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ABSTRACT: The purpose of our study consists in the research of new ways of designing reinforced concrete structures 

submitted to commercial aircraft impact. We will particularly focus on the shaking resulting from such load case. The cutoff 

frequency for this type of loading is typically within the  to  range, which would be refered to as the medium 

frequency range [1]. 

The determination of the shaking induced by an aircraft impact on an industrial structure requires dynamic studies. The 

response, especially during the transient stage, cannot be completely described using classical finite element method associated 

with explicit numerical schemes. Indeed, the medium frequency range is often ignored unless the calculation is carried out with 

a very refined mesh and consequently, a refined time discretization. This could lead to prohibitive computation times. 

The linear behaviour is not questioned outside the impact area, however, the non-linearity of the portion of the impacted 

structure can have a significant influence. A new multiscale computational strategy, the Variational Theory of Complex Rays 

[2], is developed for the analysis of the vibration of structures in the medium frequency regime. Using two-scale shape functions 

which verify the dynamic equation and the constituve relation within each substructure, the VTCR can be viewed as a mean of 

expressing the power balance at the different interfaces between substructures in variational form. The solution is searched as a 

combination of propagative and evanescent waves. Only the amplitude of these waves, which are slowly varying quantities of 

the solution, is discretized. This leads to a numerical model with few degrees of freedom in comparison with a Finite Element 

model. 

The method consists in an initial decomposition FFT (Fast Fourier Transform) of the signal loading. The VTCR ensures the 

transfer of the decomposed signal into the structure. The obtained signals are then processed by inverse FFT (IFFT) to 

reconstruct a time signal and a response spectrum [3]. The aim is to develop a robust method to get mid-frequency spectra 

generated by an aircraft impact on a simplified structure. 

KEY WORDS: shaking, medium frequency, industrial structure, Variational Theory of Complex Rays (VTCR). 
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The purpose of our study is to develop new ways for 

calculating the induced vibrations in reinforced concrete 

structures submitted to a commercial aircraft impact (see 

Figure 1). The cutoff frequency for this type of loading is 

typically within the 40 to 100 Hz range, which would be 

referred to as the medium frequency range [1]. 

Taking into account this type of problem and assuming that 

the structure appropriately sized to withstand against an 

aircraft impact, the vibrations induced by the shock bring 

about shaking of the structure. Then this vibration can travel 

along the containment building, as directly linked with the 

impact zone, but also in the inner part of the structure due to 

the connection with the containment building by the raft. The 

vibrations can therefore induce significant displacements and 

stress at the level of equipment and thus the damage caused by 

bad dimensioning. Our strategy is inscribed in the context of 

the verification of inner equipment under this kind of shaking. 

In this type of load case, the impact is a bending problem. 

This phenomenon induces a non-linear localized area around 

the impact zone. This area is previously determined through a 

sensitivity analysis associated with a Taguchi experimental 

design. 

The determination of the shaking induced by an aircraft 

impact on an industrial structure requires dynamic studies. 

The determination of the response by using classical finite 

element method associated with explicit numerical schemes 

requires significant calculation time, especially during the 

transient stage. This kind of calculation requires several load 

cases to be analyzed in order to consider a wide range of 

scenarios. Moreover, the medium frequency has to be 

appropriately considered therefore the mesh has to be very 

fine resulting in a refined time discretization. 

 

Figure 1 : Nuclear power plant 
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To solve our problem of shock induced vibrations in a 

reinforced concrete structure the strategy implementation is as 

follows (see Figure 4). The load is applied on a finite element 

model of the target structure and its nonlinear response is 

calculated by finite element method in non-linear case and on 

a sufficiently short time. 

The aircraft was replaced by an equivalent force-time 

function. This data are taken from the book [4]. The loading 

diagram can be found using the Riera model [5]. We can 

present this method Riera as follows. 

The aircraft impinges perpendicularly on a target considered 

infinitely rigid and it is assumed that it crashes only at the 

cross-section next to the target (see Figure 2). 

 

Figure 2 : Model aircraft impacting against a rigid surface 

The cross-sectional buckling load decelerates the remaining 

rigid uncrushed portion. The total impact force  is the 

sum of the buckling load and the force required to decelerate 

the mass of the impinging cross-section. Since it is a one-

dimensional ideal plastic impact approach, in his model only 

the buckling load and the distribution of mass are needed. The 

equation of motion is written as: 

  (1) 

where  is the mass per unit length of the uncrushed aircraft 

at impact,  the crushed length,  the velocity of 

uncrushed portion and  the resistance to crushing, i.e. 

crushing strength. 

Equation (1) is used to calculate the current force. The force-

time history can thus be determined. A typical force-time 

history, where we take the impact force and the time function 

are normalized, is given in Figure 3. In this case, we choose 

  for the impact velocity and  tonne for the mass. 

 

Figure 3 : Force as a function of time 

Then we study the influence of different parameters on the 

extent of the area of non-linearity. Among these variables, we 

consider: the thickness of the target ( ), the rate of 

reinforcement (longitudinal and shear rebars) ( ), the 

compressive strength of concrete ( ), the loading surface 

( ), 

The impact of each parameter on the results will also be 

explored through experimental design using the Taguchi 

methods, as defined in [6]. A sensitivity analysis associated 

with the experimental design allows us to determine the radius 

of the damaged area and the attenuation of the nonlinear area 

on the input signal. We can then apply the temporal attenuated 

signal at the boundary of the damaged area to obtain the 

response of the rest of the structure, which behavior remains 

linear, by a simulation with the VTCR (Variational Theory of 

Complex Rays). This calculation requires a transformation 

from time to the frequency domain that is achieved by FFT 

(Fast Fourier Transform). After solving the problem in the 

frequency domain, a time recomposition is performed by IFFT 

(Inverse Fast Fourier Transform). 

 

Figure 4 : Global calculation strategy 
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This work, which uses new computational strategies in 

dynamics, provides an answer for the steady state of the 

solution. The problem is solved in the frequency domain. One 

needs to solve a forced vibration problem over a frequency 

range which includes the low- and medium-frequency ranges. 

The low-frequency and medium-frequency ranges are handled 

using the Variational Theory of Complex Rays (VTCR) [2]. 

 

Figure 5 : Frequency response function of complex [7] 

 The reference problem for an assembly of n 
substructures 

We consider the case of homogeneous Kirchhoff-

shells which vibrate at a pulsation . The thickness is  and 

the density . Under the assumptions of Kirchhoff-Love, the 

out of plane displacement takes the following form, it is linear 

in  (thickness variable) and a perpendicular to the mean 

surface stay perpendicular to during the displacement. The 

displacement  of the average surface becomes: 

  (2) 

Where  is the displacement of the average surface,  is the 

out of plane displacement and  the curvature tensor. The 

average surface of the shell is defined by two independent 

parameters  and . The position of a point on the medium 

surface is defined by the position vector  (see Figure 

6). 

 

Figure 6 : Geometry of a shell  

The vector  is defined by . The curves 

 and  are the bending lines, and form 

a network of orthogonal lines [8]. The base  is 

then orthogonal. The curvature tensor is written: 

  (3) 

And where  and  are the radius of curvature of the 

bending lines. 

Let n shells , with a common border . The actions of the 

environment are modeled on  by imposed displacement on 

 and , imposed rotations on , the imposed line 

stresses on  and , and imposed line momentum on 

. 

Figure 7 shows the actions of the environment between the 

field  and . 

 

Figure 7 : The reference problem 

The reference problem to be solved is: find  such that: 

 Kinematic equations 

  (4) 

Where  and  

The stiffness and damping of the boundary associated with the 

subdomain  and between the subdomains  and  ([9], 

[10]) are chosen rigid to simplify our assumptions. 

 Equilibrium equations on   

  (5) 

 Equilibrium equations on   



  (6) 

 Constitutive relations  

  (7) 

The operators  

plane stress relating to each area,  the densities,  are the 

structural damping coefficients of each sub-domain and  and 

 operators defined as: 

 (8) 

where   

in  and  direction,   the mass 

density,  the frequency, and  the damping factor. 

And  is the symmetric part of the gradient operator. 

 The variational formulation associated with the VTCR 

The 1st ingredient of VTCR is a global weak formulation of 

the boundary conditions in terms of both displacements and 

forces. 

The variational formulation can be expressed as, find 

 such as: 

  (9) 

With the following general form: 

 

 

 (10) 

 

 (11) 

 designates the real part of a quantity and  the conjugate. 

Spaces  are the eligibility fields associated with 

homogeneous conditions on the structure : 

. In our case, . 

Thus, we find that: 

 Check on average the imposed displacements on , 

 Verify the imposed stresses on , 

 Verify the transmission conditions on the boundary . 

It is based on a priori independent approximations within the 

substructures. The constitutive relation (Equation 8) and 

dynamic equilibrium equation (Equation 10) are exactly 

satisfied for each substructures  to form the corresponding 

subspace . 

It is easy to prove that the variational form is equivalent to the 

reference problem, provided that: 

 the reference problem has a solution, 

  is positive definite, 

 the damping coefficients are such that , 

The rigid body movements are blocked because there is 

vibration ( ). 

 Derivations of two-scale shape functions 

The VTCR uses a two scale approximation of  , that 

exhibits a strong mechanical meaning. The solution is 

assumed to be properly described locally as the superposition 

of an infinite number of local vibration modes which can be 

written in the following manner: 

  (12) 

where both  and  represent the position vector,  being 

associated with slow variations and  with rapid variations. 

More precisely, the terms related to the position vector  

vary slowly when  moves along the structure, whereas the 

terms related to the position vector  vary rapidly when  

moves along the structure.  and  contain the amplitudes 

of the associated nth order local vibration modes.  is a vector 

characterizing the direction of local vibration modes. In order 

for these local modes  to be admissible, they must be 

in  and satisfy the constitutive and dynamic equilibrium 

equation. Thus, we get some properties of . The mechanical 

waves are divided into three families (see in Figure 8) the P 

waves (Primary), SH (Secondary Horizontal) and SV 

(Secondary Vertical) ([11]). We can identify 2 types of 

mechanical waves which can describe the membrane effect, 

the P waves for the pressure effects and the SH waves for 

shear effects. 



 

Figure 8 : Three families of mechanical waves 

3.3.1 The out-of-plane bending shape functions 

For instance, let us consider the out-of-plane bending motions 

thin shell theory, the steady-state out-of-plane displacement 

 of the mid-surface of  is governed by the following wave 

equation:  

  (13) 

By searching the solution of (13) under the wave form (12), 

we can identify 3 types of solutions that are respectively 

related to the shell, the edges of the shell, or the corners of the 

shell. 

The complex interior ray corresponds to a plane bending wave 

which propagates through the plate in the direction (see Figure 

9). 

 

Figure 9 : Description of interior modes 

Edges and corners modes are evanescent waves. Examples of 

such modes are shown in Figure 10. 

 

Figure 10 : Interior, edge and corner modes for a 

homogeneous plate 

3.3.2 The membrane shape functions 

Consider the displacement in the plane  of a homogeneous 

thin shell  through Kirchhoff-Love model. The rays of 

vibration must satisfy (8) and (10) to be eligible. The 

displacement  then checks the dynamic equation: 

  (14) 

The VTCR uses approximations  with a high 

mechanical content. Locally we considere that the solution is 

well described by the superposition of an infinite number of 

rays of vibration, each of which can be written as (12). P-

waves and SH-waves describes membrane shape functions. 

 The discretized problem 

The displacement of any point of the substructure is generated 

by a basis of admissible complex rays. The unknown is the 

generalized amplitude  of the basis (an nth-order 

polynomial in  and a large-wavelength quantity). 

Accounting for all the directions  and 

 in  leads to an integral over 

. 

This integral takes the form: 

 Bending displacement: 

  (15) 

with , and  determined by the dispersion 

relation which the solution of (13). 

 Membrane displacement: 

 (16) 

with and  determined by the dispersion relation 

which the solution of (14). 

Let us note that admissible space  is of infinite dimension 

since, for instance for interior modes, all directions of 

propagation are taken into account. To end up with the finite 

dimension problem that can be solved numerically, one need 

to discretize  into a finite dimension space . 

The integral in (15) and (16) can be discretized and one can 

consider the approximate amplitude  to be 



constant over each angular sector. The advantage of this way 

of doing is that all directions of propagation are still 

represented in the discretized space, though with an 

approximation on the amplitude of it (see in Figure 11). 

 

Figure 11 : The discretized amplitudes 

The choice of the angular discretization and therefore the 

number of modes need for solving this kind of problem is 

related to the number of waves in the structure and on each 

edges. But this choice is also linked to the types of boundary 

conditions. For example the number  of bending waves in 

the characteristic dimension  of the shell  can be 

calculated using equation 43: 

  (17) 

where  is the wavelength in the direction  or ,  

the pulsation,  the celerity of bending 

waves,  the density,  the shell thickness and  the 

flexural modulus (for a plate ). 

The number of wavelength  depends on the celerity of the 

waves: for pressure waves,  and for 

shear waves, . 

This d

difficult to define it analytically. Also you can use a "eyes 
criterion" to select it. Overall we take a number of rays 

between 20 and 100. 
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Our VTCR code relies on the one developed in [12] for the 

acoustic problems. Adjustments have been made to treat 

mechanical problems. 

 F irst numerical example: one simply supported plate 

In order to study the convergence of the VTCR for plate 

problems, to validate the associated shape functions and to see 

the differences with a finite element resolution, let us consider 

the example [13] given in the Figure 12. A simply supported 

isotropic steel plate with the following mechanical properties 

is subjected to a punctual shear loading represented by the red 

arrow at a frequency of 2000 Hz. 

  

  

 Mass density = 7800 kg/m3, 

 Damping coefficient= 0.01, 

 Thickness of the plate = 0.003 m. 

 

Figure 12 : First example: Description of the boundary 

conditions 

The analytical solution is obtained using the eigenvectors 

basis of the plate, called , which satisfy (18), rewritten in 

the case of this example and where we only take the bending 

part of the problem: 

  (18) 

So we can write the out-of-plane displacement: 

  (19) 

Introducing (19) in (18), multiplying by  and integrating 

over , we obtain, with , 

  (20) 

For the exact solution, the infinite sum has to be truncated:  

  (21) 

Indices  and  have been chosen with the following 

assumption: neglected terms have very little influence. We 

need to take into account  et 

. 

A reference solution using the finite element code CAST3M 

[14] was obtained taking around ten linear elements per 

wavelength for good accuracy. To perform an FE calculation 

the element size should depend on the wavelength ([15]). In 

many cases, engineers use a constant number of elements per 

wavelength, and this for linear and quadratic elements. This 

number is located around 10 and depends on the accuracy 

desired. In [16], this rule is confirmed for low frequencies. In 

mid frequencies, the occurrence of pollution ([15]) transforms 

this rule. It is the product , which must remain constant 

(with  the wavelength and  the element size). 



VTCR resolution need to add the particular solution (see 

equation (22)) corresponding to the solution of an infinite 

plate subjected to a punctual force to take into account this 

kind of stress. 

 

 (22) 

Where r is the distance to  and ,  and  the 0th order 

Bessel functions. We are only in a bending problem, also in 

this case the membrane vibration modes can be taken to zero. 

Table 1 shows the out-of-plane displacement obtained with 

CAST3M, with an analytical solution (see equation 21) and 

with the VTCR. 

Table 1 : The FE (with Cast3m) solution (left), the analytical 

solution and the VTCR solution with  dofs (right) 

 
Cast3m 

Analytical 
results 

V T C R 

39000 DOFs 

(  10 

elements/wavelength) 

(Equation 21) 
100 interior modes 

4*20 edge modes 
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One can see that the two solutions are very similar, even 

though the VTCR was obtained with only 180 DOFs, thanks 

to its ability to capture analytically the wave phenomena in 

the rapid scale . One can easily notice the computational 

efficiency of the VTCR in such a structural vibration problem. 

 Second numerical example: Civil engineering structure 

In this section we use the VTCR to calculate the medium 

frequency response of a structure subjected to a sinusoidal 

loading. We calculate at first the discrete Fourier transform of 

the load. The VTCR then gives us the frequency response at a 

chosen point ( ) of the structure specify by the blue cross on 

Figure 13 for any frequency. The time response is then 

obtained by the inverse Fourier transform. We therefore 

consider a concrete structure where the mechanical properties 

of concrete are calculated according to the rules of Eurocode 

2: 

 Concrete B30 =30 MPa, 

  

  

 Mass density = 2500 kg/m3, 

 Damping coefficient= 0.04. 

In this study, we use an hysteretic damping. We simplify the 

geometry of the structure with a plate assembly of  

thick. 

Our structure is then subjected to an impact applied at the 

center of a side wall ( ). This impact produces localized 

damages on this wall. Here the radius of the non-linearity area 

is equal to  and the temporal attenuated signal in 

displacement across the damaged area is given by equation 

(23). 

We consider the one-time loading P1 in displacement of the 

form: 

 

 (23) 

This loading is modeled by a red arrow in the Figure 18. The 

red and pink lines represent the supports of the structure, 

respectively, clamped and simple supported. 

 

Figure 13 : Geometry of 3rd numerical example 

The computational strategy is as follows. We calculate the 

discrete Fourier transform of the time load and use it to 

calculate with the VTCR, the frequency response 

corresponding to each frequency on a selected point of the 

structure. The program selects the frequencies having a 

significant amplitude to describe the good time loading. The 

time response is then obtained by applying the IFFT to the 

frequency response. 

 

Figure 14 :  displacement applied across the damaged area 

and the associated Fourier transform 

Two hundred rays are sufficient to properly represent the 

frequency response. The Table 2 shows the solution obtained 

in each of four frequencies studied. The boundary conditions 

are in a good adequacy. This is clearly observable where the 

load is applied and on the structure supports. 

Table 2 : Solution of 3rd numerical example 

 

Max/per substructures: 102 interior modes, 4*25 edge modes, 50 pressure modes and 50 

shear modes 

10 Hz 20 Hz 
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Following the VTCR calculation we can recover the 

amplitude and the phase of each point of the structure in each 

frequency and thus reconstruct the time response by IFFT. 

Then we obtain for the point selected ( ) and designated by 

a blue cross in Figure 13, the following results (see Figure 

15). 

   

Figure 15 : Displacement amplitude in P2 and the associated 

inverse Fourier transform, out-of-plane displacement  

This study provides us with a very low cost in terms of 

degrees of freedom used by the VTCR for solving such a 

problem. The Figure 16 shows the difference in time 

resolution between resolution VTCR and CAST3M for this 

problem. In this figure, the red curve (VTCR method) shows 

different points representing the inversion time required for 

calculating the solution by increments of . The blue curve 

(FE method) provides the computation time for different mesh 

densities. This density must be thin enough to properly 

represent the solution. 

 

Figure 16 : Comparison between VTCR and CAST3M in 

terms of computation time 

5  

A new methodology is presented that deals with impact 

problems and was illustrated on several examples. 

Comparisons with finite element calculations provide us with 

the followings conclusions: 

VTCR discretization exhibits a very rich vibrational content 

resulting in a very low number of degrees of freedom 

compared to FEM, at a given frequency, 

The FFT-VTCR-IFFT process is an accurate way for solving 

the impact problem over a wide time range and a wide 

frequency range, 

The final computation time is far less important than for a 

FEM explicit scheme calculation. 

Despite the encouraging results obtained for the simple cases 

presented here, further developments are necessary before 

being able to apply the methodology to the industrial load 

case of an actual building being impacted by an aircraft. These 

developments include:  

 Large band analysis. Indeed a study one by one frequency 

can be expensive in computation time. So we can 

consider the Proper Generalized Decomposition (PGD) to 

perform a large band analysis [17]. This method allows to 

decouple the spatial field to the frequency content and 

find patterns that can be likened to the eigenmodes of the 

structure.  

 Extend the thick structures. Structures such as nuclear 

civil engineering may contain floors with a large 

thickness compared to these dimensions. In this 

framework the thin shells theory of Kirchhoff-Love is not 

relevant because normal fiber is not necessarily 

perpendicular to the shell mid plane. So we must to take 

into account the thick shells theory of Reissner-Mindlin. 
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