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Abstract

Simple models of clarinet instruments based on iterated maps have been used in the past to successfully estimate the threshold

of oscillation of this instrument as a function of a constant blowing pressure. However, when the blowing pressure gradually

increases through time, the oscillations appear at a much higher value than what is predicted in the static case. This is known

as bifurcation delay, a phenomenon studied in [1] for a clarinet model. In numerical simulations the bifurcation delay showed a

strong sensitivity to numerical precision.

This paper presents an analytical estimation of the bifurcation delay of the simplified clarinet model taking into account the

numerical precision of the computer. The model is then shown to correctly predict the bifurcation delay in numerical simulations.

1 Introduction

The oscillation threshold of the clarinet has been exten-

sively studied in the literature [2, 3] assuming that the blow-

ing pressure is constant. In this context, the static oscillation

threshold γst is defined as the minimum value of the blow-

ing pressure for which there is a periodic oscillating regime.

This value of the threshold is obtained by applying a con-

stant blowing pressure, allowing enough time to let the sys-

tem reach a permanent regime (either static or strictly peri-

odic), and repeating the procedure for other constant blowing

pressures. Most studies using iterated maps are restricted to

static cases, even if transients are observed. They focus on

the asymptotic amplitude regardless of the history of the sys-

tem and of the history of the control parameter.

A recent article [1] studied the behavior of a clarinet model

when the blowing pressure increases linearly. The model

starts its oscillations for a much higher value of the blowing

pressure than the static oscillation threshold. An analytical

expression of this dynamical threshold has been derived and

its properties studied: the dynamic threshold does not depend

on the increase rate of the blowing pressure (for sufficiently

low increase rates), but is very sensitive to the value of the

blowing pressure at which the increase is started.

The article [1] ends with a comparison between the ana-

lytical predictions and numerical simulations (Fig. 10 in [1]),

revealing an important sensitivity to the precision used in nu-

merical simulations. Indeed, numerical results only converge

towards theoretical ones when the model is computed with

hundreds or thousands of digits (i.e. approximating an in-

finitely precise simulation). Otherwise, the observations of

numerically simulated thresholds are far from the theoretical

ones, they depend on the increase rate of the blowing pres-

sure and are independent of the starting value of the blowing

pressure. The conclusion is that theoretical results obtained

in [1] cannot explain the behavior of the model simulated in

the common double-precision of a modern CPU.

The aim of this paper is to explain and predict the start

of the oscillations in simulations performed with the usual

double-precision of computer CPUs (around 15 decimal deb-

its). A model introduced in a journal article [1] is modified

to predict the oscillation threshold in limited precisions. The

expression of this oscillation threshold is given in section 3.

In the same section, the theoretical thresholds (static and dy-

namic ignoring or taking into account the precision) are com-

pared to the thresholds observed in numerical simulations.

The influence of the speed at which the blowing pressure is

increased is discussed, as well as that of the initial value of

the blowing pressure. A similar analysis is made for the sec-

ond control parameter of the model (related to opening of the

embouchure at rest). The clarinet model and major results

from [1] are first briefly recalled in section 2.

2 State of the art

2.1 Clarinet Model

This model divides the instrument into two elements: the

exciter and the resonator. The exciter is modeled by a non-

linear function F also called nonlinear characteristic of the

exciter, which relates the pressure applied to the reed p(t) to

the flow u(t) through its opening. The resonator (the bore of
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the instrument) is described by its reflection function r(t). p

and u are two non-dimensional state variables that are suffi-

cient to describe the state of the instrument.

The solutions p(t) and u(t) depend on the control param-

eters: γ proportional to the mouth pressure Pm according to

γ =
Pm

PM

=
Pm

kH
(1)

where PM represents the pressure needed to close the reed

entrance (also used to normalize the pressure p(t)) a product

of 1/k the acoustic compliance of the reed and H its distance

to the lay at rest. The other parameter is ζ which is related

to the opening of the embouchure at rest according to the

formula

ζ = Zc UA/PM = ZcwH

√

2

ρPM

. (2)

Here, Zc is the characteristic impedance at the input of the

bore, w the effective width of the reed, and UA the maximum

flow admitted by the reed valve. For most of the analysis

below, this parameter is fixed at 0.5, a typical value observed

in musicians, but the analysis can easily be reproduced for

other values of ζ. The nonlinear characteristic is provided by

the Bernoulli equation describing the flow in the reed channel

[4, 5].

The model is extremely simplified by considering a straight

resonator in which the eventual losses are independent of fre-

quency. In the current work, losses are neglected in all calcu-

lations. The reed is considered as an ideal spring [6, 7, 8, 9, 3,

10]. With these assumptions, the reflection function becomes

a simple delay with sign inversion. Using the variables p+

and p− (outgoing and incoming pressure waves respectively)

instead of the variables p and u, the system can be simply

described by an iterated map [6]:

p+n = G
(

p+n−1, γ
)

. (3)

An explicit expression for this function is given by Tail-

lard [11] for ζ < 1. This function depends on the control pa-

rameters γ and ζ. The time step n corresponds to the round

trip time τ = 2l/c of the wave with velocity c along the res-

onator of length l.

Using the universal properties of the iterated maps [12,

13], useful information about the instrument behavior can be

drawn from the study of the iteration function. So far, these

studies come from the static bifurcation theory, which as-

sumes that the control parameter γ is constant. For instance,

it is possible to determine the steady state of the system as

a function of the parameter γ, and to plot a bifurcation dia-

gram shown in figure 1. When no losses are considered, the

oscillation threshold γst is:

γst =
1

3
, (4)

For all values of the control parameter γ below γst the series

p+n converges to a single value p+∗ corresponding to the fixed

point of the function G, i.e. the solution of p+∗ = Gγ (p+∗).

When the control parameter γ exceeds γst the fixed point of

G becomes unstable and the steady state becomes a 2-valued

oscillating regime. Figure 1 shows an example of the bifur-

cation diagram with respect to the variable p+.
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Figure 1: Graphical representation of the static bifurcation

diagram for ζ = 0.5. In gray, the stable solutions, in dashed

black, the non-oscillating solution.

An iterated map approach can be used to predict the asymp-

totic (or static) behavior of an ideal clarinet as a function of

a constant mouth pressure. This procedure avoids the phe-

nomenon of bifurcation delay which is observed in numerical

simulations when the control parameter γ is increased.

2.2 Slowly time-varying mouth pressure

2.2.1 Dynamic bifurcation

A control parameter γ increasing linearly with time is

taken into account by replacing eq. (3) by eqs. (5a) and (5b):











p+n = G
(

p+n−1, γn

)

(5a)

γn = γn−1 + ǫ. (5b)

The parameter γ is assumed to increase slowly, hence ǫ is

considered arbitrarily small (ǫ ≪ 1). When the series p+n is

plotted with respect to parameter γn the resulting curve can

be interpreted as a dynamic bifurcation diagram and it can be

compared to the static bifurcation diagram (fig. 2).

Because of the time variation of γ, the system (5) is sub-

ject to the phenomenon of bifurcation delay [14, 15]: the

bifurcation point is shifted from the static oscillation thresh-

old γst [3] to the dynamic oscillation threshold γdt [1]. The

difference γdt − γst is called the bifurcation delay.

The techniques used in dynamic bifurcation theory are

now required to properly analyze the system. Article [1] pro-

vides an analytical study of the dynamic flip bifurcation of

the clarinet model (i.e. system (5)) based on a generic method

given by Baesens [14]. The main results of this study, leading

to a theoretical estimation of the dynamic oscillation thresh-

old of the clarinet are recalled below.

2.2.2 Dynamic oscillation threshold of the clarinet model

without noise

A possible theoretical estimation of the dynamic oscilla-

tion threshold consists in identifying the value of γ for which

the orbit of the series p+n escapes from a neighborhood of

arbitrary distance of an invariant curve φ(γ, ǫ). More pre-

cisely, the dynamic oscillation threshold is reached when the
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Figure 2: Comparison between static and dynamic bifurcation diagram as functions of γn. ǫ = 2 · 10−3, ζ = 0.5 and the

numerical precision is equal to 100 (figure 2(a)) and 15 (figure 2(b)) decimal digits. The thresholds γst, γ
th
dt

and γnum
dt

are

represented.

distance between the orbit and the invariant curve becomes

equal to ǫ.

The invariant curve (i.e. invariant under the mapping (5),

described for example in [16]) can be seen as the equivalent

of a fixed point in static regimes, functioning as an attractor

for the state of the system. It satisfies the following equation:

φ(γ, ǫ) = G (φ(γ − ǫ, ǫ), γ) . (6)

The procedure to obtain the theoretical estimation γth
dt

of the

dynamic oscillation threshold is as follows: a theoretical ex-

pression of the invariant curve is found for a particular (small)

value of the increase rate ǫ (i.e. ǫ ≪ 1). The system (5) is

then expanded into a first-order Taylor series around the in-

variant curve and the resulting linear system is solved analyt-

ically. Finally, γth
dt

is derived from the analytic expression of

the orbit.

The analytic estimation of the dynamic oscillation thresh-

old γth
dt

is defined in [1]:

∫ γth
dt
+ǫ

γ0+ǫ

ln
∣

∣

∣∂xG
(

φ(γ′ − ǫ), γ′
)

∣

∣

∣ dγ′ = 0, (7)

where γ0 is the initial value of γ (i.e. the starting value of the

linear ramp). The main properties of γth
dt

are (Fig. 6 of [1]):

• γth
dt

does not depend on the slope of the ramp ǫ (pro-

vided ǫ is small enough)

• γth
dt

depends on the initial value γ0 of the ramp.

3 Numerical simulations: the precision

cannot be ignored

3.1 Problem statement

The above theoretical prediction ignores the round-off er-

rors of the computer. The bifurcation delays γnum
dt

observed

in simulations1 are seen to converge to the theoretical ones

for very high numerical precision, typically when hundreds

or thousands digits are considered in the simulation (cf. fig-

ure 2(a) where a precision2 of 100 was used). However, in

standard double-precision arithmetic (precision close to 15

decimals), theoretical predictions of the dynamic bifurcation

point γth
dt

are far from the thresholds γnum
dt

observed in numer-

ical simulations. An example is shown in figure 2(b). In par-

ticular, the numerical bifurcation threshold depends on the

slope ǫ, unlike the theoretical predictions γth
dt

. Moreover, the

dependence of the bifurcation point on the initial value γ0 is

lost over a wide range of γ0.

As a conclusion, because they ignore the round-off er-

rors of the computer, theoretical results obtained in [1] fail

to predict the behavior of numerical simulations carried out

at usual numerical precision. In particular this is problematic

when studying the behavior of a synthesis model, or simply

when trying to understand the large delays in the threshold of

oscillation in simulations of real systems. Following a gen-

eral method given by Baesens [14], we show in section 3.2

how the dynamic oscillation thresholds of simulations with

finite precision can be analytically predicted.

3.2 Theoretical estimation of the dynamic os-

cillation threshold in presence of noise

Following usual modeling of quantization as a uniformly

distributed random variable [17], round-off errors of the com-

puter are introduced as ξn (referred as an additive white noise).

Therefore, system (5) becomes:











p+n = G
(

p+n−1, γn

)

+ ξn (8a)

γn = γn−1 + ǫ, (8b)

1In simulations, γnum
dt

is estimated as the value for which the distance

between the simulated orbit and the invariant curve becomes equal to ǫ.
2The choice of the precision is possible using mpmath, the arbitrary pre-

cision library of Python.

3



where ξn is a white noise with an expected value equal to

zero (i.e. E
[

ξn
]

= 0) and variance σ defined by:

E
[

ξmξn
]

= σ2δmn, (9)

where δmn is the Kronecker delta. The definition of the ex-

pected value E is provided in [18]. Equations (8) are used for

the analytic study. In later sections, the results of this analyt-

ical study will be compared to numerical simulations of the

system (5) using a numerical precision of 15 decimals. As a

consequence, the noise level σ will be equal to 10−15.

The method to obtain the theoretical estimation of the dy-

namic oscillation threshold which take into account the pre-

cision (noted γ̂th
dt

) is the same as to obtain γth
dt

(cf. section

2.2.2). In addition, because of the noise the bifurcation de-

lay is reduced so that the dynamic oscillation threshold γdt

is assumed to be close3 to the static oscillation threshold γst.

Using this approximation, the expression of γ̂th
dt

is:

γ̂th
dt = γst +

√

−

2ǫ

K
ln

[

(

π

K

)1/4 σ

ǫ5/4

]

, (10)

which is the theoretical estimation of the dynamic oscillation

threshold of the stochastic systems (8) (or of the system (5)

when it is computed using a finite precision). K is a constant

that depends on the slope of ∂xG(p+(γ), γ), the derivative of

the iteration function at the fixed point.

A summary table of different notations of the oscillation

thresholds is provided in table 1.

Table of Notation

γst static oscillation threshold

γth
dt

theoretical estimation of the dynamic os-

cillation threshold of the clarinet model

without noise

γ̂th
dt

theoretical estimation of the dynamic os-

cillation threshold in presence of noise

γnum
dt

dynamic oscillation threshold calculated

on numerical simulations

Table 1: Table of notation for thresholds of oscillation.

3.3 Benchmark of theoretical estimators for the

dynamic oscillation threshold

This section compares the theoretical estimation of the

dynamic oscillation threshold γ̂th
dt

for a standard deviation

σ = 10−15 with the thresholds observed in numerical sim-

ulations using the regular 64-bit double-precision of a CPU

(about 15 decimal digits). The comparison is carried out as a

function of the increase rate (ǫ) of the blowing pressure, the

initial value γ0 and the embouchure parameter ζ. The estima-

tions of the theory with noise (γ̂th
dt

) are plotted simultaneously

with γst and γth
dt

.

In figures 3 and 4, the various thresholds are plotted with

respect to ǫ and to γ0 respectively. Unlike γth
dt

(or γnum
dt

calcu-

lated on simulations with very high precision, see [1]), here

the main properties of γnum
dt

are:

3This hypothesis could be questioned because according to figures 2(a),

even in the presence of noise, the bifurcation delay can be large. However,

this hypothesis is required to carry out calculations.
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Figure 3: Graphical representation of γnum
dt

with respect to

the slope ǫ, for γ0 = 0 and ζ = 0.5. Results are compared to

analytic static and dynamic thresholds: γst, γ
th
dt

and γ̂th
dt

.
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Figure 4: Comparison between theoretical prediction of

oscillation thresholds (dynamic without noise: γth
dt

and with

noise: γ̂th
dt

, and static γst) and the dynamic threshold γnum
dt

.

Various thresholds are plotted with respect to the initial

condition γ0 with ǫ = 3 · 10−4 and ζ = 0.5.

• γnum
dt

depends on the slope ǫ

• γnum
dt

does not depend on γ0 over a wide range of γ0.

In both figures 3 and 4 we observe a good agreement be-

tween γ̂th
dt

and γnum
dt

. However, for large ǫ, in figure 3, and for

γ0 close to the static threshold γst, in figure 4, the theoreti-

cal threshold γth
dt

for infinite precision is a better prediction of

the dynamic threshold. Therefore, in this case, the round-off

errors of the computer can be ignored.

In figure 5, thresholds are plotted with respect to the em-

bouchure parameter ζ, showing that γnum
dt

decreases with ζ.

In figure 5(a), two increase rates ǫ are used (10−4 and 10−3).

These slopes are sufficiently small so that the curves for γth
dt
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Figure 5: Comparison between theoretical prediction of oscillation thresholds (dynamic without noise: γth
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,

and static γst) and the dynamic threshold γnum
dt

. Various thresholds are plotted with respect to the embouchure parameter ζ with

γ0 = 0 and (a) ǫ = 10−4 and 10−3 and (b) ǫ = 10−2.

overlap4 (except for small values of ζ). In these situations,

the estimation with noise γ̂th
dt

predicts correctly the observed

dynamic thresholds γnum
dt

and, as expected, the prediction is

better for the slower increase rate ǫ.

The behavior of the system changes for larger ǫ (cf. figure

5(b) where ǫ = 10−2). First of all, for this value of the slope

the dependence of γth
dt

on ǫ appears. Moreover, as in figure

4, beyond the intersection between γ̂th
dt

and γth
dt

the theoret-

ical estimation for infinite precision, γth
dt

, becomes a better

prediction of the bifurcation delay.

4 Conclusions

In a simplified model of the clarinet, the threshold in

mouth pressure above which the oscillations occur can be

obtained using an iterated map approach. This threshold cor-

responds to 1/3 of the reed beating pressure, but when the

mouth pressure is increased with time, the oscillations start at

a much higher value than this static threshold. The dynamic

threshold calculated with infinite precision is independent on

the rate of increase, depending only on the starting value of

the mouth pressure.

Numerical simulations performed using finite precision

show very different results in that the dynamic threshold de-

pends on the increase rate and not on the starting value of the

mouth pressure. A modified dynamic bifurcation theory in-

cluding the effect of a stochastic variation in mouth pressure

can be derived to correctly approximate the dynamic thresh-

old when the precision is limited.

With a precision of 10−15, this theory is seen to match the

simulations performed with double-precision, showing that

the threshold is situated between the static threshold γ = 1/3

and the dynamic threshold (close to γ ≃ 0.9 for typical play-

4cf. properties of γth
dt

in section 2.2.2.

ing conditions). This threshold increases with the rate of

increase of mouth pressure ǫ, and does not depend on the

initial condition γ0 throughout most of the range below the

static threshold. Although not shown here, the model can

be applied to other values of precision. Because it is based

on a stochastic analysis of the dynamic system, the model is

expected to describe the behavior of the system subject for

instance to turbulence noise.
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