be part of the process in identifying and using resources that work for them.
A corollary of the time-on-task principle is that learning can be more efficient if we chunk information. In today’s environments, simulators, animations, and “living worlds” such as SimCity and Second Life are powerful learning chunkers. Chunking is just one reason games and role-playing scenarios are popular and valuable. Other valuable features of games and simulations are their unpredictability and infinite variety. These are the kinds of challenges students enjoy working to master. Canned, predictable, and static learning resources are less interesting and less engaging and, dare we say, tiring and boring.
4.3.10. Principle 10: We Shape Our Tools, and Our Tools Shape Us

The fact that we are shaped by our tools and that we shape our tools may appear at first to be a strange design and learning principle. Yet this principle emphasizes that learning occurs only within a context and is influenced by the environment. Simply put, learning tools make a difference.

This contextual aspect of learning — that it occurs only through a process of a person interacting with the environment — is a key conceptual element of the traditional theories of (Dewey, 33) and (Vygotsky26, 78) and the more recent work of (Damasio27, 99) and the How People Learn work (Bransford et al., 00). The environment as envisioned in these theories includes all the tools, resources, and people who are part of any particular learning experience (Daniels, 01). Learning tools are part of our environment and part of how our brains engage with the content. A learning environment in which all students and all faculty have their own personal laptop computer or its equivalent in smaller devices such as smartphones makes a difference in the kinds of teaching and learning experiences that are possible. These tools create an environment that is transformed and infused with powerful psychological learning tools. The first wave of laptop universities rolled out in the mid-1990s, followed quickly by a second wave of wireless and Web-enabled cell phones, followed by another wave of mobile and handheld digital tools, such as smartphones and Web

27 Damasio, 99, Le sentiment même de soi, éditions Odile Jacob
28 Bransford et al., 00, « Committee on developments in the science of learning, commission on behavioral and social sciences and education, and national research council. » Washington DC National Academy Press.
2.0 applications such as Twitter and location-based services that help you find your buddies and the coffee shop where you may be meeting. These tools have dramatically changed the traditional communication patterns and relationships between learners and faculty.

Faculty were initially unprepared for the shift in learning dynamics and relationships created by these tools, and many are still struggling to adapt. In an environment infused with these tools, the faculty member moves from the center of the class communication pattern, as was common in the traditional transmission mode of learning, to the periphery or, in the stage model, to the wings.

A second far-reaching impact of these tools is the ease by which students can customize their own learning experiences because courses no longer have content boundaries. Students now live and move within the community-building and networking power of Twittering, instant messaging, and generally always being connected. The anywhere, anytime, any while access to communication tools makes it easy for students to go outside the organized course structure.

Readily available mobile tools now support information access and flow in real time, enabling current events, global perspectives, and far flung resources to be brought into immediate and fresh relief. Every statement by a faculty member is subject to challenge or confirmation from a who bring in ideas and content that might be quite unfamiliar to them and to defend and support their own mental models. Lifelong learning certainly has a new meaning now.
4.4. Summary — and What’s Next

The research on how we learn is illuminating in new and significant ways the processes involved in teaching and learning. These insights, integrated with core learning principles, can help guide our design of learning so that both teaching and learning can be efficient and effective. One major insight is the uniqueness of each brain in its structure and its accumulated experiences. We each experience and remember events just a little differently from everyone else. This richness of perspective is a challenge as well as a potent creative force. The combination of the uniqueness of each learner and the richness of perspective argues persuasively for much more emphasis on teaching and experiencing community, culture, and ethics in combination with knowledge and content and skills.

Finally, our learning environments, whether on campus or online or somewhere in between, are the places where structured teaching and learning take place. Just as we evaluate and redesign the teaching and learning processes between faculty and learners, so too we must keep a watch on the environments in which the teaching and learning occur, ensuring that the design of the environment and the tools that we select support our teaching and the learning processes and the unique brains we are responsible for nurturing.
5. Interaction interactivité

5.1. Introduction

En quoi l'usage d'un tableau numérique, dit interactif, favorise-t-il en classe interactivité et interaction entre les élèves, le maître et les outils ? Nous avons essayé de trouver des éléments de réponse à cette question, à partir de l'observation des pratiques de classes au quotidien et sans artifices de deux maîtresses dites expertes. Ces deux maîtresses ont accepté de monter un projet commun en classe de CE1, afin de pouvoir observer et comparer les situations.

Le tableau interactif n’est qu’un outil supplémentaire dans une salle de classe, comme l’ont été ses prédécesseurs qui ont aussi apporté en leurs temps de l’interactivité en classe. L’ordinateur associé, dès les années 2000, au vidéoprojecteur a supprimé toutes les limites existantes concernant le contenu diffusé. Un inconvénient majeur est apparu alors : cela restait un écran de projection inactif et sans possibilité d’action sur le contenu diffusé. Dès 2005, le tableau numérique interactif (TNI) permet enfin de diffuser tout type de média et d’interagir directement depuis le tableau. En 2011, le vidéoprojecteur interactif (VPI), plus simple d’emploi, entre à son tour dans les classes.

Après des débuts modestes, les pratiques liées à l’usage des TNI ne semblent guère s’améliorer. Mon constat initial, lié à l’observation de nombreuses séquences de classe menées dans des écoles équipées, est que dans la plupart des cas, ces outils n’étaient principalement utilisés que comme supports de projection connectés

29 Stéphane Brunel, Maître de Conférence de l’Université de Bordeaux, Jean-Louis Camin, Enseignant à L’ESPE d’Aquitaine, Université de Bordeaux.
à Internet, avec une position très frontale de l'enseignant et un taux extrêmement faible d'utilisation dans le temps scolaire et par les enfants...

5.2. **Interactivité**

On parle d'interactivité pour qualifier la capacité d'un dispositif technique à réagir aux commandes et actions de son utilisateur. On distingue, en général, deux grands types d'interactivité lorsque l'on analyse des logiciels pédagogiques : l'interactivité fonctionnelle ou machinique et l'interactivité intentionnelle ou mentale.

5.2.1. **Interactivité machinique ou fonctionnelle**

C'est celle qui permet de se déplacer avec une grande liberté dans une page web. Elle concerne la facilité d'usage, de saisie, la flexibilité pour réagir aux attentes de l'utilisateur. Cette interactivité est faible dans un logiciel où l'apprenant largement contraint dans son parcours doit suivre le cheminement préétabli par le concepteur.

5.2.2. **Interactivité intentionnelle ou mentale**

Par ce type d'interactivité le concepteur du produit fait sentir sa présence en filigrane à l’utilisateur. Le logiciel tente, par exemple, de simuler un dialogue avec échange des positions : il n’est plus seulement un outil docile et réactif aux commandes envoyées.

30 http://didatic.net/
5.3. Interaction :

L’interaction peut être définie comme la relation existant entre deux éléments d’un système : l’activité de l’un est déterminée par l’activité de l’autre. L’interaction peut être qualifiée de faible ou forte.

Il peut également être question de :

1. - entrer en interaction.
2. - être en interaction.
3. - exercer des interactions.
4. - impliquer une interaction.
5. - permettre une interaction.
6. - provoquer une interaction.
7. - réduire des interactions.
8. - subir une interaction
9. - probabilité d'interaction.

Les interactions peuvent être :

1. - verbales ou non verbales (gestes, regards, attitudes...).
2. - positives: participation, émulation, coopération, adaptation, intégration...
3. - négatives : conflit, lutte, rivalité, discrimination, insulte...
4. - ambivalentes : compétition, concurrence.

"[...] Les interactions sont des actions réciproques modifiant le comportement ou la nature des éléments, corps, objets, phénomènes en présence ou en influence." (Morin, 77).

"[...] Un système complexe se caractérise par le nombre d'éléments qui le constituent par la nature des interactions entre ces éléments par la dynamique non linéaire de son développement. La complexité peut naître d'interactions simples répétées des myriades de fois à partir d'éléments en constante interaction. Un changement minime peut être amplifié et conduire à des états de très haute organisation (exemple des nuages). (De Rosnay, 00).

Pour certains auteurs, l’interaction apparaît comme la pièce maîtresse d’un système formé sur l’appréciation et la sélection. Pour
d'autres l'enseignant est un conseiller qui cherche avec les élèves en terme de posture.

5.4. Distinction entre interactivité et interaction32 :

L'interactivité appartiendrait donc à l'ordre de la relation homme/machine :

- l'interactivité fonctionnelle gère le protocole de communication entre l'utilisateur et la machine, elle concerne la capacité qu'a l'utilisateur d'interagir avec la machine et le hardware utilisé, de modifier donc l'état du système.

- l'interactivité intentionnelle concerne le protocole de communication entre l'utilisateur et l'auteur délocalisé, présent à travers le logiciel. L'empreinte de l'auteur, la façon de s'adresser à lui et de l'impliquer, constitue une forme essentielle de médiatisation de la relation.

L'interaction appartiendrait à la relation entre interlocuteurs, non co-présents, comme la médiation au sens où nous l'avons définie ci-dessus. (Tecfa, 12).

5.5. L'enquête : observation, comparaison et analyse de séquences vidéos enregistrées dans des classes avec et sans TNI :

Pour les besoins de l'étude, deux maîtresses « expertes » ont accepté de conduire des séances identiques dans deux classes de même niveau (cycle 2, CE1) dont l'une est équipée d'un tableau

32 http://tecfa.unige.ch/
numérique interactif. Les trois séances enregistrées s'inscrivaient dans une séquence de découverte du monde portant sur : « Le squelette. »

5.6. **Les classes lieu d'observation et les maîtresses.**

5.6.1. La Maîtresse de la classe 1:

« Enseignante depuis 18 ans, j'ai principalement exercé dans le cycle 2. Ma classe de 27 élèves est sympathique et intéressante dans un milieu favorisé; la majorité des élèves ont des parents qui travaillent et n'ont pas de problèmes financiers. »

5.6.2. La Maîtresse de la classe 2 :

« Je suis enseignante depuis 16 ans, actuellement dans une école classée en ZEP. Ma classe est une classe multiculturelle de 16 élèves que j'ai eu en CP. J'intègre également 5 élèves de CLIN sur des plages horaires précises avec un programme particulier en mathématiques, en découverte du monde et en EPS.

La classe est équipée depuis deux ans d'un Tableau Numérique Interactif réglable en hauteur équipé d'un vidéo projecteur de courte focale; selon son fabricant : « L'ActivBoard Prométhean est conçu pour les enseignants afin de les aider à transformer leur classe en un véritable environnement d'apprentissage interactif. » Les élèves ont eu un court temps de « formation » (fait par moi) et se sont adaptés très rapidement. Le plus délicat pour eux est d'écrire sur le TNI car l'utilisation du stylo n'est pas une chose aisée."
5.6.3. Conditions de prises de vue et de son :

Les prises de vues ont été effectuées à l'aide d'une caméra DV, placée sur son trépied en fond de classe équipée de deux micros AKG omnidirectionnels sur perchette placés latéralement. Les rushes bruts de tournage ont été utilisés pour la comparaison.

Figure 21: Enregistrement en classe 2

5.6.4. Les séances :

Les séances sont décryptées et minutées à l'issue de l'enregistrement. Sont repérées et quantifiées par des codes de couleurs :

1. En jaune interactions professeur / élève
2. En bleu interactions professeur / Tableau
3. En vert interactions élève/Tableau.
4. En orange interaction prof/Tableau classique
5. En grisé dysfonctionnement TNI.

Il est alors aisé de ventiler la durée des différents items observés et de les représenter.
Séance 1, Maîtresse 1 : Recueillir les représentations premières des élèves sur le corps.

Commentaire général :

Les différentes plages initialement prévues ont réaménagées. Dans cette première séance il n'y a eu aucun temps d'interactivité ce qui n'est pas forcément étonnant mais sans doute dommage et peut-être dommageable. Les interactions ont été conséquentes voire permanentes durant toute la séance, que ce soit entre la maîtresse au vu de son positionnement et ses élèves ou dans l'usage abondant du tableau dans le temps deux. Il est étonnant qu'une maîtresse experte se soit privée de la richesse possible des échanges des enfants au niveau de l'activité de tri qu'elle a sous traité directement lors de l'écriture des mots au tableau alors que cette activité avait initialement été prévue par les maîtresses, lors de la rédaction de la fiche de préparation... La maîtresse a donc choisi de privilégier une situation « assez frontale » avec une utilisation minimaliste des outils.

Séance 1, Maîtresse 2 : Recueillir les représentations premières des élèves sur le corps.

Commentaire général :

Les différentes phases initialement prévues ont été globalement respectées; la maîtresse a tenu ses objectifs en se servant des fonctionnalités du TNI qu'elle jugeait utiles pour arriver à ses fins. Dans cette première séance il y a eu des interactions maîtresse / élèves conséquentes voire permanentes durant la plupart des phases de la séance, que ce soit entre la maîtresse au vu de son
positionnement et ses élèves ou dans l'usage abondant du tableau dans le temps deux et trois (écriture puis tri de mots) par elle même et les enfants dont certains connaissent déjà bien l'interface. La maîtresse, bien qu'assez dirigiste, a choisi d'exploiter son TNI au travers de l'activité de tri d'étiquettes que la classe sans TNI aurait pu effectuer également avec des "étiquettes papier" plus longues à confectionner. L'avantage est conséquent mais relève également sans doute plus du confort que de la performance. Malheureusement de petits « bugs » à répétition sont venus gâcher le plaisir et polluer l'activité. Le tableau, s'il a amené du confort de fonctionnement, aurait été servi par une meilleure lisibilité et une meilleure fiabilité, ainsi que par l'usage éventuel d'un accessoire de type tablette que la maîtresse va prochainement évaluer pour continuer l'expérimentation.

<table>
<thead>
<tr>
<th>Évaluation de la Situation 1 (échelle de 0 à 100)</th>
<th>Classe Maîtresse 1</th>
<th>Classe Maîtresse 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interactivité</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Interactions Prof. des Élèves/classe</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Interactions Prof. des Élèves/Elèves</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>Interaction Prof. des Élèves/Tableau</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Interactions Elèves/Elèves</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Interaction Elèves/Tableau</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Aléas outils</td>
<td>0</td>
<td>-10</td>
</tr>
<tr>
<td>Inconfort</td>
<td>-10</td>
<td>0</td>
</tr>
<tr>
<td>Processus d'apprentissage favorisé</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>L'outil ralentit le processus</td>
<td>-10</td>
<td>-20</td>
</tr>
<tr>
<td>L'outil favorise le processus</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>120</td>
<td>140</td>
</tr>
</tbody>
</table>

Tableau 1 : Échelle de cotation : 0 valeur mini du phénomène observé - 100 valeur maxi du phénomène observé.

Point négatif constaté dans la classe 2 : Le TNI rend l’écriture beaucoup plus difficile, car le retour sensitif est encore plus faible
que sur un tableau blanc, où il est déjà plus faible que sur un tableau noir. Ce point est aggravé par les problèmes de luminosité :

« La fiabilité de cet outil, tous les aspects techniques, je le vois bien parfois plombent un peu l’ambiance dans l’école. » (J. PEMF depuis 10 ans, enseignant depuis 21 ans, entré dans les TICE à titre personnel depuis une dizaine d’année, dirige et enseigne dans une école entièrement équipée depuis deux ans en TNI.)

Séance 2, Maîtresse 1: identifier le nom de certains os.

Commentaire général :

Les temps initialement prévus ont été sensiblement respectés mais réaménagés. Dans cette seconde séance il n'y a eu aucun temps d'interactivité ce qui est sans doute dommage. Un vidéoprojecteur, malheureusement sous employé a été introduit. Il est étonnant qu'une maîtresse experte se soit privée de la richesse possible des échanges des enfants au niveau des possibles ouverts par cet outil y compris pour l'écriture des mots au tableau... Les interactions avec les enfants ont été conséquentes voire permanentes durant toute la séance. La maîtresse au vu de son positionnement a donc choisi de privilégier une situation « assez frontale » avec une utilisation des outils qualifiable de minimaliste mais sans doute liée à un manque de formation et d’aisance.
Séance 2, Maîtresse 2 : identifier le nom de certains os.

Commentaire général :

Les différentes phases initialement prévues ont été globalement menées. La maîtresse a tenu ses objectifs. Le TNI a été nettement sous employé au vu des fonctionnalités disponibles. Dans cette première séance il y a eu des interactions maîtresse / élèves conséquentes voire permanentes durant la plupart des phases de la séance, que ce soit entre la maîtresse au vu de son positionnement et de ses élèves ou dans l'usage du TNI dans le temps trois par les enfants (tri de gommettes). La classe sans TNI aurait pu avoir une activité calquée sans grand désavantage. D'autre part la classe un disposait durant la séance d'un vidéo projecteur qui mettait virtuellement les deux classes dans des situations non pas identiques mais adaptatives comparables. Malheureusement le temps d'utilisation a été restreint, notamment je pense en raison de l'installation précaire et d'un manque d'aisance en classe avec les outils numériques de la maîtresse. L'avantage est conséquent mais relève plus du confort que de la performance. Tout comme dans la première séance, le TNI, s'il a amené du confort de fonctionnement, aurait été servi par une meilleure lisibilité et une meilleure fiabilité.
Séance 3, Maîtresse 1 : connaître la fonction d’une articulation.

Commentaire général :

Dans cette troisième séance les moments initialement prévus ont été partiellement réaménagés. Il n'y a eu aucun temps d'interactivité ce qui est sans doute dommage et peut-être dommageable. Les échanges et interactions ont été plutôt conséquents sur les trois premières phases de la séance, entre la maîtresse au vu de son positionnement et ses élèves. Il est étonnant qu'une maîtresse experte se soit privée de la richesse possible des échanges des enfants au niveau d'une activité appuyée par une projection et de l'écriture des mots au tableau alors que cette nécessité avait initialement été prévue par les maîtresses lors de la rédaction de la fiche de préparation... La maîtresse a donc choisi in situ de
Privilégier une situation « assez frontale » avec une utilisation minimaliste des outils.

Séance 3, Maîtresse 2: connaître la fonction d’une articulation.

Commentaire général :

La maîtresse 2 a essayé de tirer parti des outils dont elle dispose et s’en est servie à minima pour projeter et prendre des notes. Les élèves se sont contentés de se référer aux informations projetées. Il n'y a eu aucun temps d’interactivité. Les échanges et les interactions ont été plutôt conséquents sur les quarante cinq premières minutes de la séance, entre la maîtresse dans un rôle très central et ses élèves. Il est étonnant qu'une maîtresse experte se soit privée de la richesse possible des potentialités de l'outil... La maîtresse a donc choisi in situ de privilégier une situation « assez frontale » avec une utilisation par elle même à minima des outils.

<table>
<thead>
<tr>
<th>Évaluation de la Situation 3 (Échelle de 0 à 100)</th>
<th>Classe de Maîtresse 1</th>
<th>Classe de Maîtresse 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interactivité</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Interactions Professeur /classe</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Interactions Professeur / Élève</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>Interaction Professeur / Tableau</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>Interactions Élève / Élève</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Interaction Élève / Tableau</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>Aléas outils</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Inconfort</td>
<td>-10</td>
<td>0</td>
</tr>
<tr>
<td>Processus d’apprentissage favorisé</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>L’outil ralentit le processus</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>L’outil favorise le processus</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>120</td>
<td>140</td>
</tr>
</tbody>
</table>

Tableau 3 : Échelle de cotation : 0 valeur mini du phénomène observé - 100 valeur maxi du phénomène observé
5.7. Résultats et discussions :

<table>
<thead>
<tr>
<th>Évaluation globale</th>
<th>Situation 1</th>
<th>Situation 2</th>
<th>Situation 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Échelle de 0 à 100)</td>
<td>Classe de Maîtresse 1</td>
<td>Classe de Maîtresse 2</td>
<td>Classe de Maîtresse 1</td>
</tr>
<tr>
<td>Interactivité</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Interactions Professeur/classe</td>
<td>20</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>Interactions Professeur/Élèves</td>
<td>80</td>
<td>80</td>
<td>90</td>
</tr>
<tr>
<td>Interaction Professeur/Tableau</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Interactions Élèves/Élèves</td>
<td>10</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>Interaction Élève/Tableau</td>
<td>0</td>
<td>25</td>
<td>10</td>
</tr>
<tr>
<td>Aléas outils</td>
<td>0</td>
<td>-10</td>
<td>0</td>
</tr>
<tr>
<td>Inconfort</td>
<td>-10</td>
<td>0</td>
<td>-10</td>
</tr>
<tr>
<td>Processus d’apprentissage favorisé</td>
<td>20</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>L’outil ralentit le processus</td>
<td>-10</td>
<td>-20</td>
<td>-10</td>
</tr>
<tr>
<td>L’outil ne ralentit pas le processus</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>120</td>
<td>140</td>
<td>140</td>
</tr>
<tr>
<td>Total séances maîtresse 1</td>
<td>140</td>
<td>160</td>
<td>120</td>
</tr>
<tr>
<td>Total séances maîtresse 2</td>
<td>380</td>
<td>440</td>
<td></td>
</tr>
</tbody>
</table>

Tableau 4 : Échelle de cotation : 0 valeur mini du phénomène observé - 100 valeur maxi du phénomène observé.

Les séances observées ont montré que le TNI avait globalement été utilisé de manière frontale et à minima comme outil de projection et d’écriture. La seule fonctionnalité avancée utilisée a été celle du tri d’étiquette. La possibilité d’archiver les « paperboard », la connectivité du tableau, les capacités multimédias n’ont pas été sollicitées. Les interactions d’un point de vue global n’ont pas été démultipliées. Paradoxalement, si le TNI est un outil porteur de potentialités et de confort, c’est aussi un outil dont les faiblesses sont pénalisantes (trop faible luminosité, interface complexe, bugs). L’introduction d’une technologie dans une classe s’accompagne de bouleversements, comme dans le cas de notre classe deux, de la disparition entre autre d’un vrai tableau classique de grande taille, remplacé par un petit tableau Velléda. Les relations au sein du groupe (maître/élève, élève/groupe, élève/savoir), les méthodes
pédagogiques, la gestion et le statut de l’erreur, les processus d’apprentissage sont fatalement remis en cause.

Durant les séances enregistrées, nous avons également pu constater le pouvoir attractif « télévisuel » du TNI, ce qui lui permet de servir de support aux échanges entre les enfants mais aussi entre la maîtresse et les enfants. Pour envisager d’exploiter un TNI, il faut en connaître l’environnement logiciel, sinon l’enseignant est soit mal à l’aise, soit un utilisateur minimaliste. **Ce n’est donc pas un outil d’une mise en œuvre facile, contrairement à ce qui est mis en avant par les fabricants.**

« De mon point de vue on n’est jamais assez formé. Chacun n’a pas du tout la même maîtrise de l’outil informatique. Je n’y trouve qu’un plaisir très limité. Ce n’est pas un jouet pour moi. C’est une nécessité qui a parfois un intérêt, parfois des contraintes. Les choses vont très très vite… L’évolution est extrêmement rapide. Quand effectivement on prend conscience de ces dix dernières années, c’est absolument phénoménal »

33 J. est PEMF depuis 10 ans, enseignant depuis 21 ans ; rentré dans les TICE à titre personnel depuis une dizaine d’année, il enseigne et dirige une école entièrement équipée depuis deux ans en TNI.
L’utilisation des outils numériques par et à l’école, a ses propres exigences, peu en phase avec les emplois du temps et les programmes établis pour des méthodes pédagogiques très antérieures à l’apparition de ces outils. Il y a là véritablement une des principales sources de difficultés d’utilisation par les enseignants. L’utilisation de l’ordinateur n’est qu’un outil de plus à gérer. L’intégration dans une classe d’un TNI doit passer par l’acceptation de la complexité et des difficultés liées à cet outil par l’enseignant concerné.

Les conséquences de l’apport des technologies numériques sont importantes en classe. Il n’est donc pas raisonnable d’opposer dans l’organisation comme dans les discours et pratiques, la « technique » à la « pédagogie » tant leurs interactions sont fortes.

La dimension manipulatoire du TNI ne doit pas faire oublier toutefois qu’il est également un « média social ». Autant dans les deux écoles impliquées dans les séances observées et équipées de salles informatiques, un enfant peut se retrouver « seul » devant un écran d’ordinateur, autant il ne l’est pas devant un tableau noir ou le tableau numérique car ses actions sont visibles du groupe et de la maîtresse. Il y a une dimension interactive non pas élève/machine, mais élève/groupe ou élève/maître. Il est donc important de noter cette interaction sociale, qui doit permettre à l’élève de se construire en tant qu’être social communiquant. Rien n’indique toutefois que la maîtresse et les enfants de la classe sans TNI sont désavantagés. In fine le score plus important de la classe avec TNI est plus lié à du confort et à une volonté d’utiliser et de progresser dans l’usage d’un outil imposé. Dans la classe un, la présence d’un vidéoprojecteur mis à disposition mais totalement sous employé et
uniquement lors de la séance deux, aurait permis de rééquilibrer la donne et d’offrir des potentialités sensiblement équivalentes pour peu qu’une préparation et une organisation matérielle en amont l’ait prévu.

« Le TNI un outil au service des élèves ? Ça devrait ... Est que ça l’est encore réellement dans les pratiques enseignantes ? Oui à certains moments. Quand il y a effectivement une capacité à agir plus rapidement dans la classe sur une projection de son, d’images etc. On peut imaginer que ça peut avoir un intérêt. Ça permet un déroulé de séance qui aurait été plus laborieux avec des affichages. Avec un tableau noir on aurait effacé, recopié. Ne fût-ce que le support informatique sous la forme d’un vidéoprojecteur, est intéressant me semble-t-il parce que ça permet de faire dérouler par exemple une phrase que l’on construit progressivement, d’y revenir. Il y a un aspect technique qui j’espère favorise l’apprentissage. »

Dans la situation 2 de la classe avec TNI, lors du tri selon critères, seule vraie situation où le tableau a été utilisé à minima, les élèves devaient réfléchir avant d’agir, le rôle de l’enseignante était alors celui d’un médiateur pointant les problèmes possibles, en rendant compte de la confrontation de points de vue, lorsque des enfants de niveaux différents étaient mis en interaction. Dans ce cas la maîtresse utilise un double conflit : cognitif (la manière dont l’enfant voit le problème et sa résolution) et social (nécessité de se mettre d’accord avec les autres élèves.) L’élève doit (re)structurer son raisonnement par ce double conflit en tenant compte du point de vue des autres. Cette interaction autour d’une activité intellectuelle partagée doit permettre à l’enfant de progresser. Conditions techniques mises à part, c’était également le cas dans la classe numéro un. Que ce soit avec un tableau classique ou un TNI, les moments d’échanges durant les séances ont permis à chacun d’exprimer sa réponse et d’écouter les autres. Dans les deux cas, il y a une explication à la clé, une expression matérialisée ou pas au tableau.
Le travail et la correction d’un exercice au tableau sont souvent un moment important pour celui qui ne sait pas. Le travail et la correction collective peuvent donc présenter de sérieux inconvénients comme nous l’avons observé : perte de temps dans la tâche, désinvestissements de certains enfants, correction mécanique ou perçue comme inutile par d’autres. Dans ce cas de figure les deux tableaux sont à "égalité".

La mise en œuvre d’un outil informatique est liée à la pédagogie différenciée. La première évolution/révolution que le maître doit accepter, c’est que tout le monde ne fasse pas la même chose en même temps. Dans les situations observées, ce n’était pas le cas dans les deux classes. Une autre évolution, dont il est difficile de se débarrasser, pour des maîtres ayant de l’expérience, comme pour nos maîtresses, est d’accepter ne plus être le seul transmetteur de savoir et de devenir entre autre un médiateur au sein de la classe, l’élève devenant quant à lui acteur et animateur de ses propres apprentissages. Sur ce plan, les deux classes étaient également à égalité.

Sur un TNI le travail effectué est toujours virtuellement disponible. Effectivement on peut retrouver tous les écrans, présentations et les annotations associées en quelques clics. Dans les séquences observées, cette potentialité n’a pas été utilisée. Mais elle est effectivement et paradoxalement fortement revendiquée par les utilisateurs de TNI. Dans notre classe un, la présence d’un ordinateur, permettait également d’avoir une mémoire de la classe, certes avec moins de confort.

« Deux changements me paraissent assez essentiels : le premier c’est quand même la qualité d’avoir un accès direct à internet, donc la possibilité d’extraire du son, d’extraire des images, peuimporte, tout ce qu’avant on était obligé de photocopier, et d’agrandir d’une manière peu satisfaisante pour la
On a donc là un outil très intéressant et très favorable. Par rapport à la pratique de classe et à la pratique des élèves, ce que j’y vois pour l’instant d’essentiel, c’est la conservation et la mise en mémoire des traces collectives, voire des traces individuelles. On enregistre le fichier, on le range dans un dossier, on le ressort le lendemain, le surlendemain, la semaine d’après… La mémoire de la classe reste visible. Ce qui était faisable évidemment avec les affiches, mais avec une qualité graphique, une visibilité collective qui était moins intéressante. »

Pourtant dans la même conversation J. évoque le fait que le TNI ne permette pas une économie de travail pour les enseignants : « C’est tout le paradoxe. C’est ce que l’on a pensé pendant longtemps avec les ordinateurs personnels en se disant c’est bien parce que ça va conserver en mémoire nos fichiers… Ce sera prêt et tout ça… Et puis après on s’aperçoit finalement et rapidement maintenant que non parce que le travail qui est autour de cet outil s’accumule en permanence, et par ce qu’ en permanence il y a de nouvelles interfaces… C’est un puits sans fond cet outil informatique. Et puis à travers l’outil informatique et le lien Internet qu’il y a derrière, pour l’instant je ne vois pas en quoi ça peut soulager le travail de l’enseignant. »

Dans les deux classes observées, le tableau qu’il soit noir ou numérique est virtuellement un véritable outil d’échange, lieu de situations de communication pouvant être riches et étayées de manipulations pertinentes. Le TNI dispose de réel potentiel :

• - inscrire facilement les activités menées autour de lui dans un projet de classe,
• - varier les situations pédagogiques proposées en diversité et complémentarité,
• - démultiplier les sources d’information apportées aux élèves,
• - multiplier les opportunités d’interaction du maître / groupe classe avec le travail des élèves.

Toutes ces possibilités font du TNI un outil qui permet de multiplier les entrées proposées aux élèves à n’importe quel moment des activités menées, ainsi qu’un outil de mémoire. Il faut

34 J. est PEMF depuis 10 ans, enseignant depuis 21 ans ; entré dans les TICE à titre personnel depuis une dizaine d’année, il dirige une école entièrement équipée depuis deux ans en TNI.
toutefois outrepasser la tentation et le risque d’une position très frontale inhérente à sa conception initiale.

C’est tout le paradoxe et l’illusion du TNI…

« Le TNI est-il une source d’interaction et d’interactivité ? Moi, je ne peux pas y répondre positivement parce que je ne l’ai pas suffisamment mis en pratique pour qu’éventuellement ça devienne cette intention qu’on nous vend un petit peu avec ce TNI qui porte son nom d’interactif. Pour l’instant j’ai vraiment le sentiment que les collègues en sont à peu près au même point que moi »

Au cours de ces séances il était également intéressant d’examiner comment les enseignantes cherchent à explorer, mesurer les motivations, aider les élèves dans l’orientation de leurs actions et dans la détermination de leurs objectifs, et à former des groupes de travail.

A quoi est dû le delta entre ce qui est annoncé par les fabricants et les maîtres qui essayent de faire avec ? La réponse est complexe. Dans un premier temps elle est liée au doute quant à un outil nouveau et à sa pérennité :
« Un outil qui deviendra incontournable par une nécessité de l'évolution de la société et de l'institution scolaire qui doit s'adapter au rythme de ces changements. Après sur le fond du métier d'enseignant, je ne suis pas persuadé que ça va changer grand-chose. Tout dépend où situe l'espace du métier d'enseignant. Si cet espace consiste à amener les élèves à penser à dire, à lire, à réfléchir... Je ne suis pas persuadé que cet outil soit plus important qu'un autre. »

Un autre élément de réponse est que : Dans tout processus innovant il y a deux étapes :

1. je fais comme avant avec de nouveaux outils : ça ne marche pas !
2. je me dis : « Ah, ces outils me permettent de faire autrement ! »

Pour beaucoup d'enseignants le passage à la phase deux ne s'est pas encore fait entre autres à cause de la charge de travail supplémentaire.

« C'est vrai que le TNI est potentiellement un outil extrêmement intéressant. Je vois tout à fait comment j'aurais pu construire une séance dans une construction avec le TNI beaucoup plus aboutie... Je m'y risque assez peu... simplement je n'ai pas envie d'y passer trois heures le dimanche après-midi... C'est un outil profondément chronophage. »

A ce stade de l'observation, il me paraît évident que les obstacles cantonnent actuellement et encore l'utilisation du numérique et plus particulièrement l'usage des TNI à une fraction minoritaire d'enseignants technophiles ou prêts à y consacrer énormément de temps de préparation. Un outil demande un apprentissage pour l'utiliser à bon escient en prenant en compte les méthodes pédagogiques... si l'enseignant équipé se donne la peine de réfléchir à ce qu'il peut mieux faire avec un TNI, il obtiendra vraisemblablement des résultats intéressants, y compris et surtout avec les élèves en difficulté (la France présente une des plus grande hétérogénéité aux études PISA). Il faut peut être reconsidérer la place et les usages d'un TNI réservé majoritairement à des usages en groupe restreint et ou interfacé différemment afin de sortir de situations trop frontales...

36Serge Soudoplatoff, polytechnicien, Co-founder chez Scanderia, politics 2.0 manager chez fondapol, Strategic advisor chez kzero
Deux pistes sont donc à envisager :

1. celle des outils, avec l'apparition du vidéoprojecteur interactif, plus simple d'emploi et de mise en œuvre en étant également moins coûteux ;
2. celle de la formation, car celles dispensées sont trop minimalistes et inadaptées : il s'agit bien d'amener les enseignants à prendre le temps de penser l'outil, de le comprendre et de réussir à créer de nouvelles tactiques d'apprentissages liées à un outil d'apprentissage et non à un « écran de projection ».

5.8. Conclusion

Après l'ordinateur et Internet le TNI est-il l'outil dont on nous vante les vertus pédagogiques qui révolutionne pédagogie, enseignement, apprentissages, et des financeurs qui y voient avant tout une vitrine de modernité ?

Le TNI, par un effet de levier amènerait renouvellement et nouveauté pédagogique. Les évolutions rapides des outils numériques de plus en plus multifonctions sont, entre autres, l'objet d'enjeux commerciaux. Il est flagrant que les marques investies dans l'innovation numérique au sein de l’éducation sont motivées par des logiques de profit. Cette innovation peut également masquer les échecs pédagogiques et peut parfois être présentée comme une solution offerte aux enseignants pour pallier aux difficultés d'apprentissage. Aucun outil n'est la panacée. Sans travail permanent de réflexion, le TNI n’est qu’un élément de confort relatif comme nous l’avons mis en évidence au cours de nos observations. S’il est important de rester prudent sur l’attrait de la nouveauté et les discours relatifs aux outils numériques émergeants proposés, il est indubitable que nous devons faire entrer les outils numériques dans nos classes et aider nos élèves à se les approprier. La question qui se pose est liée à l’approche technique, commerciale, pédagogique et sociale.
5.8.1. La problématique :

Le TBI se situe dans trois axes d'utilisation :

- le conflit sociocognitif, résultat de la confrontation des réponses de l'ensemble des élèves (la prise de conscience par l'enfant de l'existence de réponses possibles différentes de la sienne étant fondamentale). Tous les participants fournissent ainsi des informations qui vont aider chacun d'eux à élaborer une nouvelle réponse. Lev Vygotski a montré que les enfants peuvent communiquer très tôt avec leurs pairs et ainsi interagir socialement dans des situations qui déclencheront des conflits sociocognitifs qui les feront progresser.

- la métacognition, car les enfants doivent réfléchir de façon consciente aux démarches cognitives à l'œuvre dans un apprentissage ou lors de la résolution d'une situation-problème. Le langage oral est utilisé comme outil de co construction des structures mentales avec des interactions différentes.

- la conceptualisation: la confrontation des points de vue, les échanges sur les recherches effectuées, la nécessité d'argumenter, amène à la construction de nouveaux savoirs. L'objectif est d'amener chacun à s'exprimer et argumenter puis de permettre au groupe de construire une synthèse qui prendra en compte les apports de chacun.
5.8.2. Ce qui est avéré :

Arrêtons de prendre pour argent comptant les présentations d’usages révolutionnaires qui ne sont qu’une pauvre appropriation d’un nouvel outil numérique. L’usage réel qui est fait en général des TNI est bien loin des possibilités réellement offertes ou décrites par les fabricants…

5.8.3. Limites de cette recherche :

Ce sont avant tout celles liées aux situations observées dans ces deux classes spécifiques, mais significatives de la réalité des pratiques effectives du terrain. Ce sont également celles de la « Techno-pédagogie » qu’il aurait été possible d’observer, mise en scène par ailleurs… Ce sont celles de l’illusion, du paradoxe parfois difficile à cerner et à mettre en évidence. Le TNI n’apportant pas une révolution concrète de l’enseignement, il s’agit maintenant de voir comment outrepasser ses limites, notamment par la mise en complémentarité et en symbiose par exemple avec les tablettes tactiles, pour générer de l’interactivité à tous les étages au sein de la classe. Il faut donc expérimenter maintenant en modifiant
l’ergonomie de l’outil TNI et agir sur l’environnement numérique de la classe afin de développer « le dispositif » au sein de la classe. Il faut également reprendre le temps de la réflexion sur ses modalités d’implantation et de mise en œuvre dans les classes, amenant par exemple à un déplacement ou à une réorganisation totale de l’espace.

5.8.4. Prolongements possibles et à envisager :

L’apport des technologies numériques et ses conséquences est important et touche pratiquement tous les aspects du système éducatif. Il n’est donc pas raisonnable d’opposer, dans l’organisation comme dans les discours et pratiques, la technique à la pédagogie tant leur interaction est forte. Le Tableau Numérique Interactif, dont les possibilités pédagogiques potentielles sont bridées par différentes contraintes comme nous l’avons vu, peut contribuer à une essentielle introspection pédagogique chez les enseignants :

1. exploiter cet outil autrement sans chercher à faire comme avant avec les outils précédents, qui par ailleurs peuvent cohabiter de manière complémentaire ;
2. trouver une motivation accrue de l’enseignant et de ses élèves ;
3. mettre en place une démarche réflexive sur les finalités de son enseignement, et sur la mise en place et l’utilisation réelle de l’interactivité au service des interactions ;
4. réévaluer ses approches de l’évaluation des apprentissages ;
5. ne pas rester isolé professionnellement, les outils numériques facilitant de manière générale par leurs fonctionnalités d’accès les pratiques d’échanges et de mutualisation, notamment de ressources ce qui va dans les sens des préconisations du Conseil du Numérique36.

Le modèle triangle pédagogique (Houssaye37, 88) est maintenant bien connu des formateurs et des enseignants, notamment parce qu’il permet d’expliciter, et donc d’analyser, les dysfonctionnements des situations pédagogiques.

36 http://www.cenumerique.fr/avis10/
Avec l'arrivée des nouvelles technologies en classe fin des années 80, la situation pédagogique est interférée par un quatrième élément source d'interactions nouvelles, lié à un autre ensemble de stratégies: le ou les dispositifs technologiques. Ce quatrième pôle développe le triangle dans une autre dimension : on a dès lors un polyèdre dont les quatre "acteurs" de l'activité pédagogique interagissent (ou pas). L'éventail des scénarios est bien plus large que ce qui se pratique habituellement.

Le regard réflexif sur le déroulement de l'activité dans ce nouvel espace permet d'envisager les rôles effectifs des acteurs. Il est également possible d'envisager les implications du rôle de chacun de ces acteurs sur les apprentissages.

Dans les faits et dans nos observations, les situations peuvent être schématisées de la manière suivante, en tenant compte du fait que les maîtresses ne sont pas rentrées dans des dispositifs plus ou moins chronophages qui auraient réduits les écarts…
Il est donc nécessaire en fonction des actions diverses proposées de tendre vers une situation dite « idéale »:
SAVOIRS
identifiés par un référentiel

TUIC

TBI

INTERACTIONS

PROFESSIONNEL
DANS SA CLASSE
qui a vu son fonctionnement
transformé par l'outil

ELEVE

Situation idéale
6. Le numérique en classe :
émancipation ou double peine ?

6.1. Introduction

L’arrivée des outils numériques dans les salles de classe permet notamment de disposer de ressources nombreuses et variées, et d’envisager que dans une même classe des élèves travaillent sur des supports différents, tant au niveau de leur contenu que de leur forme. L’introduction des TICE peut donc modifier la situation classique d’apprentissage : trente élèves n’écouteront plus un même document sonore diffusé par l’enseignant, ils peuvent en écouter plusieurs, seuls devant un ordinateur. Ils ne font pas tous le même exercice de mathématiques corrigé au tableau par le professeur, ils peuvent en effectuer un nombre différent, adaptés à leur niveau individuellement devant un ordinateur. Ils ont alors accès à un corrigé ou à d’autres exercices, en fonction, par exemple, de leurs erreurs.

Quelles sont les conséquences de ces potentialités (individualisation et variété) sur l’enseignement et sur l’apprentissage ?

Ces changements inhérents aux outils numériques et à la modernité peuvent paraître révolutionnaires pour l’enseignement, comme ils le sont pour notre société. Il est difficilement contestable qu’ils apportent beaucoup aux apprenants et aux enseignants qui choisissent de les utiliser, notamment concernant l’autonomie dans

38 Stéphanie Roussel, MCU Université de Bordeaux
André Tricot, PU Université de Toulouse le Mirail
la gestion de la tâche. Dans un premier temps, nous mettrons donc en avant les bénéfices mesurés que les élèves, dans certaines situations, tirent de l'utilisation en classe de ressources numériques. Nous parlons d’« émancipation », en affirmant que l'outil numérique permet à l'apprenant d'avoir davantage la main sur son apprentissage, de le réguler. Via l'outil numérique, l'enseignant peut plus encore transférer la responsabilité de la tâche d'apprentissage à ses élèves. Nous prendrons, pour illustrer le propos, le cas particulier de la compréhension de l’oral en langue étrangère. Des expérimentations menées avec des lycéens confrontés à une tâche d’écoute et de compréhension d’un document audio en langue étrangère sur un ordinateur ont montré que l’utilisation d’outils numériques est bénéfique pour la plupart des apprenants et leur permet d’améliorer leurs performances en compréhension orale.

De ces mêmes expérimentations, il ressort cependant également que l’utilisation de l’outil numérique peut représenter, pour d’autres apprenants, une charge cognitive supplémentaire (Roussel et al., 12). La charge cognitive liée à l’utilisation de l’outil et à l’autorégulation de la tâche d’apprentissage vient en effet s’ajouter à celle que la tâche de compréhension d’une langue étrangère en elle-même impose déjà. C’est dans ce contexte que nous parlerons de « double peine ».

Ce stade décisionnel supplémentaire qu'impose l’outil numérique pose une question essentielle à l’enseignant, celle de la re-conception de la situation d’enseignement-apprentissage. Pour mettre en place des situations d’enseignement avec les outils

numériques, nous suggérons qu’il faudrait non seulement, de manière traditionnelle, tenir compte des exigences liées à la tâche d’apprentissage elle-même, mais également de celles qui sont liées à la modification de la tâche par l’introduction de l’outil. En d’autres termes, l’introduction de l’outil numérique ne fait pas que modifier le support d’apprentissage, mais aussi le milieu didactique et le contrat.

6.2. **Le numérique un moyen d’émancipation de l’apprenant**

6.2.1. **Contexte et questionnement : la compréhension de l’oral en langue seconde**

La compréhension de l’oral en langue seconde (L2) est une compétence langagière essentielle. Les apprenants doivent comprendre la langue étrangère et être capables d’écouter des supports audio de plus en plus variés et accessibles par Internet et les médias. La compréhension orale est aussi une composante primordiale de l’apprentissage de la langue étrangère. La grande variété de documents sonores disponibles sur le Web en langues étrangères donne la possibilité à l’enseignant de proposer de nombreux supports de compréhension de l’oral et donc d’exposer intensément les élèves à la langue cible. L’utilisation de moyens d’écoute individuelle dans les classes comme les ordinateurs ou les baladeurs MP3 permet également de proposer aux apprenants de décider seuls de leur écoute : quand faire une pause, un retour en arrière, un saut vers l’avant. On se souvient de nos professeurs de langues, de leurs magnétophones à cassettes réclamant le silence,
des classes de trente tentant péniblement de faire abstraction du grésillement des bandes et de l’écho des salles mal insonorisées. On est bien loin de ce temps-là. Le progrès technique ressemble à une aubaine pour la pédagogie et il suffirait d’utiliser les TICE pour améliorer la qualité de l’enseignement.

6.2.2. Compte-rendu d’expérimentations

Effectivement plusieurs expérimentations (Roussel et al. 2008) ont montré un bénéfice pour les apprenants à écouter des documents sonores seuls devant un ordinateur. Lors de ces expérimentations, 30 élèves de seconde LV1 allemand ont écouté plusieurs documents sonores en allemand dans deux conditions différentes : de manière collective ensemble dans une classe ou individuellement sur un ordinateur. Les participants maîtrisaient suffisamment l’outil informatique pour être capables, lors de l’écoute d’un document sonore numérique sur un ordinateur, d’interrompre le défilement du fichier, de revenir en arrière ou d’avancer rapidement à l’intérieur du document. L’obstacle de type technique n’est donc ici pas important. Dans cette série d’expérimentations, les élèves écoutaient différents documents sonores de même niveau de difficultés. Après chaque écoute (collective ou individuelle) les élèves devaient écrire en français « tout ce qu’ils avaient compris de ce texte ». Leur production écrite est ensuite comparée, par analyse propositionnelle, au texte source. Cette méthode a permis à deux correcteurs d’établir un score en compréhension, en comptant, à l’intérieur du texte rappelé en français par les élèves, le nombre

6.3. **Résultats et premières conclusions**

Ainsi la performance en compréhension a été comparée lorsque les élèves écoutent tous les mêmes documents en classe au même rythme et lorsqu'ils l'écoulent de manière individuelle. L’analyse des rappels des participants montre qu’il y a un effet simple des conditions d’écoute sur les performances en compréhension. L’écoute sur un ordinateur permet d'obtenir de meilleurs scores en compréhension que l’écoute imposée, que celle-ci ait lieu une fois en classe entière ou que l’enseignant passe la bande deux fois toujours en classe entière.

Les TICE et notamment la possibilité qu’ils offrent aux apprenants de mettre en œuvre, à leur rythme, une tâche d’apprentissage, semblent donc permettre aux élèves d’améliorer leurs performances.

Cependant, quand on regarde plus en détail les performances en fonction du niveau initial des élèves (évalué par une tâche similaire), on constate que élèves qui tirent le plus grand profit de la possibilité offerte par l’outil numérique de réguler leur écoute sont ceux du groupe intermédiaire. Les apprenants disposant de très bonnes compétences en langue tout comme les apprenants de niveau faible ne tirent qu’un profit très relatif (non-significatif au plan statistique) de l’écoute autonome sur support numérique. La possibilité numérique de réguler sa tâche ne permet pas à un élève de niveau initial faible d’obtenir de réussir sa tâche de compréhension ni aussi
bien, ni mieux qu’un élève de niveau initial comparable écoutant le même discours deux fois.

Ces résultats nous ont incité à pousser davantage nos investigations pour déterminer les raisons de ces différences, tenter de les expliquer dans le but de trouver un moyen didactique d’y remédier.

L’utilisation des outils numériques pour l’apprentissage : un stade décisionnel supplémentaire, une double peine

Une partie de la réponse à la question complexe de la différence importante qui subsiste entre les élèves, en fonction de leur niveau initial, lors de la mise en œuvre d’une tâche sur support numérique est selon nous à chercher du côté de la modification de la situation dans laquelle les élèves réalisent la tâche. Dans la situation que nous avons étudiée, la principale modification réside dans le fait que la régulation de la tâche d’écoute ne relève plus de la responsabilité de l’enseignant mais de chaque élève. Autoréguler son écoute demande de prendre de la hauteur par rapport à la tâche à accomplir et de prendre des décisions. Ces décisions sont de trois types :

- les décisions de « bas niveau », quand elles concernent le sens d’un mot e
- les décisions de « haut niveau » quand elles concernent la construction du sens global du texte
- et les décisions stratégiques qui vont permettre grâce à l’outil numérique de gérer de façon cohérente la compréhension de bas niveau et de haut niveau
Les deux premiers niveaux de décision existent indépendamment de l’outil numérique, mais l’autonomie est encore plus coûteuse sur le plan cognitif, lors de la réalisation de la tâche sur support informatique puisque cette nouvelle situation requiert davantage de décisions et donc de ressources cognitives. Peut-on raisonnement exiger d’un élève en difficulté, mobilisant déjà toutes ses ressources pour comprendre ce qu’il peut comprendre, de mobiliser celles qu’il n’a plus pour mettre en place des stratégies efficaces d’amélioration de sa compréhension ? Échouant à la fois à comprendre et à réguler sa tâche d’écoute, l’élève ne se retrouve-il pas condamné deux fois pour le même motif ?

6.4. Contexte et questionnement

Quelques éléments théoriques peuvent tout d’abord nous aider à comprendre les enjeux cognitifs de la tâche de compréhension orale en elle-même. En langue maternelle, la reconnaissance des mots, l’activation de leur représentation sémantique et syntaxique sont très rapides, voire automatiques (c’est pour cela qu’on les qualifie de « bas niveau »). La représentation mentale d’un mot ou d’un concept est immédiate. On comprend aisément qu’elle prenne davantage de temps en langue seconde où les difficultés de compréhension ont pour raison principale un degré d’automatisation faible des processus (Gaonac’h41 et Fayol, 03 ; Paradis42, 04). Cela signifie que les éléments peuvent être reconnus par l’auditeur mais que les processus de traitements sont plus coûteux en ressources cognitives, parce que plus lents à réaliser. Dans un contexte de

compréhension orale, si l’apprenant mobilise trop de ressources cognitives pour reconnaître les mots, les phrases et les associer à un référent, ces ressources lui font ensuite défaut pour la construction du sens (les traitements dits de « haut niveau »). On parle alors de surcharge cognitive (Sweller43, 03; Sweller44 et al., 90; Sweller45 et al., 98). Impossible pour l’apprenant de tenter de réguler stratégiquement sa compréhension tant que ces processus cognitifs de « bas niveau » ne sont pas automatisés. « Le coût plus élevé de la compréhension orale en langue seconde, quand il est démultiplié par le nombre d’éléments successifs qu’il faut traiter finit par constituer un handicap pour la mise en œuvre des mécanismes de "compréhension de haut niveau" » (Gaonac'h et Fayol, 03). Les ressources ne peuvent donc plus être consacrées la construction d’un sens cohérent et donc aux processus métacognitifs de haut niveau.

C’est ici que nous souhaitons introduire un troisième niveau directement lié à l’outil numérique. Il existe dans la littérature, deux niveaux différents qui correspondent à deux types de processus liés à toute activité humaine : cognitif et métacognitif. Pour donner un exemple, une stratégie cognitive, liée à la compréhension de l’oral serait la traduction directe et mentale du mot entendu en langue maternelle. Une stratégie métacognitive serait, quant à elle, de l’ordre plus stratégique de la régulation. Elle permettrait à l’apprenant d’anticiper sur le sens de ce qu’il va entendre en

44 Sweller, J., & Chandler, P. (1994). Why some material is difficult to learn. Cognition and Instruction, 12(185-233).

élaborant des hypothèses et en quelque sorte de superviser, voire de contrôler, sa compréhension. (Vandergrift46, 03b) définit les stratégies cognitives, comme « des activités mentales de manipulation du langage pour accomplir une tâche ». Ces activités dites de « bas niveau » sont de l’ordre de la traduction mentale d’un mot entendu par exemple. Les stratégies métacognitives quant à elles se situent à un niveau supérieur et sont également appelées stratégies de « haut niveau ». Pour (Vandergrift47, 03a, p. 467), ce sont des « activités mentales qui servent à diriger l’apprentissage du langage », c’est-à-dire à émettre des hypothèses sur ce qui va suivre ou faire appel à ses connaissances du monde pour établir des relations entre ce qu’il sait et ce qu’il entend. Pendant l’écoute d’un document sonore en langue étrangère (même sur support classique) ces deux types de processus se déroulent en parallèle. Les stratégies de « haut niveau » entraînent de meilleures performances en compréhension. Elles font défaut aux élèves en difficulté. Trop concentrés sur le déchiffrage des mots et leur traduction, ils n’ont pas assez de ressources cognitives disponibles pour mettre en place mentalement des processus de « haut-niveau ».

Pourquoi les TICE ne changent-il rien à cet état de fait ? Pourquoi l’outil numérique ne permet-il aux élèves les plus faibles d’améliorer que très modestement leurs performances en compréhension ?

Si l’apprenant se trouve déjà en situation de surcharge cognitive, l’outil numérique ne se constitue-t-il pas être une difficulté supplémentaire, un stade décisionnel de plus ? Si les processus cognitifs de bas niveau ne sont pas automatisés, l’outil numérique peut-il jouer son rôle de facilitateur de l’apprentissage ? Peut-on ajouter à la tâche de compréhension déjà coûteuse une dimension supplémentaire ? Laisser la liberté aux élèves de réguler librement leur écoute sur un ordinateur est-il une aide ou une difficulté ? Quelle conséquence pour l’accompagnement pédagogique et didactique ? C’est pour tenter de répondre à ces questions que nous avons poussé plus loin nos investigations et analysé lors des écoutes individuelles les pauses, les retours en arrière et les avances rapides des participants.
6.5. Compte-rendu d’expérimentation

L’analyse des vidéos des écrans des élèves et donc des différentes actions de régulation (pauses, retour en arrière) mises en place par les participants nous ont permis de distinguer quatre grands types de stratégies d’écoute et de constater leur influence sur la compréhension du discours écouté en fonction du niveau initial des apprenants en allemand langue seconde. Sur les graphiques ci-dessous, qui représentent les modalités d’écoute des élèves, la durée du fichier écouté apparaît sur l’axe des ordonnées (en secondes), le temps passé par l’auditeur à écouter le discours, c’est-à-dire la durée totale du fichier son est indiquée en abscisses (en secondes). Ces graphiques nous ont permis de représenter graphiquement les événements survenus pendant l’écoute. Une écoute ininterrompue du document sonore est représentée par une droite ascendante. Un segment horizontal indique une pause dans le défilement du fichier alors qu’un segment descendant atteste d’un retour en arrière.
Typologie des stratégies d'écoute

- Stratégie de type 1 : écoute globale ininterrompue suivie d'une écoute analytique.
- Stratégie de type 2 : écoute analytique suivie d'une ou plusieurs écoutes globales.
- Stratégie de type 3 : une ou plusieurs écoutes en continu sans mouvement d'autorégulation.
- Stratégie de type 4 : écoute exclusivement analytique sans écoute globale du discours.

Nous avons pu vérifier (Roussel, Tricot, 2012) à partir de cet ensemble d'expérimentations que la stratégie de type 1 (Figure 22) est la stratégie la plus employée par les élèves ayant un bon niveau initial ; elle est aussi celle qui permet d'obtenir un meilleur score en compréhension, même si le niveau initial influence fortement la performance en compréhension. Elle traduit probablement une
bonne capacité à se repérer dans le discours et à réguler sa tâche d'écoute.

- La stratégie de type 2 (Figure 22) donne des résultats un peu inférieurs en compréhension, et beaucoup d'élèves du groupe intermédiaire l'utilisent.

- La stratégie de type 3 (Figure 22) est utilisée surtout par les élèves ayant un score faible au test initial, ils n'accomplissent aucun acte de régulation et sont en règle générale très peu capables de rappeler le contenu du texte entendu. Une exception cependant pour ce type de stratégie : au cours de notre expérimentation, elle a été utilisée par deux élèves considérés comme bilingues qui n'ont aucun besoin de réguler leur tâche puisqu'ils accèdent directement au sens du discours.

- La stratégie de type 4 (Figure 22) est nettement utilisée par des apprenants les moins compétents, les pauses et les retours en arrière interviennent à des moments surprenants du discours et il est difficile d'émettre des hypothèses pour tenter d'expliquer ces mouvements.
6.6. Résultats et conclusions

La stratégie de type 1, nous l’avons dit est utilisée par les apprenants les plus compétents en langue seconde. C’est également une stratégie de « haut niveau », où l’on voit nettement que l’écoute est planifiée, l’auditeur écoute le document sonore en entier puis décompose l’input sonore pour améliorer sa compréhension et saisir le maximum de détails. L’élève se donne ainsi les moyens d’élaborer dans le premier temps le sens général du discours entendu, puis, dans un second temps, vérifier / préciser ce modèle de situation initial en traitant l’information au niveau du mot ou du groupe de mots. Cette stratégie donne dans ce cas-là de très bons résultats.

La stratégie de type 2, utilisée par des apprenants de niveau moyen, donne également des résultats parfois bons et représente surtout pour ces apprenants un gain important par rapport à une écoute collective imposée sans l’outil numérique. Ce type de stratégie (l’apprenant décompose son écoute dès le début, sans avoir écouté le texte en entier) montre probablement une impossibilité de traiter immédiatement le flux oral continu. La décision de s’arrêter permet à l’élève qui ne « bondit pas immédiatement au sens » de prendre le temps de réfléchir à ce qu’il a entendu, de reconstituer le sens, avant de recevoir davantage d’informations. Un acte de régulation à ce moment-là est probablement un signe de ce que nous avons appelé « surcharge cognitive ». Dans ce cas-là, effectivement, l’outil numérique est une aide pour l’apprenant. Les élèves qui disposent de connaissances et de compétences en langue seconde ont des ressources pour
prendre la décision de s'arrêter ou de revenir en arrière. Leur processus cognitifs de bas niveau (maîtrise relative du lexique et de la syntaxe) étant plus automatisés que ceux des élèves les plus faibles, ils disposent encore de ressources pour mettre en place des stratégies de plus haut niveau et ainsi réguler matériellement leur écoute.

Les stratégies de type 3 (aucun mouvement de régulation) et de type 4 (des mouvements nombreux et désordonnés) utilisées la plupart du temps par des élèves en difficulté, montrent que la possibilité offerte par l’outil numérique de réguler l’écoute, représente un coût cognitif trop important. Pour ces apprenants, la tâche d’écoute et de compréhension en elle-même est très coûteuse et laisse peu de place à un niveau de prise de décision supplémentaire. Ces apprenants ne sont pas en mesure – parce que la tâche de compréhension accapare toutes leurs ressources attentionnelles – de se demander à quel moment il pourrait être pertinent d’arrêter le document sonore ou de revenir en arrière. Pour les élèves en difficulté, l’outil numérique ne représente donc pas une aide à l’accomplissement de la tâche d’apprentissage. Finalement, le clivage entre les élèves avec et sans difficulté persiste lors de l’utilisation de l’outil numérique parce qu’aux processus cognitif et aux stratégies metacognitives s’ajoute un niveau de décision supplémentaire. Si l’élève a mobilisé ses ressources pour les deux premiers niveaux, il est incapable de prendre des décisions cohérentes et efficaces et d’utiliser à bon escient les possibilités du numérique.
6.7. **Re-concevoir une situation didactique autour de l’outil numérique.**

Suite à ce constat, il nous semble important de concevoir que l’enjeu n’est pas d’introduire un outil numérique dans une situation mais bien de concevoir un milieu et un contrat au sein desquels l’outil numérique trouve sa place, car la simple introduction de l’outil modifie, de fait, le milieu et le contrat.

Comme nous l’avons montré nous différencions trois niveaux pour l’exécution de la tâche de compréhension d’un document sonore en langue étrangère avec un outil numérique :

- le niveau cognitif qui regroupe l’ensemble des processus de « bas niveau »

- le niveau métacognitif qui regroupe l’ensemble des processus de « bas niveau »

- le niveau stratégique de contrôle numérique de la tâche qui regroupe l’ensemble des processus décisionnels

Dès qu’à un de ces trois niveaux, la mise en place des processus est ralentie, le retard s’accumule et épuise les ressources qui devaient servir au niveau suivant.

Comme le montre le schéma suivant, plus les processus cognitifs de bas niveau sont automatisés plus il reste de ressources pour la mise en place de processus métacognitifs de haut niveau. Et plus la mise en place des processus métacognitifs de haut niveau est rapide, plus les processus décisionnels d’autorégulation numérique sont susceptibles de venir soutenir efficacement les deux activités précédentes. Ce soutien numérique peut intervenir pour les
processus de bas niveau (l’apprenant fait une pause pour réécouter un mot) ou pour les processus de haut niveau (l’apprenant fait une pause pour se laisser le temps de réfléchir à la suite et d’émettre des hypothèses). C’est le cas pour les stratégies de type 1 et 2. Dans le cas où la stratégie 3 (absence de régulation) est utilisée par des apprenants bilingues, les processus de bas niveau et de haut niveau sont automatiques, et donc même s’il reste de nombreuses ressources disponibles pour réguler l’écoute avec l’outil numérique, cela n’est pas du tout nécessaire. Dans le cas où cette même stratégie 3 est utilisée par des élèves peu compétents, on peut supposer qu’il ne reste pas d’énergie disponible si bien que l’outil n’est pas du tout utilisé. Dans le cas de la stratégie 4, il reste aux apprenants si peu de ressources disponibles que l’outil numérique est utilisé de manière basique, désordonnée et peu efficace. Dans ce cas-là l’outil numérique ne sert sans doute qu’à soutenir les processus de bas niveau déjà très ralentis.
Les TICE peuvent induire un apprentissage auto-régulé et donc une augmentation de l'exigence de la tâche. Plus la régulation est centrée sur l'apprenant, plus les traitements à ce niveau sont coûteux. Plus ils sont pertinents si l'apprenant dispose de ressources pour les gérer.

Dans une situation d’apprentissage classique, l’intervention didactique a lieu à deux niveau avoir lieu en aidant les apprenants à :

- mieux automatiser les processus cognitifs de bas niveau (reconnaissance des mots, segmentation)

- mieux maîtriser les différentes stratégies métacognitives (apprendre à élaborer des hypothèses pendant l’écoute pour anticiper sur le sens global de ce qui va suivre)

Sur le plan métacognitif, il semble important de faire réfléchir les élèves aux stratégies qu’ils ont utilisées. (Vandergrift et al. 06) proposent un questionnaire, The Metacognitive Awareness Listening Questionnaire, qui permet aux apprenants de s’interroger sur leur manière d’écouter et de leur faire prendre conscience de certaines stratégies.

Mais dès lors que le support numérique implique une plus grande autonomie de l’apprenant, le contrat didactique devra prévoir d’enseigner à l’apprenant comment repérer ses difficulté et prendre des décisions pertinentes pour y remédier au bon moment.

6.8. Conclusion

Apprendre à utiliser le numérique d’un point de vue technique peut représenter un coût (temporel, cognitif) important. Mais, dans les situations où ce coût est négligeable, comme dans l’exemple pris dans ce chapitre, l’introduction du numérique peut se traduire par un apprentissage supplémentaire, plus stratégique : apprendre à gérer la tâche, à autoréguler l’apprentissage en cours. L’accompagnement à cet apprentissage viendrait alors s’ajouter et enrichir l’accompagnement traditionnel de l’apprentissage. Dans l’exemple que nous avons pris, l’enseignant ne doit plus seulement, dès lors qu’il utilise des supports numériques, proposer une préparation classique à la compréhension de l’oral (préparation lexicale, syntaxique, entraînement par des exercices réguliers), qui va permettre de réduire le coût cognitif lié à la tâche d’écoute en elle-même, il doit également, ajouter à son enseignement une dimension, qui relève de la gestion (planification, contrôle, régulation) de l’activité d’écoute.

La question centrale qui sous-tend toute notre réflexion et que de nombreux chercheurs comme (Tricot et Rufino49, 99) ou (Paquelin50, 02) ont déjà examinée est celle de l’« interactivité » entre l’apprenant et la machine. Tricot et Rufino rappellent d’ailleurs que « l’interactivité dans un environnement informatisé d’apprentissage se situe à deux niveaux : d’une part, au niveau des relations entre l’utilisateur et la machine ; d’autre part au niveau des relations entre l’apprenant et le contenu d’enseignement ». C’est bien ce qui nous

préoccupe ici. Lors d’une tâche de compréhension de l’oral sur support numérique, l’élève interagit avec la machine pour maîtriser le défilement de l’input sonore et interagir avec le contenu du discours. Et notre étude confirme ce que Tricot et Rufino avancent, à savoir que ces deux niveaux d’interaction sont eux-mêmes interdépendants, puisque « chaque option (...) prête à l’un des niveaux a des conséquences sur l’autre niveau ». Chaque fois qu’un auditeur prend la décision de s’arrêter à un moment ou à un autre du discours et donc d’interrompre sont écoute, cette action a un effet sur sa tâche de compréhension. Et réciproquement si la tâche de compréhension présente à un moment ou à un autre une difficulté pour l’apprenant, celui-ci pourra prendre la décision technique d’arrêter le défilement de la bande son. « Ceci a des conséquences sur l’activité cognitive de l’apprenant, aussi bien en ce qui concerne l’utilisation de la machine que le traitement des contenus d’enseignement. »

Le pré-requis pour que l’apprenant réussisse ce type de tâche sur support numérique semble donc être la capacité à mettre en œuvre un apprentissage auto-régulé. On se rend compte que celui qui écoute doit être capable de décider seul de sa manière d’appréhender la tâche. Cette responsabilité de l’apprenant quant à son propre apprentissage est également au cœur des débats didactiques depuis longtemps. (Grobois51, 12), rappelle d’ailleurs que c’est un « grand classique » puisqu’en 1979, (H Holec52, 79) définit déjà l’apprenant autonome comme un apprenant capable de

« prendre en charge son apprentissage, d’avoir la responsabilité et l’assumer, de toutes les décisions concernant tous les aspects de cet apprentissage… ». Ce pré-requis semble très « ambitieux ». Comme nous l’avons montré, la liberté totale et l’absence de guidage ne réussissent qu’aux apprenants les plus compétents, qui peuvent en même temps, grâce à cette totale liberté, exprimer toutes leur potentialités réflexives et stratégiques. Pour les élèves les plus en difficultés c’est sans doute un milieu différent qui peut être pertinent, où l’apprentissage autorégulé tient une place moins importante (par exemple en proposant des consignes précises relatives aux passages importants du document et indiquer les endroits sur lesquels ils doivent particulièrement faire porter leur attention). Il pourra également proposer aux apprenants de niveau intermédiaire d’utiliser une stratégie de type 1 plutôt qu’une stratégie de type 2.

Pour résumer, il semble intéressant d’enseigner à comprendre, c’est-à-dire d’enseigner aux élèves des stratégies d’écoute efficaces. Dans ce but, il est important d’inciter les apprenants à écouter des documents sonores de manière individuelle (baladeurs MP3, ordinateurs) de manière à ce qu’ils « s’observent » en train d’écouter, apprennent à réguler leur tâche et trouvent les stratégies qui leur conviennent le mieux. Autorégulation, liberté et autonomie ne signifient donc pas absence totale de guidage qu’il faudra proposer, aux élèves les plus faibles pour qu’ils surmontent leurs difficultés et apprennent à analyser ce qu’ils doivent faire en fonction de leurs besoins et du type de discours. Si nous insistons sur la prise de conscience des stratégies d’écoute, c’est parce qu’il nous semble que l’enseignant peut agir facilement sur cet aspect et que
les apprenants peuvent en tirer rapidement profit. Il nous semble par ailleurs que l'observation de son propre fonctionnement dans le cadre d'un apprentissage pour prendre conscience de ses propres stratégies d'écoute et de compréhension permet d'acquérir des compétences transversales, compétences de l'ordre de la métacognition (anticipation, élaboration d'hypothèses) qui sont sans doute transférables à d'autres apprentissages dans d'autres disciplines.

7.1. Introduction

La multiplication rapide des TICE dans les écoles élémentaires et maternelles s’accompagne d’une certification en formation initiale des professeurs des écoles. Est-ce suffisant pour modifier en profondeur les pratiques pédagogiques ? Des études récentes montrent que des élèves habitués aux usages numériques sont significativement plus performants que les autres en maîtrise de la langue comme en mathématiques, quel que soit le support de travail. Si les enseignants sont généralement convaincus des apports des outils numériques, on ne voit pas pour autant leurs usages se multiplier, malgré les efforts d’équipement des collectivités territoriales. Cela pourrait signifier que l’acquisition d’une culture technique et le développement des outils numériques ne sont pas suffisants pour modifier en profondeur les pratiques pédagogiques. Le rôle de l’enseignant reste fondamental.

7.2. Les grands axes qui semblent se dégager.

L’évolution nécessaire de la posture des professeurs des écoles après l’intégration des Technologies de l’Information et de la Communication s’est-elle accompagnée d’une évolution des pratiques de classe ?

Aujourd’hui, malgré une certification des compétences des professeurs des écoles aux usages des outils numériques, on

53 Philippe Prévost, Professeur des écoles, Stéphane Brunel, MCU, Université de Bordeaux
constate que dans les pratiques de classe, les usages des outils numériques restent peu répandus même chez les nouveaux professeurs des écoles. Pourtant, les équipements se répandent très vite, particulièrement dans les grandes villes. Les responsables de ces collectivités locales en font un support de communication efficace et quelque peu ostentatoire. Implanter des outils nouveaux et numériques démontre que les acteurs politique sont en phase avec ce qui se passe dans le monde technologique. Les parents participent aussi à cet engouement pour le tout numérique. Lorsqu’il y a conjonction de vue et d’intérêt, il n’y a plus à hésiter. Pourtant, si on considère les TICE comme de nouveaux moyens d’enseignement, peut-être ne sont-elles pas encore compatibles avec les pratiques installées dans les classes ?

En formation TICE, les élèves ont-ils les moyens d’imiter le maître et le maître donne-t-il aux élèves les moyens de l’imiter ?

Quel est l’impact de la formation actuelle sur les pratiques des jeunes professeurs des écoles ?

Si les TICE ne sont pas intégrées aux enseignements alors qu’aujourd’hui les PES sont tous certifiés C2i, alors il faut s’interroger sur les modèles réinvestis par les collègues dans les classes.

Depuis le premier plan informatique de 1985, destiné plutôt à sauver Thomson avec l’achat massif de MO5 et de TO7 par le ministère de l’Éducation Nationale et les collectivités locales, du chemin a été parcouru. Des politiques volontaristes visant l’implantation des Technologies de l’Information et de la Communication pour l’Éducation (TICE) dans les écoles se sont
Depuis succédées. Les enseignants ont dû et doivent encore s’approprier et s’adapter à ces outils sans cesse renouvelés. Parmi les outils phares, Tableaux Numériques Interactifs (TNI), tablettes numériques, Espaces Numériques de Travail (ENT) et autres Vidéo Projecteur Interactif (VPI) trouvent progressivement leur place dans les classes. Si une partie de la demande d’équipement émane des enseignants, c’est majoritairement une politique volontariste des collectivités locales que d’équiper les écoles et autres collèges. La multiplication rapide de ces TICE est susceptible de modifier en profondeur et durablement les pratiques de classe et par conséquent la formation. Le rôle du maître dans cette évolution reste prépondérant.

L’acquisition de nouveaux savoirs et savoir faire liés aux usages de ces nouveaux outils, indépendants des savoirs disciplinaires classiques, ne semble guère poser de problème. D’ailleurs, pratiquement toutes les formations aux TICE dispensées en formation continue jusqu’en 2007 tournaient autour de la maîtrise technologique des outils. Aujourd’hui, on ne trouve pratiquement plus de proposition de formation aux TICE dans les plans de formation. Par contre, on la voit apparaître dans la formation initiale où elle prend une forme certificative.

On devrait donc voir dans les classes aujourd’hui, particulièrement chez les jeunes enseignants, des pratiques de classe intégrant les usages des TICE. 85% d’entre eux, c’est-à-dire tous ceux qui sont passés par l’IUFM sont titulaires du C2i2e (Certificat Informatique Internet Niveau 2 Enseignant). Ils devraient s’être approprié ces outils, qu’ils manipulent dans leur quotidien, pour les intégrer dans leurs pratiques pédagogiques.
Il n’en est rien. On peut le constater lors de nos visites aux Professeurs des Écoles Stagiaires (PES). Il est bien rare de pouvoir observer une séance mettant en œuvre des usages numériques. J’ai pu questionner 55 d’entre eux, représentant 90% de la promotion girondine. Nous vous présentons quelques résultats remarquables :

7.3. Usages des TICE :

<table>
<thead>
<tr>
<th></th>
<th>Tous les jours</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Préparer la classe</td>
<td>94,5%</td>
<td></td>
</tr>
<tr>
<td>Conduire la classe</td>
<td>27%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jamais ou pas plus d’une fois par mois</td>
<td>20%</td>
</tr>
<tr>
<td>Utilisation par les élèves</td>
<td>7%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jamais ou pas plus d’une fois par mois</td>
<td>34,5%</td>
</tr>
</tbody>
</table>

Tableau 5 : Usages des TICE

On pourrait nuancer encore car dans les usages pour conduire la classe, beaucoup d’entre eux se contentent de projections à l’aide d’un vidéoprojecteur.

Chez les enseignants confirmés, les chiffres sont encore plus bas. Cela peut s’expliquer par le fait que pour eux, l’acquisition d’une culture technique a été plus difficile, culturellement plus éloignée de leur quotidien.

Nous nous efforcerons d’apporter des éléments d’explicitation au fait que l’intégration des TICE dans les pratiques de classe rencontre des résistances. Pour cela, après avoir présenté le rôle de l’institution, et fait un état de la formation initiale et continue, nous nous intéresserons à l’impact de l’usage des technologies numériques sur les apprentissages des élèves. Nous essaierons de montrer que le rôle du maître, s’il doit évoluer, reste prépondérant. Nous essaierons de démontrer que l’intégration des usages
numériques à l’école ne peut se faire sans une évolution de la posture d’enseignant. En conclusion, nous tenterons de proposer des pistes de travail à la formation.

7.4. Méthodologie de recueil des corpus

Un questionnaire a été proposé à 60 professeurs des écoles stagiaires, soit l’ensemble de la promotion 2011/2012. Nous avons obtenu 55 réponses exploitables, soit 90% de la promotion. Ce questionnaire a été complété par les PES en janvier 2012.

Nous avons choisi d’exploiter aussi d’autres corpus : - une vidéo mise en ligne sur Primtice54, donc par l’institution, comme modèle pouvant faire leçon à défaut d’être une leçon modèle. Nous avons téléchargé cette vidéo sur le site de Primtice le 08 février 2012. Tous les échanges ont été retranscrits (Annexe 2). La séance montre un usage d’un TNI par un enseignant confirmé (environ 30 ans d’ancienneté) dans une classe de grande section de maternelle. Le film a été monté par les journalistes. On peut légitimement supposer que les temps morts ont été coupés.

- un entretien avec des conseillers pédagogique TICE chargés de la formation TICE académique et en circonscription. L’entretien a été intégralement retranscrit (annexe 3)

54 Primtice : Dispositif institutionnel pour accompagner la mise en œuvre des TICE dans le primaire. http://primtice.education.fr/
7.5. Les TICE et la formation

7.5.1. Le rôle de l’institution

Depuis 2008, les nouveaux programmes de l’école maternelle et élémentaire mettent l’accent sur la nécessité d’apprendre. Le fil directeur repose sur l’idée que «les connaissances et les capacités s’acquèrent par l’entraînement». Nous savons bien que l’appropriation des connaissances, les processus de conceptualisation, d’abstraction, de compréhension nécessitent d’autres stratégies pédagogiques que le seul entraînement. Par exemple, il apparaît que la grande section deviendrait la première année de l’apprentissage de la lecture selon une méthode purement syllabique. Une grande partie du temps serait consacrée à l’apprentissage de mécanismes de décodage (connaissance de certains sons, mises en concordance avec des consonnes, etc.). La nécessité pour les apprentis lecteurs de maîtriser le système d’encodage de la langue écrite n’est pas à remettre en question. Néanmoins, des études sur la lecture qui faisaient encore autorité récemment encore ont montré que, pour devenir lecteur, la maîtrise de ce type de mécanismes est d’autant plus efficace que l’enfant a compris tout ce qu’implique l’acte de lire. Il est essentiel qu’il prenne conscience de tout ce que peut signifier pour lui le fait d’accéder de façon autonome à la langue écrite.

Le recrutement des enseignants est basé maintenant sur des compétences disciplinaires. Or l’usage des TIC est par essence pluridisciplinaire. Cela ne constitue-t-il pas un obstacle ?
La circulaire du 22 mars 2011 renforce l'idée que :

« la formation des enseignants concourt à la qualité de l'offre d'enseignement et à la réussite de tous les élèves, finalité inscrite au cœur de chacune des priorités de la politique éducative. Elle est le principal levier de mise en œuvre des réformes du système éducatif. Toutes les analyses internationales soulignent l'influence déterminante de la formation des maîtres sur la performance des systèmes scolaires. »

Elle fixe dix axes majeurs qui doivent se traduire par le renouveau de la politique de formation continue des enseignants du premier degré, tant au niveau national qu'au plan académique. Nous n’en garderons que ce qui a trait aux usages des TIC :

• **Affirmer la continuité entre formation initiale et formation continue**

Le développement des usages du numérique : il n’est pas précisé de quels usages on parle. Est-ce l’usage des outils par l’enseignant pour préparer la classe ou l’appropriation des outils dans la classe au service des apprentissages par l’enseignant et les élèves ?

• **Adosser les plans de formation au référentiel de compétences professionnelles**

Ce référentiel détermine, pour toute la carrière, les connaissances, capacités et attitudes professionnelles à mettre en œuvre et pour le sujet qui nous intéresse, la compétence C8 (annexe 4)

• **Placer la formation continue au cœur de la politique de Gestion des Ressources Humaines**

C'est là que le droit individuel à la formation (Dif) mis en place depuis le mois de septembre 2010 est un point d'appui incontournable. Chaque enseignant peut en bénéficier en dehors de son temps de travail, pendant les vacances scolaires, à raison de 20
heures par an dans la limite de 120 heures. De plus, le Dif vient en complément du plan de formation décidé et mis en place par l'administration. Nous avons donc un droit à la formation dans la mesure où celui-ci s’exerce en dehors du temps de travail. C’est une politique de gestion des ressources humaines qui aura probablement du mal à s’installer.

- **Clarifier les priorités de l'offre de formation**

 Le programme national de formation (PNF) global, affiche les priorités nationales, met en évidence les grandes orientations de la politique de formation et oriente les politiques académiques de formation qui doivent correspondre en grande partie aux priorités nationales.

- **Adapter l'offre aux besoins de formation**

 Les actions de formation sont pensées à partir d'une analyse fine des besoins qui croise les priorités nationales et académiques. Dans la mesure où très peu d’études se fondant sur des recherches scientifiques existent, cette analyse ne peut être qu’empirique.

- **Enrichir le vivier des formateurs**

 Chaque académie publie en début d’année scolaire un répertoire académique de l’ensemble des formateurs et des personnes ressources qui constituent le réseau académique de formation pour les premier et second degrés : experts extérieurs à l'Éducation Nationale, enseignants-chercheurs, professionnels, prestataires de formation spécialisés, etc.

- **Faire de l'établissement et de la circonscription les lieux privilégiés de la formation des enseignants**
Ce sont les chefs d'établissement qui contribuent à l'analyse personnalisée des besoins de formation et à l'évaluation de l'impact des actions conduites. Ils veillent à ce que les actions de formation ne privent pas les élèves des heures d'enseignement qui leur sont dues.

- Développer la formation à distance et mutualiser les ressources

Au plan national, la production de modules de formation en ligne pour les enseignants est coordinnée par la direction générale de l'enseignement scolaire en s'appuyant sur l'expertise de l'inspection générale de l'Éducation nationale et des corps d'inspection territoriaux.

- Évaluer l'efficience de la formation

Toutes les actions de formation sont accompagnées d'une évaluation propre à permettre d'ajuster l'offre aux besoins de formation : chaque session de formation se conclut par une phase d'évaluation. Au plan national, l'enquête annuelle « Données sur la formation continue des enseignants du premier et du second degré » permet de nourrir le dialogue entre le ministère et les académies.

- Resserrer le dialogue entre l'administration centrale et les académies

Un comité national de suivi de la formation est créé, co-piloté par la direction générale de l'enseignement scolaire et la direction générale des ressources humaines. Ce comité veille à l'articulation entre formation initiale et formation continue et il se prononce chaque année sur les priorités de la politique de formation continue et s'assure de leur mise en œuvre.
La mise en place des dix axes de cette circulaire va entraîner des changements autant quantitatifs que qualitatifs d'un dispositif né en 1972, qui semblent être en phase avec une politique de formation des enseignants rénovée. Néanmoins, il est encore trop tôt pour évaluer les conséquences du dispositif résultant de la circulaire de mars 2011.

Différents plans (essentiellement d’équipement) se sont succédés depuis 1985. Un des derniers en date, le plan école numérique rurale, n’a pas été accompagné d’une formation des enseignants : on a formé des utilisateurs à l’usage d’un outil. Bien peu de formations à un usage pédagogique des outils TICE ont vu le jour. J’en veux pour preuve notre formation Master : soit on a travaillé les usages d’outils spécifiques (pour que les étudiants acquièrent une meilleure maîtrise de l’outil), soit on n’a pas eu d’usages des TIC dans notre formation. A peine utilise-t-on ponctuellement un vidéoprojecteur et un logiciel de présentation. Une seule UE nous a demandé de réunir les deux : UE optionnelle 451, en nous demandant la rédaction d’un poster disciplinaire, nécessitant d’organiser notre pensée pour la présenter au groupe. Et encore, l’usage d’outils technologiques n’a pas été imposé. Le poster pouvait se construire « papier-crayon ». Ce qui veut dire que l’effort d’intégration n’est pas fait en amont, au niveau de la formation des formateurs, au niveau de la formation initiale des enseignants, au niveau de la formation continue des enseignants. Il est donc inévitable de constater que ce modèle se reproduit au sein des classes.
7.6. État de la formation initiale en TIC pour les PES

7.6.1. Le C2i Niveau 1

Le Certificat Informatique et Internet (C2i) est une certification nationale. Il est en continuité avec le B2i des études secondaires. Le C2i niveau 1 se prépare au cours de la licence. La certification valorise différentes compétences informatiques :

1. - Utilisation optimale de l'ordinateur (environnement, sauvegarde, sécurisation des données).
2. - Maîtrise des activités bureautiques (traitement de texte et tableur).
3. - Utilisation efficace des services d'Internet.
4. - Mise en pratique du travail collaboratif à distance (plate-forme, wiki, blog…).
5. - Sensibilisation au droit et à la déontologie des domaines concernés.

Le niveau 1 de la certification C2i est fortement recommandé pour s'inscrire aux formations préparant aux métiers de l'enseignement et de l'éducation.

Pour obtenir le C2i niveau 1, il est nécessaire de valider les 5 domaines du référentiel de compétences. Les épreuves comportent une partie pratique et une partie théorique.

- D1 : Travailler dans un environnement numérique
- D2 : Être responsable à l'ère du numérique
- D3 : Produire, traiter, exploiter et diffuser des documents numériques
- D4 : Organiser la recherche d'informations à l'ère du numérique
- D5 : Travailler en réseau, communiquer et collaborer

7.6.2. Le C2i Niveau 2 E
Le C2I Niveau 2 E atteste de compétences professionnelles dans la maîtrise des outils informatiques et réseaux.

Il existe actuellement plusieurs C2i Niveau 2 E. Ils sont institués dans le but de développer, de renforcer et de valider la maîtrise des technologies de l'information et de la communication par les étudiants en formation professionnelle dans les établissements du supérieur. Ils s'appuient tous sur un référentiel lié aux métiers projetés (métiers du droit, enseignants, métiers de l'ingénieur, métiers de la santé, métiers de l'environnement et de l’aménagement durables).

Ils se déroulent lors de la formation Master de la spécialité. Le C2i2e se décompose en grands blocs de compétences A et B. Les PES doivent, pour être certifiés, valider 23 des 28 compétences attendues. L'IUFM d'Aquitaine école interne de l'Université Montesquieu Bordeaux 4, est habilitée à certifier les enseignants au C2i2e. 4 étapes essentielles : Connaître, Concevoir, Mettre en Œuvre et Evaluer, forment un processus dans lequel sont engagés tous les acteurs qu’ils soient étudiants, Fonctionnaires Stagiaires, Professeurs d’école Stagiaires ou référents ou tuteurs ou formateurs.

7.7. État de la formation TIC en Formation Continue

Depuis 2007, les moyens de la formation continue se sont réduits et la formation aux usages des TICE disparaît presque totalement, notamment sur l'académie de Bordeaux.
Voici par exemple les priorités académiques de l’année 2008/2009 pour la formation :

1. La mise en œuvre du socle commun de connaissances et de compétences
2. La maîtrise de la langue
3. La rénovation de l’enseignement des langues vivantes
4. La mise en œuvre des dispositifs d’aide et de soutien à destination des élèves (PPRE…)
5. La scolarisation des élèves handicapés
6. L’accompagnement à l’entrée dans le métier

A ce jour, il semble que les seules formations organisées au niveau académique sont des formations technologiques liées à l’installation des tableaux numériques. L’installation d’un TNI dans une classe s’accompagne de 3h de « formation » décomposées suivant deux axes principaux : qu’est-ce qu’un TNI, quelles sont ses principales fonctionnalités. Le Centre de Ressources TICE de la Direction Académique des Services de l’Éducation Nationale (DASEN) ajoute quand c’est possible 3h de formation pédagogique.

La tendance de la DASEN serait plutôt d’encourager les projets innovants, qui font souvent appel aux TICE, mais sans passer par le plan de formation, en encourageant et accélérant l’équipement des écoles.

Avant 2007, les formations dispensées dans le cadre du plan de formation et au sein des circonscriptions dans le cadre des 18h (formations que j’ai assurées pendant une dizaine d’années) avaient pour objectif de faire acquérir la maîtrise des dispositifs techniques et logiciels. Elles étaient toujours réalisées dans des salles dédiées, avec du matériel relativement performant. Les acquis réalisés, décontextualisés, n’étaient pas réinvestis dans la classe et s’étiolaient au fil du temps.
7.8. Usages numériques et apprentissages

L’impact de l’usage des technologies numériques sur les apprentissages des élèves

Peu de recherches tendant à démontrer ce qui relève du ressenti ont été entreprises. A l’aube de l’annonce ministérielle du Plan Numérique pour l’École, (Heutte55, 08) est un des rares chercheurs à avoir publié sur le sujet en s’appuyant sur des principes méthodologiques issus de la recherche expérimentale.

Il ressort de son étude que des élèves habitués à l’usage des TIC dans un cadre scolaire réussissent significativement « un meilleur apprentissage à long terme et ce indépendamment du type de support ». Les élèves habitués à l’usage des TIC ont développé des compétences remarquables en technique de lecture : ils lisent 30% plus vite et comprennent mieux ce qu’ils lisent, et ce quel que soit le support. Les compétences acquises en confrontation à des

Hyperdocuments 56 font progresser les capacités de lecture en général.

De plus, selon cette étude, le niveau scolaire des élèves habitués à l'usage des TIC en classe a significativement progressé au cours du cycle 3 de l'école primaire, les élèves faibles en début de cycle ayant significativement plus progressé que les autres (+34,3%). Ils ont réellement bénéficié d'un environnement numérique. Il est d'ailleurs intéressant de mettre cette observation en perspective avec le fait que les TIC sont souvent utilisées dans les temps d'Aide Personnalisée du premier degré.

À l'entrée en 6e, l'amélioration du niveau scolaire des élèves s'observe de façon significative dans tous les domaines du français (+ 18,4 %). Cette amélioration est moins élevée en mathématiques (+ 16,7 %), où la plus grande progression des résultats des élèves s'observe surtout dans le domaine du traitement de l'information. Cela confirme bien que l'habituation à l'usage du numérique à l'école primaire améliore globalement la qualité de lecture des élèves dans les activités qui demandent prioritairement de retrouver ou de comprendre de l'information.

ENSEMBLE DES ITEMS DE FRANÇAIS

<table>
<thead>
<tr>
<th>F1 Comprendre un texte</th>
<th>F2 Maîtriser outils de la langue</th>
<th>F3 Produire un texte</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>: significatif</td>
<td></td>
</tr>
</tbody>
</table>

75 Habitués TIC	64,45	66,93	58,02	63,96
367 Témoins	54,45	58,92	49,97	54,39
Progrès Cycle 3	+18,4 %	+13,6 %	+16,1 %	+15,2 %

ENSEMBLE DES ITEMS DE MATHÉMATIQUES

56 Hyperdocument : Mode d'organisation d'un réseau sémantique, provisoire et dynamique, de documents numériques textuels reliés entre eux par des hyperliens permettant de passer automatiquement d'une section du document courant à une autre section de ce même document (lien interne) ou à un autre document (lien externe).
Il faut tout de même modérer ces résultats. Pour tous les élèves, l’apprentissage est meilleur quand les documents sont sous un format papier. Mais les élèves habitués aux usages numériques réussissent tout de même un meilleur apprentissage à long terme.

7.9. **Le rôle du maître**

(Lebrun57, 07) prône une politique intelligente d’utilisation des nouvelles technologies dans l’enseignement et l’éducation. Il en fait une priorité dans la construction d’une société de demain plus juste. Pour cela, il faut que le rôle du maître se transforme. Le rôle à jouer pour l’enseignant qui utilise les TICE est de moins en moins celui d’un transmetteur et de plus en plus celui d’un guide, d’une personne ressource. Il devra créer des environnements propices aux apprentissages ou aux co-apprentissages, c’est-à-dire que les apprenants devront construire des connaissances en interaction. L’enseignant devient alors gestionnaire des relations entre acteurs dans le groupe classe, mais aussi des relations avec l’environnement créé pour mieux apprendre et éduquer. Lebrun

<table>
<thead>
<tr>
<th>M Total</th>
<th>M1</th>
<th>M2</th>
<th>M3</th>
<th>M4</th>
<th>M5</th>
</tr>
</thead>
<tbody>
<tr>
<td>75 Habitués TIC</td>
<td>62,90</td>
<td>65,57</td>
<td>61,55</td>
<td>58,97</td>
<td>68,22</td>
</tr>
<tr>
<td>367 Témoins</td>
<td>53,90</td>
<td>54,52</td>
<td>52,77</td>
<td>50,06</td>
<td>60,64</td>
</tr>
<tr>
<td>Progrès Cycle 3</td>
<td>+16,7%</td>
<td>+12,3%</td>
<td>+16,7%</td>
<td>+17,8%</td>
<td>+12,5%</td>
</tr>
</tbody>
</table>

Tableau 6 : Influence des TIC sur les apprentissages. – (Heutte, 07)
suggère un modèle qui permettrait de passer du paradigme de la technologie de l’instruction au paradigme de la technologie de la formation.

Le rôle de l’enseignant s’en trouverait renforcé dans une société qui se complexifie, bien souvent au détriment des individus.

Le modèle de Lebrun (Figure 24), montre qu’il s’agit de développer des compétences. Il définit ce mot « compétences » comme des contenus (qui sont des ressources, des évènements, des relations entre des personnes), des capacités (qui sont des façons de traiter les contenus), et des contextes (perspectives socio historiques inspirées de (Bruner, 91))58.

Les personnes, dans le cadre des technologies de l’éducation, ont tendance à faire avec les nouveaux outils ce qu’elles faisaient avant. Il faut du temps et de l’énergie pour que le transfert se fasse. On peut peut-être les aider un peu en utilisant ce modèle comme moyen de passage entre les acquis des sciences de l’éducation et

le terrain. Il propose des curseurs à ajuster en fonction des situations rencontrées sur le terrain.

Première composante du modèle, la composante « informations » est colossale. Ces informations ne sont rien sans les « activités » qui vont donner l’occasion à l’apprenant de triturer, malaxer, structurer, synthétiser ces informations, c'est à dire mettre à la disposition des apprenants des occasions d’apprentissages. Au bout, il y des « productions » : ce ne sont pas que des travaux d’élèves, ce sont aussi des solutions à des problèmes, de nouveaux comportements, de nouvelles connaissances.

En résumé, nous avons des entrées, un process, une sortie. Pour que cela fonctionne, pour faire tourner le modèle, pour que l’apprenant entre dans l’apprentissage, il faut de la « motivation ». La définition de ce mot est très large mais les éléments qu’il définit sont très grands : quand l’activité a du sens, quand l’apprenant perçoit qu’il va acquérir des compétences importantes pour lui, c’est la valeur de la tâche qui va faire que l’apprenant va aller à son terme.

L’étudiant doit être soutenu dans son apprentissage. C’est le rôle de l’« interaction », 5ème grande composante du modèle de Lebrun. Mais l’interaction, ce n’est pas seulement travailler en groupe mais quelque chose de beaucoup plus large. C’est aussi travailler dans un environnement, dans des contextes et une perspective socio-historiques.

Enseigner avec des usages numériques impose t’il une posture spécifique ? Éléments de réponses.

La compétence est la capacité à gérer une gamme de situations.
(Le Boterf59, 10) propose une nouvelle approche de la notion de compétence, en distinguant compétence individuelle et compétence collective. Il définit la compétence individuelle comme « une certaine combinaison de capacités ou d’aptitudes pour résoudre un problème donné ». Il s’agit là de la combinaison de savoirs divers en situation de travail. La compétence est dans la mobilisation de ces savoirs : c'est un « savoir-agir » qui intègre le savoir-faire en particulier dans les situations qu’on n’a pu anticiper.

Il propose le modèle suivant :

Figure 25 : Savoir Agir avec compétence(s). Le Boterf, 0660

On peut essayer d’appliquer ce modèle à l’enseignement.

L’usage des TIC conjugue les savoirs et savoir faire en s’appuyant à la fois sur les ressources personnelles du formateur et du formé, et sur des ressources extérieures qui ne sont pas forcément communes. L’enseignant doit être en capacité d’accepter ces différences sous peine de ne pas réaliser une performance et donner l’illusion au formé qu’il en a réalisé une. Accepter cette

différence, c'est accepter de co-construire des apprentissages, du côté du formateur comme du côté du formé. Dans le cas contraire, l'activité mènerait directement à la confusion des résultats attendus et des résultats obtenus, sans passer par la voie de la pertinence. Selon nous, cette pertinence ne peut se construire que dans les interactions, qu'elles soient entre élève et maître ou entre élèves. Sans ces interactions, on reste alors dans le paradigme de l'enseignement : l'enseignant ne peut enseigner que des savoirs maîtrisés par lui. C'est une situation paradoxale, car beaucoup des formés ont des compétences individuelles dans l'usage des TIC qui sont supérieures à celles des formateurs. C'est lié à la nature des formés souvent « habitués à l'usage des TIC » comme le dit Heutte, et qui s'approprient les outils plus vite que les formateurs. C'est me semble-t-il une dimension que l'on ne prend pas assez en compte, tant dans la relation élève/maître que dans la relation formateur/formé.

La compétence collective, toujours selon Le Boterf, est plus que la somme des compétences individuelles d'individus formant un groupe. Il distingue 3 niveaux :

- l’équipe : une compétence collective se dégage dans une équipe si celle-ci parvient à une analyse commune de la problématique, en tire un apprentissage et/ou met en place des schémas coopératifs d’activités.

- les réseaux de compétences : Les compétences diverses forment un maillage de compétences sur lequel devrait s’appuyer le plan de formation. Celui-ci ne devrait plus être pensé par catégories de personnels mais de façon cohérente entre les personnels.
- la combinaison : il peut y avoir correspondance entre des types de situations professionnelles et des types de compétences. Penser donc les compétences non pas en terme d’addition mais de combinaison.

C’est en combinant les ressources à différentes « activités clés » que l’individu va réduire l’écart entre l’activité prescrite attendue et les résultats obtenus. Plusieurs pratiques en fonction de l’individu peuvent permettre d’atteindre cet objectif.

Figure 26 : Modèle d’apprentissage par les usages numériques. Prévost, 12
7.11. Définition et fonctionnement du modèle

Si l’apprentissage en général, le concept d’acquisition de compétences plus particulièrement ont fait couler beaucoup d’encre dans les sciences de l’éducation, c’est que ce concept est particulièrement complexe. Au point qu’aujourd’hui encore, donner une définition consensuelle de « compétence » paraît difficile. Cela se complique encore quand on rajoute encore une dimension particulière, qui est la construction de compétences par les usages numériques. Nous avons essayé de construire un modèle qui se veut à l’intersection de l’ingénierie des systèmes d’apprentissage et des théories dites plus fondamentales. Ce modèle s’inspire des travaux de Le Boterf (Figure 25). Nous y avons ajouté une composante systémique, comme dans le modèle de Lebrun (Figure 24) en essayant de regarder plus particulièrement la posture de l’enseignant.

Ce qui est nouveau, c’est la prise en compte des habitudes des élèves en termes d’usages numériques. Les enseignants prennent généralement en compte les savoirs maîtrisés des élèves avant de concevoir une séance, le plus souvent par une évaluation diagnostique. Pourtant, ce n’est pas le cas dans les usages numériques. On peut y trouver deux explications : ces savoirs ne sont pas forcément maîtrisés par l’enseignant, et ils sont très difficiles à évaluer car souvent sous forme de percepts (Schön61, 93). Il me semble pourtant indispensable de ne pas considérer les élèves comme totalement vierges de savoir-faire. Les pratiques sociales font qu’ils manipulent des outils et des objets numériques

régulièrement, souvent avec une certaine expertise, même pour les non-lecteurs. Nous donnons pour exemple le cas de Lou, élève de moyenne section. Dans une classe qui expérimente les usages de tablettes numériques, Lou, qui en possède une chez elle, sert de ressource à la maîtresse qui découvre l’outil. Bien sûr, les enjeux ne sont pas les mêmes entre les usages de Lou et les intentions de la maîtresse. Il n’empêche que sur la maîtrise de l’outil, l’élève est supérieure à la maîtresse, pendant un temps tout au moins. Et dans cette situation, c’est la maîtresse qui apprend de l’élève. Accepter cette situation est nécessaire, ne décrédibilise pas la maîtresse et renforce l’estime de soi de l’élève. La maîtresse reste dans son rôle car elle réfléchit et construit des scénarios pédagogiques incluant l’outil numérique en se servant des ses observations des usages.

Dans l’activité réelle, c’est la qualité des interactions qui va rendre cette activité pertinente, sous réserve que le cahier des charges ait été clairement défini par l’enseignant pour/avec/par les élèves. Les protagonistes doivent entrer réellement dans une communication réciproque, pas seulement échanger des informations. C’est le moment privilégié au cours duquel les informations se transforment en connaissances. Dans cette situation, le concept classique d’émetteur (l’enseignant) récepteur (l’élève) laisse place à deux personnes (ou plus) dans un échange réciproque sans niveau hiérarchique. On peut nuancer en s’appuyant sur les travaux de (Bandura\(^{62}\), 02): les élèves peuvent apprendre aussi en voyant d’autres faire, en étant plongés dans des

univers virtuels. On se rapproche là du concept d’apprentissages vicariants de Bandura.

Enfin, dans la partie production, la différence entre les résultats attendus par l’enseignant et les résultats obtenus par les élèves va permettre d’évaluer l’acquisition de connaissances par les élèves, mais aussi à l’enseignant d’avoir un regard réflexif sur cette activité. Si l’écart est trop important, l’enseignant sera amené à réfléchir à la construction de l’activité professionnelle. Le modèle fonctionne donc aussi de manière systémique.

Le rôle de l’évaluation est majeur, mais selon nous à repenser dans un contexte de co-construction des apprentissages. L’évaluation ne peut se contenter d’interpréter comme échec le moindre écart par rapport à des standards normés.

7.11.1. Analyse de la posture d’un enseignant confirmé via le modèle.

Nous allons maintenant faire fonctionner le modèle en analysant la posture d’un enseignant de grande section de maternelle (Annexe 2) qui travaille avec un tableau numérique.

Première remarque : On se situe dans la prise d’informations, partie gauche du modèle, Figure 26. La séance est présentée aux élèves comme une séance ludique. Les enjeux ne sont pas clairement définis pour eux en termes d’apprentissages. Aux changements d’activités, si on peut considérer « qu’activité » il y a, l’enseignant exprime clairement que l’on est dans le jeu : « Et là, tu vas aller ici et on va expliquer le jeu du jour. ». D’ailleurs la journaliste ne s’est pas trompée en présentant la vidéo :
« Aujourd’hui le maître a organisé une séance ludique autour d’un tableau blanc interactif pour travailler sur le langage et le repérage dans l’espace ».

Nous nous situons maintenant dans la partie supérieure du modèle.

L’enseignant, dans cette situation, ne prend pas en compte, alors qu’il semble dans des apprentissages mathématiques mettant en œuvre le tableau à double entrée et le repérage dans l’espace, la nécessité de bien expliciter les enjeux aux élèves. Il reste sur le registre du mystère qui nous renverrait à un côté magique des apprentissages.

« M : Appuie dessus maintenant. Tu cliques dessus, sur Floc. E : C’était de la potion magique ! ».

Le contrat n’est pas clair : oui, c’est un jeu, mais un jeu pour apprendre quelque chose. On est dans l’illusion d’un apprentissage.

Deuxième remarque : L’enseignant ne tient pas compte des informations à sa disposition.
En particulier, il ne tient pas compte des habitudes des élèves en matière de maîtrise des technologies de l’information et de la communication (TIC). L’enseignant semble bien moins à l’aise que les élèves qui, s’ils ne connaissent pas le mot « stylet », ont très bien compris son usage. L’enseignant va même jusqu’à s’interdire le mot « cliquer », et lui préfère le mot « appuyer », qui a beaucoup moins de sens dans cette situation. Ce mot « cliquer », qui échappe au maître une fois ou deux est très bien compris chez des élèves de 5 ans (Digital Natives).

« Un stylo, c’est presque comme un stylo. Je vais vous apprendre le nom. C’est un stylet. Alors moi je vais appeler un enfant maintenant qui va venir là et qui va aller appuyer sur le point d’interrogation pour voir ce qu’il faut faire [...] »

Troisième remarque : Le maître n’a pas pris en compte le contexte.

Il se trouve dans une salle de classe avec 15 élèves au moins, devant un TNI et en utilisant un logiciel qui exige essentiellement une activité motrice. Le plus souvent, un seul élève à la fois est dans l’activité, et seul l’aspect « magique » présenté par
l’enseignant permet aux élèves de rester attentifs. Le temps d’activité, qu’elle soit langagière, motrice, cognitive, rapporté par enfant est très court. Dans des situations comme celle-ci, on peut légitimement se demander quel est l’apport de l’outil TNI.

Quatrième remarque : Les interactions sont très hiérarchisées, et très souvent descendantes maître/élève(s). A tel point qu’on se demande si on peut parler d’interactions : on semble plutôt dans de l’information et de l’injonction. Le maître, dans sa crainte de perdre la maîtrise ou de se retrouver dans une situation qu’il ne maîtriserait pas va même jusqu’à faire à la place de l’élève.

Le maître : Bon, alors ce sont de bananes. D’accord ? Très bien. Ella, tu vas nous placer les fruits sur la grille. En respectant le modèle. Adrien tu vas t’asseoir et on regarde Ella. Vas-y, tu commences par le fruit que tu veux et nous on te regarde. Pour attraper le fruit, tu appuies, regarde (le maître prend le stylet pour montrer à Ella).

Monte sur le banc pour aller le mettre à la bonne place sur la grille de droite. Quand on a terminé le jeu, on va appuyer sur l’étoile pour voir si c’est bien ou si on s’est trompé. Bon alors, tu vas appuyer sur l’étoile et là on va voir. (Ella clique sur l’étoile) Donc là on a une tête verte, ça veut dire que c’est bien.

Le maître comptabilise 90% du temps de parole. Les élèves ne s’adressent pas la parole mais s’interpellent quelquefois.

Le maître : Cherche doucement, il faut passer sur toutes les cases, Margaux.

Un élève : Ah, je l’ai trouvé, il est là ! Sous le rose.

Un élève : L’autre, en haut ! En haut !

Un élève : Oui, vite appuie sur le rose là.

Nous avons observé un seul moment de véritable interaction entre les différents protagonistes dans la séance.

Le maître : Moi je suis le maître mais je suis fatigué donc c’est Adrien qui va faire. Donc tu passes doucement et t’appelles qui tu veux. Ah oui, mais il faut que tu remontres un peu les images car ils peuvent oublier quand même.

Adrien à Mohamed : La banane. Non la banane !

Mohamed : Non, regarde, tu peux pas la mettre. Il faut que je la mets là. Regarde, maintenant j’ai perdu.

Le maître : Attends, attends, attends, Mohamed, toi tu dis... Non, non, mais là c’est intéressant. Tu vas nous expliquer pourquoi. Tu voulais la mettre où toi la banane ?

Mohamed : Devant

Le maître : Vas-y, vas-y, va la mettre. Tu voulais la mettre où ?

Mohamed : Là ! (Il désigne une autre case de la grille, occupée par une fraise.)

Le maître : Change alors. Fais ce que tu crois être bien. (Mohamed enlève la fraise qui occupait la case et y place la banane. Puis il reprend la fraise pour la placer ailleurs) Voilà. Et la fraise ... Ah non non, la fraise, tu ne sais pas. T’a qu’à la laisser à côté après tout puisque tu ne te rappelles pas. (Il prend le stylet des mains de Mohamed)
Le maître sent qu’il se passe quelque chose à ce moment. Un problème apparaît et Mohamed argumente avec Adrien. Il propose une solution, encouragé par le maître. Mais quand ce dernier s’aperçoit que cette solution ne correspond pas à ce qu’il avait anticipé, il retire le stylet des mains de Mohamed, place l’enfant devant sa pseudo incompétence et s’échappe de la situation par une pirouette.

Cinquième remarque : Le petit point d’interrogation qui s’affiche sur chaque page est un lien vers un fichier son qui oralise la consigne. Cela pourrait avoir un intérêt si les élèves non lecteurs étaient réellement en autonomie. Mais dans cette situation, on est dans une illusion de l’autonomie. Un élève travaille « en autonomie » sous le regard du maître et du reste de la classe.

Vous trouverez en suivant (Figure 27) les différents aller-retour des remarques, informations et actions en jeu lors de la séance.
Pour s'adresser aux élèves, l'enseignant passe par le TNI. Il demande aux élèves d'activer un fichier son qui donne la consigne. Il place le TNI comme médiateur des apprentissages, mais c'est une illusion. Dans le déroulement de la séance, le maître valide ou invalide les savoirs avant même le logiciel. Il conserve donc sa toute puissance et la présence du TNI n'est qu'un écran de fumée. Que dire de la situation dans laquelle un pantin animé dirige une séance de…. Repérage dans l'espace ? Motricité ? Le maître est à côté du TNI et commente en même temps « en haut, en bas, ... ». Qu'apporte le TNI dans cette situation si ce n'est de l'illusion ? Ce n'est sûrement pas une médiation vers les savoirs.

De plus, les interactions n'existent pas. Le retour attendu de l'élève vers ses pairs ou vers le maître dans une conception de construction des apprentissages, n'existe pas. Quand les élèves tentent de communiquer sur ce que leur renvoie l’activité, l’enseignant s’oppose à cette communication alors même que dans
son discours, il déclare que ça l’intéresse. On reste dans une illusion de communication mais l’enseignant refuse de risquer la perte de la maîtrise de la situation.

7.11.2. Analyse des postures des PES via le modèle

Une donnée surprenante, que nous n’avions pas du tout anticipée, saute aux yeux quand on analyse les questionnaires soumis aux PES (Annexe 4). 11% se considèrent comme des enseignants experts, 63,5% comme des enseignants confirmés, 25,5% comme des enseignants débutants. Être devenu enseignant confirmé, voire expert pour 75% d’entre eux après seulement quelques semaines de stages en pratique accompagnée et 3 mois d’exercice en responsabilité (les questionnaires ont été complétés en février, alors que les PES n’étaient pas encore titularisés) relève de l’exploit ! Cela nous apprend deux choses fondamentales quant à la posture de ces jeunes collègues :

- Ils ne sont pas en déficit d’estime de soi. Ils sont pleins d’assurance et de certitudes. Est-ce le fait qu’ils aient décroché un Master2 et un concours difficile ? Font-ils un complexe de supériorité au regard des formations précédentes ? Dans tous les cas, cette assurance ne va pas les aider à se remettre en question.

- S’adjuger une posture d’enseignant déjà expert avec si peu d’expérience montre que ces jeunes collègues n’ont pas compris qu’une professionnalité se construit au fil du temps et des expériences d’enseignement. Ils sont sûrs de maîtriser les contenus d’enseignement et donc pensent pouvoir enseigner avec expertise.
Mais nous savons tous que la maîtrise des contenus est une illusion, et si transmettre des savoirs savants est enseigner, ils sont dans une posture essentiellement transmissive. Ils ont une représentation universitaire de l’enseignement, ce qui n’est pas si surprenant au regard de leur cursus. Peut-être faut-il proposer un apprentissage plus important de la dimension professionnelle.

7.12. Du côté des ressources :

80% de ces jeunes enseignants en cours de professionnalisation sont titulaires du C2iN2e. 98% possèdent un ordinateur personnel et 94.5% un appareil photo numérique (APN). Un professeur des écoles maître formateur (PEMF) est le référent de chaque PES pour l’année de professionnalisation. Mais si la période de pratique accompagnée est riche et formatrice, les rencontres sont rares (3 visites dans l’année) et les PES rechignent à demander du conseil par d’autres moyens de communication. De plus, ces visites, même si elles sont bien présentées comme des visites conseil, sont souvent vécues par les PES comme des moments d’évaluation. En même temps, demander du conseil, c’est s’exposer au risque de devoir remettre en question son travail et sa professionnalité, et de voir sa charge de travail augmenter alors qu’on est déjà submergé. Cette grosse charge de travail est aussi un obstacle : les PES passent leur temps à essayer de « survivre » et pour cela, ils sont amenés à adopter une posture transmissive plus économique en temps mais malheureusement aussi en réflexion. Dans ce contexte, les usages numériques en classe sont vécus comme une surcharge de travail. Parallèlement, les PEMF ne cherchent pas forcément à relancer les échanges numériques, qui se traitent souvent à la
maison sur leur temps libre et l'éloignement physique des PES répartis dans le département ne facilite pas les rencontres en dehors des visites institutionnelles. D’ailleurs, aucun moment formel de regroupement PES/PEMF n’est prévu dans la cadre de la formation.

La représentation qu’ont les PES des usages des outils numériques est représentative de leur posture. 36% ont utilisé ou prévoient d’utiliser le TNI comme un vidéoprojecteur. La construction des scénarios pédagogiques prévoit rarement un autre usage qu’un usage collectif dans lequel l’enseignant peut plus facilement conserver la maîtrise.

« Confort pour que tout le monde suive en même temps - Permet la projection de documents couleur mais demande beaucoup de temps de préparation. » ou encore « Visibilité pour tous – Facilité des projections. »

Ils soulèvent l’intérêt de ces projections comme outil de des activités collectives.

« Pratique pour visualiser les documents pour des corrections. »
7.13. Du côté de l’activité :

23.5% des PES utilisent un mot de la famille d’« interaction » pour parler des usages numériques dans la classe. Mais quand on lit avec précision, on voit des notions plaquées sans qu’on puisse mettre plus de précision. Cela tient en partie à la nature de la question posée qui aurait pu être précisée, mais aussi au concept d’interactivité lui-même qui mériterait d’être précisé.

« Interactivités dans la recherche Internet, Intérêt des élèves accru »

En parlant des usages du TNI en classe. On voit bien ici que le PES confond interactivité et visualisation collective. Il considère comme interaction le fait que les élèves voient tous la même chose en même temps. On peut imaginer que des interactions pourraient se mettre en place à partir d’un support collectif, mais dans ce cas, un affichage papier de taille suffisante suffirait, et l’apport des outils numériques n’est pas prépondérant.

Pour 16% des PES, le recours aux outils numériques est un obstacle ou une charge de travail supplémentaire. Il est une charge de travail se substituant à une autre pour 20% d’entre eux seulement. 18% des PES considèrent que le recours aux usages numériques en classe n’est pas obligatoire. Et paradoxalement, ils déclarent que les outils numériques sont au service des élèves à 83% et au service des enseignants à 75,5% seulement. Ils ont entendu, perçu au cours de leur formation universitaire, ou au contact des PEMF que les outils numériques étaient des outils mis au service des élèves par les enseignants. D’où la réponse donnée qui correspond en fait à une réponse attendue par l’institution que
nous représentions par l’intermédiaire du questionnaire. Mais si on croise cette réponse avec les usages déclarés dans leur classe au cours de cette année scolaire, 20% des PES déclarent ne jamais utiliser ou ne pas utiliser plus d’une fois par mois les outils numériques pour conduire la classe, 33% ne jamais les utiliser plus d’une fois par semaine. Pour ce qui est des usages de leurs élèves dans la classe, 34,5% déclarent que leurs élèves n’utilisent jamais les outils numériques ou jamais plus d’une fois par mois, contre 7% qui déclarent un usage quotidien de leurs élèves.

Dans ce schéma ci dessus (Figure 28), le PES utilise les outils numériques mais pas réellement pour concevoir les enseignements. Ils sont destinés aux aspects formels (95% mettent en forme leurs fiches de préparation en utilisant un traitement de texte) et à la recherche d’informations. Pendant la classe, les outils numériques sont utilisés le plus souvent pour exposer les savoirs savants (vidéoprojecteur, TNI) du professeur aux élèves.
Ces derniers utilisent régulièrement les outils numériques à la maison, mais leur usage n’est pas prévu dans le contrat didactique. La conception des apprentissages est surtout transmissive.

7.14. Conclusion comparatiste entre enseignant confirmé et PES.

7.14.1. Une meilleure maîtrise des outils chez les PES

Dans les corpus recueillis, il est incontestable qu’un PES maîtrise globalement mieux les outils numériques qu’un professeur expérimenté. C’est une observation que nous pensons pouvoir généraliser sans heurter les consciences et qui relève du bon sens : l’imprégnation n’a pas été la même et a demandé un effort aux plus anciens. 94,5% des PES déclarent utiliser les TICE quotidiennement pour préparer la classe.

7.14.2. Les mêmes difficultés rencontrées

Pour autant, les usages des outils numériques pour conduire la classe ou pour une utilisation par les élèves ne semblent pas plus répandus chez les jeunes collègues que chez les collègues plus expérimentés. De plus, dans les deux cas, les usages que l’on peut observer sont trop rarement appropriés. Nous voulons dire en cela qu’ils les utilisent sans en exploiter les possibilités. C’est peut-être que la maîtrise des outils numériques ne suffit pas pour les utiliser en classe pour ce qu’ils sont : des outils au service des apprentissages.
L’estime de soi peut jouer en faveur de l’élève puisqu’il connaît souvent les technologies mises à sa disposition et il est en terrain connu ce qui peut tendre à le rassurer. Le fait qu’il puisse communiquer avec ses camarades ou son enseignant, même en temps décalé, l’aide à acquérir et à développer des aptitudes au travail en collaboration et en traitement de données. Si les enseignants favorisent le travail d’équipe, des interactions pourront se créer, pendant et après l’activité de classe.

Dans le cas des PES, c’est une situation rarement envisagée autrement qu’en théorie. Ils se trouvent toujours à la limite entre le poids de ce qu’ils ont entendu en formation, et qui ressurgit dans le questionnaire dans ce que nous considérons comme une réponse induite, attendue de l’institution, et ce qui se passe réellement dans leur classe. Pour 74,5% des PES, les TICE sont des outils au service du maître, et donc encore un moyen d’accroître sa maîtrise. Il semblerait même que les usages numériques soient déstabilisants chez les jeunes enseignants. Dans leur manque d’expérience lié à une représentation universitaire de l’enseignement, ils privilégient le rapport aux savoirs. Enseigner revient à transmettre des connaissances et leur principale interrogation est celle de la transposition didactique. Comment rendre enseignables tous ces savoirs qu’ils ont accumulés ? Cette tâche leur paraît bien plus simple sans ajouter des outils dont les usages didactiques sont incertains.

Du côté du maître expérimenté, on constate que l’intégration, en dehors de l’effort fourni par l’enseignant pour expérimenter ces outils, ne s’est pas faite. On utilise l’outil pour la « motivation » qu’il suscite chez l’élève.
Dans les situations que nous venons d’évoquer, le passage d’un paradigme de l’enseignement à un paradigme de l’apprentissage ne s’est pas réalisé.

7.14.3. La conception de l’institution

Nous rappelons que cette séance de classe est en ligne sur Primtice, ou tout au moins y était encore en février 2012. Cela signifie que l’institution la considérait comme une séance pouvant faire modèle. Cela nous en apprend beaucoup sur la conception des usages numériques par l’institution. Les formations institutionnelles se sont concentrées sur la maîtrise de l’outil, comme le montrent les différents plans de formation. Les contenus de formation concernent la connaissance et la retouche des images numériques, la maîtrise de certains logiciels (didapage, Photofiltre, Audacity, …), mais on ne voit que rarement TICE et maîtrise de la langue, Histoire ou autre géographie.

La conséquence, c’est que les enseignants se sont appropriés les outils qui ne leur demandaient pas un effort, un travail spécifique sur la posture d’enseignant. Le vidéoprojecteur s’est répandu dans l’enseignement, d’abord comme support de formation, puis dans les classes. C’est un outil qui permet de projeter une image de grande taille et de grande qualité. Mais cet outil n’a pas spécialement fait évoluer la posture d’enseignant : on s’en sert en grand groupe, pour une correction collective ou pour institutionnaliser un savoir commun, comme on l’aurait fait avec un tableau, une affiche, un poster. On enseigne les mêmes contenus, de la même façon. 36% des PES qui ont utilisé un TNI ou qui déclarent vouloir en utiliser un, avancent comme principal argument la facilité d’affichage. Ils
utilisent un outil dit interactif comme un vidéoprojecteur de luxe. Quand on ajoute à ça 20% d'entre eux qui n'ont jamais utilisé de TNI et ne l'ont même jamais envisagé, cela fait plus de la moitié des effectifs recrutés sur la Gironde qui partent avec une représentation erronée ou sans aucune projection dans l'avenir quant aux usages du TNI.

« Confort pour que tout le monde suive ne même temps » dit l’un d’entre eux, ou encore « L'intérêt de pouvoir faire un travail ou une recherche en direct, avec les élèves afin de voir comment on s’y prend. »

On voit bien les représentations que véhicule cette dernière déclaration. Le maître recherche en direct (ou un élève sous le contrôle du maître) devant toute la classe qui regarde comment il faut faire. Nous sommes en présence d’un jeune enseignant qui ne peut concevoir une séance sans conserver la maîtrise de son déroulement et qui plus est, se pose en modèle.

Au sein des formations, qu’elles soient initiales ou continues, on persiste à séparer les savoirs et savoir-faire liés à la maîtrise des outils, de leur usage didactique.

On commence, me semble-t-il, à voir des propositions de formation qui tendraient à faciliter l’intégration des usages numériques dans l’enseignement. Cette amorce prend sa source dans les circonscriptions.

Un dispositif, placé sous l’autorité de l’IENA, coordonnait des actions de formation, d’information et de production à destination de l’ensemble des enseignants et des partenaires de l’éducation nationale, il était animé par un conseiller pédagogique (chargé de
mission) et d'enseignants déchargés partiellement ou totalement d'enseignement : les Maîtres Animateurs TICE (MATICE). Depuis trois ou quatre ans, les MATICE se sont formés à la formation d'adultes et ils intègrent les circonscriptions en tant que conseillers pédagogiques spécialistes en Technologies et Ressources Éducatives. Ils cumulent la maîtrise des outils TICE et une expertise d'enseignant. Ils ont développé des compétences sur les usages des TICE au plus près de la classe, ce qui leur permet d'avoir une approche réflexive de leur métier d'enseignant.

7.15. Analyse d’un entretien avec des conseillers pédagogiques TICE

Au cours de nos réflexions sur les usages numériques, nous avons pu rencontrer deux conseillers pédagogiques spécialistes TICE de deux circonscriptions de Bordeaux. Ils ont une vision empirique de la formation basée sur leur vécu, le retour d'expérience. Quand ils observent le degré d'intégration des TICE dans les classes, ils font un constat plutôt amer.

-Ph- Est-ce qu'il y a des indicateurs qui vous font affirmer ce que vous affirmez à part, à part votre expérience, votre recul, votre vécu, est-ce que vous avez des indicateurs objectifs qui vous font dire ce que vous dites, c'est à dire affirmer que la posture d'enseignant est fondamentale. Je vous dis ça parce que c'est mon postulat aussi, seulement quand on est en train d'écrire, il faut pour écrire des choses qu'on peut prouver.

-Ch- Les indicateurs, c'est le ...

-Pl - Le ressenti.

On mesure alors la difficulté à évaluer l'intégration de TICE dans l'enseignement du premier degré. Ils constatent l'absence d'usages numériques, expriment un ressenti mais ils ont bien du mal à justifier avec des données objectives.

-Ch- ... le retour des enseignants quand on en parle quand on discute sur les stages etc. à la fois sur les stages de formation où bien souvent en fait on s'aperçoit, quand on les interroge sur leurs pratiques pédagogiques, ils ne font pas de travail en interaction ou de groupe parce qu’ils ne savent pas faire, ne
savent pas gérer une situation de travail de recherche, ils ne savent pas gérer une situation de mise en commun et déjà savoir à quoi ça sert etc.

Le retour des enseignants en formation semble un bon moyen de faire un constat, mais qu’en faire ensuite? Une analyse réflexive de la formation ne suffira pas à faire évoluer les représentations des enseignants et les pratiques de classe. Comment faire remonter ces difficultés à l’institution? Car c’est elle qui prendra les décisions de formation.

-Ph- Et même des enseignants expérimentés?
-Ch- Oui même les enseignants expérimentés, et ils sont encore sur cette représentation que voilà, c’est l’enseignant qui déverse le savoir, qui est au centre de tout.
-Pi- On s’arrêterait presque au sens sémantique du mot « mise en commun ».
-Ph- On se met ensemble et voilà!

Ce qu’affirment les deux collègues confirme ce que nous savions déjà: cette posture d’enseignant transmetteur des savoirs est dominante, chez les enseignants confirmés comme chez les jeunes professeurs stagiaires.

-Ch- C’est ça et qu’est-ce qu’on en fait du travail de groupe et du travail de chaque groupe etc. comment est-ce qu’on fait progresser les élèves pour aller vers la construction d’un savoir, ça ils savent pas. Ils ont vraiment vraiment beaucoup, beaucoup de mal et même chez des enseignants expérimentés chez qui en fait on ne voit plus les défauts du débutant, ils n’ont plus ça dans la pratique et c’est là ou ça serait intéressant justement, que dans un travail de conseiller pédagogique même chez les enseignants expérimentés on puisse aller dans les classes pour les faire basculer vers cette pratique pédagogique qui, quand même semble t’il est plus efficace.

Les conseillers pédagogiques suggèrent que la formation se poursuive sur le terrain de manière longitudinale, Ce travail sur la conception des apprentissages est nécessaire et les usages numériques pourraient y trouver toute leur place.
7.16. Éléments de proposition à intégrer dans la formation initiale et continue

Nous proposons quelques éléments qui d’après nous pourraient contribuer à favoriser l’intégration des usages numériques dans la classe.

7.17. Le modèle de la maternelle

Tout d’abord, nous pensons qu’il serait bénéfique de s’appuyer sur un modèle d’organisation des apprentissages inspiré de l’école maternelle. Nous trouvons très étonnant que des élèves de 5 ans en Grande Section de maternelle, capables d’inscrire leur participation à un atelier dans un tableau à double entrée, de mémoriser les consignes des 5 ou 6 ateliers tournant sur la semaine, de travailler en autonomie ou avec leurs pairs dans le respect de chacun, aient perdu toutes ces compétences en entrant à l’école élémentaire. Il serait d’ailleurs intéressant d’essayer de comprendre pourquoi ces enfants désapprennent.

7.17.1. Un réseau dans l’école, entre écoles

A l’éducation nationale, on pense par catégories de personnels et rarement par réseau de compétence. Il serait avantageux de faire évoluer le contexte en favorisant les formations d’écoles et d’équipes plutôt que les formations de personnes. Tout d’abord, les collègues utiliseraient les outils réellement à leur disposition dans leur école, dans le cadre d’un projet d’école ou de cycle qui favoriserait les interactions entre pairs, le travail d’équipe et permettrait de co-construire une professionnalité numérique. Cela permettrait aussi d’identifier clairement les personnes ressources.
sur lesquelles s’appuyer, que ce soit au niveau de l’école, de la circonscription ou de la DSDEN.

7.17.2. **Communiquer et mutualiser**

Il nous paraît aussi fondamental que les enjeux de ces formations soient clairement définis en termes de communication. Ce sont à notre avis ces enjeux qui pourraient être appelés « motivation » dans le modèle de Lebrun. Cette communication pourrait avoir de multiples destinataires : les parents d’élèves (les résultats attendus du côté des élèves) ; les autres collègues de la circonscription (Mutualiser son expérience, en incluant les démarches, les réflexions, les critiques) ou plus largement encore l’institution (Primtice par exemple).

7.17.3. **Rapprochements entre formation initiale et la pratique de classe.**

En formation initiale, quelques initiatives de rapprochement entre les enseignements disciplinaires et le terrain existent déjà. Ces actions sont le fruit de relations professionnelles privilégiées entre des professeurs des IUFM aujourd’hui ESPE et des PEMF mais ne sont pas institutionnalisées.

Les professeurs des ESPE pourraient aussi se demander ce que les usages numériques pourraient apporter à leur métier. Il nous semble que la tendance est à considérer les TICE comme une discipline supplémentaire ce qui ne correspond pas aux objectifs de l’école.
7.17.4. **Un modèle dynamique pour la formation**

![Diagram](image_url)

Figure 29 : Vue dynamique du processus d'apprentissage pragmatique par Lebrun.

Au regard de l'analyse des PES et du professeur expérimenté dans le modèle Postun, et l’apparition des dysfonctionnements flagrants dans la classe, nous pouvons adapter le modèle de Lebrun en mettant en évidence l’interaction source de production de savoir autonome dans la résolution d’un problème clairement identifié. Ce processus contient la cohérence nécessaire entre les fins (les objectifs, les compétences) et les moyens (ressources, outils, méthodes) ainsi que la validation par les apprenants de l’atteinte des objectifs (l’évaluation) et la validation des moyens mis en place. L’activité conçue autour de savoirs didactisés est intentionnelle mais les buts peuvent être multiples : développement de compétences spécifiques, d’attitudes, de méthodes. En ce sens, l’activité est conçue pour enseigner. Si cette activité est un dispositif d’enseignement, elle va donner à l’apprenant des occasions d’apprendre. Lebrun propose son modèle comme une sorte de carte sur laquelle le formateur prendrait appui pour construire un processus d’apprentissage avec 5 grands pôles.
L’information proposée au sens large, incluant savoirs et savoir faire mais aussi les contenus numériques, doit informer aussi sur le dispositif. La somme colossale d’informations ne peut suffire à remplir les vases vides que sont les étudiants.

La motivation comme élément du contexte : les enjeux, les objectifs doivent être clairs et faire sens pour l’apprenant. Pour cela, il s’agit de contextualiser les apprentissages, c’est-à-dire de les rendre davantage proches des réalités de la vie quotidienne et professionnelle.

L’activité mise en place par le formateur peut permettre à l’apprenant de construire de nouvelles compétences ou connaissances transférables à d’autres contextes. Mais cet apprentissage ne peut se faire par un simple transfert. Le développement personnel peut être le résultat du dispositif mis en place par l’enseignant. L’outil technologique passe ici au second plan.

Les interactions entre les différents acteurs prennent en alternance des formes multiples. Ces interactions sont demandées explicitement aux étudiants dans ce que Lebrun appelle « une interdépendance positive des buts ». Elles favorisent l’émergence de points de vue différents et le développement de l’esprit critique.

Que produit-on finalement ? Sait-on ce que l’on doit produire, dans quelles conditions ? Les outils technologiques et leurs usages permettent de construire des traces d’un apprentissage qui a eu lieu, à la manière du chef-d’œuvre du compagnon du Moyen-Âge.
7.18. Une évolution de l’organisation de l’école et de la formation

L’adaptation de l’organisation de l’école nous semble fondamentale. Les infrastructures scolaires semblent en cours d’adaptation. L’installation de TNI dans les classes est en plein essor, de nouveaux outils comme les tablettes tactiles entrent dans les classes. Même si ce développement est souvent motivé par des prises de position politiques plus que pédagogiques, cette évolution structurelle est indispensable et bonne à prendre.

Mais il faudra qu’elle s’accompagne d’une prise de conscience des décideurs du milieu de la formation. Les concepts de formation devront continuer d’évoluer, comme la formation de formateurs. La formation continue devra retrouver toute sa place, dans un vrai projet de formation construit sur des besoins identifiés.

Des projets collaboratifs dépassant le cadre de l’école (ouverts au second degré par exemple) auront à se développer en se basant sur des collaborations, des échanges tant physiques qu’électroniques. Les espaces numériques de travail (ENT) seraient un support de ces échanges. L’ENT est un outil sous utilisé et au lieu d’être un moyen d’ouverture, il est vécu par beaucoup comme une contrainte supplémentaire. En dehors de l’université, il y a pour l’instant peu d’ENT. On attend un déploiement sur la ville de Bordeaux pour janvier 2013, mais il n’y aura pas d’interconnexions avec l’université ou les autres villes qui auront peut-être choisi une autre plateforme.

Le réaménagement de la semaine de travail qui semble s’amorcer aura une influence importante. Il est nécessaire pour les
enseignants comme pour les élèves de pouvoir prendre du temps pour construire les apprentissages.

7.19. Conclusion Générale

Aujourd'hui, les modèles pédagogiques réinvestis par les enseignants, qu'ils soient expérimentés ou débutants, sont le principal obstacle à une intégration des usages numériques dans les classes. Les enseignants expérimentés fonctionnent dans une routine que rien ne vient remettre en question et qui est somme toute confortable. Pourquoi alors faire autrement ? Les usages numériques viennent renforcer ces modèles en permettant d'exposer plus facilement les savoirs des enseignants.

Les enseignants débutants sont quant à eux empreints de certitudes. Ils disposent de savoirs académiques certifiés et s'ils ont bien pris conscience au cours de leur formation que la notion d'interactivité était importante, ils font souvent la confusion avec une mise en commun prise au sens propre, c'est-à-dire la même chose pour tous. Les TICE représentent pour eux un outil facilitateur quand il s'agit de l'usage qu'ils en font, et plutôt un obstacle quand ils pensent à une mise en œuvre par les élèves.

Pour voir les usages numériques s'intégrer aux apprentissages, nous pensons qu'il est nécessaire de penser conjointement les actes d'enseignement et d'apprentissage, avec des enjeux clairement définis. Enseigner doit revenir à privilégier les processus d'acquisition et de co-construction de connaissances, de compétences, de savoir faire par les élèves. On n'apprend pas tout seul et on doit intégrer pour apprendre. Les outils numériques peuvent s'avérer de précieux atouts dans ce contexte pour
développer chez les élèves cette capacité à apprendre, à comprendre, à analyser en se confrontant à ses pairs et en étant étayé par ses enseignants, sans perdre de vue le but à atteindre.

7.20. **Pour aller plus loin**

Ce paragraphe permet d’ouvrir un certain nombre de propositions de réflexions ou pistes exploratoires qui nous semblent pertinentes, à exploiter dans le futur.

- Le rôle du maître se transforme. C’est déjà le cas chez une minorité d’enseignants souvent considérés comme des enseignants experts (PEMF) qui ont bien compris qu’enseigner est illusoire. Si on enseigne moins, les élèves apprennent mieux. Cela fait peur aux enseignants qui sont installés dans un confort du modèle.

- L’enseignant doit s’approprier un nouveau rôle et devenir à la fois un créateur d’environnements pédagogiques et un collaborateur dans la réussite de ses élèves.

- Nous aimons beaucoup le terme « habitués » à l’usage de TICE de Heutte car si une habitude est construite, cela veut dire que l’usage de l’outil passe à l’arrière plan. Le sujet peut donc se concentrer sur le sens ou sur la résolution du problème qui lui est soumis. L’outil est au service de l’apprentissage.
8. Exemples concrets et expériences de classe : l’apprentissage de la classification des êtres vivants

Le premier exemple est une situation d’enseignement-apprentissage utilisant la variété didactique des outils de l’information et de la communication en classe de 6ème de collège.

Le deuxième exemple est une expérience, également menée en collège, dont l’objectif est de vérifier les effets du guidage numérique par le biais d’une simulation informatique sur l’apprentissage de la classification phylogénétique des êtres vivants.

Ce thème est abordé dans la partie du programme « Unité et diversité des êtres vivants ».

Il a fait suite ici au travail d’apprentissage de la classification des êtres vivants par groupes emboîtés et sur des arbres de phylogénie à l’aide du logiciel « Phylogénia » entre autres.

Les pré-requis sont : on peut classifier les êtres vivants à partir de caractéristiques communes à l’échelle macroscopique (c’est-à-dire visible à l’œil nu).

Les Compétences du socle commun sont : C3.1, C3.3, C4, C7

Franck Tanguy, enseignant TIC à l’ESPE d’Aquitaine de l’université de bordeaux
Les Compétences B2i sont: C1.1, C2.4, C3.1,

Questions :

- Retrouve-t-on un caractère commun à tous les êtres vivants à l'échelle microscopique ?
- Quelle est l'organisation des êtres vivants à l'échelle microscopique ?

8.1.1. L’utilisation du microscope

Utilisation d’une séquence vidéo filmée au collège de l’utilisation du microscope par un élève de 6ème :
http://www.youtube.com/watch?v=UT91h9o8s_s

Projection de la séquence, analyse des élèves qui complètent des fiches méthodologiques sur support papier en présence de l’outil « microscope ».

8.1.2. Activités « caractère commun aux êtres vivants à l’échelle microscopique »

Question : quel est le caractère commun à tous les êtres vivants à l’échelle microscopique ?

Séance de travaux pratiques : la dissection de la peau d’un oignon

But : mettre en évidence des cellules végétales à l’aide d’une préparation microscopique chez l’oignon.

Consigne : Les écailles d’un bulbe d’oignon possèdent un épiderme transparent qu’il est facile de prélever. En suivant le protocole, vous procéderez à sa dissection et à son observation au microscope. A la fin de ce travail, vous réaliserez un dessin d’observation de l’épiderme de l’oignon au grossissement 100.

Protocole : le protocole vidéo de la dissection est projeté sous la forme d’un petit film sur le Tableau Blanc Interactif
Un complément d’information des grandes étapes de la dissection est donné sous forme papier.

En fin de séance : prolongements.

L’enseignant ramasse les dessins d’observation.

Ce travail est envisagé dans la salle informatique du collège.

- Les élèves scannent leur dessin.
- Ces dessins sont enregistrés dans le fichier partage de la classe, dossier S.V.T de l’espace numérique de travail interne au collège.
- Un choix de quatre dessins est opéré par l’enseignant en fonction de leur degré de qualité en vue de la construction de la fiche « Savoir faire un dessin d’observation ».
- Les élèves travaillent par groupe de quatre sur les dessins mis à disposition sur l’ENT et élaborent l’ébauche d’une fiche méthodologique type (Temps : 15 minutes).
- Phase de mutualisation sur tableau blanc (phase alternative, installation du logiciel Italc sur le poste enseignant et projection sur TBI des travaux des élèves, un tableau préparatoire à la fiche « Savoir faire un dessin d’observation » peut être proposé).
- Elaboration de la fiche sur le TBI et correction du dessin d’observation (un élève passe au tableau).
- Reprise des dessins d’observation et autocorrection des élèves.

Figure 30 : Production attendue concernant le dessin d’observation (Éléments de correction proposée à la suite du travail relatif à la construction de la fiche « Savoir faire un dessin d’observation »)
8.1.3. Prolongement de l’activité.

But : mettre en évidence :

- l’unité des êtres vivants est la cellule.
- Il existe des êtres vivants unicellulaires (paramécies) et des êtres vivants pluricellulaires.

Compétences B2I : C1.1, C3.1

Lieu : Lieu Salle informatique par groupe de 14 élèves, un élève par poste

Observer les lames présentes sur le didacticiel (support créé par l’enseignant). Il s’agit de lames de peau humaine, de peau de grenouille, de feuille de poireau, de paramécies et de levures (15 minutes)

Comparer les différentes lames et répondre aux questions suivantes sur l’ordinateur :

- retrouve-t-on les mêmes éléments dans l’épiderme (couche superficielle) de grenouille, de peau humaine, de feuille de poireau ?
- quelle est la différence entre ces lames et celle de paramécies, de levures ?
Remplir à la suite le tableau (figurant sur le didacticiel) à l'aide de croix :

<table>
<thead>
<tr>
<th>Lames</th>
<th>membrane</th>
<th>noyau</th>
<th>cytoplasme</th>
<th>Unicellulaire ou pluricellulaire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peau humaine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peau de grenouille</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feuille de poireau</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paramécies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Levures</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 31 : Photos de lames minces choisies pour la phase de prolongement de l’apprentissage (photos libres de droit)

- Enregistrer votre travail dans le fichier partage de la classe S.V.T de l’espace numérique du collège.
- Phase de mutualisation autour du tableau numérique.

8.1.4.
8.1.5. Exemple 2 : Expérimentation menée autour des effets du guidage sur l’enseignement de la classification des êtres vivants en classe de 6ème.

Dans cette façon de représenter le monde vivant, le schéme de base est l’arbre de parenté ou arbre phylogénétique (Figure 32), arbre schématique montrant les relations de parenté entre des êtres supposés avoir un ancêtre commun.

Le principal objectif des deux études présentes est de mettre à l’épreuve ces théories. Il s’agit de montrer ici que l’acquisition de la classification phylogénétique est favorisée par une situation de guidage piloté par des techniques de l’information et de la communication, en comparaison à une situation d’apprentissage par la découverte.

194
Dans cet objectif, nous avons pris trois modalités de guidage pédagogique :

- Une modalité de guidage fort ou Guidage Directif : l’apprenant travaille sur un exemple résolu d’arbre de parenté. Il observe par le biais d’une simulation informatique la mise en place progressive des attributs liant différentes espèces du monde vivant jusqu’à la solution représentée par l’arbre de parenté.
- Une modalité de guidage intermédiaire ou Guidage Adaptatif : le participant va construire seul l’arbre de parenté par le biais d’une interface numérique en manipulant les attributs liant les différentes espèces vivantes de l’arbre de parenté. De plus, à chaque erreur commise dans le choix des attributs, un feed-back correctif informatique lui propose de revenir sur son choix.
- Une modalité Sans Guidage : le participant va également construire seul l’arbre de parenté sur l’interface numérique. Il choisit les attributs qu’il place un à un sur l’arbre et à l’issue de sa réalisation, on lui indique s’il a réussi ou non à construire l’arbre de parenté entre les différentes espèces vivantes.

Compte tenu de la quantité et de la complexité des connaissances à acquérir, une charge cognitive élevée devrait être liée à cet apprentissage. Il est donc attendu qu’un guidage fort se révèle, d’une part bénéfique pour diminuer la charge cognitive et, d’autre part, nécessaire pour engager l’apprenant dans son apprentissage.

Ces deux études ont un scénario expérimental en quatre phases : une phase d’apprentissage initial, une phase de post-test, une phase de conceptualisation et une phase de transfert. La phase d’apprentissage initial a été réalisée selon les trois modalités de guidage décrites précédemment. Pour les trois autres phases, les participants étaient engagés dans les mêmes modalités expérimentales. La première étude a pour support le monde végétal. La deuxième étude a pour support le monde animal.
8.1.6. La classification phylogénétique des végétaux : première étude

Dans la Phase d'apprentissage initial

Le nom des végétaux apparaissait en haut d'un arbre de parenté déjà construit Figure 33. Les attributs retenus pour établir les liens de parenté entre ces végétaux (le règne végétal, les graines, les spores, le fruit, la pomme de pin, la feuille, le thalle...) apparaissaient en bas à gauche de l'écran. Le temps pour apprendre à construire l'arbre en plaçant les attributs était fixé à 10 minutes mais l'écoulement du temps n'était pas indiqué aux participants.

![Figure 33](image)

Figure 33 : Etude III : arbre de parenté de la phase d'apprentissage initial

L'apprentissage de la classification phylogénétique des végétaux s'est fait selon trois modalités de guidage :

- Dans la condition **Guidage Directif**, le participant observait grâce à un logiciel informatique le placement progressif des différents attributs le long de l'arbre jusqu'à la construction finale de la parenté entre les dix végétaux proposés (Figure 34).
- Dans la condition **Guidage Adaptatif**, le participant disposait seul les attributs le long de l'arbre. Néanmoins, à chacun de ces placements, le logiciel informatique lui indiquait si la disposition choisie était correcte ou erronée (Figure 35).
• Dans la condition **Sans Guidage**, le participant disposait seul les attributs le long de l’arbre. Le logiciel informatique lui indiquait seulement à la fin si la classification phylogénétique établie était correcte ou erronée.

• Dans les trois conditions, le participant avait la possibilité de reconstruire l’arbre de parenté.

Figure 34 : Etude III : écran de solution permettant de revoir la démonstration dans la condition **Guidage Directif**

Figure 35 : Etude III : écran de feed-back correctif généré dans la condition **Guidage Adaptatif**

L’hypothèse générale de cette étude était de vérifier que le guidage pédagogique a un effet bénéfique dans l’apprentissage de la classification phylogénétique des végétaux. Il permettait non seulement une meilleure réussite mais aussi l’allègement de la charge cognitive relative à ce type d’apprentissage.

Cette étude, nous a montré que la classification phylogénétique était une connaissance difficile à acquérir et notamment, plus difficile à
acquérir que la connaissance de catégorisation des êtres vivants. Cette connaissance tente de remettre en cause aujourd’hui les organisations initiales du monde vivant fondées sur la catégorisation. En ce sens, son apprentissage est moins implicite et il requiert des efforts et de la motivation. Cette étude montre que la construction de l’arbre, support de la phylogénie était problématique et qu’il ne semblait pas opportun de laisser les élèves construire seuls ces arbres. Bien au contraire, il semblait nécessaire de leur fournir une instruction directe, guidée, pour les y aider et augmenter les chances de réussite de l’apprentissage. Pour ce qui était de la charge cognitive engagée dans ce type d’activité, elle est toujours élevée lorsque le participant demeurait sans guidage. À l’inverse, lorsque le participant était guidé, il bénéficiait des effets positifs de la modalité de guidage. La charge cognitive globale liée à la réalisation de la tâche était inférieure à la charge cognitive éprouvée en absence de guidage.

Cependant, au sein du guidage, il apparaissait des effets de la modalité de guidage sur la charge cognitive en fonction qu’il soit Directif ou Adaptatif. Ainsi, le Guidage Directif diminuait la charge cognitive au cours de la réalisation immédiate de la tâche. Néanmoins, à plus long terme, le travail réflexif imposé par la modalité Guidage Adaptatif semblait plus intéressant en termes de réussite mais aussi en termes d’abaissement de la charge cognitive, notamment de la charge cognitive intrinsèque.
8.1.7. La classification phylogénétique des animaux : deuxième étude

Dans la Phase d'apprentissage initial

Les modalités de l'étude sont identiques à la précédente étude. Seul le contexte de l’apprentissage change, il s'agit ici de créer des liens de parenté entre des animaux. Le nom des animaux apparaissait en haut d’un arbre de parenté déjà construit (Figure 36). Les attributs retenus pour établir les liens de parenté entre ces animaux (le règne animal, la coquille, l’hydro squelette…) apparaissaient en bas à gauche de l’écran.

![Figure 36 : Etude IV : arbre de parenté de la phase d’apprentissage](image)

L’apprentissage de la classification phylogénétique des animaux s’est fait selon trois modalités de guidage :

- Dans la condition **Guidage Directif**, le participant observait, grâce au logiciel informatique, le placement progressif des différents attributs le long de l’arbre jusqu’à la construction finale de la parenté entre les dix animaux proposés (Figure 37).
- Dans la condition **Guidage Adaptatif**, le participant disposait seul les attributs le long de l’arbre. Néanmoins, à chacun de ces placements, le logiciel informatique lui indiquait si la disposition choisie était correcte ou erronée (Figure 38).
- Dans la condition **Sans Guidage**, le participant disposait seul les attributs le long de l’arbre. Le logiciel informatique lui indiquait seulement à la fin si la classification phylogénétique établie était correcte ou erronée.
L’hypothèse générale de cette dernière étude était de vérifier que le guidage a un effet bénéfique dans l’apprentissage de la classification phylogénétique des animaux. Le guidage permettrait non seulement une meilleure réussite mais aussi, d’abaisser la charge cognitive globale relative à ce type d’apprentissage. Au sein du guidage, deux modalités (Directif et Adaptatif) ont été comparées pour voir quels étaient les types de charge cognitive affectés par la
diminution de la charge globale et voir ainsi, au regard des résultats, la stratégie de guidage qui semblait la plus adaptée.

Le Guidage Directif semblait ici la meilleure modalité d’enseignement-apprentissage pour ce type de connaissance. Il permettait par ailleurs de confronter l’apprenant à des problèmes d’une grande complexité. En ce sens, cette étude, tout comme la précédente, étayait l’idée qu’une connaissance complexe pouvait être le support d’un enseignement programmé par ordinateur pour aider un apprenant débutant.

Comme l’étude sur la classification phylogénétique de végétaux, cette étude également montrait la difficulté que représente l’acquisition de la connaissance de phylogénie et notamment, l’apprentissage de la construction l’arbre de parenté, support de la phylogénie. A nouveau, en incluant le rapport réussite sur coût, le guidage semblait une modalité d’apprentissage efficace. Néanmoins, c’est le guidage dans sa version Directif qui était le plus adapté à ce type de tâche car il était plus bénéfique par rapport à l’apprentissage par découverte, tant au niveau de la construction de l’arbre que de la conceptualisation de la phylogénie.

L’étude de la charge cognitive globale engagée dans ce type d’activité allait dans ce sens car elle était toujours élevée lorsque le participant effectuait la tâche sans aucun guidage. Le guidage du participant permettait de moduler les charges cognitives intrinsèque et extrinsèque et aidait l’apprenant à engager toute son énergie dans le traitement pertinent de la tâche.
8.2. **Apports pour la conclusion**

Les outils de l’information et de la communication offrent à l’enseignant la possibilité de faire évoluer ses pratiques pédagogiques. Ces outils peuvent être utilisés pour travailler sur le support d’apprentissage proposé aux élèves mais sont aussi le point de départ de scénarios « numériques » d’apprentissage. Ils nous offrent en outre une possibilité réelle de différencier l’apprentissage pour les élèves. Le guidage pédagogique s’inscrit dans cette thématique. Aujourd’hui, les travaux sur la pertinence du guidage mettent en avant la nécessité de prendre en compte le niveau d’expertise de l’apprenant et de l’adapter au but de l’apprentissage visé (Sweller, 1999). Selon Sweller et Levine (1982), le type de guidage dépend du format de la connaissance, les connaissances antérieures ne peuvent donc être ignorées dans la conception du guidage. Par exemple, dans le champ d’étude de la compréhension de texte, la cohérence du texte fournit un guidage qui favorise l’apprentissage pour des novices. Néanmoins, l’absence de cohérence améliore l’apprentissage des lecteurs ayant des connaissances préalables (McNamara, Kintsch, Butler-Songer, & Kintsch, 1996). Ainsi, il est d’autant moins utile de fournir de guidage que l’apprenant a de connaissances dans le domaine étudié. Quel que soit le type de connaissances antérieures, il est donc indispensable d’en tenir compte pour adapter la profondeur du guidage pédagogique à la nouvelle connaissance. Le guidage doit donc prendre une forme individuelle pour être efficace et doit nécessiter en amont la construction de scénarios de guidage proches des capacités et des connaissances de l’apprenant (Tricot,
2004). Ces scénarios de guidage différencié s’appuient sur le modèle de Paas (1992) et permettent de moduler le guidage proposé afin que l’apprenant :

- ne perde pas sa motivation du fait d’une mauvaise compréhension de la tâche à réaliser (Brown & Campione, 1994) ;
- ne fasse pas de faux départs dans son apprentissage ;
- acquiert davantage de connaissances en termes de quantité, du fait de la qualité du scénario pédagogique proposé (Moreno, 2004).
9. Le tableau blanc interactif, un instrument pour la classe de mathématiques ?

9.1. Présentation générale

Ce chapitre est extrait d’un travail de thèse en cours sur les usages du tableau blanc interactif (TBI) dans la classe de mathématiques. Cette dernière s’inscrit dans un contexte institutionnel dans lequel les forces politiques pesant sur le déploiement et l’usage des TBI au sein de l’environnement scolaire, qu’elles relèvent d’injonctions ou d’aides financières, ou encore d’influences exercées par les fournisseurs de la technologie TBI, ne peuvent être ignorées. L’approche instrumentale (Rabardel 99), (Rabardel et Pastré, 05) et ses développements récents en didactique des mathématiques (Trouche 05), (Drijvers et al. 10) en didactique des mathématiques constituent le cadrage théorique général de l’étude, en se situant plus particulièrement dans l’identification et l’analyse des mécanismes d’appropriation de l’outil TBI et de transformation de cet artefact en un instrument de travail mathématique dans la classe, et en tenant compte des spécificités d’une activité liée à l’apprentissage. Une étude quantitative liminaire, à grande échelle (500 répondants), et explorant différentes

64 Grégory Train, Enseignant de Mathématiques à l’ESPE Aquitaine, Université de Bordeaux, LDAR Paris 7
facettes de la pratique de l’outil, a été préalablement conduite. Le traitement statistique des données recueillies, étayé par une analyse de correspondances multiples (ACM) et renforcé par une classification hiérarchique (CAH), a alors permis d’exhiber cinq profils d’usagers de l’outil.

9.2. Enjeux et méthodologie de l’étude.

Nous étudions dans ce chapitre les pratiques médiées par la technologie TBI de six enseignants, à partir d’entretiens semi-directifs centrés sur les usages de l’outil et leur évolution. Les six enseignants retenus appartiennent à deux profils a priori contrastés du point de vue des usages et capables d’éclairer leurs discours par une expertise plus ancienne de l’usage des TUIC : le premier profil (catégorie 1) correspond à des enseignants ne disposant pas de l’outil à demeure dans la classe, et dont l’usage est épisodique, le second profil (catégorie 2) renvoie à des enseignants ayant pleinement intégré l’outil dans leurs pratiques et jugeant un enseignement sans lui dorénavant problématique.

Une étude précédente de la littérature existante et de l’objet technologique TBI ont mis l’accent sur un outil pédagogique principalement médié par l’enseignant et présentant des spécificités distinctives à plusieurs égards des autres outils TUIC d’apprentissage. En particulier, des problèmes instrumentaux spécifiques et des potentialités dans la gestion et l’orchestration des différents moments d’enseignement se sont révélés. L’étude des entretiens que nous faisons s’articule et interroge en conséquence deux dimensions spécifiques des usages de l’outil, la dimension instrumentale et la dimension orchestrative, avec une attention
particulière accordée au repérage d'évolutions, d'évolutions continues, ou encore de ruptures :

Concernant la dimension *instrumentale*, est repéré l'usage qui est fait des fonctionnalités offertes par le logiciel, la sélection et l'utilisation des ressources logicielles et les éventuels changements opérés au fil du temps. Ce sont à la fois l'adéquation et l'adaptation des fonctionnalités du TBI avec les besoins de l'enseignant qui sont examinées. Il s'agit également de repérer comment s'expriment les besoins instrumentaux des enseignants et quels leviers sont investis par les usagers pour y répondre.

La dimension *orchestrative* correspond, quant à elle, à la gestion globale de la classe et à son *orchestration* par l'enseignant. Est repéré l'agencement des artefacts présents dans la classe et son exploitation par l'enseignant. Les éventuels changements opérés dans la position et le rôle occupé par l'enseignant dans cet agencement ainsi que le rôle et les tâches assignés aux élèves sont examinés. Il s'agit de questionner ces schémas orchestratifs au regard des adaptations potentielles dans les tâches proposées aux élèves et de leur gestion (tâches habituelles ou nouvelles tâches d'apprentissage construites pour l'environnement).

Pour accompagner la lecture spécifique des dimensions *instrumentales* et *orchestrative*, nous avons mis au point différentes grilles de lecture déclinant un ensemble de descripteurs. Nous ne les détaillons pas ici et fournissons un exemple en annexe.

Une dernière dimension, qualifiée de *personnelle* est prise en charge à travers la construction d'un narratif des interviewés. Elle examine les conditions d'entrée et d'accès à l'outil, le rapport
entretenu avec les TUIC par chacun des usagers et plus largement, à travers notamment la proximité de ces enseignants avec d’autres institutions, les connaissances et conceptions des professeurs sur les mathématiques et sur la manière de les enseigner. Cette dernière dimension permet d’interroger l’existence de relations entre le parcours instrumental des enseignants, leur parcours orchestratif et leur vision de ce qu’est l’enseignement et l’apprentissage des mathématiques et du rôle qu’ils semblent assigner à la technologie dans leurs pratiques.

Nous présentons dans la suite certains éléments relatifs aux deux premières dimensions des usages de l’outil : concernant la dimension instrumentale, un premier résultat concerne les régularités au niveau des genèses d’usage. Ces régularités ne sont pas seulement internes à une catégorie donnée mais transcendent les catégories d’usagers et nous permettent d’identifier quatre phases dans la trajectoire instrumentale des enseignants.

Concernant la dimension orchestrative, si une certaine variabilité semble plus aisément s’installer dans les usages stabilisés, nous montrons l’existence d’une tension partagée dans les premiers usages construits de l’outil. Nous mettons également à jour une intention commune chez les usagers expérimentés d’inscription continuée de l’outil dans une gestion collective de l’étude et une recherche d’optimisation de cette gestion.

Nous montrons enfin comment la dimension personnelle permet de faire sens de certaines régularités et diversités observées chez deux enseignants expérimentés.
9.3. Résultats de l’étude

La dimension instrumentale

Le schéma ci-dessous présente les quatre phases de la trajectoire instrumentale des enseignants identifiées à partir des régularités trans-catégorielles et des points de convergence observées dans les genèses d’usage. Nous décrivons chacune d’elles brièvement.

![Schéma des phases instrumentales](image)

Figure 39 : Première phase : la phase « migratoire »

Cette première phase instrumentale consiste en la migration d’instruments anciennement installés dans la pratique des enseignants vers ce nouveau support. Le TBI devient un espace d’accueil de divers documents (énoncés d’activités, d’exercices, fiches de cours... etc) ainsi que de logiciels institutionnels, et en premier lieu, LGD et tableurs. Il libère ainsi l’enseignant de certaines contraintes (disponibilité du manuel, contrôle des logiciels devant la classe, etc...) et offre la possibilité d’annoter les différents éléments projetés à l’écran. Ce sont avant tout les outils d’annotation et de sélection qui interviennent dans cette phase. De plus, dans ce premier mouvement, les matériaux projetés sur le tableau sont très
proches des matériaux utilisés avant l'arrivée du TBI. L'héritage d'usages établis d'instruments plus anciens (tableau noir, vidéoprojecteur) vient peser sur les usages en construction, le TBI devant assumer simultanément les fonctions d'espace d'écriture et de vidéoprojection de divers matériaux. Ce processus de migration d'outils dans ce nouvel environnement à l'œuvre ici ne va pas nécessairement de soi, et soulève plusieurs problèmes instrumentaux : l'intégration des LGD, particulièrement symptomatique, avec le problème de la gestion simultanée au TBI de textes démonstratifs et de figures géométriques animées, l'espace de projection disponible jugé réduit ou encore les problèmes d'importation (format non supporté, etc...) de supports numériques plus anciens (fichiers textuels : word, openoffice, etc...) dans l'interface du logiciel du TBI.

Seconde phase : la phase «exploratoire» Elle consiste en une exploitation plus systématique des fonctionnalités de l'outil et en un essai de leur exploitation didactique. L'exploration de nouvelles fonctionnalités de l'outil, motivée par des arguments de découverte et de rentabilité, reste cependant encore localisée (fonctionnalités présentes dans la palette d'outils principale du logiciel et tournées vers l'annotation des contenus). Cette exploration systématique a un coût important, mais l'investissement conséquent consenti par les enseignants est soutenu par un gain d'expertise instrumentale directement quantifiable et des premiers effets repérés sur les élèves. Dans ce travail de recherche de niches d'usages des fonctionnalités disponibles un tri s'opère. Des régularités s'observent chez l'une et l'autre des catégories d'usagers : certains outils peinent à trouver une place pérenne (le spot, le zoom, etc...), l'outil
mémoire, dont les potentialités apparaissaient a priori grandes, ne demeure que faiblement exploité et loin d'ériger le TBI comme mémoire didactique de la classe.

Troisième phase : la phase «stabilisatrice» Repérée uniquement chez les usagers les plus avancés, cette troisième phase consiste en une stabilisation et une sécurisation instrumentale des usages. On observe chez chacun des usagers la constitution d'une palette d'outils privilégiée sur laquelle ils se centrent. Ce qui caractérise cette troisième phase, au-delà des variations existantes dans le choix des outils, est un spectre des fonctionnalités recentré sur des usages routiniers, un gain d'expertise dans le maniement de l'outil et des enseignants mieux préparés à la gestion d'éventuels problèmes instrumentaux. Des stratégies d'adaptation et de contournement sont par exemple mises en place et permettent de régler certains problèmes rencontrés, d'autres problèmes plus résistants (calibrage instable du tableau, etc...) sont des événements intégrés et assumés dans le quotidien de la classe et ne sont plus source d'inquiétude.

Quatrième phase : la phase «prospective» La quatrième phase consiste en une seconde exploration des fonctionnalités de l'outil, plus raisonnée en terme d'investissement. Elle a pour objet le développement d'usages non encore investis de l'outil, reposant sur l'intégration de ressources nouvelles et dans une certaine mesure inédites. Cette dernière phase instrumentale n'apparaît pas systématiquement actualisée dans les pratiques. Elle est envisagée comme perspective par les utilisateurs occasionnels de l'outil.
Cette première étude met à jour des points d'ancrage communs dans un parcours instrumental structuré et des catégories d'usagers clairement identifiées dans ce processus. Si de telles régularités apparaissent structurer la dimension instrumentale des usages, leur dimension orchestrative laisse vivre une plus grande variabilité. Quand est-il précisément ? Quelles sont les spécificités catégorielles relative à cette dimension ? Comment expliquer cette relative diversité ?

9.3.1. La dimension orchestrative

Une première tension orchestrative L'entrée du TBI dans la classe est globalement jugée synonyme d'une augmentation de la présence de l'enseignant au tableau, et en conséquence, des élèves engagés de manière synchrone dans une même tâche, tournés vers le tableau. Cette tendance des premiers usages est en cela conforme aux recherches anglo-saxonnes amiantes. Plusieurs raisons sont données pour expliquer cette possible inflexion vers un renforcement du collectif. Elles concernent d'une part les effets sur la classe et sa gestion, avec des avantages pointés sur la concentration et la motivation des élèves ainsi qu'une gestion facilitée de la classe et un contrôle de l’activité des élèves plus aisé. Elles concernent d'autre part les caractéristiques de l'outil lui-même : les fonctionnalités illustratives, jugées d'une prise en main aisée, permettent d'outiller plus facilement des usages collectifs du tableau et participent ainsi à alimenter une poussée vers plus de collectif dans la classe. Par ailleurs, apparaissent dans le discours des enseignants des écueils d'une telle tendance : la position renforcée du professeur au tableau dirigeant le logiciel est vue également
comme pouvant altérer l'engagement des élèves dans les tâches d'apprentissage. Sortir de cette première tendance orchestraative reste cependant délicat, et ceci même pour des enseignants sensibilisés à de tels écueils.

Les arguments avancés dans la littérature anglo-saxonne pour justifier ce renforcement du collectif consistent à souligner que l'entrée dans l'usage du TBI se fait dans la continuité de pratiques existantes, elles-mêmes teintées de collectif, cette tendance étant appelée à s'amoindrir au cours du processus d'intégration de l'outil dans les pratiques. Pour notre part, plus qu'une tendance, c'est possiblement l'existence d'une tension que révèle également cette première étude à travers des enseignants interviewés par ailleurs vigilants à ne pas renforcer cette inflexion vers plus de collectif. Cette tension est alimentée à la fois par des bénéfices immédiats dans la gestion de la classe et par des premières fonctionnalités illustratives de l'outil facilement accessibles. Sa résolution nécessite une prise de conscience des écueils possibles et un travail de conception substantiel. Elle passe en particulier chez certains enseignants par la renégociation explicite du contrat de classe ambiant.

Cette première tendance révélée, la question de savoir comment elle se traduit dans les évolutions possibles des usages se pose. Quelles pratiques constituées semblent ne pas réduire l'outil à une fonction ostensive ? Quelles sont les recherches d'optimisation conduites dans la gestion du collectif avec l'outil ? Pour aborder ce questionnement, nous avons été amené à qualifier la diversité des usages faits de l'outil par l'une et l'autre des catégories d'usagers. Dans la continuité des travaux de (Drijvers, 10), et en prenant en
considération les spécificités de l’outil TBI, nous avons conduit ce travail en terme de repérage de schémas orchestratifs et définit un quadruplet caractéristique de ces schémas : les famille de ressources utilisées en distinguant cinq familles différentes, les moments didactiques de l’étude, les configurations didactiques qui renvoient à l’agencement des artefacts dans la classe et la position de l’enseignant induite par cet agencement, et les modes d’exploitation qui correspondent à l’exploitation par l’enseignant de la configuration didactique pour mettre en scène la classe et ses intentions didactiques. Nous proposons dans ce qui suit l’examen des répertoires orchestratifs catégoriels à partir des familles de ressources constituées.

Ressources communes aux deux catégories et schémas orchestratifs associés. Deux premières familles de ressources, communes à l’ensemble des usagers trouvent un terrain d’accueil favorable et pérenne dans les premiers usages construits de l’outil : celle intégrant un logiciel institutionnel et celle constituée de ressources dupliquant les documents mis à disposition des élèves. Ces ressources correspondent à une migration de lieu de ressources par ailleurs exploitées dans des pratiques antérieures : les logiciels institutionnels migrant de la salle informatique à l’écran du TBI, la documentation des élèves se dupliquant dans ce nouvel espace de travail. Des arguments partagés en faveur de ce mouvement concernent la centration de l’attention de la classe sur une unique référence commune, la libération de contraintes matérielles (livre, etc...) ou encore l’économie de l’écrit au tableau. Mais au delà de ce trait commun, des spécificités catégorielles se dessinent. Elles tiennent à la fois aux moments de l’étude
impliquées et aux modes d'exploitation établis. Plus précisément, chez les usagers de la première catégorie, une amélioration de la gestion didactique de ces ressources est visée et sert prioritairement la dévolution de l'étude et son exploration collective : le fait de disposer d'une ressource projetée annotable et identique à celle des élèves permet plus aisément de s'assurer de la compréhension par tous des consignes, de questionner la classe et d'apporter toute information complémentaire nécessaire. Les possibilités offertes par les LGD (aspect dynamique, etc...) permettent d'explorer collectivement une situation géométrique, d'assurer la dévolution des tâches mathématiques à accomplir ou encore de tester la validité d'une conjecture. Les moments de correction, quant à eux, apparaissent moins investis que les moments de présentation d'un travail à la classe. Le TBI est alors cantonné à un espace d'écriture. La redondance fonctionnelle d'avec le tableau noir et les difficultés éprouvées dans la gestion de l'espace disponible expliquent cette sous-représentation orchestrative. Chez les usagers de la seconde catégorie, un investissement plus global des différents moments de l'étude et un enrichissement des modes d'exploitation se dessinent : l'usage conjoint du TBI et d'un LGD et l'intégration de copies d'écran du LGD dans la synthèse permet d'assister les moments de correction d'un travail géométrique. Les potentialités spécifiques résident ici dans la possibilité de faire coexister et d'accompagner les changements et transitions, dans un même espace commun, entre différents points de vues, cadres et registres de représentations d'un même problème. Les moments d'institutionnalisation sont également plus aisément investis. Les modes d'exploitation décrits
visent à impliquer la classe dans l'élaboration de l'institutionnalisation. Par exemple, les ressources intégrant la présence de «textes à trou» permettent une économie de l'écrit au tableau et évitent de limiter l'activité de l'élève au seul travail de recopie. La tâche d'annotation du tableau laissée à la charge des élèves permet ainsi à l'enseignant de gérer et contrôler l'activité dans la classe. Aussi, des éléments de texte déplaçables et à réorganiser par les élèves au tableau poursuivent les mêmes objectifs. Cependant, une tendance allant vers l'abandon de ces techniques, qualifiées de "rigide" et difficile à adapter aux besoins spécifiques des élèves apparait au profit d'une institutionnalisation construite conjointement avec les élèves et manuscrite au TBI, jugée plus "flexible". Un schéma orchestratif exclusif à cette catégorie, avec une part ostensive plus marquée dans le mode d'exploitation est repéré : il s'agit d'assister collectivement les genèses instrumentales des élèves d'outils institutionnels (LGD, tableurs, etc...). Cette construction collective d'une première expertise du maniement de ces outils est annoncée comme une réponse aux problèmes d'instrumentation rencontrés par les élèves et leur gestion individuelle par l'enseignant lors de séances conduites en salle informatique. Les schémas ci-dessous synthétisent les moments de l'étude investis à partir des deux familles de ressources communes pour chacune des catégories.
Qu'en est-il des autres ressources instrumentées par les usagers expérimentées ? Quels modes d'exploitation sont privilégiés ? Quels moments de l'étude ? Nous examinons dans la suite les ressources spécifiques de ces usagers et les schémas orchestratifs associés.

Ressources spécifiques aux usagers expérimentés et schémas orchestratifs associés. Trois familles de ressources sont spécifiques de la catégorie des usagers expérimentés : la première correspond à des ressources exploitant la trace du travail des élèves, la seconde est constituée de ressources permettant la simulation de l'action du matériel à disposition des élèves, la troisième famille renvoie à des ressources intégrant l'usage d'animation et autres logiciels non-institutionnels.
Exemples de représentants de la troisième famille de ressources

Différentes productions d'élèves ont été préalablement scannées et intégrées dans l'environnement du logiciel du tableau.

Ici, c'est le travail de différents élèves qui a été préalablement annoté au tableau et regroupé sur une même page du tableau.

Différentes tendances se dégagent clairement : un enrichissement des modes d'exploitation d'une même ressource : par exemple, en rendant accessible à tous des productions d'élèves, différentes intentions sont poursuivies : du simple examen d'un travail d'élève afin de fournir des éléments de correction à la classe, à l'étude de différentes productions choisies par l'enseignant pour débattre de la portée d'une technique ou institutionnaliser une nouvelle connaissance.

Une recherche d'optimisation de ces modes d'exploitation dans la gestion du collectif : en examinant par exemple plus finement le schéma orchestratif précédent, la nécessité pour le professeur de disposer des travaux des élèves en amont de l'étude pour construire la ressource est pointée (on parlera dans ce cas de publication asynchrone). En l'absence d'une telle disponibilité, différentes techniques permettant la publication de ces travaux de manière synchrone à l'étude sont mises en place : envoyer successivement des élèves au tableau et regrouper ces derniers sur une même
page du tableau, charger un groupe d'élèves de travailler directement sur l'espace du tableau pendant que le reste de la classe conduit la même étude de sa place (à leurs bureaux) ou encore faire l'usage d'un appareil photo ou d'un scanner pour numériser les travaux des élèves. Ces techniques doivent cependant composer avec certains écueils repérés (chronophage), potentiellement démobilisatrice (travaux rendus publics trop tôt dans le déroulement de l'étude) ou encore problématique pour certains élèves (rendre publics des travaux privés).

La conception de ressources permettant de soutenir "continulement" l'étude : les ressources reproduisant virtuellement le milieu matériel à disposition des élèves et offrant la possibilité de simuler les moyens d'actions sur ce même milieu sont ainsi exploitées pour servir différents moments de l'étude. En permettant de présenter le milieu et les moyens d'actions sur celui-ci, ces ressources participent à la dévolution de la situation. Les actions des élèves sur le milieu peuvent être reproduites au tableau. Cette possibilité permet une régulation de l'étude, en accédant aux intentions que recouvrent ces actions, en les discutant collectivement et en rendant nécessaire leurs justifications.

L'efficacité d'apposer l'institutionnalisation à la ressource réside dans la possibilité offerte ultérieurement de pouvoir convoquer et recontextualiser les connaissances construites en s'appuyant sur l'évocation de la ressource. La conception de telles ressources nécessite cependant des connaissances instrumentales fortes qui vont de pair avec la complexité du milieu matériel à reproduire et simuler.
L'utilisation de nouvelles ressources permettant d'élargir l'éventail des moments de l'étude impliquant le TBI : animations reproduisant une construction géométrique instrumentée, vidéos détaillant les étapes d'un algorithme de calcul posé sont des exemples de ressources mises à contribution dans les moments de construction et d'institutionnalisation d'une technique mathématique. Si la projection collective de ces savoir-faire semble recouvrir un potentiel monstratif fort, des précautions semblent prises dans les modes d'exploitation construits afin de ne pas limiter l'activité de l'élève à une reproduction mimétique de ce qui est vidéoprojeté : d'une part, la possibilité de pouvoir allier un geste, sa description et sa réalisation devant la classe est pointée. Cette potentialité est jugée particulièrement efficiente pour accompagner les apprentissages instrumentaux. D'autre part, ces ressources sont vues également comme pouvant constituer un point de départ d'un travail de justification mathématique des techniques données à voir à la classe.

Apparaît ainsi une première catégorie d'usagers pour laquelle l'outil TBI, utilisé de manière épisodique, vient soutenir des moments de l'étude que l'on pourrait, d'une certaine façon, qualifier de "naturalisés" (présenter un travail, corriger un travail, etc...) et ceci de manière segmentée. Le discours des enseignants de la seconde catégorie, plus expérimentés et faisant un usage quotidien de l'outil, permet d'entendre un raffinement dans les moments de l'étude impliquant l'usage du TBI, une inscription "continuée" du TBI dans une gestion collective de l'étude et une recherche d'optimisation dans cette gestion. Des spécificités internes, entre les usagers, existent cependant. En faisant intervenir la dimension
personnelle dans l’analyse, le paragraphe suivant permet d’éclairer certaines spécificités des usages et de leurs trajectoires.

9.4. Usagers expérimentés et spécificités des usages.

Nous examinons dans cette section les spécificités des usages de l'outil TBI de deux enseignants expérimentés, au regard de leur profil spécifique et en particulier de leurs conceptions de l'enseignement des mathématiques et du rôle qu'ils assignent à la technologie.

Une tendance ostensive assumée en réponse à des problèmes spécifiques chez Murielle Enseignante au collège, Murielle entame cette rentrée scolaire une huitième année d'utilisation quotidienne de l'outil TBI. L'usage des TUIC, et notamment des logiciels institutionnellement plébiscités est une pratique durablement installée chez cette enseignante convaincue de l'intérêt qu'ils présentent dans son enseignement. L'arrivée du TBI a d'ailleurs permis de naturaliser le recours à de tels logiciels. Ils peuvent aujourd'hui venir, en fonction des besoins, parfois non prévus, enrichir l'étude. Pour Murielle, le TBI n'est pas vu comme un vecteur de motivation des élèves et globalement, dans la pratique de cette enseignante, l'outil est présenté comme d'abord pour l'enseignant. Ces sont des arguments de confort (libérée de contraintes matérielles : livres, etc... - possibilité d'annotation directe sur différents supports - gestion de l'attention des élèves, etc...) qui priment et qui ont pour visé une amélioration de la gestion du collectif. Usage des TUIC, confort d'enseignement et meilleure gestion du collectif orientent ainsi en partie la construction du
paysage orchestratif de l'outil. L'intersection de ces trois tendances nourissent l'apparition de nouvelles formes orchestratives marquées par l'ostension, le TBI étant par exemple utilisé à des fins de démonstration des fonctionnalités des logiciels. Et même si ces usages spécifiques développés par cette enseignante sont jugés comme pouvant être problématique, ils répondent d'une part à des arguements de confort résistants : "il faut aller en salle multimédia, il faut se déplacer alors que c'est tellement confortable de rester dans la salle". Ils sont d'autre part vus comme une réponse au caractère problématique de la gestion de la co-construction des connaissances instrumentales et mathématiques que posent ces environnements logiciels dans des configurations d'usage en salle multimédia. : "Je n'envisage pas d'emmener des élèves en salle multimédia utiliser un outil tableur ou LGD si je ne leur ai jamais montré avant"

9.5. **Des choix didactiques pesant sur la construction du paysage orchestratif chez Bernard.**

Utilisateur de l'outil depuis deux années, Bernard est membre d'un groupe académique chargé de promouvoir l'usage des TUIC dans l'enseignement des mathématiques. C'est un usage raisonné des TUIC, qui doit nécessairement viser des apprentissages mathématiques que Bernard veut proposer dans son enseignement. Plus largement, l'apprentissage pour cet enseignant se réalise en situation de résolution de problème, et un schéma réglé : la dévolution du problème se faisant à la fois à chacun des élèves qui doit, seul, se mettre à la tâche, et à l'ensemble des élèves dont les
échanges, les explications, les argumentations permettent aux uns et aux autres d'affiner leur raisonnement et au groupe de produire des hypothèses et des réponses auxquelles chaque élève, pris individuellement, n'aurait pas eu accès. Contrairement à Murielle, le TBI est vu comme un espace partagé entre le professeur et les élèves et son intégration dans la classe ne doit pas être synonyme de pratiques ostensives. La construction du paysage orchestratif de l'outil se fait ainsi chez Bernard en soutien de pratiques professionnelles éprouvées et questionnées sous l'angle de la pertinence pédagogique. Ce processus est en particulier visible dans le discours de cet enseignant avec le passage en revue et l'attribution de fonctionnalités didactiques aux différents outils présents dans l'interface du logiciel du tableau. Les apports identifiés relèvent de différents ordres : un amélioration de la gestion de certains moments d'apprentissage (la possibilité de garder la trace du travail de l'élève est rapprochée d'une gestion améliorée des moments de synthèse), un apprentissage facilité de certains concepts (l'usage conjoint du TBI et des LGD est rapprochée des possibilités offertes de changements de cadres, et de conversion de registres de représentation de concepts enseignés), ou encore des possibilités augmentées de répondre favorablement à une prescription institutionnelle de "travail dans le réel". Ce processus de construction reste long et disqualifie pour l'heure certains schémas orchestratifs ou encore certaines ressources : par exemple, la possibilité de projection de certains savoir-faire au TBI est regardée avec précaution par Bernard, faire des mathématiques ne devant, pour lui, ne pas limiter à la reproduction de mimétisme.
Figure 42 : Paysage orchestratif constitué chez Murielle

Figure 43 : Paysage orchestratif constitué chez Bernard

224
9.6. **Bilan de l’étude**

Nous résumons dans cette section les principaux résultats mis à jour et dressons un rapport d’étape de l’étude.

Des trajectoires d'usage de l'outil qui tiennent compte des écueils potentiels du monstratif.

Si les premières fonctionnalités de l'outil sont repérées comme pouvant favorablement outiller une tendance vers plus de collectif dans la classe, l'inflexion vers un resserrement du spectre des pratiques, investissant les potentialités monstratives de l'outil n'apparaît pas un passage obligé

. L'arrivée du TBI n'est pas synonyme de l'introduction dans les pratiques d'une faune de logiciels tournée vers la communication du savoir, ceci constitue une première distinction avec la situation anglo-saxonne décrite dans la littérature. Différentes tendances semblent par ailleurs s'installer progressivement : une recherche d'optimisation de la gestion des moments de collectif, une recherche d'inscription de l'outil dans un éventail large de moments de l'étude et un aménagement de plans de travail individuels des élèves qui leurs préservent une activité cognitive en dehors des seuls moments conduit collectivement avec l'outil.

9.6.1. **Des problèmes instrument aux faisant obstacle à la diversité.**

Trajectoire instrumentale et trajectoire orchestrative apparaissent fortement corrélées. En particulier, le processus migratoire d'anciennes ressources dans ce nouvel environnement, s'opérant dans les premiers temps d'usage, s'accompagne de problèmes
instrumentaux à régler (place disponible, gestion de l'écriture, etc...). La coexistence du TBI et du tableau dans la classe et la gestion de leur complémentarité apparaît une nécessité pour accompagner ce premier processus. Cette nécessité se heurte cependant à des stratégies d'équipements d'établissement parfois orthogonales.

9.6.2. Adaptations spontanées, adaptations ultérieures

Les adaptations spontanées de l'outil apparaissent suivre un mouvement commun consistant en la migration de ressources existantes dans ce nouvel environnement et outillant des moments de l'étude naturalisés (présentation d'un travail, conduite de sa correction, etc...). Au sein de l'institution secondaire, dans laquelle l'usage des LGD et tableurs relève du discours injonctif, et pour des enseignants qui s'y conformeraient, de tels logiciels trouvent un terrain favorable d'accueil au sein du TBI, offrant un contrôle plus aisé au tableau et des possibilités nouvelles d'annotation de ces supports. Les adaptations ultérieures de l'outil apparaissent suivre une trajectoire commune, tout du moins dans les intentions, et consistent, en revisitant des pratiques anciennement installées, de trouver des niches d'usage aux différentes fonctionnalités de l'outil. Il s'agit de tendre vers un élargissement des moments de l'étude impliquant le TBI et une amélioration de leur gestion collective.
9.6.3. Des schémas orchestratifs qui soulèvent des questions

L’usage conjoint du TBI et des LGD apparaît pouvoir accompagner l’étude de problèmes géométriques : leur exploration, la formulation de conjectures ainsi que les nécessaires changements de points de vues, cadres et registres de représentation d’un même problème. Ce sont les possibilités de susciter des questions et développer des activités de mathématisation, de motiver des généralisations ou bien encore d’engager l’étude de problèmes plus complexes qui sont exploitées. Si ces schémas orchestratifs émergeants accompagnent l’entrée dans la classe de problèmes géométriques à certains égards renouvelés, ce mouvement est décrit comme se faisant parfois au détriment de l’étude de ces problèmes qui pouvait exister par ailleurs dans d’autres configurations telles que celles en salle informatique, sur laquelle pèsent diverses contraintes (disponibilité, continuité de l’enseignement, gestion de l’accompagnement des élèves dans l’instrumentation des logiciels, etc...). Ce changement d’habitat des situations, de la salle informatique vers la classe, n’est pas sans questionner les conséquences sur l’activité mathématique et instrumentée résiduelle des élèves. L’arrivée du TBI comme levier d’introduction des TUIC dans les pratiques est une attente institutionnelle qui gagnerait ainsi à être nuancée.

9.6.4. Des premières tendances orchestratives qui pèsent sur le contrat de classe.
Les premières adaptations spontanées de l’outil rencontrent des problèmes instrumentaux liés à la place disponible offerte par le TBI et à la gestion de l’écriture manuscrite au tableau. Les adaptations ultérieures semblent se tourner vers une certaine spécificité des ressources construites par l’outil. Ceci n’est pas sans questionner le statut de ce nouvel outil dans la classe, qui dès lors, ne semble pas hériter uniquement de celui de lieu de savoir dont disposait le tableau noir (Robert, Vanderbrouck, 02) et de sa (re)négociation. La question est ici de la gestion conjointe du discours, du geste et de l’écriture dans ce nouvel environnement et plus largement celle du travail sémiotique à l’œuvre en conséquence.

Concernant les potentialités de mémorisation offertes par le TBI, elles n’apparaissent que faiblement outiller la construction d'une mémoire didactique de la classe. La gestion de cette mémoire reste à la charge de l'enseignant et n'apparaît pas facilement dévolvable à l'outil. Ces potentialités semblent trouver pour l'heure leur pertinence dans la reprise d'un cours à l'autre mais surtout comme moyen pour l’enseignant de revisiter le travail conduit d’une année sur l’autre dans une perspective d’amélioration.

Dans cette première étude, l'idée, parfois installée dans le domaine des technologies dans l’enseignement, d’une tendance à faire presque exactement les mêmes problèmes et activités qui étaient faits sans technologie et de façon très similaire, apparaît à nuancer. En particulier, chez les usagers les plus expérimentés de l’outil, s’affirme une tendance à revisiter leurs pratiques et à investir, à travers les contraintes qui pèsent sur l’outil et les marges de manœuvre dont ils disposent, des niches d’usage du TBI. Et cette tendance n’est pas guidée que par des préoccupations d’ordre
technique mais également par des considérations sur l'enseignement de leur discipline.

Enfin, soulignons que si un premier résultat est une tendance vers un renforcement du collectif, et des schémas orchestratifs engageant principalement le collectif classe dans une tâche commune, les modes d'exploitations de ces différents schémas montrent également que, dans ce collectif augmenté, des variantes existent et ne s'accompagnent pas nécessairement d'un appauvrissement du collectif en terme d'enseignement et d'apprentissage. Autrement dit cette tendance n'embarque pas nécessairement une moins value didactique, et la qualification d'ostensif de ces pratiques est prématuè et à raffiner : l'existence de micro-contrat de participation dans un cours dialogué, un travail joint au sens de l'action conjointe laissant toute sa place aux élèves dans une action conjointe enseignant-élèves sont également à l'œuvre. Les grilles d'analyse construites pour conduire l'étude du paysage orchestratif de l'outil permettent sans équivoque de souligner ce dernier point et constitue nous semble t'il un premier résultat raffiné des études anglo-saxonnes d'ores et déjà conduites sur le sujet.
Annexe Tableau 7 : Grille de lecture

<table>
<thead>
<tr>
<th>Exploitation de l'écosystème numérique</th>
<th>Usages</th>
<th>Formes d'exploitation</th>
<th>Adressage</th>
<th>Fonctions</th>
<th>Spécificités</th>
</tr>
</thead>
<tbody>
<tr>
<td>partagé entre l'enseignant et les élèves</td>
<td>essentiellement par l'enseignant</td>
<td>centré sur l'enseignant (explication guidée par le tableau, mise en regard de ce qui se passe au TBI avec d'autres supports...)</td>
<td>en direction de la classe en direction d'un groupe d'élèves</td>
<td>présenter une nouvelle consigne à la classe conduire l'exploration d'un problème au tableau réguler le travail de la classe corriger un travail conduit en classe exhiber une nouvelle technique</td>
<td>variantes de pratiques déjà en place pratiques spécifiquement liées aux particularly et spécifiques liées aux outil TBI</td>
</tr>
<tr>
<td>essentiellement par les élèves</td>
<td>centré sur les élèves (discussion organisée autour de ce qui se passe au tableau, utilisation par l'élève du TBI pour exposer un travail...)</td>
<td>en direction d'un élève particulier</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nous identifions en premier lieu si le TBI est un espace partagé ou non par les acteurs de la classe.

Nous repérons ensuite les formes d'exploitation décrites de l'outil. Nous distinguons celles plutôt centrées sur l'enseignant (papier, livre, tableau noir, etc...) de celles plutôt centrées sur les élèves même si l'enseignant demeure le directeur de l'étude, une place plus importante est accordée aux élèves.

Nous examinons ensuite si ces formes d'exploitation sont dirigées vers l'ensemble classe, vers un groupe d'élèves ou encore un élève en particulier.

Nous repérons enfin les fonctions que semblent assumer ces formes d'exploitation dans le travail de la classe. Nous recherchons en particulier s'il s'agit de : présenter une nouvelle consigne à la classe - conduire l'exploration d'un problème au tableau - réguler le travail de la classe - corriger un travail conduit en classe - exhiber une nouvelle technique, éventuellement instrumentée, sans écarter d'autres fonctions possiblement décrites par les enseignants.

Nous repérons enfin le degré de spécificité technologique des formes d'exploitations repérées en distinguant celles qui peuvent être vues comme des variantes de pratiques d'enseignement déjà en place et celles qui seraient plus spécifiquement liées à l'usage de l'outil TBI.

Notons enfin que dans ce travail de recensement des formes d'exploitation de l'outil en classe, nous repérons les évolutions : abandon de certaines formes au fil de l'usage, formes d'exploitation privilégiées par rapport à d'autres...
10. Détournement d’un réseau socio-numérique pour l’école : Twitter comme micro-format d’apprentissage

10.1. Introduction

Dans le contexte de l’apprentissage, l’internet, dans ses dimensions ludiques et communicationnelles, fait partie du quotidien des élèves et des étudiants. Les politiques de développement du numérique à l’école se sont longtemps centrées sur les équipements et les ressources, les environnements de travail (les ENT, les plateformes de formation à distance) fermés, contrôlés et protégés. Cette sanctuarisation évacue partiellement la dimension sociale des apprentissages, qui se font de façon formelle à l’école mais aussi de façon informelle dans la famille, avec les pairs, dans la rue, dans l’internet. Le numérique permet une socialisation cognitive, en ce qu’il organise une représentation formatée des interactions sociales liées aux apprentissages et l’intÉgration de normes sociales et scolaires. La socialisation cognitive est habituellement assurée par la famille, l’école, les pairs mais également par les médias. Et si les médias traditionnels, intégrés depuis longtemps à l’école, relèvent plutôt de processus de réception et de consommation, les médias numériques ajoutent des processus d’échange et de création souvent liés à la consommation, ainsi que, parfois, des processus computationnels de création de

69 Anne Lehmans, MCU 71ème section Université de Bordeaux
connaissances autour de l’outillage technologique que constituent les technologies de l’information.

Les réseaux socio-numériques caractéristiques du web 2.0, occupent une place particulière dans ce paysage. Le web 2.0 marque le passage de la communication "one to many" propre aux médias traditionnels que l’on retrouve dans le modèle de la relation magistrale de l’enseignant à ses élèves, à la communication "many to many" que l’on trouve dans les modèles pédagogiques basés sur les échanges entre pairs et la pédagogie de projet, le passage de l’interactivité à l’interaction et du partage de l’information au partage des savoirs. L’internet et le web 2.0, grâce aux apports de technologies de services facilitant les relations et la participation, ont permis l’émergence de ces réseaux socio-numériques définis par (Boyd et Ellison, 2007) comme reposant sur des sites qui permettent aux individus de se construire un profil public ou semi-public dans un système inter relié, d’articuler ce profil avec des listes d’autres utilisateurs qui eux-mêmes partagent l’information et les profils. Si les relations formelles à l’intérieur de ces réseaux font l’objet d’études nombreuses, la question de leur effet sur les apprentissages est beaucoup moins analysée. L’interprétation du phénomène d’explosion des réseaux socio-numériques peut être double, comme l’indique (Mercklé, 2011). D’un côté, une vision «technophile» enchantée, faisant d’Internet le moteur de l’avènement d’une société globale plus ouverte, démocratique, fraternelle, égalitaire, et de l’autre une vision «technophobe», faisant

232
au contraire d'Internet un ferment de destruction ou de nivellement des valeurs et de destruction du lien social.

Nous proposons de vérifier l'hypothèse selon laquelle la manipulation d'outils des réseaux socio-numériques et les pratiques informationnelles qu'elle engendre permettent la mise en place de processus efficaces d'apprentissage en favorisant la collaboration à travers les liens sociaux réels tissés sur des processus d’écriture croisée, de recherche collaborative d’information et la médiation des enseignants. Les théories socio-constructivistes73 ont posé les prémisses d'un usage des réseaux socio-numériques comme vecteurs d'apprentissages. L’anthropologie de la technique74 développée notamment par Leroi-Gourhan, Simondon puis Stiegler, entre autres, a montré l’importance du lien entre culture, savoirs et techniques. Dans ce cadre, la prise en compte du format anthropotechnique de l'apprentissage est essentielle. Nous formons l’hypothèse que le format imposé par Twitter contient des potentialités communicationnelles et expressives propices aux apprentissages liées à ses caractéristiques techniques d’une part, à sa dimension sociale d’autre part. Ces potentialités sont activées grâce à un détournement de la logique d’usage, qui permet, comme le montre Perriault, de construire des usages non pensés par les créateurs des objets techniques mais efficaces, une instrumentation technique des apprentissages dans des systèmes qui ont avant tout une fonction communicationnelle. Mais ce format ne trouve son efficacité que dans le cadre d’un dispositif qui inclut la médiation de l’enseignant.

Nous avons mis en place un projet pédagogique dans lequel les étudiants sont chargés de mener sur le long terme une veille informationnelle sur un domaine ou un thème précis selon une procédure maîtrisée et avec des outils collaboratifs non spécialisés, et de diffuser les résultats de cette veille avec des exigences proches de celles du monde professionnel dans lequel ils s’apprêtent à entrer. Nous avons ensuite évalué ce projet avec une enquête qualitative et quantitative sur les usages et les contenus informationnels produits. Le projet met en relief les conditions d’émergence et d’efficacité des apprentissages collaboratifs ainsi que les possibilités d’innovations pédagogiques et organisationnelles qui peuvent contribuer à un renouvellement des pratiques d’enseignement à l’université. A partir de cet exemple, une typologie des usages des réseaux socio-numériques peut être proposée.

10.2. Outillage technologique, contexte social d’apprentissage et construction de communautés

Une technologie doit toujours être considérée dans la dimension de ses usages, sur les plans matériel et symbolique, individuel et social\(^{75}\), comme dans celle de ses effets, du point de vue cognitif. Le numérique fournit un outillage qui accompagne la construction des représentations de la réalité et, dans notre cas, des connaissances à acquérir, mais un outil structurant, comme l’a montré notamment (Rabardel\(^{76}\), 95) qui développe également l’idée de genèse instrumentale, selon laquelle l’instrument fait naître une nouvelle

forme de créativité. Le cadre de fonctionnement (savoirs et savoir-faire mobilisés dans l’activité technique et les apprentissages) engendre un cadre d’usage (types d’activités et significations sociales construits à partir d’une technique proposée) (Flichy77, 08) qui peut permettre à la communauté de s’épanouir.

\textbf{10.2.1. La création d’une communauté : les avantages d’un espace limité pour un travail collaboratif}

L’analyse des réseaux sociaux est un courant de la sociologie qui s’est imposé depuis Georg Simmel, considérant celle-ci essentiellement comme science des structures des relations sociales, formaliste, dualiste, puisant dans la théorie mathématique des graphes 78. Elle est utilisée dans les travaux sur les organisations en marketing notamment, qui s’intéressent aux structures des réseaux sociaux et aux phénomènes d’influence qui s’y jouent. Parallèlement, les sciences de la gestion ont fait émerger le concept de communauté de pratique. Une communauté de pratique est constituée d’un groupe d’individus qui interagissent, construisent des relations et développent progressivement un sentiment d’appartenance et un engagement mutuel (Wenger et al., 02)79. Cette notion d’engagement est centrale et correspond à un processus reposant sur la participation active des individus, la dynamique des interactions sociales et sur la conscience d’appartenir à un groupe. Selon (Wenger, 98)80, trois dimensions

80 Wenger, E. (1998). Communities of Practice: Learning, Meaning and Identity, Cambridge University Press
permettent de caractériser une communauté de pratique : l’engagement mutuel (mutual engagement) qui est à l’origine d’une forme de cohésion sociale reposant sur la capacité des individus à partager leurs connaissances, une entreprise commune (joint enterprise) au cours de laquelle des actions sont négociées collectivement dans le but de satisfaire un objectif partagé par les membres de la communauté, un répertoire partagé (shared repertoire) qui combine un ensemble de ressources mobilisables par la communauté (routines, procédures, outils, symboles, concepts, etc.). Ces ressources pourront être remobilisées dans de nouvelles situations, assurant ainsi une continuité aux pratiques (Chanal, 00)\(^{81}\). (Cox, 05)\(^{82}\), en comparant quatre travaux liés à l’analyse des communautés de pratique, distingue les modèles en fonction de concepts clés comme les dispositifs d’apprentissage, le pouvoir et la gestion des conflits et du changement, le formalisme dans l’organisation, et la diversité des statuts des membres de la communauté et de leurs relations (égalitaire ou inégalitaire).

Le suivi sur quatre années de groupes d’étudiants en Master Documentation et systèmes d’information, issus de cursus de formation très hétérogènes, autour de projets de recherche, veille, diffusion de l’information et gestion des connaissances, montre l’efficacité de l’usage des réseaux socio-numériques, et notamment Twitter dans la construction d’une communauté de pratiques voire de savoirs et dans l’appropriation de connaissances par les étudiants, non plus dans une dynamique d’empilement mais dans une démarche de construction collective qui passe par la recherche

\(^{81}\) Chanal V. (2000). La structuration d’un projet d’innovation par la communication électronique, Actes de la 9ième Conférence de l’AIMS, Montpellier, mai

d’information, l’écriture et le partage. Dans notre projet, l’intégration
de la pratique des réseaux sociaux dans la formation des étudiants
s’est faite en plusieurs étapes. Il s’agissait, en premier lieu, de poser
un cadre d’apprentissage communautaire favorisant les usages
collaboratifs de partage de lecture d’abord, puis de recherche
d’information et enfin d’écriture. C’est donc bien la communauté de
pratiques qui est visée dans un premier temps, puis le passage à la
communauté d’apprentissage.

Le cadre de départ se situe dans l’espace fermé et maîtrisé de
l’ENT qui permet de mettre en place dès les débuts de toutes les
formations des habitudes de lecture de documents déposés par les
enseignants, de dépôt des travaux, de correction mutuelle et de
partage. Ces habitudes ne sont pas toujours aïsées, la crainte de
s’exposer au regard des autres étant un obstacle majeur. Cette
contrainte s’impose également aux enseignants, qui doivent laisser
des traces de leur activité enseignante, même dans le cadre de
cours en présentiel (enrichi), éventuellement sous la forme de
classes inversée ou de formation à distance. La prise en main des
outils personnels et collaboratifs proposés par l’ENT de
l’établissement : documents, agenda, favoris, forum est donc une
première étape. Ce cadre rassurant et contrôlé par l’enseignant
ouvre un espace numérique commun fermé et authentifié mais basé
sur la communauté : des objectifs de travail et un répertoire
partagés et communicables à distance. De précédentes
expériences pédagogiques avec l’ENT ont montré que l’usage
fréquent d’un tel espace entraîne des pratiques d’échanges
d’informations dans lesquelles le formel et l’informel se nourrissent :
la contrainte formelle de dépôt sur le bureau virtuel de travaux
individuels et collectifs oblige les étudiants à se connaître rapidement dans la vie réelle, les échanges informels favorisent les pratiques éditoriales formelles, les échanges contraints par les consignes de travail favorisent les échanges libres dans des groupes extérieurs aux enseignants.

10.2.2. L’épanouissement de la communauté dans des usages partagés des réseaux socio-numériques

Le dispositif mis en place vise l’appropriation de techniques professionnelles de recherche et de diffusion d’information par des novices dans l’espace ouvert de l’internet. Cette appropriation s’appuie sur les deux conceptions de l’espace identifiées par (Paquelin, 2009) comme complémentaires: l’espace comme étendue, et l’espace vécu par chacun, le lien entre les deux se tissant grâce aux échanges mis en place dans les projets collaboratifs et créatifs et aux technologies autour des réseaux numériques orientés plutôt vers les pratiques communautaires que vers l’exposition de soi. Les outils proposés sont assez “neutres” pour les étudiants qui sont déjà des usagers du web social mais en ont une pratique ludique, communicationnelle et intime. Nous n’avons donc pas retenu Facebook comme pertinent dans le cadre de ce projet, à cause de la complexité de gestion des limites entre espace intime et espace partagé. Par contre, Twitter est un outil utilisé par les professionnels, simple et dans lequel l’exposition de soi peut s’effacer au profit de pratiques communicantes ouvertes. De plus, même si notre objectif principal était d’utiliser le web social pour faciliter l’apprentissage, il

nous paraissait primordial de proposer aux étudiants de les accompagner pour se créer une identité numérique professionnelle qui leur permette aussi se positionner sur le marché du travail, en lien avec la formation. L’utilisation de Twitter permet de comprendre les enjeux de la présence en ligne.

La médiatisation de Twitter en novembre 2013 à l’occasion de son entrée en bourse témoigne de la popularité grandissante du réseau de micro-blogging créé en 2006, ainsi que de son poids économique et commercial. Destiné à s’adapter au format des sms au départ, Twitter fonctionne sur le principe de l’échange de messages de 140 caractères, éventuellement accompagnés d’images fixes ou animées. Pour son créateur Biz Stone, ce format contraignant n’est pas une limite mais au contraire un avantage et peut-être la clé de son succès : la contrainte permet la créativité. L’échange est basé sur le choix de « followers » et « followings », le choix de suivre certains et la possibilité d’être suivi par les mêmes ou d’autres. L’espace de communication consiste en une liste déroulante de messages qui apparaissent dans l’ordre anté-chronologique, sans tri. Des fonctions nouvelles sont apparues au fil du temps, créées par les usagers, ainsi qu’une syntaxe qui permet d’améliorer les possibilités et la précision de l’expression : @ pour l’identité ou « adressivité », # (hashtag) pour l’indexation à l’aide de mots-clés, RT pour désigner le fait qu’un message est rediffusé et non original, entre autres. Le site permet également la constitution de groupes qui communiquent entre eux et se retrouvent facilement. Si les usages les plus courants du réseau socio-numérique sont très éloignés d’objectifs d’apprentissage et plutôt liés aux loisirs et à des fonctions de communication, Twitter a très tôt intéressé les
enseignants d’une part, les professionnels de l’information d’autre part, pour les potentialités cognitives qu’il recèle, malgré ou à cause d’un format d’écriture très réduit. Il permet en effet de croiser des pratiques discursives avec des pratiques sociales, des pratiques hypertextuelles avec des pratiques cognitives. C’est donc le format de Twitter – des messages très brefs, la possibilité d’y intégrer des liens et des images - qui semble recéler des potentialités intéressantes, tandis que son fonctionnement réticulaire retient l’attention des spécialistes de l’information et de la communication, au même titre que tous les réseaux sociaux qui sont désormais considérés comme structurant fortement la circulation de l’information médiatique et même scientifique et technique. Les réseaux socionumériques font désormais partie intégrante des études scientométriques.

A partir de micro-projets et de projets plus vastes de récolte et de diffusion de veille informationnelle par Twitter, combinés avec la construction de blogs multi-auteurs, nous avons observé la mise en place de mécanismes sociaux et cognitifs qui reposent sur l’interaction entre apprentissage, création et communication. Les étudiants utilisent quotidiennement une large palette d’outils de façon planifiée, ils connaissent le risque de se voir débordés par l’abondance d’information. Ils ont mis en place des processus de veille automatisée et sélective sur leur sujet de mémoire. Ils ont pris conscience de l’importance de la maîtrise de la communication pour valoriser leurs compétences professionnelles. Ils ne sont pas seulement diffuseurs mais également organisateurs et créateurs d’information à travers les articles de leurs blogs. Ils sont sensibilisés à l’évaluation de leur activité : ils surveillent le nombre
de visites sur leur blog, les commentaires, ils soumettent parfois pour avis leurs productions aux enseignants.

Les outils utilisés permettent d’exploiter les réseaux socio-techniques en les croisant et en les adaptant, comme on le voit sur le schéma. Le blog permet la mise en avant de l’expertise dans un domaine de veille, impose l’exigence scientifique par rapport à la vérification de toutes les informations mises en circulation, et l’amélioration des qualités rédactionnelles et communicationnelles.

Les mécanismes utilisés dans ce projet sont cognitifs et métacognitifs (compréhension de notions et de démarches), pragmatiques et techniques (aisance dans la maîtrise des outils), sociaux à travers la mise en place de pratiques collaboratives par groupes de pairs. Ils se sont mis en place très rapidement dans la formation, et lors de temps de formation limités, profitant des interactions dans et hors temps de formation entre des champs de savoirs et de compétences qui se croisent : les uns manipulent facilement les outils techniques, les autres les outils discursifs, d’autres encore les outils communicationnels, et les savoir-faire se confrontent, se confortent et s’échangent.
10.3. **Un renouvellement des pratiques pédagogiques à l’université sur un schéma collaboratif : proposition de typologie des usages pédagogiques**

(Jacquinot\(^84\), 01) propose de considérer trois niveaux pour évaluer les dispositifs pédagogiques : le niveau «macro» qui implique l’analyse des enjeux économico-industriels interférant avec les objectifs éducatifs et pédagogiques ; le niveau «méso» qui renvoie aux modifications structurelles et hiérarchiques qu’introduit, dans les organisations, l’usage partagé des technologies d’information et de communication; le niveau «micro» qui offre la possibilité de contribuer à l’enrichissement du régime de la communication pédagogique par l’exploitation des ressources propres aux médias électroniques. Il semble en effet que l’innovation dans la dynamique pédagogique relève à la fois de la relation sociale qui se déplace entre les acteurs de l’enseignement et de l’interactivité qui se met en place à travers les technologies utilisées et la médiation enseignante. Si l’on reprend la proposition de Licoppe citée par (Paquie\(^85\), 12) c’est le dispositif qui est central, l’agencement d’outils et d’actions suivant un agencement contrôlé dans une perspective d’apprentissage.

10.3.1. L’évaluation du dispositif : la mise en place d’une dynamique innovante

(Peraya, 99) définit le dispositif comme «une instance, un lieu social d’interaction et de coopération possédant ses intentions, son fonctionnement matériel et symbolique, enfin, ses modes d’interactions propres. L’économie d’un dispositif – son fonctionnement –, déterminée par les intentions, s’appuie sur l’organisation structurée de moyens matériels, technologiques, symboliques et relationnels qui modélisent, à partir de leurs caractéristiques propres, les comportements et les conduites sociales [affectives et relationnelles], cognitives, communicatives des sujets»86. Il propose de considérer que les dispositifs de communication articulent trois niveaux : le sémiotique, le social et le technique dans ce qu’il nomme les dispositifs techno-sémiopragmatiques : l’ensemble des interactions entre ces trois univers : une technologie, un système de relations – un cadre technosocial (...) – et un système de représentations – de l’ordre du sémiocognitif87.

Notre intention première dans ce projet était d’"épuiser" le niveau technique en supprimant, d’une part, toute réticence dans l’usage liée à la crainte de ne pas savoir faire, d’autre part, toute fascination pour des outils de communication dont les dimensions économiques, juridiques et idéologiques sont déconstruites. Cet épuisement des savoir-faire permet de centrer l’attention sur les savoirs, savoirs construits dans l’interaction entre pairs, avec les enseignants, avec des experts puis communiqués lorsqu’ils sont suffisamment maîtrisés, lorsque la connaissance fait sens. Dans cette perspective, le dispositif s’est révélé efficace.

Pour l’évaluer, nous avons mis en place plusieurs outils de mesure :

Une procédure de co-analyse en transformant des étudiants novices de Master 1 en observateurs des usages de leurs pairs de Master 2, à travers une démarche d’enquête quantitative (questionnaire) et qualitative (entretien de groupe capté sur une

88 Les blogs : http://idneuf.wordpress.com/
http://dixdoncdocs.wordpress.com/
L’enquête :https://docs.google.com/spreadsheet/viewform?hl=fr&formkey=dFl4eGpmmNpC02YWI1MXFsL
TBDVE6MQ#gid=0
L’entretien collectif (extrait) :http://www.youtube.com/watch?v=N3G5FyzQ0Zk&noredirect=1

244
vidéo) et l’élaboration d’un compte-rendu sous forme d’un poster présenté dans un colloque international.

Une procédure traditionnelle d’évaluation sommative à travers la construction d’une grille d’évaluation négociée du résultat du travail incarné dans le blog.

Une analyse quantitative de l’activité sur Twitter.

![Grille d'évaluation](image)

<table>
<thead>
<tr>
<th>Contenu</th>
<th>Stratégies de communication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Titre</td>
<td>Lien avec Twitter et d'autres sites</td>
</tr>
<tr>
<td>Présentation et description des objectifs</td>
<td>Présentation de l'auteur</td>
</tr>
<tr>
<td>Pertinence des mots-clés</td>
<td>Popularité, nombre de visites</td>
</tr>
<tr>
<td>Qualité scientifique du contenu</td>
<td></td>
</tr>
<tr>
<td>Nombre d'articles</td>
<td></td>
</tr>
</tbody>
</table>

Travail de présentation par les étudiants

Grille d'évaluation : critères

Du point de vue des usages des outils, les étudiants sont tous parvenus à mettre en place un environnement et des procédures de type professionnel. Ils utilisent les outils, et un grand nombre d’outils, quotidiennement pour la plupart d’entre eux, mais restent exigeants et lucides quant à la qualité de l’information qu’ils trouvent...
et diffusent. Du point de vue métacognitif de la prise de conscience de leur propre démarche, ils ont acquis des réflexes d'évaluation experte de l'information. Ils estiment tous avoir progressé dans l'utilisation du langage pour la recherche, la maîtrise de cette question du langage à travers l'indexation constituant véritablement le cœur du métier de documentaliste.

Ils considèrent également s'être améliorés dans leur “culture générale” et dans la qualité de leur communication (attention aux niveaux de langage, communication médiatique). Du point de vue des contenus de leur communication, ils ont identifié au fil du temps le niveau d'exigence professionnelle sinon scientifique de leurs messages en prenant conscience de l'importance fondamentale de la réception et des usages qui seront faits de leur propre communication. Cette identification est renforcée lorsque les étudiants sont en situation d'enseignement dans leur stage, et qu'ils doivent réfléchir aux objectifs et aux contenus pédagogiques d'activités qu'ils mettent en place pour des élèves. Du point de vue social, ils déclarent partager toute l'information qu'ils trouvent sur leur sujet de veille. Il est intéressant de noter que ce partage se fait essentiellement dans les échanges réels et subsidiairement à travers les réseaux sociaux à l'intérieur de la communauté. On observe donc la mise en place de réseaux de communication qui se tissent dans la communauté plutôt sur le mode de l'échange social oral direct et hors de la communauté essentiellement sur le mode de l'échange à distance, plutôt anonyme, mais parfois aussi identifié, puisque certains étudiants ont été contactés par des professionnels ou ont contacté des chercheurs sur leur sujet de veille. Enfin, les étudiants se révèlent très lucides et distants quant
aux avantages de ces outils et au contenu de leur construction cognitive. Ils estiment ainsi n’avoir pas vraiment repéré de réseau sur leur sujet de mémoire mais seulement des experts, et ne pas avoir atteint eux-mêmes un niveau expert mais un niveau “grand public” ou “vulgarisation scientifique” dans leur communication. Cette auto-évaluation peut être complétée par les évaluations des enseignants, qui constatent une amélioration significative de la maîtrise des démarches de recherche et de communication de l’information. C’est surtout sur le plan de la motivation à travers la dynamique du groupe que le projet s’est révélé vraiment efficace, cette dynamique se diffusant d’ailleurs entre les étudiants de Master 2 et Master 1.

On le voit, c’est en s’emparant de pratiques intuitives, d’outils non spécialisés, et en analysant les mécanismes du bricolage que les étudiants parviennent à construire une représentation lucide et formalisée de leurs propre parcours cognitif. (Harvey89, 95) pour désigner les pratiques d’apprentissage centrées sur les groupes, parle de communautique. Cela confirme en partie les résultats d’autres travaux plus centrés sur les profils d’apprentissage qui

montrent que les pratiques en communautique sont favorisées par une expérience personnelle d’échanges et d’interactions virtuelles, une opinion favorable aux échanges dans le domaine privé mais aussi en formation, un sentiment personnel d’efficacité en matière technique, des usages numériques, en matière de suivi de cours en ligne et d’utilisation des groupes en apprentissages numériques, par une représentation co-constructive de l’apprentissage et enfin par un style d’apprentissage Intuitif et pragmatique. Dans le processus qui vise à créer et exploiter ces conditions favorables, l’enseignant reste présent mais plus comme médiateur que créateur de sens dans un processus transmissif.

10.4. Les conditions pédagogiques de l’innovation et la place des enseignants

Le rôle de l’enseignant dans un tel dispositif consiste à poser et organiser un espace déterminé, un temps maîtrisé, un objet identifié et un type de relation. Nous soulignons que c’est à cette condition de l’effacement que l’autonomie des apprenants peut se construire, une autonomie qui repose sur quelques principes : l’authenticité des situations d’apprentissage, la construction de savoirs par la pratique, le partage entre apprenants, le croisement des points de vue entre acteurs, l’appui sur les activités quotidiennes et non formelles. Ainsi, les pratiques intuitives et informelles sont mobilisées pour être analysées, détournées, contournées et servir de point d’ancrage au démarrage de projets qui reposent sur la motivation liée à l’échange et, dans un premier temps, au désir. L’enseignant est donc dans la position inconfortable de l’effacement.

pour laisser la place à la médiation et à l’accompagnement de processus de recherche et d’écriture.

Dans un cadre médiatique et technologique innovant, l’enseignement scolaire et universitaire trouve des outils pour la documentation et les apprentissages qui bouleversent en partie la relation pédagogique traditionnelle. En effet, le système de valeurs qui sous-tend le système d’information se modifie avec la valorisation du travail collaboratif, l’innovation, l’absence de hiérarchie au sein d’un environnement caractérisé par une abondance d’information dans un monde plat [Flat world]\(^91\). (Cardon, 10) montre également que les outils du web 2.0 innovent dans ce sens qu’ils opèrent une nouvelle articulation entre individu et collectivité, individualisme et solidarité, en créant de nouvelles formes de coopération par la possibilité pour l’individu de rendre sa production publique et partagée\(^92\). Ces valeurs et ces modalités de travail ne sont pas nécessairement partagées dans le monde de l’éducation, ni dans le système scolaire, ni dans le système universitaire français, parce qu’elles reposent sur l’absence de contrôle éditorial. Elles commencent cependant à émerger du côté de la recherche à travers, notamment, les humanités digitales et la “fabrique des sciences” qui s’appuient sur l’ouverture des données et des corpus, le partage et la participation à travers les réseaux.

\(^91\) Quoniam, L., op.cit.
10.5. La diversité des usages pédagogiques possibles à partir des formats numériques des réseaux sociaux

Le dispositif que nous avons mis en place n’est qu’un exemple des possibilités d’utilisation d’un format d’écriture combiné avec le principe réticulaire. De nombreux enseignants ont inventé des dispositifs sur le même principe, que l’on peut classer à partir des caractéristiques discursives et sociocognitives du format.

Format d’écriture : format court, qui valorise l’efficacité et la synthèse de l’écriture. Ces caractéristiques sont utilisées par les enseignants qui s’appuient sur Twitter dans le cadre de dispositifs d’apprentissage de la lecture/écriture pour les plus jeunes, ou dans celui de travaux de restitution comme le « live-tweet » lors de participation à des conférences ou en classe de langues. La créativité est favorisée par l’échange et la publicité valorisée dans des dispositifs comme la « Twitterature ». (Paveau93, 12) parle de technologie discursive pour désigner ces outils qui permettent l’expressivité et par là facilitent les apprentissages puisque le fait de parler de ce que l’on est en train de découvrir à travers une recherche d’information par exemple est un facteur clé dans la construction des connaissances.

Format de communication à travers la veille sociale et le partage d’information : la recherche en réseau, l’infomédiation sociale94 sont valorisées. Twitter offre un espace d’expression ouvert, pas tout à fait chaotique mais traversé par des logiques de flux et de groupes

restreints, perméable aux autres réseaux sociaux et aux médias traditionnels. (Le Deuff\(^{95}\), 11) revient sur les apprentissages à construire pour accompagner les usages des réseaux sociaux : canaliser l’attention pour lire, évaluer l’information, valoriser la participation de tous, s’assurer de la liberté d’accès. Il est en effet essentiel que les élèves, dans leur construction citoyenne, prennent conscience de la dimension communautaire de l’information et des connaissances dans l’espace de l’internet, de ce qu’une partie de la recherche anglo-saxonne nomme les « communs de la connaissance », espaces partagés et en libre accès dans lesquels chacun doit pouvoir trouver la garantie d’un accès sans limite. Mais l’accès n’est pas suffisant, l’usage qui est fait de l’information est également essentiel.

Format d’énonciation éditoriale collective en réseau : on met en avant le dispositif communicationnel complexe où se superposent plusieurs logiques de discours instables qui forment un « écosystème conversationnel » (Boyd et al., 10). Les particularités de ce dispositif d’énonciation, basée sur la synthèse textuelle et la citation hypertextuelle, aboutissent à la création d’un nouvel espace public dans lequel l’autorité surgit « sans œuvre et sans auteur »\(^{96}\), ce qui est tout à fait nouveau et dérangeant dans un contexte éducatif. La prise de conscience de ce phénomène de dilution est cependant essentielle à la compréhension des phénomènes médiatiques actuels, ainsi que des particularités de l’écriture hypertextuelle qui permet de construire des réseaux sémiotiques.

\(^{96}\) Merzeau, L. (2013). Twitter, machine à faire et défaire l’autorité. Médium, 1, n°34, pp. 171-185

251
Le format de Twitter, comme d’autres réseaux sociaux, ouvre la classe ou le cours sur l’espace public médiatique alors que les espaces d’apprentissages sont traditionnellement sanctuarisés. Il s’agit bien-sûr pour l’enseignant d’une prise de risque.

10.6. Conclusion

Ce projet confirme l’intérêt du travail collaboratif en ingénierie pédagogique entre les enseignants pour que les outillages technologiques du numérique ne soient ni une fin en soi, ni un obstacle dans les pratiques pédagogiques, mais un levier à travers le travail en projet, en équipe enseignante, la communication avec les étudiants pour les mobiliser et les encourager. Les facteurs de réussite de tels projets sont donc la formation des formateurs et des étudiants aux outils qui ne doivent en aucun cas représenter une difficulté, la maîtrise du cadrage pédagogique par l’équipe enseignante, le suivi des étudiants. L’innovation ne réside pas dans les outils mais dans la capacité à interroger le réel dans le virtuel, l’individu dans la communauté, le savoir dans les pratiques.
11. Stratégies pour améliorer les usages numériques dans l’apprentissage en ligne

11.1. Introduction

Le numérique est aujourd’hui présent dans toutes les sphères de l’activité humaine, et le monde de l’éducation n’y échappe évidemment pas. Grâce à Internet, l’enseignement et l’apprentissage non seulement se transforment-ils dans la classe, mais ils débordent aussi des murs de celle-ci. En effet, la formation à distance – de plus en plus souvent offerte en ligne – connaît une forte croissance dans tous les niveaux et contextes d’enseignement.

Or, les statistiques révèlent des taux d’abandon et d’échec souvent élevés dans les cours à distance ou en ligne et cela depuis fort longtemps. De nombreuses recherches ont cependant mis en évidence les facteurs qui contribuent à la persévérance et à la réussite des étudiants, au nombre desquels on compte différentes stratégies d’apprentissage.

Dans ce chapitre, après avoir posé quelques jalons de l’histoire de la formation à distance, nous montrons que l’apprentissage en ligne est en nette croissance et qu’il faut compter avec cette évolution incontournable en éducation, même si parfois cela se fait avec quelques difficultés en France. Nous abordons ensuite la question des phénomènes d’abandon et d’échec en formation à distance que nous illustrons par quelques recherches et modèles.
sur les facteurs qui visent à améliorer la persévérance et la réussite en formation à distance. En ce qui nous concerne, nous nous attardons plus particulièrement sur les stratégies à l’œuvre dans ce contexte. Enfin, nous soulignons l’intérêt et la responsabilité de l’école de préparer dès maintenant les élèves à l’apprentissage en ligne en privilégiant le développement de ces stratégies chez ceux-ci avec le souci affirmé de l’amélioration des usages numériques.

11.2. De l’enseignement par correspondance à l’apprentissage en ligne

L’histoire de la formation à distance, commençant pour beaucoup avec le premier cours par correspondance de Pitman, a été marquée par différentes étapes partant du développement des postes durant le XIXe siècle jusqu’au développement du Web 2.0 au début du XXIe siècle. A travers quelques repères historiques (Centre national d’enseignement à distance98, 08 ; Comité de liaison interordres en formation à distance99, 07 ; Marot100 et Darnige, 96 ; Petit101, 08 ; Prot102, 07), que nous complétons ci-dessous, nous voyons de manière synthétique le lien entre les contextes de formation à distance et une intégration progressive des technologies de l’information et de la communication (TIC).

254
<table>
<thead>
<tr>
<th>Années</th>
<th>Domaine</th>
<th>Conséquences</th>
</tr>
</thead>
<tbody>
<tr>
<td>1840</td>
<td>Timbre poste</td>
<td>1er cours par correspondance, Isaac Pitman (sténographie)</td>
</tr>
<tr>
<td>1920-1940</td>
<td>Radio</td>
<td>Radio Luxembourg (1926), la BBC (1927), la première émission réalisée par l'Institut Radiophonique d'Extension Universitaire installé à la Sorbonne sur les ondes de Paris PTT et le poste de la Tour Eiffel en 1927, Radio Sorbonne (1937), Radio-Collège au Québec (1941)</td>
</tr>
<tr>
<td>1939-1946</td>
<td>Service d'enseignement par correspondance en France (1939) qui deviendra le CNED en 1986, Office des cours par correspondance du Québec (1946)</td>
<td></td>
</tr>
<tr>
<td>1960-1990</td>
<td>Micro-informatique</td>
<td>Plan informatique pour tous en France (1985), Centre collégial de formation à distance (Québec) qui deviendra le Cégep@distance (1991)</td>
</tr>
</tbody>
</table>

Ainsi, de tout temps, la formation à distance a toujours tiré parti des technologies et de leurs évolutions. Cependant, le passage de l’enseignement par correspondance à l’apprentissage en ligne ne traduit pas qu’une simple transition ou évolution qui serait due au développement des technologies. D’une solution proposée à des publics « empêchés » pour cause de maladie, d’éloignement géographique ou de contraintes travail-famille, les technologies ont en effet progressivement conduit, en particulier depuis l’avènement du Web, à des solutions complétives plutôt que substitutives comme cela était le cas par le passé.

Cette évolution se traduit par une forme d’enrichissement du cours traditionnel dispensé en mode présentiel, enrichissement s’appuyant sur le recours aux TIC parfois aussi qualifiées de TICE dans notre contexte (technologies de l’information et de la
communication pour l’enseignement). Cette intégration progressive a souvent été décrite : nous donnerons en exemple les niveaux définis au sein du référentiel Compétice qui balaie les situations allant du « présentiel enrichi ou amélioré » au « présentiel quasi-inexistant ». Ces situations permettent de décrire également des formes plus ou moins intenses d’enseignement en ligne allant de l’exposition simple de documents au format PDF à des dispositifs plus complets de type plateforme de formation à distance.

Dès lors, entre évolutions successives prenant en compte l’arrivée de nouvelles technologies au niveau des matériels (radio, télévision, magnétoscope, tableau numérique ou vidéoprojecteur interactif), l’apparition de nouveaux réseaux de communication des données (Internet, le courrier électronique, le Web), le développement des réseaux sociaux en ligne (le Web 2.0), l’implantation d’environnements et autres dispositifs technologiques à visée pédagogique (tutoriels, exerciceurs, logiciels issus de l’EAO-enseignement assisté par ordinateur, plateformes de formation à distance) nous assistons, et cela de manière de plus en plus marquée et accélérée depuis le début des années 2000, à une convergence entre la formation à distance et la formation plus traditionnelle en mode présentiel.

Des formules hybrides allient des moments de regroupement des étudiants en présentiel et des activités menées en ligne à travers des activités autonomes et individuelles ou des travaux de groupe en mode collaboratif. Des dispositifs de formation à distance utilisant des classes virtuelles pour organiser des moments de

Compétice est un outil de pilotage des projets TICE par les compétences réalisé à l’initiative du Ministère de la jeunesse, de l’éducation nationale et de la recherche (Sous direction des TIC pour l’enseignement supérieur), disponible à l’adresse http://eduscol.education.fr/bd/competice/superieur/competice/index.php
rencontre en mode synchrone entre l’enseignant et ses étudiants, parfois entre les étudiants eux-mêmes engagés dans le cadre de travaux de groupe, apparaissent dans des universités devenues bimodales.

La généralisation des plateformes de formation à distance s’accélère, qu’elles soient développées de manière spécifique en réponse aux besoins des universités par leurs services de technopédagogie comme c’est le cas à l’Université Laval, adaptées à partir de solutions open source comme Moodle à l’Université de Bordeaux ou encore basées sur des solutions propriétaires développées et commercialisées par des sociétés dans d’autres universités.

D’un côté, ces solutions logicielles de type plateformes auxquelles on peut parfois reprocher d’être des coquilles vides, de l’autre l’apparition de contenus organisés à travers les MOOC (Massive Open Online Courses), cours libres et ouverts à tous et pouvant être suivis par des dizaines de milliers d’étudiants. Nous pouvons citer Udacity104 ou Coursera105 mais si la dénomination MOOC est relativement récente, les cours ouverts du MIT le sont depuis 2001106. Il s’agissait du projet Opencourseware107 qui consistait à publier en ligne de manière ouverte des cours en fournissant tout le contenu pédagogique tel que dispensé au MIT sans bénéficier évidemment de l’accompagnement des enseignants. Le développement en France des universités thématiques numériques108 suit cette logique mais de manière

104 Udacity, http://www.udacity.com
105 Coursera http://www.coursera.org
107 OCW, Opencourseware du MIT, http://ocw.mit.edu
collective et indépendamment de l’université d’appartenance des enseignants contributeurs au projet.

La démarche « Opencourseware » (OCW) consiste à mettre à la disposition du plus grand nombre des cours universitaires. La France par le biais du Ministère de l’enseignement supérieur et de la recherche rejoint cette démarche en 2013. Au-delà de la mise en visibilité mondiale, en rejoignant le consortium international, elle valorise ainsi le travail réalisé au sein des universités numériques thématiques que nous venons d’évoquer. Depuis 2012, le projet edX regroupe des cours des universités dont parmi les plus prestigieuses (MIT, Harvard, Berkeley aux États-Unis mais aussi McGill à Montréal, Ecole polytechnique de Lausanne, Université Catholique de Louvain et bien d’autres). Ces cours ouverts permettent parfois une inscription gratuite et délivrent un certificat pour ceux qui ont suivi et validé le cours.

Entre un passé parfois jugé « lourd » par certains (Noble, 00) et des débuts n’allant pas de soi pour le e-learning au début des années 2000 avec une certaine désillusion décrite par plusieurs comme (Perriault, 02), l’histoire de la formation à distance est marquée par l’introduction successive des technologies avec des temps d’appropriation des innovations plus ou moins longs. Toutefois, il semble que l’avènement du Web, en particulier au cours de la deuxième décennie du XXIe siècle, change la donne et permet d’envisager, à l’échelle mondiale, de nouvelles formes d’enseignement et d’apprentissage. En ce sens, les évolutions de la

110 Edx, http://www.edx.org
formation à distance (en particulier) vers l’apprentissage en ligne retiennent notre attention notamment sur la question des stratégies à l’œuvre dans le contexte numérique.

11.3. Un contexte marqué par la croissance de l’apprentissage en ligne

Nous pouvons considérer que cette deuxième décennie du XXIe siècle va nous amener à assister à un développement très rapide de la formation à distance. Traditionnellement offerte sous la forme de cours par correspondance, elle est de plus en plus souvent dispensée en ligne comme nous l’avons mentionné plus tôt.

Ainsi, à la population étudiante traditionnelle de la formation à distance, composée d’adultes voulant terminer leur formation générale ou développer de nouvelles compétences professionnelles, s’ajoutent d’autres profils d’étudiants : les raccrocheurs, jeunes et adultes en reprise d’études, les parents de jeunes enfants, les personnes en régions éloignées ou éloignées des centres universitaires, les retraités, etc. De plus, parce qu’il offre plus de souplesse et qu’il s’appuie sur les TIC, l’apprentissage en ligne attire aussi de jeunes étudiants universitaires inscrits à temps plein dans des établissements bimodaux offrant à la fois des cours sur campus et des cours à distance.

Nous choisissons la dénomination « apprentissage en ligne » en tant qu’évolution de la formation à distance dans une modalité qui utilise principalement voire exclusivement les technologies du Web. En effet, nombreux sont encore les organismes de formation à distance qui continuent à pratiquer un envoi de documents papier.
Par exemple, en France, le rapport de la (Cour des comptes113, 13, p. 428) rappelle que le Centre national d’enseignement à distance (CNED) « a utilisé encore en 2011 environ 390 tonnes de papier et expédié plus de 300 millions de pages ».

En France, les éléments de croissance de la formation à distance sont plus controversés du fait de la situation du CNED qui accuse paradoxalement un recul des inscriptions. Par ailleurs, dans le contexte universitaire français, les années 2000 ont été marquées par une succession d’appels à projets « campus numériques » dans les universités qui ont conduit à la mise en place des environnements numériques de travail (ENT). Malgré tout, le rapport (Isaac114, 07) recommande de favoriser l’enseignement à distance et de finaliser les équipements en matière de numérique dans les universités. En 2013, nous manquons encore de recul mais un certain nombre d’initiatives sont en cours. La plateforme de formation en ligne (Moodle115, 13) est par exemple installée dans près de 1000 sites déclarés pour la zone France (sites de collèges, lycées, universités, entreprises de formation, simples site de cours et autres initiatives, etc.).

Examinons quelques statistiques pour illustrer ce phénomène de croissance de l’apprentissage en ligne. Selon l’enquête communautaire sur l’utilisation des TIC par les ménages et les particuliers publiée par Eurostat116 (13), le nombre de personnes

âgées entre 16 et 74 ans inscrites à des cours en ligne est passé de 3 % de la population en 2007 à 5 % en 2011 pour l’ensemble de l’Union européenne et de 2 à 5 % en France, soit des augmentations respectives de 66 % et de 150 %. Pendant la même période, chez les 16 à 24 ans, ce pourcentage est passé de 5 à 8 % pour l’ensemble de l’Union Européenne et de 7 à 10 % en France, soit des augmentations respectives de 60 % et de 43 %.

D’après une étude menée par (Saucier117, 13) pour le CLIFAD (13), présentant les évolutions des inscriptions à des cours en formation à distance au Québec (entre 1995 et 2009), un accroissement continu est constaté à tous les niveaux (secondaire +315 %, collégial +48 %, universitaire +101 %). Toujours au Québec, l’évolution du nombre d’inscriptions-cours en formation à distance à l’école secondaire, au collège et à l’université, entre 1995-1996 et 2012-2013, montre une croissance totale de 168 % sur ces 17 années. En effet, les inscriptions ont augmenté au secondaire118 de 399 % (de 10 778 à 53 737 inscriptions-cours), au collège de 75 % (de 15 606 à 27 345 inscriptions-cours) et à l’université de 138 % (de 33 999 à 89 910 inscriptions-cours) pour les trois université québécoises qui offrent de la formation à distance, soit l’Université Laval, la Télé-Université et l’Université de Montréal.

Mais ce n’est pas tout. La formation à distance se développe rapidement au primaire et au secondaire (eSchool News119, 11).

118 La population étudiante à distance au secondaire est majoritairement composée d’adultes faisant un retour aux études, l’âge moyen étant de 24 ans.

Déjà, en 2008, l’ancien chef du secteur éducation à l’UNESCO Sir John Daniel disait que « l'utilisation de la formation à distance au niveau secondaire sera l'un des grands phénomènes en éducation dans les années à venir. » (Daniel 120, 08).

L’apprentissage en ligne comme modalité de formation à distance est donc là non seulement pour rester mais surtout pour se répandre à tous les niveaux du système éducatif. Dès lors, de nombreux questionnements apparaissent en particulier sur la question du développement des usages dans le contexte numérique et par conséquent l’impact que ce phénomène peut avoir sur la persévérance et la réussite scolaire alors que nous savons que celles-ci font déjà l’objet de préoccupations importantes.

11.4. Persévérance, réussite et stratégies

En effet, quoiqu’il soit difficile d’établir les taux d’abandon en formation à distance, les établissements ayant des méthodes de calcul différentes et étant parfois réticents à révéler ces statistiques, il est généralement reconnu que le phénomène de l’abandon est plus important en formation à distance que dans le cadre des enseignements dispensés en mode présentiel. En fait, les taux cités par différents auteurs peuvent même dépasser les 70 %. De plus, malgré un engouement certain pour l’apprentissage en ligne et un amoindrissement du sentiment d’isolement souvent ressenti dans les cours par correspondance, les taux de persévérance semblent demeurer plus faibles dans les cours en ligne que dans les cours sur campus, la différence pouvant varier entre 4 et 15 % selon les exemples cités par (Carr122, 00). Voilà pourquoi, depuis des décennies, divers modèles ont été élaborés pour tenter d’expliquer ces phénomènes dans les deux environnements.

Dans l’apprentissage sur campus sont généralement mis en cause : les facteurs sociodémographiques (genre, âge, statut socioéconomique des parents, capital culturel familial, etc.), les facteurs psychologiques (motivation, attribution causale, etc.), les contraintes travail-études-famille, le parcours antérieur de l’étudiant avant l’entrée à l’université, l’apprentissage du « métier d’étudiant » (Coulon123, 05) lors de l’entrée à l’université (intégration sociale et académique, pratiques d’étude, stratégies d’apprentissage), les conceptions de l’apprentissage, ainsi que les facteurs institutionnels et pédagogiques à travers les programmes d’accueil et d’intégration.

des étudiants et la prise en compte de la qualité de l’enseignement (Alava et Romainville, 01; Romainville et Michaut, 12; Tinto, 93, 97, 07).

Dans l’apprentissage à distance, à toutes ces caractéristiques s’ajoutent celles qui sont liées à ce contexte particulier de formation (Bernard, Brauer, Abrami et Surkes, 04; Kember, 95). Chez l’étudiant « classique » de la formation à distance, on identifie particulièrement comme prédicteurs de persévérance et de succès : la capacité à s’autogérer (Audet, 08), le lieu de contrôle (attribution causale interne ou externe des succès et échecs), la motivation intrinsèque et une attitude positive à l’égard de l’enseignant (Dabbagh, 07).

Chez le « nouvel » étudiant en ligne, d’autres facteurs sont maintenant étudiés pour prendre en compte l’évolution des dispositifs de formation à distance, depuis les cours par correspondance jusqu’aux cours en ligne et même jusqu’aux MOOC, de même que la diversification de la population étudiante dont nous avons fait état plus haut (Dabbagh, 07). On considère aujourd’hui qu’apprendre en ligne requiert aussi des compétences technologiques (usage de l’ordinateur, du Web, des outils de

129 Bernard, R. M., A. Brauer, P. C. Abrami et M. Surkes (2004). « The Development of a Questionnaire for Predicting Online Learning Achievement », Distance Education, (25)1, p. 31-47.
131 Audet, L. (2008). Recherche sur les facteurs qui influencent la persévérance et la réussite scolaire en formation à distance. REFAD.
communication et de collaboration...), des compétences informationnelles (recherche, évaluation et utilisation éthique de l’information...) et des compétences communicationnelles (collaboration, écriture...).

On constatera sans surprise que plusieurs de ces compétences sont présentes dans les domaines constitutifs du référentiel associé au Certificat informatique et internet niveau 1 (C2i niveau 1), qui se déclinent de la manière suivante : Travailler dans un environnement numérique évolutif (D1) ; Être responsable à l’ère du numérique (D2) ; Produire, traiter, exploiter et diffuser des documents numériques (D3) ; Organiser la recherche d’informations à l’ère du numérique (D4) ; Travailler en réseau, communiquer et collaborer (D5) (Ministère de l’Enseignement supérieur et de la Recherche 133, 11).

Pour notre part, nous fondons nos travaux sur le modèle de (Pintrich et al., 93), appliqué par (Boulet134 et al., 96) qui traite des stratégies d’apprentissage et inclut donc, parmi les caractéristiques favorables à la persévérance et à la réussite évoquées plus haut, celles sur lesquelles l’enseignant peut influer en accompagnant l’apprenant dans la formation à son « métier d’étudiant ». Ce sont les stratégies cognitives, métacognitives, affectives et de gestion des ressources.

Les stratégies cognitives facilitent l’encodage des informations à apprendre, notamment par la répétition, l’élaboration, l’organisation, la discrimination, la généralisation et la compilation de l’information

(Boulet et al., 96). Concrètement, ces stratégies peuvent s’exprimer par exemple dans la prise de notes sélectives, l’élaboration de réseaux conceptuels et la rédaction de résumés.

Les stratégies métacognitives concernent la connaissance de ses processus cognitifs et les habiletés à les contrôler. On les classe généralement en trois catégories : la planification (par exemple, se fixer des buts), le contrôle (vérifier ses progrès au regard des buts fixés) et la régulation (ajuster au besoin son action pour atteindre les buts fixés) (Brown, 1987, 87).

Les stratégies affectives concernent la gestion de la motivation, de la concentration et de l’anxiété.

Quant aux stratégies de gestion des ressources, particulièrement sollicitées en formation à distance, elles se déclinent en quatre sous-catégories : la gestion du temps et de l’environnement d’étude ; la gestion de l’effort (procrastination, régularité du travail, persistance en cas de difficulté), l’apprentissage par les pairs et le recours à l’aide de l’enseignant ou des pairs.

À ce modèle, nous ajoutons les stratégies de mise en œuvre des compétences technologiques, informationnelles et communicationnelles décrites ci-dessus et requises à l’ère numérique. Nous proposons donc l’expression « métier d’étudiant numérique » pour qualifier les stratégies que l’étudiant doit apprendre à maîtriser pour persévérer et réussir non seulement dans un contexte d’apprentissage en ligne mais aussi dans la perspective d’apprendre à apprendre, dans une perspective d’apprentissage à vie.

11.5. Conclusion

Et nous estimons que l’école, du primaire à l’université, a la responsabilité de favoriser le développement de ces stratégies et compétences parce que l’apprentissage formel s’effectue de plus en plus, soit en mode hybride (en classe avec une composante numérique) soit tout en ligne, et que l’apprentissage informel s’effectue aussi de plus en plus en ligne à partir de l’information puisée sur le Web dans des sources très diversifiées et de l’information échangée, notamment dans les réseaux sociaux.

N’oublions pas que nous formons nos étudiants à des modes d’apprentissage et à des métiers qui n’existent pas encore…
12. Apprentissage des langues

12.1. Un exemple : La compréhension orale en espagnol

Dans cette partie, José Iriarte fait part d’une expérience qu’il mène maintenant depuis plusieurs années au sein de ses classes de lycée. C’est parce qu’il a été un précurseur dans les usages numériques dans les langues et leurs apprentissages que son témoignage est essentiel.

Aider les élèves à comprendre un message oral, constitue l’enjeu de cette réflexion. Nous émettons l’hypothèse que c’est en les familiarisant avec les stratégies qu’ils mettent en œuvre quand ils cherchent à comprendre, en identifiant avec eux les opérations mentales mobilisées dans cette activité de compréhension, que nous en ferons des acteurs lucides de leur démarche et que nous les rendrons plus performants dans ce domaine. Ainsi familiarisé avec les activités mentales mobilisées lors de l’activité de compréhension, chacun sera en mesure de développer des stratégies personnelles adaptées à son propre fonctionnement. Chaque apprenant étant unique dans ses démarches d’apprentissage, l’utilisation raisonnée des TICE s’avère un adjuvant particulièrement efficace.

Il nous faut essayer de cerner la spécificité d’un message sonore, de comprendre les mécanismes de base mis en œuvre par le récepteur lors de l’opération de compréhension, afin d’être en mesure d’y sensibiliser les apprenants, de faciliter l’acquisition d’un

José Iriarte est Agrégé d’espagnol, Ancien Directeur adjoint de l’IUFM d’Aquitaine et enseignant au Lycée des Graves à Gradignan.

136

A la source, l’encodage d’un message oral par un émetteur natif intègre essentiellement des sons, des rythmes, des intonations, des mots et des catégories grammaticales au service de l’expression du sens. Or les propriétés rythmiques, mélodiques, prosodiques de la langue maternelle de nos élèves étant différentes, elles constituent autant d’obstacles au travail de décodage. L’auditeur non natif, moins sensible aux contrastes, aux accents toniques, aux contractions, élisions, ellipses et autres particularités propres à chaque langue (ce qui de fait rend nécessaire une exposition fréquente et massive à la langue cible, une sensibilisation à ses spécificités et à son identité phoniques….), doit apprendre à réaliser une segmentation lexicale, une reconnaissance des mots exploitables lors de l’interaction qui s’instaure entre lui et le message, lors du processus de compréhension.

La démarche de compréhension d’un message sonore est en effet un processus complexe d’opérations mentales réalisées les unes en synchronie, les autres en diachronie, les unes au niveau local (perception et traitement du code), les autres au niveau global (interprétation, élaboration d’un contenu). Lors du décodage l’auditeur entre en interaction avec le message encodé par l’émetteur, par la médiation d’opérations mentales de bas niveau (traitement du code), et de haut niveau (construction du contenu) afin de construire une représentation mentale intégrée et cohérente.
de la situation décrite par le discours (Fayol137, 03). L’auditeur dans son interaction avec l’objet d’écoute conduit des activités mentales appartenant à deux registres essentiels. Le premier concerne le traitement perceptif et linguistique du message (le niveau local), et le second les processus généraux de compréhension (le niveau global): processus d’interprétation, de mise en relation, d’intégration de l’ensemble des informations dans une représentation mentale cohérente (Fayol, 03). Bien entendu l’auditeur doit conduire et gérer (quasi) simultanément toutes les opérations inhérentes à ces deux registres au cours de l’écoute. Celle-ci constitue en quelque sorte une somme de tâches multiples, auxquelles le récepteur doit consacrer attention et énergie. D’une part il lui faut traiter tous les éléments percutifs liés à la spécificité du message audio (sons, rythmes, intonations, accent tonique, élisions …), et réaliser l’activité de segmentation lexicale, d’identification d’un maximum d’éléments linguistiques. Les opérations cognitives correspondant à ce registre de traitement local du message consistent essentiellement à:

1. discriminer des sons, des accentuations, des intonations, des mots, des catégories grammaticales …
2. repérer des sons, des voix, des mots …
3. identifier des voix, des élisions, des catégories grammaticales, des registres de langue …
4. caractériser des intonations, des exclamations, des interrogations …
5. segmenter des mots, des phrases, des périphrases …
6. etc…

D’autre part, l’auditeur doit élaborer une interprétation, un contenu en se fondant sur des opérations de niveau global, de traitement des informations obtenues précédemment, tout en mobilisant ses connaissances préalables de la langue, du thème …..Du point de vue cognitif il s’agit essentiellement de :

1. mobiliser ses connaissances préalables
2. classer et organiser les informations, les mettre en relation et les associer

137 [Michel Fayol. Aider les élèves à comprendre. Hachette Éditions. 2003].
Les études récentes menées sur la question (Michel Fayol, Daniel Gaonac'h), montrent la capacité limitée dont dispose l'auditeur pour mener de front la somme d'activités mises à jour, ainsi que le traitement de toutes les informations. Chacune des opérations sous-jacente à la compréhension suppose une consommation plus ou moins importante d'énergie et d'attention, selon leur degré de maîtrise et d'automatisation par le récepteur. Ainsi un auditeur qui consacrera l'essentiel de son attention au traitement du code et aux opérations de bas niveau, ne disposera pas de suffisamment d'énergie pour mener à bien les opérations de haut niveau et la construction de la représentation mentale de la situation décrite par le message. (Certains récepteurs après avoir consacré l’essentiel de leur attention aux opérations de bas niveau, sont en mesure de proposer une liste de mots mais dans l'impossibilité de formuler un contenu cohérent.). L’auditeur performant est donc celui qui a acquis suffisamment d’automatismes dans le traitement des opérations locales afin de se consacrer efficacement aux opérations globales d’interprétation et de construction du contenu.

Cependant si l’écoute est bien un processus d’interprétation et d’interaction complexe au cours de laquelle l’auditeur établit des liens entre ce qu’il entend et l’ensemble de ses connaissances, l’objectif final reste de le rendre acteur de ses apprentissages afin qu’il contrôle et évalue sa propre compréhension, identifie et résolve les problèmes liés à celle-ci. Ce processus suppose que l’apprenant ait une maîtrise suffisante des opérations sous-jacentes à la
compréhension, une connaissance de son propre fonctionnement afin d’être en mesure de planifier les opérations, de les autoréguler, et d’évaluer à tout moment son degré de compréhension (stratégies métacognitives).

Il apparaît par conséquent que l’entraînement à la compréhension orale, loin de se centrer exclusivement sur le produit de l’écoute (« Ce que j’ai compris »), devra également aborder le processus de l’écoute (« Ce que je fais pour comprendre »), afin de faire acquérir les automatismes nécessaires et de rendre plus performante la construction de la représentation mentale. Il s’agit donc d’engager les auditeurs dans un processus de maîtrise de la compétence de compréhension en les impliquant dans leurs apprentissages stratégiques, cognitifs et linguistiques. Ils acquerront ainsi les stratégies cognitives (traitement du message), les stratégies métacognitives (contrôle des processus d’apprentissage), et l’autonomie méthodologique transposables à l’ensemble des apprentissages.

Nous constatons que les salles médialangues ainsi que les baladeurs numériques permettant la lecture de fichiers son mp3 ou de fichiers vidéo, s’avèrent des adjuvants particulièrement efficaces dans l’acquisition de ces stratégies cognitives et métacognitives menant à l’autonomie, ainsi que dans le suivi individualisé et la gestion de l’hétérogénéité des groupes confiés aux professeurs de langue vivante. Ces outils facilitent l’approche des apprentissages par compétences préconisée par le CECRL notamment dans le domaine de la compréhension et de l’expression orale. (Comprendre / Ecouter / Parler / S’exprimer oralement en continu ou en interaction..).
Ces équipements permettent de faire acquérir aux apprenants des savoir-faire fondés sur les compétences d’apprentissage, et de rendre explicites des démarches implicites ou encore intuitives. Mis au contact d’un document audio authentique, beaucoup manifestent leur désarroi, et expriment leur difficulté à s’en approprier le contenu essentiel. C’est que la démarche de compréhension d’un message oral est comme démontré un processus complexe d’opérations mentales réalisées les unes en synchronie, les autres en diachronie. Si l’on considère qu’à la source, l’encodage d’un message par un émetteur intègre à la fois, des sons, des rythmes, des intonations, des mots, des catégories grammaticales au service de l’expression du sens, il nous faut mettre le récepteur en mesure « d’interroger » la complexité de ce réseau, afin qu’il puisse en décoder l’essentiel.
Par le truchement des équipements, et la fréquentation d’une langue authentique, nous rendons l’élève récepteur d’un message, acteur de l’écoute, en lui proposant une approche raisonnée des compétences qu’il doit mobiliser, afin qu’il interroge la source et s’en appr...
de documents sonores (30 élèves, une seule source, un nombre d’écoute « standard »…), oblige l’ensemble de la classe à travailler au même rythme et sur le même schéma, au détriment bien souvent des besoins individuels. Or si pour certains une écoute est suffisante, pour d’autres il en faudrait deux, trois, voire davantage … Ainsi les équipements de la salle médialangue permettent à chacun d’écouter le document et d’interroger la source autant de fois que nécessaire ……le baladeur offrant en complément la grande liberté de se livrer à ce travail avant, pendant, après les cours, où et quand on le désire, sortant ainsi du cadre conventionnel de la classe et de l’établissement. Le professeur après avoir identifié des besoins forcément différents, peut confier des tâches particulières à réaliser, en mettant à disposition des fiches méthodologiques personnalisées, que l’apprenant est invité à renseigner durant/ après/ le nombre d’écoute nécessaire, à son rythme, sous la forme qu’il le souhaite (langue, notes ..) …..Ce dernier devient ainsi « acteur » de ses apprentissages, et peut se fonder sur ce travail de compréhension pour aborder une phase d’expression orale en interaction ou en continu.

Ces équipements permettent en outre un travail plus spécifique de l’expression orale, de la prononciation, de la prosodie. L’exposition prolongée à une langue authentique s’avère particulièrement efficace pour l’acquisition des rythmes, des sons ……Une activité d’enregistrement d’une lecture de texte, d’une poésie, d’une « scénette » réalisée en groupe, place l’élève en situation de s’écouter, de se familiariser avec sa propre voix, et de prendre conscience des domaines dans lesquels il doit porter ses
efforts. Sa voix devient ainsi un objet de travail « extérieur » sur lequel il peut agir. Ces enregistrements conservés sur le bureau virtuel, permettent à chacun de mesurer les progrès réalisés d'une production à l'autre, d'une période à l'autre, et cette « biographie de la voix » devient ainsi un outil qui permet de distancier sa pratique personnelle de la langue.

Le bureau virtuel permet aux professeurs de mettre à disposition des apprenants les différents documents texte, audio ou vidéo ainsi accessibles depuis tout poste connecté à l'Internet. Cet outil permet également au professeur de recevoir en retour les enregistrements des apprenants pour une évaluation individuelle des productions et l'expression de conseils appropriés en dehors du groupe. Les collégiens et lycéens trouvent de plus dans cette démarche l'opportunité de valider le B2i et de se préparer au C2i niveau 1 ……

Au-delà du regain de motivation obtenu par l'utilisation d’outils appartenant à la culture des adolescents, la démarche aboutit à l'acquisition de savoir - faire ainsi qu’à de meilleures performances dans le domaine de la compréhension et de l'expression orale.
13. Aller plus loin

13.1. Concevoir des apprentissages c’est concevoir des produits d’apprentissage. Transposition provenant des techniques de conception de produit

Concevoir des produits est une activité industrielle très répandue. Les ingénieurs qui pratiquent cette activité sont passés par des phases d’apprentissage prenant comme exemple et support des phases et supports de conceptions véritables dans l’industrie. C’est pour cela que cette approche nous paraît intéressante parce que les usages numériques sont eux aussi directement liés à des produits fournis, utilisables et utilisés dans l’industrie. De plus, concevoir des supports d’apprentissage peut se décliner au regard de techniques de conception de n’importe quel autre produits ou supports. Pari audacieux en l’état des préjugés des enseignants mais pari qui tend à entrer petit à petit dans les mœurs et réflexions.

La Figure 45 propose une représentation combinée de deux cycles de vie. D’une part, en haut de la figure, on voit le cycle de vie d’un produit dans une approche industrielle et celui de l’apprentissage et la transmission de connaissances attachée à chacune de ces phases. Nous montrons que non seulement la conception est créatrice de connaissances mais que la relation concepteurs Expert-Novice est elle-même créatrice de nouvelles...

138 La didactique d'une discipline est la science qui étudie, pour un domaine particulier, les phénomènes d'enseignement, les conditions de la transmission de la culture propre à une institution et les conditions de l'acquisition de connaissances par un apprenant. [Martinand, 85].
connaissances et accompagne le processus complexe de transmission/création des connaissances.

13.2. Transposition en apprentissage

Il est possible de transposer ces mêmes concepts dans le domaine de l’apprentissage (en bas de la Figure 45). Dans ce dernier domaine, la relation ne concerne plus les concepteurs Expert-Novice mais plutôt Professeur-Étudiants ; il s’agit du domaine de la formation. Dans ce domaine les enjeux sont similaires sans pour autant être identiques. Si l’enjeu essentiel dans le domaine industriel est lucratif ; une meilleure conception permet un retour sur investissement plus important et rapide ; l’enjeu dans le domaine de la formation est avant tout lié à la recherche d’un enrichissement de connaissances des apprenants et cela sans but lucratif véritablement visible en termes de rentabilité. Cette dernière affirmation tend à contredire toutes les approches et analyses sur les systèmes éducatifs qui tendent à montrer très souvent l’adéquation ou non entre les investissements et le retour sur investissement. PISA 2013 montre les pistes sur lesquelles les institutionnels de la formation devront se pencher.

13.3. Relations Expert-Novice vs Enseignant-Elève

C’est pour cela que si nous savons décomposer la relation Expert-Novice, nous pouvons la transposer au sein du service de conception pour en améliorer les phases de nécessaire compréhension entre les acteurs. Ces flux de décomposition des phases d’apprentissage peuvent s’enrichir les uns les autres dans

Figure 45 : Apprendre à concevoir : un double flux issu de la conception de produit et de l’apprentissage de la conception.

Ainsi, cette façon novatrice d’envisager la conception d’apprentissage via une analyse des phases de la conception de produit, nous semble digne d’un intérêt certain. Non seulement
parce que les techniques de conception sont éprouvées mais également parce que nous sommes en capacité de les transposer dans les diverses situations complexes qu’impose la création de séquences d’apprentissage.

13.4. Un environnement propice

La relation entre les différents concepteurs au sein d’environnement spécifique de conception, dépend de paramètres divers et surtout du contexte dans lequel se déroule la conception (cf. la Figure 46). Le « concepteur-expert-didacticien139 » (en haut à droite) peut être assimilé à un chef de projet. Il doit avoir une vision stratégique, décisionnelle, et opérationnelle des situations dans lesquelles le projet se trouve. C’est également lui qui doit mettre en œuvre un environnement propice à la transmission et propice à la création/conception.

Figure 46 : Environnement didactique en apprentissage de la conception

139 “La didactique, c’est exercer une responsabilité par rapport à des contenus”, écrit Martinand, La didactique comporte un ancrage disciplinaire plus marqué que la pédagogie, ainsi qu’une dimension épistémologique (la nature des connaissances à enseigner).
L’environnement d’apprentissage sera d’autant plus propice à une meilleure compréhension des concepts pour les concepteurs novices, que les connaissances générées auront été transposées de façon pertinente c’est-à-dire compréhensibles par eux. En effet, une connaissance identifiée par les acteurs de la conception ne devient transmissible que lorsque ces mêmes acteurs ont intégré les différentes formes de transmission. Par un travail issu de la psychologie, la sociologie, la philosophie, la pédagogie et la cognitique, le concepteur expert se transforme petit à petit en expert de la conception.

13.5. Un modèle pour construire

C’est alors que le rôle de l’expert en conception peut se décliner comme cela est représenté sur la Figure 47. Il n’est plus essentiellement concepteur, il va se transformer en « concepteur expert et didacticien » c’est-à-dire en acteur capable de transmettre des connaissances.

Le concepteur novice ou apprenant passe d’un état i à j par une phase d’apprentissage. Cette phase d’apprentissage est une phase complexe qui voit plusieurs éléments se combiner les uns aux autres. Un concepteur expert va choisir, élaborer et mettre en œuvre des démarches, méthodes, activités, supports et ressources dans le but de transmettre ce qu’il sait à partir de la conception qu’il est en train de mener à bien. Il va se servir de son environnement social, de son environnement symbolique et sémantique ainsi que de son environnement constitué des objets déjà conçus. Ces trois éléments vont impacter fortement sa façon d’agir et de réfléchir. Enfin, d’autres concepteurs peuvent venir lui prêter main forte ainsi
que la culture propre du concepteur novice ou apprenant dans la phase d'apprentissage de nouvelles méthodes lors de la conception.

Figure 47 : Apprendre en conception

13.6. Conclusion

Les acteurs de la formation, qu’ils soient décideurs, formateurs ou usagers, sont conduits à s’interroger, aujourd’hui plus que jamais, sur les enjeux, les contenus, les modalités, les démarches, les stratégies de la formation au sein des équipes de conception. Une formation «face au défi de la complexité» ne peut pas être perçue comme une liste d’acquisitions linéaires à construire dont la somme égalerait le tout. Du fait qu’elle comprend un ensemble d’apprentissages complexes et exige des savoirs de terrain, l’apprentissage de connaissances se situe davantage dans une relation à cette complexité et dans l'organisation personnalisée des apprentissages que dans un réseau de tâches. Par ailleurs, cette démarche, conçue et animée par le « concepteur novice » en étroite collaboration avec l’équipe de « concepteurs experts », devrait être
analysée d'abord sur le terrain, pour se poursuivre ensuite, au travers de réflexions, tant individuelles que collectives. Il sera pertinent de mobiliser des apports théoriques en favorisant la confrontation de regards complémentaires. L’accent devrait être mis sur ce que les anglo-saxons appellent la relation d’« empowerment », c’est à dire la capacité à développer des pratiques de mobilisation, d’engagement ou encore de changement. L’entreprise, en tant que système, doit améliorer globalement ses compétences, en tirant parti de ses propres expériences, en travaillant à partir de ses propres ressources. La réussite dans le changement passe par la coopération, l'engagement et la responsabilisation de chacun, mais également dans l'interaction des entités qui le constituent. L’appropriation des connaissances de l’extérieur n’est qu’une condition nécessaire du succès qui repose tout autant sur les connaissances tacites et, plus largement, sur les compétences mises en œuvre et développées dans l’organisation elle-même que sur le management de la connaissance («Knowledge management») dans une entreprise a ainsi pour objectif de faire émerger, d’organiser et d’utiliser la connaissance comme support à l’innovation continue. Cela correspond à la prise de conscience que sa mémoire, sa culture sont également un capital pour elle-même. Générée par ses propres activités, elle est valorisée dans ses activités nouvelles. «L’intelligence économique» n’est une clé que si elle repose sur une réflexion sur les pratiques de l’entreprise et sur l'adaptation des structures pour lui permettre de produire elle-même la connaissance et les compétences qui lui sont nécessaires. Cela conduit à travailler sur le management des
connaissances et à développer une approche apprenante des organisations.

Ainsi, le triptyque : théories de l'apprentissage, théories de la conception, théories de la connaissance permet d'éclairer l'approche envisagée. (Figure 48)

La démarche globale que nous proposons à partir de cette définition de la problématique s’appuie sur un processus nommé : « Processus d'ingénition ». C’est une intégration des trois théories, à savoir : théorie de la conception collaborative, théorie de l'apprentissage et théorie de la gestion de la connaissance. C’est une nouvelle proposition pour améliorer le jeu incessant de va-et-vient entre les idées des concepteurs et les attentes. L’idée principale sous-jacente à ce « Processus d'ingénition » est la description systématique des processus d'ingénierie permettant la création et la génération de la connaissance au sein de toutes structures.

En résumé, les contours de la problématique d’une activité de conception en tant que situation d’apprentissage peuvent s’envisager dans la formulation des interrogations suivantes :
1. Comment faire le suivi opérationnel des générations et créations successives des connaissances ?
2. Comment décrire ces connaissances générées et suivant quel processus ?
3. Comment se servir de cette génération pour améliorer la conception des apprentissages en étant de plus en plus près des attentes des élèves ?
4. Comment montrer de façon efficace les chainages entre les différentes connaissances ayant des granularités différentes ?
5. Quelle solution viable proposer pour que cette génération de connaissance puisse être stockée, analysée, structurée, et partagée dans le but d’un réinvestissement lors de conceptions d’apprentissage futures ?

Le but de chapitre n’est pas de donner l’ensemble du dispositif mais de permettre d’ouvrir vers un champ de réflexion en train d’être explorer par nos équipes dans différents domaines industriels et non industriels.
14. Liste des figures

Figure 1 : Proportion des ménages disposant d’une connexion internet, en %..................13
Figure 2 : Taux d’équipement à internet à leur domicile, en %.................................14
Figure 3 : Accès des étudiants à internet...15
Figure 4 : Taux d’équipement en ordinateur et internet à domicile (en %)...............16
Figure 5 : Temps passé par un individu sur un ordinateur seul, la télévision seule, les deux en même temps. (en heure)...17
Figure 6 : Nature des équipements (en %)..18
Figure 7 : Evolution des technologies intégrées au E-learning19
Figure 8 : Les usages du numériques..20
Figure 9 : Matériel disponible pour faire la classe...21
Figure 10 : Utilisation du numérique ...22
Figure 11 : Interactions possibles avec les élèves..23
Figure 12 : Typologie des difficultés rencontrées en vue d’une intégration efficace24
Figure 13 : Esclave conduisant l’élève (Sculpture grecque : référence inconnue)......30
Figure 14 : Vérification de la cohérence de l’émission et de la réception33
Figure 15 : La compétence selon Le Boterf ...33
Figure 16 : Les modèles d'apprentissage et théories de l'apprentissage................39
Figure 17 : Modèle allostérique de l'apprentissage..40
Figure 18 : Exemples résolus en mathématiques, à gauche dans un format classique et à droite dans un format intégré (Sweller, Chandler, Tierney & Cooper (1990))......46
Figure 19 : Cadre de l’apprentissage par expérience...63
Figure 20 : Customisation du contenu des ressources ..74
Figure 21 : Enregistrement en classe 2..96
Figure 22 : typologie des stratégies ..130
Figure 23 : Processus cognitifs et utilisation des TICE ..136
Figure 24 : Un modèle pragmatique d’apprentissage par Lebrun..........................157
Figure 25 : Savoir Agir avec compétence(s). Le Boterf, 06159
Figure 26 : Modèle d’apprentissage par les usages numériques. Prévost, 12......161
Figure 27 : Schéma d’analyse des interactions. Séance Primitice169
Figure 28 : Les Professeurs des Écoles Stagiaires et les outils numériques..........174
Figure 29 : Vue dynamique du processus d’apprentissage pragmatique par Lebrun…………...183
Figure 30 : Production attendue concernant le dessin d’observation (Éléments de correction proposée à la suite du travail relatif à la construction de la fiche « Savoir faire un dessin d’observation »)..191
Figure 31 : Photos de lames minces choisies pour la phase de prolongement de l'apprentissage (photos libres de droit)...193
Figure 32 : Exemple d’arbre de parenté entre quelques espèces de primates194
Figure 33 : Etude III : arbre de parenté de la phase d’apprentissage initial..............196
Figure 34 : Etude III : écran de solution permettant de revoir la démonstration dans la condition Guidage Directif...197
Figure 35 : Etude III : écran de feed-back correctif généré dans la condition Guidage Adaptatif..197
Figure 36 : Etude IV : arbre de parenté de la phase d’apprentissage......................199
Figure 37 : Etude IV : résolution de la classification phylogénétique entre dix animaux ..200
Figure 38 : Exemple d’écran de feed-back correctif généré dans la condition Guidage Adaptatif ... 200
Figure 39 : Première phase : la phase « migratoire » ... 209
Figure 40 : Catégorie 1 des usagers : moments de l’étude repérés 217
Figure 41 : Catégorie 2 des usagers : moments de l’étude repérés 217
Figure 42 : Paysage orchestratif constitué chez Murielle .. 224
Figure 43 : Paysage orchestratif constitué chez Bernard ... 224
Figure 44 : Dispositif technique de veille autour de Twitter .. 241
Figure 45 : Apprendre à concevoir : un double flux issu de la conception de produit et de l’apprentissage de la conception ... 279
Figure 46 : Environnement didactique en apprentissage de la conception 280
Figure 47 : Apprendre en conception ... 282
Figure 48 : Triptyque de l’idée envisagée ... 284
15. Liste des Tableaux

Tableau 1 : Échelle de cotation : 0 valeur mini du phénomène observé - 100 valeur maxi du phénomène observé ... 98
Tableau 2 : Échelle de cotation : 0 valeur mini du phénomène observé - 100 valeur maxi du phénomène observé ... 101
Tableau 3 : Échelle de cotation : 0 valeur mini du phénomène observé - 100 valeur maxi du phénomène observé ... 102
Tableau 4 : Échelle de cotation : 0 valeur mini du phénomène observé - 100 valeur maxi du phénomène observé ... 103
Tableau 5 : Usages des TICE ... 144
Tableau 6 : Influence des TIC sur les apprentissages. – (Heutte, 07) 156
Annexe Tableau 7 : Grille de lecture ... 230
Tableau 8 - Quelques repères historiques ... 255