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ABSTRACT: A drillstring is a long column under rotation, composed by a sequence of connected drill-pipes and auxiliary
equipment, which is used to drill the soil in oil prospecting. During its operation, this column presents a three-dimensional
dynamics, subjected to longitudinal, lateral, and torsional vibrations, besides the effects of friction and shock. Due to
the relevance of this equipment in some engineering applications, this work aims to analyze the nonlinear dynamics of a
drillstring in horizontal configuration. A computational model, which uses a nonlinear beam theory with rotatory inertia
and shear deformation of the beam cross section, as well as the coupling between longitudinal, transverse, and torsional
vibrations is proposed. This model also takes into account the effects of friction and shock, induced by the lateral impacts
between the drillstring and the borehole wall. The model equations are discretized using the Galerkin/finite element
method, and then projected in vector space of low dimension to reduced the computational cost of the simulation. The
initial value problem that results from the discretization is integrated using the Newmark method. Numerical simulations
are conducted to investigate the effects of the lateral shock in nonlinear dynamic of the column. The simulation results
show that the lateral shock induces geometrical configurations “close” to flexural modes of higher order. It is also noted
that the geometric nonlinearity induces a coupling between the mechanisms of longitudinal and transverse vibration, so
that the system responds longitudinally despite not being excited in this direction.
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1 Introduction

Oil prospecting uses an equipment called drillstring,
which is a long column under rotation, composed by a
sequence of connected drill-pipes and auxiliary equipment.
The dynamics of this column is very complex because,
under normal operational conditions, it is subjected to
longitudinal, lateral and torsional vibrations, which present
a nonlinear coupling, and the structure is also subjected
to shocks due to the drill-bit/soil and drill-pipes/borehole
impacts [1].
By being a matter of practical interest, with many

applications in engineering, the dynamics of a drillstring
has been analyzed in many scientific papers [2], [3], [4],
[5], [6], [7], [8]. These works investigate the couplings
between the different mechanisms of vibration to which the
structure is subject, and most of them use probabilistic
approaches to quantify the uncertainties in the system
response that are induced by the variability of the model
parameters and the errors made in the conception of the
model. A common feature to all these works, is that

the drillstring configuration considered is vertical. To the
best of the authors’ knowledge, there is only one study in
the open literature that models a horizontal drillstring [9],
which takes into account only the longitudinal dynamics
of the structure. Therefore, the scientific literature lacks
models to describe the nonlinear dynamics of a horizontal
drillstring.
In this sense this work intends to analyze the

three-dimensional nonlinear dynamics of a drillstring in
horizontal configuration. For this purpose, it is presented a
deterministic computational model which uses a nonlinear
beam theory that takes into account the rotatory inertia
and shear deformation of the beam cross section, as
well as the coupling between longitudinal, transverse and
torsional vibrations. This model also includes the effects
of torsional friction and lateral shocks induced by the
impacts between the drillstring and the borehole wall.
Numerical simulations are conducted in order to investigate
the influence of the lateral shocks in the nonlinear dynamic
behavior the mechanical system under analysis.
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The organization of the paper is as follows. The section 2
presents the mathematical modeling of the physical system
of interest. In the section 3 are presented the numerical
results of simulations which were performed to analyze the
nonlinear dynamics of the horizontal drillstring. Finally, in
the section 4, the conclusions of the work are reemphasized,
and some paths for future works are pointed out.

2 Mathematical modeling

2.1 Mechanical system of interest

The bottom part of the horizontal drillstring is modeled
as an annular beam, blocked to move transversely in both
extremes, and blocked to rotate transversely in the left
extreme. This beam is free to rotate around the x axis,
and to move longitudinally. It has a length L, cross section
area A, and is made of a material with mass density ρ,
elastic modulus E, and shear modulus G. Due to the
horizontal configuration, it is subject to a gravitational
field, which induces an acceleration g. It loses energy
through a mechanism of viscous dissipation, proportional
to the mass operator, with damping coefficient c. The
advance of the beam is controlled by the imposed constant
velocity V0 at the left end. A sketch of this physical system
can be seen in the Figure 1.
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Figure 1 Sketch of the annular rotating beam used to model
the bottom part of the horizontal drillstring.

In this beam model, it is supposed small rotations in the
transversal directions and large displacements for the beam
neutral fiber displacements, so that the following kinematic
hypothesis is adopted

ux(x, y, z, t) = u− yθz + zθy, (1)

uy(x, y, z, t) = v + y (cos θx − 1)− z sin θx,

uz(x, y, z, t) = w + z (cos θx − 1) + y sin θx,

where ux, uy, and uz respectively denote the displacement
of a beam point in x, y, and z directions, at the instant t.
Also, u, v, and w are the displacements of a beam neutral
fiber point in x, y, and z directions, respectively, while θx,
θy, and θz represent rotations of the beam around the x,
y, and z axes respectively.
Note that, to analyze the dynamics of this beam, the

physical quantities of interest are the fields u, v, w, θx, θy,
and θz, which depend on the position x and the time t.

2.2 Friction and shock effects

The effects of normal shock and torsional friction
between the beam and the borehole wall are modeled in
terms of a measure of penetration in the wall of a beam
cross section [10], dubbed indentation, which is defined as

δFS = r − gap, (2)

where the lateral displacement of the neutral fiber is

r =
√

v2 + w2, (3)

and gap denotes the spacing between the undeformed beam
and the borehole wall. One has that δFS > 0 in case of an
impact, or δFS ≤ 0 otherwise, as can be seen in Figure 2.
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Figure 2 Illustration of the indentation parameter in a
situation without impact (left) or with impact (right).

When an impact occurs, it begins to act on the beam
cross section a normal force of the form

FFS = −kFS1
δFS − kFS2

δ3FS − cFS |δ|3δ̇FS , (4)

and a Coulomb frictional torque of the form

TFS = −µFS FFS Rbh sgn

(

θ̇x

)

. (5)

In the above equations, kFS1
, kFS2

and cFS are constants
of the Hunt and Crossley shock model [11], while µFS is a
friction coefficient, Rbh is the borehole radius, and sgn (·)
the sign function.
It is adopted the hypothesis that the mechanical contact

between the beam and the borehole wall occurs exactly in
the nodes of the finite element mesh, so that the forces and
torques of shock are modeled as concentrated forces and
torques in these nodes.

2.3 Weak formulation of the nonlinear dynamics

Starting from a modified version of the extended
Hamilton’s principle, to include the effects of dissipation,
one can write the weak form of the nonlinear equation of
motion of the physical system as
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M
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+ C
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ψ, U̇
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+K (ψ,U) = FNL

(

ψ,U , U̇ , Ü
)

,

(6)
where M represents the mass operator, C is the damping
operator, K is the stiffness operator, and FNL is the
nonlinear force operator. Also, the field variables and their
weight functions are lumped in the vectors fields
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The weak form of the initial conditions reads

M
(

ψ,U(0)
)

= M (ψ,U0) , (8)

and

M
(

ψ, U̇(0)
)

= M
(

ψ, U̇0

)

, (9)

where U0 and U̇0, respectively, denote the initial
displacement, and the initial velocity fields.

2.4 Discretization of the model equations

The Galerkin/finite element method [12] is employed
to construct an approximation to the solution of the
boundary/initial value problem corresponding to the weak
formulation given by Eqs.(6), (8) and (9).
To interpolate the longitudinal displacement and the

axial rotation fields, linear shape functions are used, while
the other fields are interpolated by cubic splines.
In this way, one gets an initial value problem of the form

[M] Q̈(t) + [C] Q̇(t) + [K]Q(t) = FNL

(

Q(t), Q̇(t), Q̈(t)
)

,

(10)

Q(0) = Q0, and Q̇(0) = Q̇0, (11)

where Q(t) is the generalized displacement vector, Q̇(t)
is the generalized velocity vector, Q̈(t) is the generalized
acceleration vector, [M] is the mass matrix, [C] is the
damping matrix, [K] is the stiffness matrix. Also, FNL,
Q0, and Q̇0 are vectors which, respectively, represent the
nonlinear force, the initial generalized position, and the
initial generalized velocity.

The initial value problem defined by Eqs.(10) and (11)
is integrated using the Newmark method [13], [12], which
is an integration scheme proper for differential equations
that comes from of structural dynamics. The nonlinear
system of algebraic equations, resulting from the time
discretization, is solved by a fixed point iteration [14].

3 Numerical experimentation

In order to simulate the nonlinear dynamics of the
mechanical system defined in the section 2.1, the physical
parameters presented in the Table 1 are adopted. The
dynamics is investigated during the interval of time
[t0, tf ] = [0, 1.5] s, being adopted as initial conditions:
a zero displacement; a constant angular velocity Ω around
the x axis; and a constant longitudinal velocity V0.

Table 1. Physical parameters used in the simulation.

parameter value unit

ρ 7900 kg/m3

E 203 GPa
G 78 GPa
Rint 50 mm
Rext 80 mm
Rbh 95 mm
A 5500π mm2

L 100 m
c 1× 10−2 —
g 9.81 m/s2

Ω 50 rpm
V0 5 m/h
kFS1

1× 1010 N/m
kFS2

1× 1016 N/m3

cFS 1× 10−3 N/m4s
µFS 5× 10−4 —

The discretization of the structure uses a finite element
mesh with 500 elements. As each element has 6 degrees
of freedom per node, this results in a semi-discrete model
with 3006 degrees of freedom, which is projected in a vector
space of dimension 56 to generate a reduced order model
to efficient computation.
For temporal integration, the numerical scheme uses as

nominal time step ∆t = 2.5 ms, which is refined when
necessary to capture the effects of shock on the dynamics.

3.1 Transverse dynamics of the drillstring and the

lateral impacts

In this section it is analyzed the transverse dynamics
of the beam, whose neutral fiber displacement in the z
direction is presented, for some instants, in the Figure 3.
Illustrations of the mechanical system, sectioned by the
plane y = 0, for the same instants, can be seen in the
Figure 4.
One can note that, for none of the instants analyzed the

neutral fiber assumes a parabolic shape, as occurs when
a beam is subjected to its own weight. For t = 18 ms,
this is a pure consequence of the nonlinear inertial effects,
induced by the rotation of the beam, combined with the
geometric nonlinearity due to the large displacements. At
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Figure 3 This figure presents the beam neutral fiber
displacement, in the z direction, for some instants.

this moment, the beam configuration is “close” to the first
flexural mode, as can be seen in the Figure 4(a).
Then, the beam begins to impact the wall of the

borehole, which generates configurations “close” to high-
order flexural modes, as shown in the Figure 4(b), for
t = 1.153 s. Note that, at this instant, the beam/wall
contact is not punctual, it occurs along three line segments.
This mechanical interaction between the two bodies

generates a nonlinear elastic deformation in both bodies,
but without residual deformation effects. In this contact
also occurs energy dissipation, due to the normal shock,
and the torsional friction, induced by the rotation of the
beam.
In the instants of analysis that follow, additional

impacts do not occur, and the beam continues to assume
configurations that are “close” to flexural modes of order
higher than one, as can be see Figures 4(c) and 4(d).

3.2 Coupling between the longitudinal and the transverse

dynamics of the drillstring

In what follows, it is analyzed the longitudinal dynamic
behavior of the beam. The reader can see the beam neutral
fiber displacement, in the x direction, for several instants,
in the Figure 5.
Note that, before impact, for time t = 18 ms, the beam

has virtually no longitudinal displacement. However, after
the beginning of the impacts the entire structure presents
longitudinal displacement, alternating between traction (on
the left part) and compression (on the right part) around
the center of the beam.
Finally, it is worth mentioning that it is surprising

that the beam presents a longitudinal dynamics, since
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(b) t = 1.153 s
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(c) t = 1.343 s
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(d) t = 1.5 s

Figure 4 This figure illustrates the mechanical system under
analysis, sectioned by the plane y = 0, for the several
instants.
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Figure 5 This figure presents the beam neutral fiber
displacement, in the x direction, for several instants.

the mechanical system is not excited longitudinally by no
charge. This behavior is a result of the nonlinear coupling
between the transverse and longitudinal dynamics of the
dynamic structure, that is carried by the forces coming
from the geometric nonlinearity of the problem.

4 Final remarks and future works

In this work it was discussed the the effects induced
by lateral shock in nonlinear dynamic behavior of a
annular beam that emulates a drillstring in horizontal
configuration. The analysis of the system was performed,
through the spatial configurations adopted by the beam at
different instants, and the respective power spectral density
functions.
The results show that the shock significantly modifies

the dynamics of the mechanical system, inducing config-
urations “close” to high-order flexural modes. It is also
observed a nonlinear coupling between the mechanisms
of longitudinal and transverse vibrations, caused by the
geometric nonlinearity of the problem. This coupling
generates a longitudinal dynamics in the mechanical
system, even in the absence of axial excitation.
In a future work, in order to have a drillstring

deterministic model more realistic, it is expected includes in
the modeling the effects of fluid-structure interaction, that
results from the flow of drilling fluid inside and outside
of the drillstring. The authors also intend to develop a
stochastic modeling of the problem, in order to quantify the
uncertainties of the model [15], [16]. Uncertainties that are
due to the variability of its parameters, and/or epistemic
in nature, i.e, result of the ignorance about the physics of
the problem [17].
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