
HAL Id: hal-01023553
https://hal.science/hal-01023553v1

Submitted on 14 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Handling Complex Configurations in Software Product
Lines: a Tooled Approach

Simon Urli, Mireille Blay-Fornarino, Philippe Collet

To cite this version:
Simon Urli, Mireille Blay-Fornarino, Philippe Collet. Handling Complex Configurations in Software
Product Lines: a Tooled Approach. 18th International Software Product Line Conference(SPLC’14),
Sep 2014, Florence, Italy. pp.10. �hal-01023553�

https://hal.science/hal-01023553v1
https://hal.archives-ouvertes.fr

Handling Complex Configurations in
Software Product Lines: a Tooled Approach

Simon Urli, Mireille Blay-Fornarino, Philippe Collet
Univ. Nice Sophia Antipolis, CNRS, I3S, UMR 7271, 06900 Sophia Antipolis, France

{urli, blay, collet}@i3s.unice.fr

ABSTRACT
As Software Product Lines (SPLs) are now more widely ap-
plied in new application fields such as IT or Web systems,
complex and large-scale configurations have to be handled.
In these fields, the strong domain orientation leads to the
need to manage interrelated SPLs and multiple instances of
configured sub-products, resulting in complex configurations
that cannot be easily represented by simple sets of features.
In this paper we propose a tooled approach to manage such
SPLs through a domain model that interrelates several fea-
ture models in a consistent way. The approach thus shifts
part of the domain knowledge to the problem space and sup-
ports the derivation of complex configurations with multi-
ple instantiations and associations of sub-products. We also
report on the application of our approach to an industrial-
strength software development in the field of digital signage.

Categories and Subject Descriptors
D.2.10 [Software Engineering]: Design—Methodologies,
Representation; D.2.13 [Software Engineering]: Reusable
Software—Domain engineering, Reuse models

Keywords
Configuration, Software Product Line

1. INTRODUCTION
Software Product Line (SPL) engineering is concerned with
systematically reusing development assets in an application
domain [10, 23]. It is similar to mass customization in tradi-
tional industry, aiming to develop and evolve software sys-
tems as quality products, with reduced development effort
and time-to-market. Planned and systematic reuse is facili-
tated within a family of systems by encapsulating the com-
mon and variable aspects into reusable software artifacts.
SPL development starts with a first phase of domain engi-
neering, which analyses the domain to identify variability
and usually capture it in a model, such as a Feature Model
(FM). Features are domain abstractions relevant to stake-
holders, typically increments in program functionality [4],
while a FM is an AND-OR graph with propositional con-
straints that define features and their valid combinations in

configurations [12, 26]. The second phase of SPL develop-
ment, application engineering, ideally relies on generative
techniques to produce a tailored software product from a
configuration. With their increasing usage in many appli-
cation domains and especially in software-intensive systems,
many factors contribute to the amplified size and complex-
ity of SPLs. In our work, we are focusing on the variability
models expressed in FMs, which are used in these SPLs and
increase in the same way.

Variability modeling is now used in different contexts, life
cycle stages and parts of software systems. As new appli-
cation fields in which SPL techniques are gaining attention
appear, i.e., information systems and Web infrastructures,
the SPL community needs to tackle new challenges to im-
prove the expressiveness of variability models and to manage
their overwhelming complexity. These domains indeed face
an increasing complexity in managing the diversity of end-
user profiles and devices [21]. But customization of prod-
ucts and even composition of customized sub-products are
also strong demands from end-users. Some companies are
moving towards the development of systems-of-systems [9]
or software ecosystems [7]. In all these contexts, there is
a need to support a process to handle complex configura-
tions at the end-user level.In our experience in building and
maintaining a complete SPL of Web-based digital signage
systems, we have also clearly identified this issue [29]. Tack-
ling it implies to deal with the domain model itself, i.e., the
concepts and relationships as they inherently are found in
the targeted domain.

A complex configuration would then be a composition of
domain element instances linked according to relationships
defined by the domain representation.

The contribution of this paper is thus to describe a tool-
supported approach, called SpineFM, allowing to design
SPLs that handle complex configurations that are made ex-
plicit as a representation of the product domain model. The
approach relies on a domain model that represents the con-
cepts of the software family, their multiplicities and relation-
ships, some FMs associated to each concept, and constraints
between these FMs. This organization allows for represent-
ing a form of composite configuration as an instance of the
domain model in which all elements refer to consistent FM
configurations. Configuration is then driven by a staged [11]
and order-free process. It relies on a propagation algorithm
that ensures, at each configuration step, the consistency of
the built configuration through the automated propagation
of configuration actions. We also report on the application
of the approach on an industrial-strength case study and on
some experiments to evaluate its performance and scalabil-

ity.

The remainder of the paper is organized as follows. We
discuss in the next section some related works, introduce
a running example and give an overview of the approach.
Section 3 describes the organization of the domain model
and its associated feature models. We detail the configu-
ration process and the way the user is guided in Section 4.
Section 5 describes the propagation algorithm that ensures
the overall consistency during configuration. We evaluate
the implementation of our approach in Section 6, detailing
propagation time and memory usage on different complex
configurations. Section 7 concludes the paper and briefly
discusses future work.

2. HANDLING COMPLEX

CONFIGURATIONS

2.1 Related Work
As feature modeling [20] is widely used to describe the vari-
ability of a domain, different extensions or techniques have
been proposed to enhance the scalability of their usage [24].

Several extensions to the original formalism have been pro-
posed to allow cardinality in feature models, or references
between distinct feature models [11, 16]. We can cite in par-
ticular the work of Czarnecki et al. who define both a formal-
ism for FM with cardinality and references, and a process to
realize multi-staged configurations [11]. This improves the
expressiveness of FMs but still, the need for organizing the
captured information from the domain in a class model has
been also identified and proposals have been made [5, 25, 3].

On the other hand, support for composing FMs (foundations
and tools) has been proposed [2]. It focuses on a sound
semantics for FM merging, but does not address the con-
figuration process. Moreover in some of their applications,
different ad hoc DSLs realized the dynamic composition of
FMs according to user choices, not making explicit the do-
main model and its relationships [3].

As creating and maintaining a single FM is not desirable for
large systems [13, 15, 14], approaches for separating FMs
according to different concerns [2] or views [18] have been
proposed and tooled. This can help in solving simple re-
lationships between different FMs, e.g., when FMs are lay-
ered [19], when external and internal variabilities are dis-
tinguished [23, 22], or when a view is explicitly tailored to
simplify the configuration process for a specific usage [18].
Another complexity factor is the multiple nature of certain
SPL usages, e.g., when independent suppliers describe the
variability of their different products [11, 16], when several
SPLs should be integrated to form a multiple SPL [15, 13,
17], or when subsystems are modular variable entities that
need to be put together in a consistent way [8, 3].

Multiple software product lines have been proposed in var-
ious works, and under different terms, as another solution
to tame the growing complexity of SPLs. Holl et al. real-
ized an interesting survey that gives the following definition
of multi product lines: “a set of several self-contained but
still interdependent product lines that together represent a
large-scale or ultra-large-scale system” [17]. They identify
several capabilities in actual multi product lines, proposing
more advanced features like dynamic checking or collabora-
tive configuration support. Dhungana et al. propose with
Invar to manage the heterogeneity of SPLs integrating the
different variability modeling approaches in order to define

and use the multi product line as a whole [14]. In particular,
they define a way to express dependencies between variabil-
ity models which inspires our own approach.

However most of the proposed solutions strongly bound the
problem space and the solution space, assuming that stake-
holders designing the SPL and configuring it have the same
domain knowledge. For example, the approach proposed by
Ba֒k et al. with Clafer allows to realize a unique model map-
ping directly the variability of the problem space, generally
represented as a feature model, to the solution space, repre-
sented as a class-based metamodel [5]. However, combining
the domain knowledge inside a unique Clafer model imposes
to learn another paradigm of modeling, which can be error
prone as many notions are mixed.

In our approach we propose to keep the modeling paradigms
(class models and feature models) separated while using
them in combination. This is similar to the work of Rosen-
müller et al. as they use a class model to represent the
different instances of the SPLs which occur in the final con-
figuration [25]. The configuration then consists in realizing
the different instances by selecting the features for each SPL
instance. We consider our approach as an extension to this
work, as we show in this paper how to provide more flexibil-
ity in the creation of the first model representing the SPL
instances, and how to ensure the consistency of the whole
configuration product in a dynamic way, during the user
configuration process.

2.2 Running Example
Our approach has been used to develop a complete SPL
that will be described in Section 7 for evaluation purpose.
In the rest of the paper, we will use the following running
example inspired from the Home Automation System [23].
The objective is to configure a software system to control
the different sensors and actuators of a house.

House Room Opening
1 1..* 1..* 1..*

1..*0..1

contains contains

hasGateways

Figure 1: Domain model of the example

Figure 1 gives a very high point of view of a House: it is an
aggregation of Rooms, each Room containing at least one
Opening. The House itself has at least one opening. In our
scenario, these concepts will be kept in the configuration
space as classes and each of them supports some variabil-
ity represented by a FM. Figure 2 depicts these FMs. The
House can have a central computer to manage globally tem-
perature, luminosity and security. Openings can be Doors or
Windows, the windows can be a smart tinted glass and have
roller stores. We also can put a lock on each opening and a
sensor can be put to give the opening state. Each room can
have sensors and actuators to manage temperature, pres-
ence or lightning. Moreover the FM expresses some internal
constraints such as “Temperature implies Thermostat”.

Constraints between these FMs must also be considered (cf.
red arrows in Figure 2). For example, each time a room is
configured with a Locking actuator, a Lock on each opening
of this local room must also be created. Looking globally at
the house, a central security system could oblige, for exam-
ple, to have a lock on each opening, to have presence sensors,
opened state sensors, roller store actuators and locking ac-
tuators.

Consequently we want to be able to create configurations

House

Temperature
Manager

Luminosity
Manager

Security
Manager

Opening

Sensors Lock

Room

Sensors Actuators

Temperature

Lightning

Presence RollerStore

Thermostat

Locking

Temperature implies Thermostat
Presence implies Locking

OpenedState

Kind

Door Window

RollerStore TintedGlass

Key

Mandatory
feature

Optional
feature

XOR

OR

interFM
implication

CentralComputer

Figure 2: Feature models and excerpt of relations

home:House

{House}

entrance:Room

{Room}

frontDoor:Opening

{Opening, Kind, Door}

conf1

home:House

{House}

entrance:Room

{Room,Sensors,
Presence,Actuators,

Locking}

frontDoor:Opening

{Opening, Kind, Door, Lock,
Sensors, OpenedState}

mainRoom:Room

{Room,Sensors,Lightning}

mainRoomDoor:Opening

{Opening, Kind, Door, Lock}

mainRoomWindow:Opening

{Opening, Kind, Window,
TintedGlass}

conf2

Key

instanceName:Type

{configuration features}

Figure 3: Example of two valid configurations

of an House instance that conforms to these specifications.
Figure 3 gives two examples of such valid configurations.
The first configuration, at the top, is a minimal valid config-
uration respecting both the domain model and the feature
models. The second configuration is a bit more complex,
but it also respects all given constraints.

2.3 Overview of the Approach
Our approach is summarized on Figure 4. The SpineFM

toolchain allows to design SPLs so to create composite con-
figurations. In SpineFM, a SPL is defined by (i) a domain
model that represents, at the end-user level, the concepts
of the software family, their multiplicities, and how these
concepts are interrelated; (ii) FMs that capture the com-
monalities and variabilities of each concept, also at end-user
level; and (iii) constraints between these FMs.

For example, in our running example, the SPL is defined by
the domain and FMs respectively depicted in Figure 1 and
2. These concepts are defined in a dedicated metamodel
presented in section 3. Our solution supports end-user def-
initions of complex configurations, i.e., an instance of the
domain model, whose elements refer to FM configurations.
The configurations introduced in the previous section and
depicted in Figure 3 are representations of our composite
configurations for the running example.

The part of the metamodel formalizing composite configu-
rations and concepts underlying the derivation process are
described in section 4. These composite configurations serve
as inputs for a dedicated generation tool that builds concrete
products, but in this paper, we only focus on its definition

Opening

House

Room

FM Architects Feature Models Domain Model

Configuration
Interface

SpineFM
Metamodel
(detailed in

Sec. 4 and 5)

Generation Tool

SPL
Designer

SPL
Configurator

Key
Part of SpineFM

Other tools and formalisms

Relation "conforms to"

Relation "uses"

Relation "produces"

F
M

 R
E

A
S

O
N

IN
G

 E
N

G
IN

E

Relation "references"

S.P.L.O.T.

FAMILIAR

SpineFM Tool
with Propagation Algorithm

(detailed in Section 6)

Composite Configuration
(e.g. Figure 3)

House

Room

Opening

1

1..*

1..*

1..*

1..*0..1

contains

contains

hasGateways

home:House

{House}

entrance:Room
{Room,Sensors,

Presence,Actuators,

Locking}

frontDoor:Opening
{Opening, Kind, Door, Lock,

Sensors, OpenedState}

mainRoom:Room
{Room,Sensors,Light

ning}

mainRoomDoor:Opening

{Opening, Kind, Door, Lock}

mainRoomWindow:Opening
{Opening, Kind, Window,

TintedGlass}

R
F

M
o

d
e

l

R
e

s
tric

tio
n

F
u

n
c

tio
n

Rule

C
o

n
fi

g
u

r
a

tio
n

S
ta

t
e

1

ru
le

s

s
ta

te

1
1

..*

0
..*

s
e

le
c
te

d

d
e

s
e

le
c
te

d

fm
re

fe
rs

_
o

n

M
S

P
L

M
o

d
e

l
D

o
m

a
i

n
E

le
m

e
n

t

D
E

A
s

s
o

c
ia

tio
n

D
E

A
s

s
o

c
i

a
tio

n
E

n
d

M
u

ltip
lic

it
y

E
le

m
e

n
t

s
1

..*

0
..*

0
..*

2

1
1

1

c
o

n
c
e

p
ts

a
s
s
o

c
ia

tio
n

s

b
e

lo
n

g
s
_

to

e
x
tre

m
ity

a
p

p
ly

_
o

n

c
o

n
c
e

p
tM

u
ltip

lic
ity

lin
k
M

u
ltip

lic
ity

1

fu
n

c
tio

n
s

0
..*

FMMo
de
l

F
e

a
tu

re
M

o
d

e
l

C
o

n
s

t
ra

i
n

t
c
h

ild
re

n
fe

a
tu

re
sro

o
t

c
o

n
s
tra

in
ts

1
..*

0
..*

0
..*

1
F

e
a

tu
re

G
r

o
up

C
o

n
fi
g

u
ra

tio
n

M
o

d
e

l
C

o
m

p
o

s
ite

C
o

n
fi

g
u

ra
tio

n

C
o

n
fi

g
u

ra
t

io
n

L
in

k

s
u

b
C

o
n

fi
g

u
ra

tio
n

s
0

..*

s
o

u
rc

e
ta

rg
e

t
b

e
lo

n
g

s
_

to
1

1
0

..*

s
ta

te
re

la
te

d
1

1

P
r

o
c

e
s

s
Mo
de
l

G
lo

b
a

lC
o

n
te

x
t

L
o

c
a

l
C

o
n

te
x

t

C
o

n
te

x
t

M
a

n
a

g
e

r

C
o

n
fi

g
u

ra
tio

n
P

ro
c

e
s

s
S

te
p

1
..*

C
P

S

lo
c
a

ls

g
lo

b
a

l
10
..*

1
D

E

c
o

n
fi
g

u
ra

tio
n

1

c
o

n
fi
g

u
ra

tio
n

s

1
..*

1

M
P

L

1
C

P
S

0
..*

lin
k
s

in
v
e

rs
e

s
o

u
rc

e

ta
rg

e
t

U
s
e

rA
c
tio

n
M

o
d

e
l

U
s

e
rA

c
ti

o
n

Us
e

rSe
l

e
ct

U
s

e
r

D
e

s
e

le
c

t

U
s

e
r

P
ro

p
a

g
a

te
U

s
e

rV
a

lid
C

o
n

fi
g

u
ra

tio
n

U
s

e
rL

in
k

C
o

n
fi

g
u

ra
tio

n

U
s

e
r

G
e

n
e

ra
t

e

U
s

e
r

S
a

v
e

P
a

s
t

U
s

e
rR

e
n

a
m

e
E

le
m

e
n

t

U
s

e
rC

re
a

te
C

o
n

te
x

t

U
s

e
rC

lo
n

e
C

o
n

te
x

t

S
y
s
te

m
A

c
tio

n
M

o
d

e
l

S
y

s
te

m
A

c
tio

n

A
c

tio
n

O
n

F
M

A
c

tio
n

S
e

le
c

t

A
c

tio
n

D
e

s
e

le
c

t

A
c

tio
n

C
re

a
te

C
o

n
fi

g
u

ra
tio

n

Ac
ti
onL
i

n
k

A
c

tio
n

C
r

e
a

te
C

o
n

t
e

x
t

A
c

tio
n

M
o

v
e

C
o

n
fi

g
u

ra
tio

n
A

c
tio

n
D

e
le

te
C

o
n

te
x

t

A
c

tio
n

A
d

d
C

T
C

o
n

s
tra

in
t

A
c

tio
n

A
b

s
tra

c
tR

e
n

a
m

e

A
c

tio
n

R
e

n
a

m
e

C
P

S

A
c

tio
n

R
e

n
a

m
e

C
o

n
fi

g
A

c
tio

n
R

e
n

a
m

e
P

ro
d

u
c

t

a
c
tio

n

1

c
o

n
te

x
tM

a
n

a
g

e
r

1

p
a

s
t

la
u

n
c
h

in
g

A
c
tio

n

la
u

n
c
h

e
d

A
c
tio

n
s

0
..*

c
o

n
fi
g

u
ra

tio
n

1

a
c
tio

n
s
D

o
n

e
1

..*

s
ta

te
1

0..1

Figure 4: Overview of the approach

and the configuration stages. The derivation process is based
on a propagation algorithm that continuously ensures the
consistency of the partial composite configuration by au-
tomatically triggering configuration actions with respect to
model instances and previous actions. The algorithm and
its properties are described in section 5.

3. A DOMAIN MODEL WITH INTERRE-

LATED FMS
The domain model and its related FMs serve both to design
the SPL and to drive the user through the derivation process.
Figure 5 shows an excerpt of the metamodel that defines
the concepts supported in a domain model. These concepts
are organized in three packages: DomainMetamodel gathers
concepts for the domain elements, associations and multi-
plicities, FMModel contains all concepts to represent and
manipulate FMs, and finally RFModel consists of concepts
managing constraints between FMs.

RFModel

RestrictionFunction

Rule

ConfigurationState

DomainMetamodel

DomainElement

DEAssociation

DEAssociationEnd

MultiplicityElements

DomainModel

1..*

0..*

0..*

2

11

1

concepts

associations

belongs_to

extremity

apply_on

conceptMultiplicity

linkMultiplicity

functions

FMModel

FeatureModel

Constraint

children features

root

constraints1..*

0..* 0..*

1
Feature

Group

ActionOnFM

Key
Concept from an

external package :

0..*

action1

refers_on

1

deselected
selected0..* 1..*

1

fm

inverse
1

state1

rules

1..*

Figure 5: Domain model and interrelated FMs
(metamodel excerpt)

3.1 Concepts, Associations and Multiplicities
In the domain model, concepts are Domain Elements (DE)
and associations between them are DEAssociation. Each DE
is related to a FM representing its specific variability. Asso-
ciations are not oriented and two domain elements are only
related by a unique association. This enables to focus on a
unique association when relating their FMs. Each DE sup-
ports its own multiplicity to allow its multiple instantiation
in configurations. Associations extremities (DEAssociatio-
nEnd in the metamodel) also express multiplicities to con-
trol the number of associated instances of DE. Unbounded
multiplicities are supported and bounded multiplicities are
limited to 0 or 1. The different restrictions on the domain
model enables to simplify the interrelations between FMs,
but in our experience, this is expressive enough to capture
and represent complex configurations.

Figure 1 shows a domain model using all these concepts:
House, Room and Opening are domain elements; the three
relations (the two contains and the hasGateways) are DE-
Associations; we only represent the multiplicities on associ-
ations extremities on this figure.

3.2 Representation of Feature Models
Each domain element is an abstraction of a configuration
space, i.e., a FM capturing some variability. The pack-
age FMModel provides concepts to represent and manip-
ulate such FMs1. A FeatureModel is a set of Features and
Constraints. Each Feature, except the root, is a part of a
Group which has an attribute specifying its state between
Mandatory, Optional, Or, Alternative-Or and Mutex.

SpineFM supports different FM formalisms (e.g., SPLOT,
FeatureIDE, TVL and FML) by delegating operations on
FMs to an external reasoning engine. For example, the three
FMs in Figure 2 could have been represented using indiffer-
ently SPLOT, FeatureIDE and TVL, at the same time 2.
From now on, we use the term “sub-configuration” to qual-
ify indifferently an instance of a DE or a configuration of a
FM: we formalize this notion in section 4.1.1.

3.3 Restriction Functions
Associations between DEs also aims at managing the rela-
tions between configuration spaces. As different sub-config-
urations are not necessarily compatible, constraints between
FMs must be expressed and enforced. For example, in sec-
tion 2.2 we expressed that a House with a“SecurityManager”
imposes to have a “Lock” and an “OpenedState” sensor for
each Opening, as well as a “Presence” sensor and “Locking”
actuator for each Room. In SpineFM these relations will
be expressed as constraints or rules such as if I select Se-
curityManager in House, the feature Lock is automatically
selected in my future sub-configuration of Opening.

The package RFModel provides concepts to express such
rules. These rules are grouped in a RestrictionFunction that
complements DEAssociations. A restriction function is ori-
ented from a source FM to a target one, and contains several
Rules. A rule is defined as a trigger from an instance of the
source and an action to be performed on an instance of the
target. The trigger is a ConfigurationState, it represents a

1This FM metamodel is partially extracted from the project
http://www.eclipse.org/featuremodel/ focusing on ele-
ments used by the propagation algorithm.
2However SpineFM is currently limited to propositional
FMs.

specific state of a FM configuration (the sets of selected fea-
tures and the set of deselected ones). SpineFM supports
different actions on FMs (ActionOnFM concept): select or
deselect on a feature, and addConstraint to add a new cross-
tree constraint in the FM.

Finally, as associations are not oriented and restriction func-
tions are, they must be implemented in both ways of the as-
sociations. In order to ease the design of the SPL, the inverse
restriction functions and rules are automatically computed
and maintained by SpineFM.

4. DERIVING A COMPOSITE CONFIGU-

RATION
The domain model and related FMs are also used to derive
composite configurations in a consistent way. Figure 6 shows
an excerpt of the four packages in the SpineFM metamodel
that deal with composite configurations: a Configuration-
Model represents a composite configuration; ProcessModel
captures concepts to derive consistent configurations in a
non-ordered process; SystemActionModel and UserAction-
Model are used to realize derivation actions on the SPL. To
simplify the representation, we do not show on Figure 6 all
available actions, neither all references between SystemAc-
tions and the different concepts of the metamodel.

ProcessModel

Context

GlobalContext

LocalContext

ContextManagerConfigurationProcessStep
CPS

locals

global1

DomainModelDomainElement

0..*

1DE 1

1..*

DomainModel

Key
Concept from an

external package :

ConfigurationModel

CompositeConfiguration

SubConfiguration

Link

subConfigurations

0..*

source target

belongs_to 1 1

0..*

DEAssocation ConfigurationState

staterelated 11

1..*

configuration

configurations

1

0..*

links

UserActionModel

UserAction

UserSelect

UserDeselect

UserValidConfiguration

UserLinkConfiguration

SystemActionModel

SystemAction

ActionOnFM

ActionSelect ActionDeselect

ActionAddCTConstraint

contextmanager 1

actionsDone

1..*

state 1

Figure 6: Composite configuration (metamodel ex-
cerpt)

4.1 Composite Configurations
The configuration of a SpineFM SPL is defined by a Com-
positeConfiguration, which is a composition of linked Sub-
Configurations. A SubConfiguration is itself a FM configu-
ration related to a domain element instance. The Compos-
iteConfiguration contains Links that connect a source sub-
configuration to a target one. It is important to note that a
Link refers to a related DEAssociation as it can be seen as
an instance of this association.

Figure 3 depicts two examples of such composite configu-
rations containing respectively 3 and 6 sub-configurations
for the different domain elements House, Room and Open-
ing. In the first composite configuration, the link between

the sub-configurations “fromDoor” and “home” corresponds
to the association “hasGateways” defined in Figure 1 that
relates House and Opening.

4.1.1 Properties
A SubConfiguration is a configuration of a FM as defined
by Benavides et al. : “Given a FM with a set of features
F , a configuration is a 2-tuple of the form (S,R) such that
S,R ⊆ F being S the set of features to be selected and R
the set of features to be removed such that S ∩ R = ∅.” [6].
A configuration is defined as a ConfigurationState in which
each feature of the FM belongs either to the set of selected
or deselected features w.r.t. to the FM semantics (i.e., cross-
tree constraints and feature groups are respected). A com-
posite configuration is valid and complete w.r.t. to a do-
main model if (i) multiplicities of associations are respected,
(ii) multiplicities of concepts are respected, and (iii) sub-
configurations are valid and compatible. The composite con-
figuration then conforms to the domain model.

Both composite configurations presented in Figure 3 are con-
forms to the domain model presented in Figure 1 following
this definition. Multiplicities of associations are respected:
the House is connected to a unique Opening in both com-
posite configurations, each House has at least one Room
and each Room one Opening. Assuming we can only in-
stantiate a unique House per composite configuration, and
as many Rooms and Openings as desired, multiplicities of
concepts are respected too. Finally each sub-configuration is
valid w.r.t. its FM and linked sub-configurations are compat-
ible. For example, the “entrance” sub-configuration (second
composite configuration on Figure 3) contains a “Locking”
feature, so it is linked to Opening sub-configurations with
“Lock” feature as expressed by red arrows in Figure 2.

Moreover we define the consistency of the SPL as the re-
alizability of each sub-configurations of the SPL [22]. This
means that for all valid sub-configuration of each domain el-
ement, it exists a minimal composite configuration conform-
ing to the domain model that contains it. In other words,
the SPL does not contain any “dead” sub-configurations, by
analogy with the dead features definition in feature model-
ing.

4.2 Derivation Process
SpineFM must ensure that the derivation of a composite
configuration is an order free process. The user is thus only
authorized to do specific actions, which are based on her
previously done actions. SpineFM then manages different
contexts of configuration, so to support a staged composite
configuration process, enabling partial configurations with-
out following any predefined configuration workflow.

We distinguish two kinds of actions in our system: user ac-
tions (package UserActionModel), and system actions (pack-
age SystemActionModel). User actions provide a high level
of abstraction to realize coarse-grained actions such as se-
lecting a feature or linking two sub-configurations. More-
over these actions create and orchestrate the system actions,
which manipulate the different concepts of the metamodel.
Different kinds of system and user actions exist, e.g., , to
create a configuration, a link, or rename elements, but we
only deal here with actions on FMs, corresponding to selec-
tion/deselection of features, and creation of cross-tree con-
straints inside FMs.

The different actions realized on FMs can have impacts (i.e., se-

lection or deselection) on the other ones, following the re-
striction functions. For example, we explain in Section 2.2
that if a feature “Security Manager” is selected in the House
sub-configuration, then some features must be selected in all
sub-configurations of Room and Opening. The key idea is
that realizing this sub-configuration of the House will glob-
ally impact all the other sub-configurations of Room and
Opening. We use here the term“global” to insist on the fact
that all further sub-configurations will be impacted. On the
other hand, if we select in a specific Room sub-configuration
a “Locking” actuator, then only the associated (but all of
them) Opening sub-configurations should have a “Lock” fea-
ture. This means that realizing a sub-configuration of the
Room will locally impact the sub-configurations of Open-
ing. The term “local” expresses here that impacts are only
localized on few sub-configurations.

To manage these impacts and their propagation, we define
the notion of Context. A unique Global Context manages
all the global impacts and many Local Contexts are used
for the local ones. More precisely, information about the
impacts are contained in the concept of ConfigurationPro-
cessStep (CPS), which represents a FM being configured. A
CPS contains (i) a reference to the domain element it rep-
resents; (ii) references to the actions done on the FM; and
(iii) the current configuration state of the associated FM
(see section 3.3).

A context only contains a unique CPS for each DE. More-
over, contexts are closely related to the multiplicity of the
DEs. If a DE can be instantiated only once (upper multi-
plicity is 1) in a composite configuration, then there is no
need to keep another CPS for this DE on each context. We
only need a unique CPS contained in the global context to
represent the state of this DE. However if a DE can be in-
stantiated many times, it does not mean its CPS will only
exist in a local context. In fact, each context (local and
global) of the system will contain a CPS for these DEs.

We illustrate the notion of context with the following sce-
nario: A user starts the derivation by selecting the feature
“Sensors” in a Room. Now if she continues by selecting
the feature “SecurityManager” in the DE House, the CPS
of House in the global context is impacted, as the House
can only be present once in a composite configuration. As
some rules are associated to this feature (see red arrows on
Figure 2), the CPS of Room in the global context is also
impacted to select “Presence”, “RollerStore” and “Locking”
once for all: all the further Rooms she could create need to
have these features selected. But at this moment, these 3
features are not selected in the CPS of Room in the first
local context, and that could lead to inconsistent user ac-
tions (e.g., deselecting “RollerStore”). That is why the same
impacts are also applied in the CPS of Room in the first lo-
cal context, selecting the 3 features ‘Presence”, “RollerStore”
and “Locking”.

Consequently the ContextManager can be seen as the wizard
of the derivation process. It contains all the contexts of the
system and manages the different operations to create new
contexts and to propagate actions through them.

5. PROPAGATION
In order to propagate the actions triggered by restriction
functions through the different contexts of the system, SpineFM
relies on a propagation algorithm. The propagation is trig-
gered from a CPS that belongs to a context. Each time a
user does an action like selecting or deselecting a feature, the

propagation is triggered from the impacted CPS. A strong
hypothesis to use this propagation algorithm is that the SPL
must be consistent (see section 4.1.1).

We thus check the SPL consistency each time a new sub-
configuration is added into the SPL. This checking process
uses our propagation algorithm to verify the compatibility of
a sub-configuration with the others. However we can reduce
the complexity of the process by considering the domain
model as a graph and restricting propagations to the bi-
connected domain elements. Considering the SPL as consis-
tent, adding a new sub-configuration only requires to check
few connected components to ensure the realizability of the
new part.

5.1 Description of the Algorithm
The algorithm is recursive and comprises four main steps:
(i) it computes the actions to be triggered in the different
CPSs of the same context, following the associations; (ii)
it applies the actions on the targeted CPS; (iii) for each
impacted CPS that belongs to the global context, it applies
the same impacts to all CPS related to the same domain
element in local contexts; and finally (iv) it triggers back
the propagation from each newly impacted CPS.

We now describe the main functions of the propagation al-
gorithm. We consider that the GlobalContext (noted GC)
and the set of LocalContexts (noted SetOfLocalContexts)
are global variables accessible from everywhere. We also use
a dot notation similar to the Java implementation.

Function 1 propagate(cps:CPS, cont:Context):void

1: setOfCPS := restriction(cps, cont)
2: recursePropagation(setOfCPS, cont)

Function 1 is the entry point of the propagation. It takes
as inputs a CPS impacted by an action and its related con-
text. This function first computes and applies actions on
CPSs of the same context. Then the list of resulting im-
pacted CPSs is used to trigger the propagation recursively
and apply global impacts in local contexts.

Function 2 restriction(cps:CPS, cont:Context):Set

1: result := ∅

2: deSrc := cps.getDE()
3: assoSrc := deSrc.getAssociation()
4: for all asso ∈ assoSrc do

5: deTarget := assoSrc.getOtherEnd(deSrc)
6: multTarget = deTarget.getMultiplicity()
7: if multTarget.upperBound() = 1 then

8: cpsTarget := GC.getCPSofDE(deTarget)
9: else

10: cpsTarget := cont.getCPSofDE(deTarget)
11: setOfActionsToDo := getActions(asso, cps)
12: for all action in setOfActionsToDo do

13: if cpsTarget.getActionsDone() ∩ action = ∅ then

14: result.add(cpsTarget)
15: action.setCPS(cpsTarget)
16: action.apply()
17: return result

Function 2 computes and applies actions to be triggered on
CPSs that belong to the same context as the original ac-
tion. It takes as inputs the CPS that is responsible for the
propagation and its associated context. To ease reading in
the following, we call this context the propagation context.
The function iterates on associations to which the DE be-
longs (lines 4 to 16). For each association, the target DE
is the one referenced by the other association end (line 5).

Then the CPS to target is selected w.r.t. to the multiplic-
ity of the target DE (lines 7 to 10): if the DE has a upper
multiplicity of 1, then the CPS must be retrieved from the
global context, otherwise it is taken from the propagation
context. The function retrieves the list of actions to trigger
on targeted CPS (line 11, this function is detailed below).
Finally it iterates on each action (line 12), verifies that the
action has not been yet applied on the targeted CPS (line
13) and if not, it adds the targeted CPS to the resulting
list of impacted CPSs (line 14) and applies the action (lines
15-16).

Function 3 getActions(asso:DEAssociation, cps:CPS):Set

1: result := ∅

2: CS := cps.getState()
3: for all rf ∈ asso.getRestrictionFunctions() do

4: for all rule ∈ rf.getRules() do

5: ruleCS = rule.getState()
6: if ruleCS ∩ CS = ruleCS then

7: result.add(rule.getAction())
8: return result

Function 3 compares a list of rules with a configuration state
and selects which actions to apply on a CPS. It takes as in-
puts an association and the CPS triggering the actions. To
compute the actions to apply, the function starts by getting
the ConfigurationState (CS) corresponding to the CPS (line
2). Then it iterates on each rule of each restriction func-
tions of the association (lines 3-4) and checks whether a CS
of a rule matches with the CS returned from the CPS (line
6): a match means that a rule can be fired. The match-
ing part consists in computing the intersection between two
CS, which directly corresponds to the intersection of their
respective sets of selected and deselected features.

Function 4 recursePropagation(setOfCPS:Set,
cont:Context):void

1: for all cps ∈ setOfCPS do

2: deTarget := cps.getDE()
3: multTgt := deTarget.getMultiplicity()
4: if (multTgt.upperBound() = 1) or (cont = GC) then

5: propagate(cps, GC)
6: if not multTgt.upperBound() = 1 then

7: for all locCtx ∈ SetOfLocalContexts do

8: localCPS := locCtx.mergeWithCPS(cps)
9: propagate(localCPS, locCtx)

10: else

11: propagate(cps, cont)

Function 4 then performs the propagation recursively. It
takes as inputs the set of CPS which has been impacted
by restrictions (Function 2) and the propagation context.
The function iterates on each CPS handling two possibilities.
The first one is the case where the CPS refers to a DE with
a upper multiplicity higher than 1 and the context given as
input is local, then the propagation is triggered with this
CPS (line 11). If one of the previous conditions is not met,
i.e., the CPS refers to a DE with a upper multiplicity of
1 or the context corresponds to the global context (line 4),
the propagation is applied on the global context (line 5).
However, if a CPS with a upper multiplicity higher than
1 is impacted in the global context (line 6), then all CPSs
referring to the same DE in local contexts must reflect the
same impacts (line 7). This is exactly the case at the end
of the last example of section 4.2. Actually the function
mergeWithCPS, which takes a CPS as input, looks in the
context to retrieve a CPS with the same referring DE and
apply in this last CPS all actions applied in the CPS given
in argument. Finally, as all local contexts can have new
impacts, the propagation is also triggered from them.

5.2 Termination of the Algorithm
The propagation algorithm is based on actions triggered by
a user action on a CPS. A CPS cannot be modified twice by
the same action because of the idempotence of all supported
actions. In Function 2 we check if an action has already
been done (line 13) to reduce the algorithm complexity and
to know exactly which CPSs have been impacted. Moreover,
the system actions associated to restriction functions (and
triggered by the propagation) are only FM actions to select
or deselect features, or to add a constraint.

Consequently the configuration space associated to CPS is
always decreasing, each step of the propagation reducing the
number of allowed actions. This shows that the algorithm al-
ways terminates and a propagation results in the application
of all the rules once on each context, in the worst case.

6. EVALUATION
In this section, we elaborate on the implementation and the
evaluation of our approach based on a real-world case study.
We evaluate our approach by tracing the derivation pro-
cess while creating configurations. We want to verify the
relevance of the approach w.r.t. (i) the need for complex
configurations (see Section 6.4.1), (ii) the variability of the
SPL (see Section 6.4.2), and (iii) impacts of the algorithm
on propagation time (see Section 6.4.3) and memory usage
(see Section 6.4.4). We also discuss the threats to validity
regarding our evaluation.

6.1 Implementation
The solution described in this paper has been entirely im-
plemented in Java 6 using the Eclipse Modeling Framework
(EMF) for the metamodeling part3 SpineFM is constituted
by more than 90 KLOC and around half of them are gener-
ated using EMF. It can be used through a REST API which
allows to create any of the user actions. SpineFM is con-
nected to the FAMILIAR DSL, which provides a language
and API facilities to manipulate and reason on different fea-
ture model formalisms [1].

A generic user interface is also provided to support the
derivation process. The interface is not dedicated to a spe-
cific domain model but uses meta-data associated to feature
models and domain models [30]. The implementation of
the interface uses the Javascript framework AngularJS and
is around 7 KLOC. Finally a generation tool for YourCast
products (YourCast is described more in details in the next
section) has also been created using Java 6 and EMF, rep-
resenting more than 95 KLOC. The tool relies on different
EMF transformations, taking as input the composite config-
uration and the domain model, and transforming them to an
architectural model of the solution. Then other transforma-
tions are applied to create specific component models until
a final model-to-code transformation that uses templating
facilities from the Velocity engine.

6.2 YourCast
YourCast4 is a project initiated in 2011 which aims at creat-
ing an industrial-strength SPL for Digital Signage Systems
(DSS) [28]. A DSS broadcasts dynamic information, mainly
from the Web, typically targeting both public institutions
and private companies. This project involved during two
and half years around 30 contributors realizing more than

3More information about SpineFM will be soon available at
http://www.yourcast.fr/en:spinefm.
4http://www.yourcast.fr

470 KLOC for the assets of the SPL and two software archi-
tects for the design of the SPL.

Several products have been generated using the complete
toolchain mentioned above, including SpineFM as reasoning
engine, the user interface to create the configuration and the
generation part to create the concrete product. Some of the
generated products have been notably deployed on several
university campuses, on our laboratory, during conferences,
or for big events like the “Choralies” an event which involves
more than 4000 of participants in the south of France. We
discuss in the following paragraphs the realization of some of
these products and use them as starting points to evaluate
different aspects of the proposed approach.

6.3 Evaluation Setup
Using SpineFM, a DSS is captured at the domain level
by 5 concepts: the Sources of information to display, the
Renderer components to display information, the Transition
components to move from a piece of information to another,
the Zone where to put information on the screen and the
Layout to organize the different zones and design the dis-
play. Figure 7 gives an overview of the YourCast domain
model. We represent inside each domain element box the
multiplicity associated to the concept (e.g., a DSS contains
one layout and many sources). The domain model also con-
tains 2 restriction functions by associations (one for each
orientation of the association) and 174 rules, including the
automatically computed inverse ones. The rules express con-
straints between component like type compatibility between
Sources information and rendering components, and style
compatibility between zones, renderers, layout, and transi-
tions.

Layout Zone Renderer

SourceTransition

1

1

11

1

1 1..*1..*

Figure 7: YourCast Domain Model

The table 1 gives some figures about feature models used
in the YourCast project. Our feature models have small
size in terms of features but are highly constrained, as they
are actually automatically built by merging feature models
describing individual products by using a logical operator
defined in the FAMILIAR tool [2]. This operation allows
us to manage the evolution of our feature models, however
it imposes to create a lot of constraints inside feature mod-
els [27].

Concept # Features # Constraints # Config.
Sources 81 154 68

Renderers 76 347 74
Transitions 33 45 15

Zones 49 160 27
Layouts 51 59 13

Average 58 149 39
Total 290 765 -

Table 1: YourCast feature models

Our experimental setup consists in configuring different Your-
Cast products to gather different kinds of metrics. All con-

figurations have been realized on a virtual machine exploit-
ing a Linux Debian 6.0.8 system with 4096 Mb of RAM and
4 CPUs at 2.4 Ghz. The toolchain was running on a Tomcat
6 application server limited to 512 Mb of memory. The Java
version used was 1.6.0 build 26.

The configurations have all been realized by two different
users through our configuration interface. Both users were
already familiar with the DSS domain and with the config-
uration interface.

6.4 Result Analysis
6.4.1 Realized configurations
We show in table 2 the metrics gathered after the derivation
process of 5 deployed YourCast products (named A to E).
They cover different product sizes, that one can estimate
by adding numbers of sub-configurations and links. It is in-
teresting to note that no particular workflow has been used
to built these products: e.g., some products have been cre-
ated starting by the layout, other by sources, showing the
order-free capability of the configuration process.

A B C D E Avg.
sub-config. 37 9 25 23 61 31

links 36 8 24 22 60 30
contexts 19 5 13 12 32 16.2
CPS 77 21 53 49 129 65.8

User act. 259 68 194 172 348 208.2
Sys. act. 4111 849 2835 2703 7218 3543.2
Auto. act. 631 140 462 399 1492 624.8
FM actions 3480 709 2373 2304 5726 2918.4
% user act. 5.93 7.42 6.40 5.98 4.60 5.55
% sys. act. 94.07 92.58 93.60 94.02 95.40 94.45

Table 2: Metrics on YourCast Configurations

This gives some first insights on the configuration process.
First, the number of sub-configurations and links seems to be
always related, which is consistent as the composite configu-
rations conforms to the domain model described in Figure 7.
The number of contexts is also directly proportional to the
number of configurations being built by the user.

The theoretical number of contexts is indeed bounded by
the number of configurations: it corresponds to at least one
context (the global one) and at most twice the number of
configurations being built by the user, these extra contexts
handling unbounded multiplicities (i.e., 1..*). We can notice
that the average number of contexts is significantly lower
than the upper bound of this theoretical number.

As for actions, we split the measure into four categories:
we distinguish user actions and system actions as explained
in 4.2. Then system actions are divided into two categories:
the automatic actions, triggered by restriction functions,
and the FM actions. These are implicit actions realized
by FAMILIAR back-end solvers (SAT or BDD depending
on the operations), when configuring the FM, so that it re-
mains valid, e.g., selecting automatically a parent feature or
applying a constraint. We observe that the number of user
actions is very low in comparison with the total number
of system actions, emphasizing the need for an automatic
derivation process to create complex products. Moreover as
the system actions are only feature model actions, it gives an
interesting insight on the size a unique feature model would
have to capture equivalent configurations (e.g., more than
4000 feature in case A). Finally we also observe that feature
model actions are far more frequent than automatic actions.

Though our figures obviously depend on the design of our
feature models, this shows that our approach can support
a configuration process with automatic propagation while
relying on feature models and usual solvers.

6.4.2 Number of configurations
As the variability captured in an SPL is related to the num-
ber of configurations it represents, we determine how to com-
pute a potential number of composite configurations given
the domain model and the number of feature model config-
urations.

In YourCast, let CL, CZ , CR, CS and CT be the respective
number of configurations for Layout, Zone, Renderer, Source,
and Transition elements (all figures are available in Table 1).
We define Z as the total number of zones in a composite con-
figuration, as a layout can be associated with many zones,
and we define R as the total number of renderers associated
to a zone (assuming that each zone has the same number
of renderers), as a zone can have many renderers. Then we
can compute N , the number of potential composite config-
urations depending on Z and R, following this formula:

N = CZ !
(CZ−Z)!

×
CR!

(CR−(R×Z))!
×

CS !
(CS−(R×Z))!

×
CT !

(CT−Z)!
×CL

However N is an upper bound of configurations, as it does
not take into account the compatibility and restriction be-
tween products.

The average number of zones in the considered products is
around 3 and the average number of renderers per zone is
around 4. Then given Z = 3 and R = 4, we obtain N =
2.28× 1052 potential complex configurations. Even if Z = 1
and R = 1, this leads to a composite configuration with
only one instance of each concept, the number of available
configurations being N = 26.493.480. The very high number
of possible combinations emphasizes the high variability and
the great complexity of the SPLs one can manage with the
proposed approach.

6.4.3 Propagation time
In our approach the propagation algorithm is key to the
configuration process. Therefore it is essential that prop-
agation time remains short enough to keep the user focus
on her configuration task. During the 5 configurations de-
scribed in Table 2, 266 propagations occured (propagations
are part of user actions). We also gathered metrics on them,
presented in Table 3, classifying them by the length of the
propagation path. We define a propagation path as the num-
ber of CPS impacted during the propagation. The second
column gives the number of occurrences of propagation of a
given path length. The three last columns give respectively
the average duration of the propagation in milliseconds, the
average number of system actions and the average number
of impacted contexts. The last line shows the total number
of propagation occurences, duration time, number of system
actions and number of impacted contexts.

First we can notice that the 266 propagations on the 5 con-
figurations involved more than 7000 system actions. A high
percentage of these propagations only impact a single con-
text, making the propagation very fast. It is interesting to
note that propagations with a path length greater than 7
are very rare (only one occurence of each). Actually this
number of 7 seems to be strongly related to the considered
domain model. In our YourCast model, a propagation may
impact 4 concepts simultaneously in the same context, but

Path # Occ. Duration (ms) # Actions # Ctx
1 90 1.80 9.38 1
2 52 2.48 23.98 1
3 42 396.98 29.43 1.05
4 1 52 11 2
5 21 57.67 31.67 2
6 26 678.35 49.46 2
7 28 1508.07 48.82 1.93
9 1 2109 78 2
19 1 798 57 2
20 1 2035 95 2
26 1 1294 156 3
27 1 1572 81 7
36 1 3622 218 7

Total 266 89520 7341 359

Table 3: Propagation metrics by number of steps

if the Layout is involved, the global context impacts is then
replicated in few local contexts. We think it might also be
related to the usual habit to finish a sub-configuration be-
fore shifting to another: finished configurations cannot be
impacted anymore, which limits the impacted contexts.

We also observe that, as expected, in average the longer is
the path, the longer is the duration and the more there are
system actions. The high duration number obtained for a
path length of 3 is not absolutely clear for us, but it can
partially be explained by the fact that most propagations of
this length have been obtained during the last configuration
(configuration E in Table 2), which involved a lot of artifacts.
This has obliged the FAMILIAR reasoning engine to use
the garbage collector, slowing down the whole execution.
Finally we observe that the average number of impacted
contexts is very low. Most of the impacts are very local, thus
showing the good scalability of the propagation algorithm.

6.4.4 Memory usage
The propagation algorithm relies on the contexts, which are
composite entities. Each new context contains as many CPS
as concepts in the domain model. Each CPS is associated
with a FM configuration through the FAMILIAR DSL. Thus
we measured the memory footprint of SpineFM when aug-
menting artificially the number of contexts.

We show in Table 4 the result of the memory usage obtained
with the bash command free -m.

Contexts Used memory (Mb) Free memory (Mb)
0 715 3301
1 878 3138
10 879 3136
50 879 3136
100 883 3132
500 933 3082
750 977 3038
850 1015 3001
1000 1050 2965

Table 4: SpineFM memory evolution by contexts

The first measure is taken after the Tomcat server launch,
all services being ready: the reported memory usage is the
footprint memory usage of the machine. For the second
measure, we initialized SpineFM with YourCast informa-
tion: the global context is automatically created. Then all
other measures are taken after having activated some Cre-
ateContext user actions through the SpineFM API. Table 4
shows that from 1 to 1000 contexts, the consumed memory

increases gradually, a thousand of contexts taking around
170 Mb of memory. This experiment points out that our
tool easily supports configurations with thousands of sub-
configurations for a SPL of the size of YourCast.

However we can also notice that the initialization of a first
configuration of YourCast took 163 Mb of memory, which
is significant. This amount of memory can be explained
by the usage of FAMILIAR to manage our FMs: the first
initialization of SpineFM with a domain model imposes to
load the associated FMs in FAMILIAR, which is memory
consuming. Moreover, in YourCast, FMs are defined as the
result of a merging operation in FAMILIAR, which is also
known to be memory consuming [2].

To emphasize the memory consumption related to SPL con-
figurations (and not only due to context management), we
measured the memory consumption during the realization
of the 5 products given in Table 2. The measures, also ob-
tained with the command free -m, are shown on Table 5.
Here the memory consumption for the first configuration

Config Used memory (Mb) Free memory (Mb)
0 736 3280
1 913 3102
2 922 3094
3 938 3078
4 947 3069
5 963 3053

Table 5: SpineFM memory evolution by config.

was around 175 Mb of memory: it corresponds to the first
initialization of the system, as explained above. Afterwards,
each configuration took less than 20 Mb of memory, which
seems reasonable.

6.5 Threats to Validity
A first internal threat to validity concerns the termination
of our algorithms. Even if we demonstrated in section 5.2
that our propagation algorithm terminates, bugs in the im-
plementation could occur. The SpineFM implemented is
thus completed by unit tests and some coverage of differ-
ent scenarii in order to minimize such a risk. Moreover we
are currently formalizing the whole approach, which will al-
low us to formally verify our set of algorithms. Another
internal threat concerns our memory measures. Actually
as SpineFM embeds the FAMILIAR toolkit, it is hard to
distinguish what is really used by SpineFM or by FAMIL-
IAR. A more complete evaluation based on the number of
instantiated objects in SpineFM during a high number of
configurations should give us more confidence in the first
results presented here.

The main external threat to validity is related to the low
number of experiments we currently conducted. We only
applied our approach in one real case study with the Your-
Cast project. Nevertheless the approach shows its usability
during the project, and experiments on another real case
study have already been scheduled to complement our re-
sults [29].

Another external threat to validity concerns the users in-
volved in our evaluation as they already knew the YourCast
system and the configuration interface. However we esti-
mate that the obtained metrics are not strongly related to
the user behaviors. Moreover we are actually conducting
user experiments with ergonomists to evaluate the config-

uration process on the SpineFM user interface supporting
undo actions. This should help us to improve both the con-
figuration process and the interfaces for further evaluations.

7. CONCLUSION
In this paper, we described SpineFM, a tooled approach that
allows to handle complex configurations in SPL. The SPL is
then organized around a domain model and interrelated fea-
ture models. The approach enables users to create complex
configurations in an order-free process, while being guided
thanks to a consistent propagation of actions. We also re-
ported on the application of the approach on the develop-
ment of industrial-strength family of digital signage systems,
showing its good performance on a medium-scale SPL.

At short term we are going to apply our approach to an-
other real SPL of cyber-physical systems, aiming to refine
and validate our proposals. A formalization of the whole
set of algorithms will complement this validation. As future
work, we plan to extend the SpineFM variability model to
support attributed feature models and decision models, and
to study more thoroughly the expressiveness of domain mod-
els w.r.t. UML model, so to extend its capabilities. As the
order free configuration process is at the heart of our so-
lution, we also plan to implement our algorithms inside a
collaborative configuration environment.

Acknowledgments
The work reported in this paper is partly funded by the
ANR YourCast project under contract ANR-2011-EMMA-
013-01.

8. REFERENCES
[1] M. Acher, P. Collet, P. Lahire, and R. France. Familiar: A

domain-specific language for large scale management of
feature models. Science of Computer Programming (SCP)
Special issue on programming languages, page 22, 2013.

[2] M. Acher, P. Collet, P. Lahire, and R. B. France.
Separation of Concerns in Feature Modeling: Support and
Applications. In AOSD ’12, pages 1–12, 2012.

[3] M. Acher, P. Collet, P. Lahire, A. Gaignard, R. France, and
J. Montagnat. Composing multiple variability artifacts to
assemble coherent workflows. Software Quality Journal,
page 40, 2011.

[4] S. Apel and C. Kästner. An overview of feature-oriented
software development. Journal of Object Technology
(JOT), 8(5):49–84, July/August 2009.

[5] K. Ba֒k, K. Czarnecki, and A. Wa֒sowski. Feature and
meta-models in clafer: mixed, specialized, and coupled. In
Software Language Engineering, pages 102–122. Springer,
2011.

[6] D. Benavides, S. Segura, and A. Ruiz-Cortés. Automated
analysis of feature models 20 years later: A literature
review. Information Systems, 35(6):615–636, 2010.

[7] J. Bosch. From software product lines to software
ecosystems. Proceedings of the 13th International Software
Product Line Conference, pages 111–119, 2009.

[8] J. Bosch and P. Bosch-Sijtsema. From integration to
composition: On the impact of software product lines,
global development and ecosystems. Journal of Systems
and Software, 83(1):67–76, 2010.

[9] G. Botterweck. Variability and evolution in systems of
systems. EPTCS, 133:8–23.

[10] P. Clements and L. M. Northrop. Software Product Lines :
Practices and Patterns. Addison-Wesley Professional, 2001.

[11] K. Czarnecki, S. Helsen, and U. Eisenecker. Staged
configuration through specialization and multilevel
configuration of feature models. Software Process:
Improvement and Practice, 10(2):143–169, 2005.

[12] K. Czarnecki and A. Wa֒sowski. Feature diagrams and
logics: There and back again. In 11th International

Software Product Line Conference (SPLC’07), pages
23–34. IEEE, 2007.

[13] D. Dhungana, P. Grünbacher, R. Rabiser, and
T. Neumayer. Structuring the modeling space and
supporting evolution in software product line engineering.
Journal of Systems and Software, 83(7):1108–1122, 2010.

[14] D. Dhungana, R. Rabiser, P. Grünbacher, D. Seichter,
G. Botterweck, D. Benavides, and J. A. Galindo.
Configuration of multi product lines by bridging
heterogeneous variability modeling approaches. In Software
Product Lines Conference (SPLC), 2011.

[15] H. Hartmann and T. Trew. Using feature diagrams with
context variability to model multiple product lines for
software supply chains. In SPLC’08, pages 12–21. IEEE,
2008.

[16] H. Hartmann, T. Trew, and A. Matsinger. Supplier
independent feature modelling. In SPLC’09, pages 191–200.
IEEE, 2009.

[17] G. Holl, P. Grünbacher, and R. Rabiser. A systematic
review and an expert survey on capabilities supporting
multi product lines. Information and Software Technology,
54(8):828–852, 2012.

[18] A. Hubaux, P. Heymans, P.-Y. Schobbens, D. Deridder,
and E. K. Abbasi. Supporting multiple perspectives in
feature-based configuration. Software and System Modeling,
12(3):641–663, 2013.

[19] K. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and M. Huh.
Form: A feature-oriented reuse method with
domain-specific reference architectures. Annals of Software
Engineering, 5(1):143–168, 1998.

[20] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and
A. S. Peterson. Feature-oriented domain analysis (foda)
feasibility study. Technical report, DTIC Document, 1990.

[21] I. d. C. Machado, A. R. Santos, Y. a. C. Cavalcanti, E. G.
Trzan, M. M. a. de Souza, and E. S. de Almeida. Low-level
variability support for web-based software product lines. In
VaMoS’2014, pages 15:1–15:8, New York, NY, USA, 2013.
ACM.

[22] A. Metzger, K. Pohl, P. Heymans, P.-Y. Schobbens, and
G. Saval. Disambiguating the documentation of variability
in software product lines: A separation of concerns,
formalization and automated analysis. In RE’07, pages
243–253, 2007.

[23] K. Pohl, G. Böckle, and F. J. van der Linden. Software
Product Line Engineering: Foundations, Principles and
Techniques. Springer-Verlag, 2005.

[24] M.-O. Reiser and M. Weber. Multi-level feature trees: A
pragmatic approach to managing highly complex product
families. Requir. Eng., 12(2):57–75, 2007.

[25] M. Rosenmüller and N. Siegmund. Automating the
configuration of multi software product lines. In VaMoS,
pages 123–130, 2010.

[26] P.-Y. Schobbens, P. Heymans, J.-C. Trigaux, and
Y. Bontemps. Generic semantics of feature diagrams.
Computer Networks, 51(2):456–479, 2007.

[27] S. Urli, M. Blay-Fornarino, P. Collet, and S. Mosser. Using
composite feature models to support agile software product
line evolution. In 6th International Workshop on Models
and Evolution, pages 21–26. ACM, 2012.

[28] S. Urli, M. Blay-Fornarino, P. Collet, S. Mosser, and
M. Riveill. Managing a Software Ecosystem Using a
Multiple Software Product Line: a Case Study on Digital
Signage Systems. In Euromicro Conference series on
Software Engineering and Advanced
Applications(SEAA’14), special issue: Software Product
Lines and Software Ecosystems, , pages 1–8, Verona, Italy,
Aug. 2014. Elsevier.

[29] S. Urli, S. Mosser, M. Blay-Fornarino, and P. Collet. How
to exploit domain knowledge in multiple software product
lines? In 4th Int. Workshop PLEASE’2013, pages 13–16.
IEEE, 2013.

[30] S. Urli, G. Perez, H. Zitoun, M. Blay-Fornarino, P. Collet,
and P. Renevier. Towards Flexible Configuration User
Interfaces (in french) / Vers des interfaces graphiques
flexibles de configurations. In Journée Lignes de
Produits(JLDP), 12, pages 59–70, Lille, Nov. 2012. JLDP.

