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Abstract

A fundamental research theme in distributed computing is the comparison of systems in terms of their

ability to solve basic problems such as consensus that cannot be solved in completely asynchronous systems.

In particular, in a seminal work [?], Herlihy compares shared-memory systems in terms of the shared objects

that they have: he proved that there are shared objects that are powerful enough to solve consensus among n

processes, but are too weak to solve consensus among n + 1 processes; such objects are placed at level n of

a wait-free hierarchy. The importance of this hierarchy comes from Herlihy’s universality result: intuitively,

every object at level n of this hierarchy can be used to implement any object shared by n processes in a

wait-free manner.

As in [?], we compare shared-memory systems with respect to their ability to solve consensus among n

processes. But instead of comparing systems defined by the shared objects that they have, we compare read-

write systems defined by the process schedules that they allow. These systems capture a large set of systems,

e.g., systems whose synchrony ranges from fully synchronous to completely asynchronous, several systems

with failure detectors, and “obstruction-free” systems. In this paper, we consider read-write systems defined

in terms of process schedules, and investigate the following natural question: For every n, is there a system

of n processes that is strong enough to solve consensus among every subset of n− 1 processes in the system,

but not enough to solve consensus among all the n processes of the system? We show that the answer to the

above question is “yes”, and so these systems can be classified into hierarchy akin to Herlihy’s hierarchy.



1 Motivation and related work

A fundamental research theme in distributed computing is the comparison of systems in terms of their ability to

solve basic problems such as consensus or k-set agreement that cannot be solved in completely asynchronous

systems [?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?]. In particular, in a seminal work [?], Herlihy compares shared-memory

systems in terms of the shared objects that they have: he proved that there are shared objects that are powerful

enough to solve consensus among n processes, but are too weak to solve consensus among n+1 processes; such

objects are placed at level n of a wait-free hierarchy. The importance of this hierarchy comes from Herlihy’s

universality result: intuitively, every object at level n of this hierarchy can be used to implement any object

shared by n processes in a wait-free manner.

As in [?], in this paper we compare shared-memory systems with respect to their ability to solve consensus among

n processes. But instead of comparing systems defined by the shared objects that they have, we compare systems

(with shared registers) defined by the process schedules that they allow, as we explain below.

First, note that several types of read-write shared-memory systems, e.g, asynchronous, partially synchronous and

synchronous systems, can be defined by the set of process schedules that they allow.1 For example, a completely

asynchronous system is one where every process schedule can occur. Similarly, a partially synchronous system

is one where the process schedules satisfy some timeliness or “fairness” conditions [?, ?, ?] which effectively

define the set of process schedules that are allowed. Perfectly synchronous systems can also be defined by the set

of process schedules that are allowed. Furthermore, several systems with failure detectors [?] are equivalent to

systems defined in terms of process schedules: for several well-known failure detectors D (including P,✸P, S

and ✸S) an asynchronous system augmented with D is equivalent to a system where schedules satisfy some

fairness conditions [?].2 Finally, obstruction-free algorithms work in systems with a specific set of process

schedules, namely, schedules where some process eventually executes solo [?].

Thus, shared-memory systems defined in terms of process schedules capture a large set of systems, e.g., systems

whose synchrony ranges from fully synchronous to completely asynchronous, several systems with failure de-

tectors, and “obstruction-free” systems. In this paper, we consider such systems and investigate the following

natural question:

For every n, is there a system of n processes that is strong enough to solve consensus among every

subset of n−1 processes in the system, but not enough to solve consensus among all the n processes

of the system?

If this is true, it would imply that these systems can be classified into hierarchy akin to Herlihy’s hierarchy.

The answer to the above question is not obvious. In [?] it is shown that if a failure detector D is powerful enough

to solve consensus among every subset of n− 1 processes in a system of n processes, then it is powerful enough

to solve consensus among all the n processes in the system. Since [?] shows that several systems with failure

detectors are equivalent to systems with sets of schedules, it is tempting to conjecture that the answer is “no”:

In this paper we show that the answer to the above question is “yes”. More precisely, we prove that for every

n ≥ 2, there is a read-write shared-memory system S of n processes such that: (a) consensus can be solved for

every subset of n − 1 processes of S, and (b) consensus cannot be solved for the n processes of S. It is worth

noting that the positive result (a) holds even if S has only a bounded number of bounded-size registers, while the

impossibility result (b) holds even if S has an unbounded number of unbounded-size registers.

1Intuitively, a process schedule specifies the order in which processes take steps.
2The results in [?] were for message-passing systems, but similar results hold for read-write shared-memory systems.
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2 Model

We consider shared-memory systems of processes with SWMR multivalued atomic registers. Processes proceed

by executing atomic events: in each event, a single process can read or write a single register. In the following,

P denotes a set of processes, formally P ⊆ N = {1, 2, . . .}.

2.1 Process schedules

A schedule σ of a set of processes P is a finite or infinite sequence where each element of the sequence is a

process in P , e.g., σ = 243125434253335 . . . is a schedule of P = {1, 2, 3, 4, 5}. Each occurrence of a process

p in a schedule σ is called a step of p (in σ). A process is correct in a schedule σ if it occurs infinitely often in σ,

otherwise it is faulty (or crashes) in σ.

Roughly speaking, a schedule σ is k-solo, if σ has a process that runs solo for at least k consecutive steps

infinitely often. More precisely, a schedule σ of a set of processes P is k-solo if σ is finite or there is a process

p ∈ P such that σ contains an infinite number of subsequences consisting of k or more consecutive steps of

p (and only of p). Note that if a schedule is k-solo then it is also (k − 1)-solo, and every schedule is trivially

1-solo.

2.2 Systems and subsystems

Intuitively, a system S is described by the set P of processes in the system and the set Σ of schedules of P that

can occur in this system. More precisely, a system S is a tuple [P,Σ], where P is a non-empty set of processes

and Σ is a non-empty set of schedules of P . We say that σ is a schedule of system S = [P,Σ] if σ ∈ Σ. Moreover,

S′ = [P ′,Σ′] is a subsystem of S = [P,Σ] (denoted S′ ⊆ S) if P ′ ⊆ P and Σ′ ⊆ Σ. Finally, S′ = [P ′,Σ′] is a

proper subsystem of S = [P,Σ] (denoted S′ ⊂ S) if S′ is a subsystem of S and P ′ ⊂ P or Σ′ ⊂ Σ.

In the following definitions, P is a set of processes and Q is a subset of P . If σ is a schedule of P , we denote

by σ(Q) the subsequence of σ obtained by keeping only the steps of the processes that are in Q; e.g., if σ =
243125434253335 and Q = {2, 5} then σ(Q) = 225255. Note that σ(Q) is a schedule of Q. If Σ is a set of

schedules of P , we denote by Σ(Q) the set of schedules obtained by keeping only the steps of the processes that

are in Q in the schedules of Σ; more precisely: Σ(Q) = {σ′ | ∃σ ∈ Σ such that σ′ = σ(Q)}. Note that all the

schedules of Σ(Q) are schedules of Q.

Let S = [P,Σ] be a system and Q be a subset of P . We denote by S(Q) the subsystem of S obtained by keeping

only the steps of the processes that are in Q from S; more precisely, S(Q) = [Q,Σ(Q)]. Note that if Q is a

proper subset of P , then S(Q) is a proper subsystem of S.

2.3 Systems An and Sk
n

We now define some systems that are central to our results. Henceforth, Pn is the set of n processes {1, 2, . . . , n}
and Σn is the set of all the schedules of Pn.

• An = [Pn,Σn] is the asynchronous system of the processes in Pn.

• For k ≥ 1, Sk
n = [Pn,Σ

k
n] where Σk

n = {σ | σ ∈ Σn and for all the proper subsets Q of Pn : σ(Q) is k-solo}.

Observation 1 Let Q be any proper subset of Pn. All the schedules of the subsystem Sk
n(Q) of Sk

n are k-solo

schedules of Q.

To see this, consider any schedule σ′ of Sk
n(Q) = [Q,Σk

n(Q)], i.e., σ′ ∈ Σk
n(Q). So σ′ = σ(Q) for some σ ∈ Σk

n.

By the definition of Σk
n, σ(Q) (and therefore σ′) is a k-solo schedule of Q.
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Note that:

1. For all k ≥ 1, S1
n = An, the asynchronous system of the processes in Pn = {1, 2, . . . , n}. This is because

for every schedule σ of Pn and every proper subset Q of Pn, the schedule σ(Q) is trivially 1-solo.

2. For all k ≥ 1, Sk
2 = A2, the asynchronous system of the processes in P2 = {1, 2}. This is because for

every schedule σ of P2 = {1, 2} and every proper subset Q of {1, 2} (namely, Q = {1}, Q = {2} or

Q = ∅) the schedule σ(Q) is trivially k-solo for all k ≥ 1.

3. For all n ≥ 3, and all k ≥ 2, Sk
n ⊂ An. To see this, let k ≥ 2 and consider the infinite schedule σ =

123123123123 . . . etc. of Pn = {1, 2, . . . , n}. This is a schedule of An, but it is not a schedule of Sk
n. This

because for the proper subset Q = {1, 2} of Pn = {1, 2, . . . , n}, the schedule σ(Q) = 12121212 . . . etc.
is not k-solo for k ≥ 2, so σ is not a schedule of Sk

n.

4. For all n ≥ 3, A2 6⊆ S2
n. To see this, consider the infinite schedule σ = 1212121212 . . . etc. This is a

schedule of A2, but it is not a schedule of S2
n. This is because, for all n ≥ 3, Q = {1, 2} is a proper subset

of Pn = {1, 2, . . . ., n} but σ(Q) = 1212121212 . . . etc. is not 2-solo.

5. For all n ≥ 3, and all k ≥ 1, Sk+1
n ⊂ Sk

n. To see this, let σ ∈ Sk+1
n . For every Q ⊂ Pn, σ(Q)

is (k + 1)-solo, and so σ(Q) is also k-solo; thus σ ∈ Sk
n. Furthermore, consider the schedule σ =∏

∞

i=1
(1k2k . . . nk). It is clear that for every Q ⊂ Pn, σ(Q) is k-solo, and so σ ∈ Sk

n; but for Q = {1, 2},

σ(Q) = 1k2k1k2k . . . 1k2k . . . is not (k + 1)-solo, and so σ 6∈ Sk+1
n .

To provide some intuition about the systems Sk
n that we defined, we now give a few simple examples of schedules

that are in Sk
n and are not in Sk

n.3 To describe these schedules we use the following notation. For two processes

p and q in Pn = {1, 2, . . . , n}, (pq)i denotes the sequence of steps pq repeated i times; for example (pq)3 is

pqpqpq. Similarly, {p, q}i denotes any finite sequence of steps of processes p and q that contains at least i steps

of p and at least i steps of q, in any order. For example, {p, q}3 includes the sequences pqpqpq, pppqqqq and

ppqqpq, but it does not include the sequence ppprqqq (because it contains a step of process r) or ppppqq (because

it contains fewer than 3 steps of q).

We start with some examples of schedules of system Sk
n (i.e., of schedules σ ∈ Σk

n) for n ≥ 3:

(a) σ =
∏

∞

i=1
[(12)k(13)k(14)k . . . (1n)k]. Schedule σ ∈ Σk

n because it is a schedule of Pn and for every proper

subset Q of Pn, the schedule σ(Q) is k-solo. To see this, assume Q is not empty (if Q = ∅, σ(Q) is trivially

k-solo because it is the empty schedule). There are two possible cases. If Q does not contains process 1,

then, since Q is not empty, Q contains at least one process j ∈ {2, 3, . . . n}; since the sequence (1j)k appears

infinitely often in σ and 1 6∈ Q, the sequence jk (i.e., k consecutive steps of process j) appears infinitely

often in schedule σ(Q); thus σ(Q) is k-solo. If Q contains process 1, then, since Q is a proper subset of Pn,

some process j ∈ {2, 3, . . . n} is not in Q; since the sequence (1j)k appears infinitely often in σ and j 6∈ Q,

the sequence 1k appears infinitely often in schedule σ(Q); thus σ(Q) is k-solo. Thus, in both cases σ(Q) is

k-solo.

(b) σ is any schedule of the form
∏

∞

i=1
[{1, 2}k{1, 3}k{1, 4}k . . . {1, n}k]. The proof that σ ∈ Σk

n is similar to

the one given above.

(c) σ =
∏

∞

i=1
[(12)k(23)k(34)k . . . (n− 2 n− 1)k(n− 1 n)k(n 1)k]. It is easy to see that for every Q ⊂ Pn, the

schedule σ(Q) is k-solo, so σ ∈ Σk
n.

3The examples of schedules that we give here are very simple (they have a simple repetitive pattern). It should be clear, however, that

the set of schedules of Sk
n is very “rich”: it contains schedules that are much more varied and complex than the few simplistic ones that

we give for illustration here.
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The following schedule is not in system Sk
n, i.e., σ 6∈ Σk

n, for any k ≥ 2 and n even, n ≥ 4 :

(a) σ =
∏

∞

i=1
[(12)k(34)k . . . (n − 3 n − 2)k(n − 1 n)k]. To see that σ 6∈ Σk

n, note that for the proper subset

Q = {1, 2} of Pn, the schedule σ(Q) = 121212121212 . . . is not k-solo for any k ≥ 2.

2.4 Consensus problem

Consider an algorithm A defined for some set of processes P . A schedule determines exactly the sequence of

steps of the processes executing the algorithm. Then the set of runs of algorithm A for a system S = [P,Σ] is

the set of all runs of A obtained when the processes of P execute A for Σ.

In the consensus problem each process has an initial value and must decide a value. We say that algorithm A
solves the consensus in system S = [P,Σ] if and only if every run of A for S satisfies the following properties:

• (Agreement) If a correct process p decides v and a correct process q decides v′ then v = v′;

• (Integrity) If some correct process decides v then v is the initial value of some process.

• (Termination) Every correct process eventually decides some value.

By a slight extension we say that A solves the consensus for a subset Q of P in S = [P,Σ] if A solves the

consensus in the subsystem S(Q).

We sometimes consider the uniform variant of the consensus. In the uniform consensus, each run has to ensure

(i) (uniform agreement) if a process p decides v and a process q decides v′ then v = v′, (ii) (uniform integrity) if

some process decides v then v is the initial value of some process, and (iii) termination as before.

3 Main result statement and proof outline

Our main result is that for all n ≥ 2 there is a shared-memory system S of n processes that separates the problems

of (1) solving consensus for n processes and (2) solving consensus for every proper subset of these processes.

More precisely, we show the following:

Theorem 2 For every n ≥ 2, there is a system S of processes Pn such that:

(a) for every proper subset Q of Pn, consensus can be solved in the subsystem S(Q) of S, and

(b) consensus cannot be solved in S.

Proof outline. For n = 2, the proof is obvious. S is simply the asynchronous system of P2 = {1, 2}, i.e.,

S = A2. By the well-known impossibility of result of [?, ?], consensus cannot be solved in S. Furthermore, for

every proper subset Q of P2 = {1, 2}, consensus can be trivially solved in the subsystem S(Q) of S since this

system contains at most one process.

For n ≥ 3, the system S is defined as follows. Consider the algorithm Bn for processes Pn given in Section ??,

this algorithm using snapshots may be rewritten into an algorithm B′

n using only SWMR registers. Let ℓ be

the number of steps that any process p ∈ Pn takes to execute the main loop of this algorithm (i.e., Figure ??,

lines ??-??) 2n + 1 times. From the code of this loop, it is clear that ℓ is well-defined: this is because (a) the

code does not contain any “wait” statement, and (b) multi-writer snapshot used in the algorithm can be wait-free

implemented with a bounded number of SWMR registers such that each scan or update of a process p terminates

if p takes more than k steps alone for some k.

Definition 3 Let S = Sℓ
n.
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Recall that Sℓ
n = [Pn,Σ

ℓ
n] where Σℓ

n = {σ | σ ∈ Σn and for all Q ⊂ Pn : σ(Q) is ℓ-solo} (see Section ??).

We show that S satisfies the two parts of Theorem ??, as follows.

Proof of Part (a): Let Q be any proper subset of Pn. We claim that the algorithm B′

n shown in Section ?? solves

consensus in the subsystem S(Q) of S. To prove this, we show that the algorithm B′

n satisfies the properties

of consensus in every run of the processes in Q where either (a) all processes in Q crash (the corresponding

schedule of Q is finite), or (b) there is a process in Q that executes at least ℓ consecutive steps solo infinitely

often. In other words, the algorithm B′

n solves consensus in every run of the processes in Q whose schedule is

ℓ-solo. By Observation ??, every schedule of subsystem S(Q) of system S = Sℓ
n is an ℓ-solo schedule of Q,

thus the algorithm B′

n solves consensus in S(Q).

The detailed explanation and proof of algorithm B′

n is given in Section ??.

Proof of Part (b): We claim that consensus cannot be solved in system S. Suppose, for contradiction, that there

is an algorithm Cn that solves consensus in system S. Then we can show that consensus can be solved in the

asynchronous system A2 — contradicting the well-known impossibility result in [?, ?]. To solve consensus in

A2, the two processes of A2 can simulate the execution of the consensus algorithm Cn by the n processes of Pn

in a system S′ such that:

(1) S′ is a subsystem of S = Sℓ
n = [Pn,Σ

ℓ
n]. In particular, every schedule of S′ is in also a schedule of S.

(2) If at least one of the two processes of system A2 does not crash during their simulation of algorithm Cn in

system S′, then at least one of the n simulated processes in Pn does not crash in the simulated run of Cn in

system S′.

Property (1), together with the assumption that Cn solves consensus in S, ensures that every simulated run of Cn
in the subsystem S′ of S also satisfies the properties of consensus. In particular, in each simulated run of Cn in

S′, all the simulated processes that are correct in this run reach a common decision.

Property (2) ensures that if at least one of the two processes in A2 is correct, then at least one of the n processes

in Pn that they simulate, say process p, is also correct; by the above, p reaches a decision in the simulated run of

Cn in S′. So, every correct process in A2 can wait until one of the simulated processes decides some value, and

then adopt this common decision value.

Thus, by simulating the execution of Cn in system S′ ⊆ S, the two processes of A2 can solve consensus in A2.

This violation of the impossibility result of [?, ?] concludes the proof that consensus cannot be solved in S.

In Section ?? we show how the two processes of system A2 simulate the execution of the consensus algorithm

Cn by the processes Pn in system S′ such that conditions (1) and (2) above hold.

4 Consensus algorithm

In this section we present an algorithm B′

n in a system S = [P,Σ] where P is a set of n processes. We show

that for some ℓ it achieves uniform consensus in any ℓ-solo schedules. Moreover for any Q ⊂ P , B′

n solves the

consensus in the subsystem Sℓ
n(Q).

For convenience, we first give Bn an algorithm using multi-writer wait-free snapshot then we deduce from Bn

the existence of an algorithm B′

n using only SWMR registers solving consensus in any ℓ-solo schedules.

Algorithm Bn (Figure ??) is an adaptation of obstruction-free consensus algorithm in [?]. It uses a 2n multi-

writer snapshot array and terminates if at least one process runs alone during 2n+ 1 iterations of the main loop.

In algorithm Bn we say that process decides value x if it executes Line ?? with variable v equal to x.

Describe informally the algorithm. Each process maintains a proposed value (variable propose) and tries to

write its proposed value in a cyclic order in every cell of the snapshot array R. The proposed value is modified

5



Shared variables:

R[1..2n]: array of multi-writer snapshot, initialized to [⊥..⊥]

CODE FOR PROCESS p:

1 prop := vp /*p input value*/

2 V iew[1..2n] : array, initialized to [⊥..⊥]
3 decide := ⊥
4 i := 1

5 forever do

6 update(R[i], prop)
7 V iew := scan(R)
8 if ∃v : ∀j(1 ≤ j ≤ 2n)V iew[j] = v

9 then /* one value in R */

10 let v such that ∀j(1 ≤ j ≤ 2n) : v = V iew[j]
11 if decide == ⊥
12 then

13 decide := v

14 else /* more than one value in R */

15 if (∃v(v 6= ⊥) :| {j | (1 ≤ j ≤ 2n) ∧ v = V iew[j]} |> n

16 then / * a majority of cells of R contain v */

17 let v (v 6= ⊥) such that (| {j | ∧(1 ≤ j ≤ 2n)) ∧ v = V iew[j]} |> n

18 prop := v

19 i := (i mod 2n) + 1

Figure 1: Bn consensus algorithm with 2n multi-writer snapshot array.

following the following rules: initially it is the initial value of the process, then just after the process writes its

proposed value in some cell of the snapshot array R, it scans R and if some value v is the value in a majority of

cells of the returned array, the process adopts that value as proposed value. When all values in the snapshot array

are the same, then the process decides this value.

If some process decides value v, in the last scan made by this process all the 2n cells of the snapshot array are

equal to v and then it can be proved that all the next scans of R will have a strict majority of cells with value v.

Hence the proposed value of any process that makes a scan after that will be v and then v is the only value that

can be decided. Moreover if some process is running alone enough time it will be able to update all the cells of R

with its proposed value and then it decides. Consider the body of the main loop of algorithm Bn (Lines ?? to ??),

if a process runs alone at least 2n+ 1 successive iterations of the body of the main loop, after the scan of its first

iteration its proposed value does not change and it updates during the next 2n iterations all cells of the snapshot

array with this value. Then by the end of these 2n + 1 iterations it decides. As soon as some process decides, it

is easy to verify that all correct processes decide.

Theorem 4 If some process runs alone during 2n+1 successive complete iterations of the main loop, algorithm

Bn is a consensus algorithm.

PROOF. Due to the lack of space, we give the formal proof of this Theorem in Appendix (Section ??).

Algorithm Bn uses a multi-writer snapshot array. Using the implementation of multi-writer snapshot with

MWMR registers described in [?] and the implementation of MWMR registers with SWMR registers from [?],

we can derive from Bn an algorithm B′

n using only SWMR registers. From Theorem ??, algorithm B′

n is a con-

sensus algorithm in which all correct processes terminate in any schedule such that some process takes enough

atomic steps solo to run alone during 2n+ 1 successive iterations of the main loop.

The algorithm in [?] gives a wait-free implementation of a multi-writer snapshot array from MWMR registers.

For this algorithm there exists a constant C1 such that each update or scan operation requires less than C1n
2

reads and writes to MWMR registers. Moreover, if the values written in the snapshot are bounded by some K

there exists a function D1 such that the values written in the MWMR registers are bounded by D1(K).
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The algorithm given in [?] implements MWMR registers from SWMR registers. For this algorithm there exists

a constant C2 such that each write requires less than C2n reads and writes to the SWMR registers and each

read requires less than C2n log n reads and writes to the SWMR registers. Moreover, if the values written in

the MWMR registers are bounded by K there exists a function D2 the value written in the SWMR registers are

bounded by D2(K)

Let m = (2n + 2)(2C1n
2C2n log n), if some process runs solo for at least m steps it runs alone during 2n + 1

iteration of the main loop of Bn, then by Theorem ?? all correct processes decide.

In algorithm Bn the processes update the snapshot array with only initial values. Let M be the max of the initial

values of processes, in B′
n all SWMR are bounded by a constant namely by D2(D1(M)). Then we get:

Theorem 5 There is a constant ℓ such that algorithm B′

n solves consensus with a bounded number of bounded-

size SWMR registers in any ℓ-solo schedules.

Consider system Sℓ
n for the bound ℓ given in the previous theorem, then for any Q ⊂ Pn, by definitions of Sℓ

n,

each schedule of Sℓ
n(Q) is ℓ-solo for some process q ∈ Q. Hence B′

n solves the consensus in Sℓ
n(Q):

Theorem 6 For any proper subset Q of Pn, consensus can be solved in Sℓ
n(Q) by an algorithm with a bounded

number of bounded-size SWMR registers.

5 Consensus cannot be solved in system S

Shared variables:

/* Program Counters of simulated processes 1, 2, . . . , n */

PC[1..n]: array of SWSR registers, initialized to [0..0]

CODE FOR PROCESS x: /* process x simulates process 1 executing algorithm Cn*/

1 input value of process 1 in Cn := input value of process x

2 forever do

3 PC[1] := PC[1] + 1
4 execute one step of process 1 running algorithm Cn

5 if process 1 decides some value v in Cn then decide v

CODE FOR PROCESS y: /* process y simulates processes 2, 3, . . . , n executing algorithm Cn*/

Local variables:

pc[1..n]: array
p: scalar

6 for p = 2 to n do

7 input value of process p in Cn := input value of process y

8 for i = 1, 2, . . . do /* simulation of {1, p}ℓ steps of processes 1 and p */

9 p := 2 + (i− 1)mod(n− 1) /* with p = 2, 3, . . . , n, 2, . . . in round-robin order */

10 pc[1] := PC[1]
11 pc[p] := PC[p]
12 while (PC[1] ≤ pc[1] + ℓ) or (PC[p] < pc[p] + ℓ) do

13 PC[p] := PC[p] + 1
14 execute one step of process p running algorithm Cn

15 if process p decides a value v in Cn and y has not yet decided then decide v

Figure 2: Processes x and y simulate the execution of Cn by processes 1, 2, . . . , n in system S′ ⊆ S = Sℓ
n.

We now prove that consensus cannot be solved in system S = Sℓ
n. Suppose, for contradiction, that there is an

algorithm Cn that solves consensus in system S. We show that the two processes of the asynchronous system

A2 can use Cn to solve consensus among themselves (contradicting the impossibility result in [?, ?]); intuitively,
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they do so by simulating the execution of Cn by the n processes of Pn in a subsystem S′ of S, such that if one of

the processes in A2 does not crash then at least one of simulated processes in Pn does not crash. Henceforth, we

denote by x and y the two processes of A2 (this is to distinguish them from the n processes of Pn = {1, 2, . . . , n}
that they simulate).

In the following: (a) we first define the system S′ and show that it is indeed a subset of system S, (b) we then

show how the algorithm in Figure ?? executed by the two processes x and y of A2 simulates runs of Cn in system

S′, i.e., the schedules of these runs are schedules of S′, and (c) finally we show that x and y solve consensus

among themselves using this simulation algorithm.

Intuitively, the schedules of system S′ are: (1) all the infinite schedules of the form
∏

∞

i=1
[{1, 2}ℓ{1, 3}ℓ . . . {1, n}ℓ],4

(2) all the finite prefixes of such schedules, and (3) all the finite prefixes of such schedules followed by p∞ for

some process p ∈ Pn (i.e, an infinite sequence of steps of p). More precisely, let Σ = {σ | σ is of the form∏
∞

i=1
[{1, 2}ℓ{1, 3}ℓ . . . {1, n}ℓ].

Definition 7 S′ = [Pn,Σℓ
n] where Σℓ

n = {σ|σ ∈ Σ or there is a finite prefix σ′ of a schedule in Σ such that

σ = σ′ or such that σ = σ′p∞ for some p ∈ Pn}.

Lemma 8 S′ is a subsystem of system S.

PROOF. Since S′ = [Pn,Σℓ
n] and S = [Pn,Σ

ℓ
n], we must show that Σℓ

n ⊆ Σℓ
n. Recall that Σℓ

n = {σ | σ ∈

Σn and for all Q ⊂ Pn : σ(Q) is ℓ-solo}. Let σ ∈ Σℓ
n. Since σ is a schedule of Pn, σ ∈ Σn. To show that

σ ∈ Σℓ
n it suffices to prove that for all Q ⊂ Pn, σ(Q) is ℓ-solo. Let Q any proper subset of Pn. If Q is empty

then σ(Q) is trivially ℓ-solo, so assume that Q is not empty. There are three possible cases:

1. σ is an infinite sequence of the form
∏

∞

i=1
[{1, 2}ℓ{1, 3}ℓ . . . {1, n}ℓ].

Suppose process 1 is in Q. Since Q is a proper subset of Pn, there is a process p ∈ Pn \ Q. Note that

subsequences of the form {1, p}ℓ appears infinitely often in σ. Thus, since p 6∈ Q, the subsequence 1ℓ

appears infinitely often in σ(Q). In other words, process 1 runs solo for ℓ steps infinitely often in σ(Q).
So σ(Q) is ℓ-solo.

Suppose process 1 is not in Q. Since Q is not empty, there is a process p ∈ Q. Note that subsequences

of the form {1, p}ℓ appears infinitely often in σ. Thus, since 1 6∈ Q, the subsequence pℓ appears infinitely

often in σ(Q). So σ(Q) is ℓ-solo.

2. σ = σ′ for some finite schedule σ′. Since σ is finite it is trivially ℓ-solo.

3. σ = σ′p∞ for some finite schedule σ′ and some process p. If p ∈ Q, then σ(Q) is of the form σ′′p∞ for

some σ′′. Thus pℓ appears infinitely often in σ(Q), and so σ(Q) is ℓ-solo. If p 6∈ Q then σ(Q) is finite, so

it is trivially ℓ-solo.

We now show that when processes x and y execute the algorithm in Figure ?? in the asynchronous system A2,

they simulate schedules of system S′. More precisely:

Lemma 9 When processes x and y execute the algorithm in Figure ?? in system A2, they simulate runs of Cn by

the processes Pn in system S′, i.e., the schedules of these simulated runs are schedules of S′.

PROOF. First note that each time process x executes an iteration of its forever loop (lines ??-??), it increments

PC[1] and does one step of process 1 executing algorithm Cn. Similarly, each time process y executes an iteration

of its while loop (lines ??- ??) for a process p ∈ {2, . . . , n}, it increments PC[p] and does one step of process p

executing algorithm Cn. Thus, it is clear that x and y simulate runs of Cn by the processes in Pn. It remains to

4Recall that {p, q}i is any sequence of steps of p and q that contains at least i steps of p and at least i steps of q, in any order.
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show that the schedules of these simulated runs are schedules of the system S′ = [Pn,Σℓ
n], i.e., they are either

(1) infinite schedules of the form
∏

∞

i=1
[{1, 2}ℓ{1, 3}ℓ . . . {1, n}ℓ], or (2) finite prefixes of such schedules, or (3)

finite prefixes of such schedules followed by p∞ for some process p ∈ Pn.

From the above and the termination condition of processs y’s while loop of line ??, it is clear that y completes each

execution of the while loop that it starts, unless it crashes or process x crashes (and stops incrementing PC[1]).
Thus, unless x or y crash, process y executes an infinite number of iterations of the for-loop of line ??. Note that

during its i-th iteration of this for-loop, process y simulates the steps of process p = 2+(i−1)mod(n−1). So in

the successive iterations of this for-loop, process y simulates the steps of the processes 2, 3, ...., n in round-robin

order.

Let ti be the time when process y starts its i-th iteration of the for-loop of line ??; ti is undefined if y never starts

this iteration. From the above, we have the following:

Observation 10 If, for some k ≥ 1, tk is undefined then process x or y (or both) crash.

To show that x and y simulate schedules of S′, we consider the steps of the processes in Pn that x and y simulate

from time 0 (when x or y start executing the simulation algorithm) to time t1, from time t1 to time t2 , ..., from

time tj to time tj+1, ... until we reach a time tk that is undefined if such a time exists.

Note first that if t1 is not defined, then y crashes before executing its first for-loop of line ??, so y never simulates

any step. Since process x simulates only the steps of process 1, the resulting simulated schedule of Pn is simply

1∞ or some finite prefix of 1∞ (if x crashes). It is easy to see that this is a schedule of S′.

Henceforth assume that t1 is defined. During the interval [0, t1] process y does not simulate any step, and process

x simulates only steps of process 1. So during interval [0, t1] the simulated schedule is some finite prefix of 1∞.

Now suppose that, for some i ≥ 1, ti is defined. Let p = 2+ (i− 1)mod(n− 1). As we noted before, this is the

(only) process of Pn that y simulates during its i-th iteration of the for-loop of line ?? that starts at time ti.

There are two possible cases:

(1) ti+1 is defined. In this case, we show that during the interval of time [ti, ti+1], processes x and y simulate a

sequence of steps of the form {1, p}ℓ.

CLAIM 1: During the interval [ti, ti+1] processes x and y simulate only the steps of processes 1 and p, and

they simulate at least ℓ steps of 1 and at least ℓ steps of p.

Proof of Claim 1: First note that during interval [ti, ti+1], process y simulates only steps of process p, and

process x simulates only steps of process 1.

Process y stores the value of PC[1] in pc[1] at some time τ1, and y stores the value of PC[p] in pc[p] at

some time τ2, such that ti ≤ τ1 ≤ τ2 < ti+1. Furthermore, the while loop that y executes during the interval

[ti, ti+1] ends at some time τ3 ≤ ti+1, when y finds that (PC[1] > pc[1]+ ℓ) and (PC[p] ≥ pc[p]+ ℓ) holds.

Since PC(1) = pc(1) at time τ1 and PC[1] > pc[1] + ℓ at time τ3, then at least ℓ steps of process 1 are

simulated during the interval [τ1, τ3]. Similarly, since PC(p) = pc(p) at time τ2 and PC[p] ≥ pc[p] + ℓ at

time τ3, then at least ℓ steps of process p are simulated during the interval [τ2, τ3]. We conclude that during

interval [ti, ti+1], only steps of processes 1 and p are simulated, and at least ℓ steps of 1 and at least ℓ steps

of p are simulated.

(2) ti+1 is undefined.

CLAIM 2: After time ti, only the steps of processes 1 and p are simulated. Furthermore, there is a time

τ ≥ ti after which only steps of process 1 are simulated, or only steps of process p are simulated, or no steps

are simulated.

Proof of Claim 2: Since ti+1 is undefined, process y never starts its (i + 1)-th iteration of the for-loop of

line ??. Thus, after time ti process y can simulate only the steps of process p. Since x simulates only the steps
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of process 1, after time ti only the steps of 1 and p can be simulated. Furthermore, since ti+1 is undefined,

by Observation ?? process x or process y (or both) crash. If y crashes then after this crash occurs no steps

of p are simulated. If x crashes then after this crash occurs no steps of 1 are simulated. So there is a time

τ ≥ ti after which only steps of process 1 are simulated, or only steps of process p are simulated, or no steps

are simulated.

From the above, it is clear that when x and y execute the algorithm in Figure ?? in system A2, they simulate a

schedule of Pn of the form
∏

∞

i=1
[{1, 2}ℓ{1, 3}ℓ . . . {1, n}ℓ], or a finite prefix of such a schedule, or a finite prefix

of such a schedule followed by p∞ for some process p ∈ Pn. In other words, they simulate schedules of the

system S′ = [Pn,Σℓ
n].

We now show that the algorithm Figure ?? solves consensus in the asynchronous system A2. This algorithm

simulates the execution of an algorithm Cn that is assumed to solve consensus in system S. We first show that Cn
satisfies the uniform version of the agreement and integrity properties, namely: (a) all the processes that decide

(whether correct or faulty) decide the same value, and (b) any process that decides (whether correct or faulty)

decides a process input value. That is:

Lemma 11 In system S = [Pn,Σ
ℓ
n], the consensus algorithm Cn satisfies the uniform agreement and uniform

integrity properties.

PROOF. Due to the lack of space, we give the proof of this Lemma in Appendix (Sec ??).

To prove that the algorithm in Figure ?? solves consensus in A2, consider an execution of this algorithm where

x and y have input value ix and iy, respectively. In this execution, process x simulates the steps of process 1

executing algorithm Cn with input ix (see line ??); if process 1 decides a value v in Cn, then x also decides v.

Similarly, process y simulates the steps of processes 2, 3, . . . , n executing algorithm Cn with input iy (see line

??). If any process in {2, 3, . . . , n} decides a value in Cn, then y also decides this value. By Lemma ??, this

execution simulates a run of the consensus algorithm Cn among the n processes of Pn in the subsystem S′ of S.

We now show that x and y reach consensus.

• (Uniform) Agreement: If x and y decide, then x decides the value that process 1 decides and y decides the

value that some process p ∈ {2, 3, . . . , n} decides in the simulated execution of Cn in system S′ ⊆ S. By

Lemma ??, Cn satisfies the uniform agreement property in system S. Thus, x and y decide the same value.

• Termination: If process x is correct, then process 1 is correct (i.e., it takes an infinite number of steps) in

the simulated execution of Cn in system S′ ⊆ S. Since Cn satisfies the termination property in system S,

correct process 1 decides a value in this execution of Cn. So x also decides a value.

If process y is correct, then at least one process p ∈ {2, 3, . . . , n} that y simulates is correct in the simulated

execution of Cn in system S′ ⊆ S. Since Cn satisfies the termination property in system S, correct process

p decides a value in this execution of Cn. So y also decides a value.

• (Uniform) Integrity: If x or y decides a value v, then some process p ∈ Pn decides v in the simulated

execution of Cn in system S′ ⊆ S. By Lemma ??, Cn satisfies the uniform integrity property in system S.

Thus v must be the input value of some process q ∈ Pn in this execution of Cn. Note that the input value

of q in An is the input value of x or y (algorithm lines ?? and ??). So v is the input value of x or y.

We proved that if an algorithm Cn solves consensus in system S, then the algorithm in Figure ?? solves (uniform)

consensus in the asynchronous system of two processes A2 — contradicting the results in [?, ?]. Thus, consensus

cannot be solved in S.
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Appendix

A Consensus (Section ??)

More formally, let V τ (v) be the number of cells of snapshot array R equal to v at time τ . Given any value v,

assume that p has already made its scan in Line ??, the next update of a process p in Line ?? will be with a value

different from v if (i) at least n cells of the array returned by the last scan of p contain the same value w and

w 6= v and (ii) not all the values of the array returned by the last scan of p are the same. Let Cτ (v) be the number

of processes that have already made the scan (Line ??) and have not yet made the next update (Line ??) for which

conditions (i) and (ii) are true. Let Invτ (v) ≡ V τ (v)− Cτ (v) > n, we have:

Lemma 12 If at some time τ Invτ (v) is true then for all time τ ′ ≥ τ , Invτ
′

(v) is true.

PROOF. Prove that for all v Invτ (v) is an inductive invariant. Assume that Invτ (v) is true and consider the

next step of any process and let τ ′ be the linearization time of the this next step and p be the process making this

step. We have the following cases:

• at time τ ′ process p updates cell i with a value w. As p has performed its update and has not preformed yet

its scan, Cτ ′(v) = Cτ (v)− 1. If v = w then V τ ′ ≥ V τ else V τ ′ ≥ V τ − 1, in both cases Invτ
′

is true.

• at time τ ′ process p performs a scan, the snapshot returned is the value of R at time τ , hence the number

of cells equal to v is V τ (v), and we have V τ ′(v) = V τ (v). If V τ (v) = 2n process p decides hence

Cτ ′(v) < n and Invτ
′

(v) is true, else Invτ (v) ensures that the number of cells equal to v in the scan is

strictly greater than n then the proposed value after Line ?? for p is v hence Cτ ′(v) = Cτ (v) − 1 and

Invτ
′

(v) is true.

Hence Invτ (v) is an invariant and by induction we deduce the lemma.

Lemma 13 If some process p decides v, if τ is the linearization time of the last scan of the process p before its

decision, then Invτ (v) is true. Moreover for every time τ ′ ≥ τ V τ ′(v) > n.

PROOF. As p decides value v at time τ we have V τ (v) = 2n and as Cτ (v) < n, Invτ is true. By Lemma ??

for every time τ ′ ≥ τ V τ ′(v) > n+ Cτ ′ and then V τ ′(v) > n.

We deduce the uniform agreement property:

Lemma 14 (Uniform agreement) If process p decides v and process q decides v′ at time τ2 then v = v′.

PROOF. Assume p decides v at time τ1 and q decides w at time τ2 Without loss of generality assume that

τ1 < τ2. By Lemma ?? at any time τ ≥ τ2, V τ (v) > n and V τ (w) > n. As the snapshot array has 2n cells, if

value v and value w are each in more than n cells then v = w.

Only initial values are written in the snapshot array then we have the uniform integrity property:

Lemma 15 (Uniform integrity) If some process decides v then v is the initial value of some process.

Concerning termination:
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Lemma 16 If some process decides v at time τ then all correct processes decide.

PROOF. By Lemma ??, after time τ forever more than n cells of the snapshot array contains value v, then there

is a time τ ′ after which any update of the snapshot array is with value v. Moreover any cell containing value

v after time τ ′ contains value v forever. If some correct process q does not decide, it will perform an infinite

number of updates of the snapshot array after time τ ′ with value v and as update of cells are made in a cyclic

order eventually all cells of the snapshot array will be forever equal to v, and q decides —a contradiction.

Lemma 17 If some process runs alone during 2n+ 1 successive iterations of the main loop, it decides.

PROOF. Consider the body of the main loop of algorithm Bn (Lines ?? to ??), if a process runs alone at least

2n + 1 successive iterations of the body of the main loop, after the scan of its first iteration its proposed value

does not change and it updates during the next 2n iterations every cell of the snapshot array with this value. Then

by the end of these 2n+ 1 iterations it decides.

By Lemma ?? and ??, if some process runs alone during 2n+1 successive iterations of the main loop, termination

are ensured by algorithm Bn. Then with agreement (Lemma ??) and integrity (Lemma ??) we get:

Theorem 18 (Theorem ??) If some process runs alone during 2n + 1 successive iterations of the main loop,

algorithm Bn is a consensus algorithm.

In fact outr algorithm ensures uniform consensus.

B Consensus cannot be solved in system S (Section ??)

Lemma 19 ( Lemma ??) In system S = [Pn,Σ
ℓ
n], the consensus algorithm Cn satisfies the uniform agreement

and uniform integrity properties.

PROOF. Suppose, for contradiction that the lemma does not hold. There are two cases:

• Cn violates the uniform agreement property in system S. So there is a run R of Cn in system S, i.e., a run

R with some schedule σ ∈ Σℓ
n, such that some process p decides a value vp, another process q decides

a value vp 6= vp, and at least one of these two processes crashes (i.e., stops taking steps) after deciding.

Recall that Σℓ
n = {σ | σ ∈ Σn and for all Q ⊂ Pn : σ(Q) is ℓ-solo}.

Let α be the prefix of the schedule σ that includes all steps of σ up to and including the steps where p

and q decide. Consider the infinite schedule σ′ = αpℓqℓpℓqℓpℓqℓ . . .. Note that both p and q are correct in

schedule σ′. We claim that σ′ ∈ Σℓ
n. This holds because for each proper subset Q of Pn, σ′(Q) is ℓ-solo:

in fact, if Q contains p or q, then σ′(Q) contains infinite instances of pℓ or qℓ, so it is ℓ-solo; and if Q

contains neither p nor q, then σ′(Q) is finite and so it is also ℓ-solo.

Now consider the run R′ of Cn with the schedule σ′ ∈ Σℓ
n (so R′ is a run in system S) and with the same

processes inputs as in run R. Since the schedule σ and σ′ of R and R′ have the same initial prefix of steps

α, processes p and q behave in same way in R and R′ up to and including their decision steps: so they

decide different values vp and vq in R′ even though they are both correct processes in R′. This contradicts

the assumption that Cn solve consensus in S.

• Cn violates the uniform integrity property in system S. So there is a run R of Cn in system S, i.e., a run

R with some schedule σ ∈ Σℓ
n, such that some process p decides a value v that is not the input value of a

process, and and p crashes after deciding.
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Let α be the prefix of the schedule σ that includes all steps of σ up to and including the step where p

decides. Consider the infinite schedule σ′ = αp∞. It is clear that p is correct in schedule σ′ and σ′ ∈ Σℓ
n.

Now consider the run R′ of Cn with the schedule σ′ ∈ Σℓ
n (so R′ is a run in system S) and with the same

processes inputs as in run R. Since the schedule σ and σ′ of R and R′ have the same initial prefix of

steps α, process p behaves in same way in R and R′ up to and including its decision step: so p decides v

in R′ even though v is not the input value of a process in R′. This contradicts the assumption that Cn solve

consensus in S.
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