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Abstract—Sustainability and viability of wind farms are 

highly dependent on the reduction of the operational and 

maintenance costs. The most efficient way of reducing these costs 

would be to continuously monitor the condition of these systems. 

This allows for early detection of the degeneration of the 

generator health, facilitating a proactive response, minimizing 

downtime, and maximizing productivity. This paper deals then 

with the assessment of a demodulation technique for bearing 

failure detection through wind turbines generator stator current. 

The proposed technique is based on a modified version of the 

Hilbert Huang transform. In this version, the use of the EEMD 

algorithm allows overcoming the well-known mixed mode. 
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I. INTRODUCTION 
 

Wind turbines failure detection is certainly one of the most 

important key in maintenance cost reduction. Despite the long 

experience accumulated by several technologies applied in 

electric machine, the task in wind turbines is still an art. It has 

become even more challenging as far as wind energy 

conversion system are deployed onshore or offshore where there 

are substantial wind resources, leading to a best electricity 

generating opportunities, so it yields to high maintenance costs 

because they are inaccessible or hardly accessible [1]. With the 

development of these wind farms due to increasing land or sea 

constraints, new challenges arise particularly with regard to 

maintenance. Indeed, maintenance is significantly restricted 

during periods of high wind speed and significant wave height. 

In this context, cost-effective, predictive and proactive 

maintenance of wind turbines assumes more importance. Wind 

turbine Condition Monitoring Systems (CMS) provide then an 

early indication of component incipient failure, allowing the 

operator to plan system repair prior to complete failure. So the 

CMS will be an important tool for lifting uptime and 

maximizing productivity; in other words when cost-effective 

availability targets must be reached. The experience feedback of 

wind turbine industries shows important features of failure rate 

values and trends [2-3]; and states that a large fraction of wind 

turbine downtime is due to drive train and bearing failures, 

particularly in the generator and gearbox. For failure diagnosis 

problem, it is important to know if a failure exists or not in the 

generator; and in addition, to identify the failed element of the 

system and to find the failure causes via the processing of 

available measurements. To today condition monitoring 

techniques for wind turbines have not been resolved and have 

not reached their full potential, because CMS are highly linked 

to the detection philosophy and should be applied only when the 

detection methods are reliable [4-5]. A well-known method for 

assessing impeding problems is to use current sensors installed 

within the wind turbine generator as transducer for failure 

detection [6]. 

Many techniques and tools are developed for condition 

monitoring of wind turbine electric generator in order to prolong 

their life span [7]. Some of the technology used for monitoring 

includes existing and pre-installed sensors, such for speed, 

torque, vibrations, temperature, flux density, etc. These sensors 

are managed together in different architectures and coupled with 

algorithms to allow an efficient monitoring of the system 

condition. Those methods are outcome from electric motor 

condition monitoring. From the theoretical and experimental 

point of view, the well-established methods are: electrical 

quantities signature analysis (current, power...), vibration 

monitoring, temperature monitoring and oil monitoring. In the 

case of wind turbines generator, some research works on fault 

detection were carried out using the electrical quantities of the 

generator, such as the diagnosis of unbalance and failure in the 

blades of a small wind turbine by measuring the power 

spectrum density at the turbine generator terminal [8]. The 

advantage of signature analysis of the generator electrical 

quantities is that those quantities are easily accessible during 

operation. 

Analyzing the generator electrical quantities usually 

involves the use of signal processing techniques. For steady 

state operations, the Fast Fourier Transform (FFT) and other 

techniques based upon it are widely used in the literature [8-9]. 

However, in the case of variable speed wind turbines, the FFT is 

difficult to interpret and to extract the features of variations in 

time-domain, since the operation is predominately non-

stationary due the behavior of the wind speed. To overcome this 

problem, procedures based on time-frequency representations 

(Spectrogram, Quadratic Wiegner-Ville, etc.) or time-scale 

analysis (wavelet) have been proposed in the literature of the 

electric machines community [10-12]. Nevertheless, these 

methods are formulated through integral transforms and analytic 

signal representations, so their accuracy depends on data length 



and stationarity. Also these techniques have drawbacks such as 

high complexity, poor resolution and/or may suffer from 

artifacts (cross-terms…) and it is not easier to track the 

frequencies introduced by the failure. 

This paper deals then with the assessment of a demodulation 

technique for bearing failure detection through wind turbines 

generator stator current [13]. The proposed technique is based 

on a modified version of the Hilbert Huang transform. In this 

version, the use of the EEMD algorithm allows overcoming the 

well-known mixed mode. The proposed technique is tested 

using experimental data from a 0.75kW test bench. 

 

II. ROLLING ELEMENT BEARING FAULT 
 

The failure of rolling element bearings of the electric 

generator is the most common failure mode associated with a 

long downtime of wind turbines. Because of their construction, 

rolling element bearings generate precisely identifiable 

signature on vibration. The characteristic frequencies of rolling 

element bearings depend on the geometrical size of the various 

elements [14]. Those frequencies present an effective route for 

monitoring progressive bearing degradation. It is therefore 

possible to detect on the stator side the frequencies associated 

with the bearings using an accelerometer mounted directly on 

the bearing housing, which is not often easily accessible. It is 

also true that vibration monitoring has make out its efficiency; 

and it is highly suitable for rolling element bearings, however it 

represents an issue when requiring a good vibration baseline. To 

tackle this problem, an alternative procedure for bearing failures 

detection in electrical machines is proposed by analyzing the 

stator side electrical quantities, such as the current or the 

instantaneous power [14]. Indeed, bearing failures generate 

predictable frequencies in the stator current In fact, a bearing 

failure is assumed to produce an air gap eccentricity. The effect 

of the eccentricity on the magnetic flux distribution is depicted 

in Fig. 1. Due to the eccentric rotor motion, an unbalanced 

magnetic pull is produced; this gives rise to torque oscillations 

which lead to an amplitude and/or phase modulation of stator 

current [15]. It is therefore sufficient to demodulate the current 

to achieve failure detection. In this paper, the authors will assess 

an alternative technique detecting bearing failures regardless the 

stator current frequency content. 

 

     
 

  (a) Healty machine       (b) Faulty machine. 
 

Fig. 1. Effect of the eccentricity on the magnetic field. 

III. SIGNAL PROCESSING TOOLS 
 

This work focuses on mechanical failures that lead to stator 

current amplitude modulations. These include bearing failure 

and air gap irregularities. 

For amplitude modulated signals, the gathered current i(t) 

is assumed to be multi-components and can be expressed as 

 

1

( ) ( )sin( ( ))
M

k k

k

i t a t t


                 (1) 

 

where ( ) (1 sin(2 ))k k ka ka kaa t a m f t     

 

and 
0( ) 2 sin(2 )k k kp ka kpt f t m f t       

 

However, due to sampling procedure (1) is rewritten as 

follow. 
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Where n = 0 ... N – 1 is the sample index, N is the number of 

logged samples, k is the phase parameter and Fs is the 

sampling frequency. 

For failure detection, a possible approach relies on the use 

of amplitude demodulation techniques to estimate the 

instantaneous amplitude (IA). Then, statistical features can be 

extracted to detect if IA is time-varying or not. 

 

A. Amplitude Demodulation 
 

For amplitude modulated signals, many techniques for 

amplitude demodulation were investigated. The most popular 

include the Hilbert transform (HT) [16] and the Teager Energy 

Operator [17]. Furthermore for three-phase system, it has been 

recently shown that the Concordia transform can be used to 

perform demodulation [18]. In this study, one phase current is 

considered. In this context, if the current is assumed to be 

mono-component, (2) is reduced to 

 

( ) ( )sin(2 / ( ))si n a n f F n                (3) 

 

and the Hilbert transform can be chosen to estimate the 

instantaneous amplitude since it is usually more robust against 

noise than the Teager energy operator  and easier to 

implement, because its computation is closely related to FFT 

which is the most built-in function in embedded targets. 

However, the current is not really mono component, so 

Hilbert transform is no longer valid. Because It is well known 

that the stator current is a combination of various dominant 

harmonic components; such as fundament harmonic, teeth 

harmonic, saturation harmonic, unknown harmonics including 

noise; and harmonics introduced by the failure. Under such 

assumption, innovative techniques are investigated for 

tracking the failure component by separation methods [19-20]. 



In this paper the authors explore a separation method in 

order to isolate the failure effect and track the variation of the 

dominant component introduced by this failure. One of the 

emerging methods for signal separation is the Hilbert Huang 

transform (HHT). The HHT method has focused considerable 

attention and has been recently indexed to fault diagnosis of 

rotating machinery [21]. 

The HHT method proceeded on two steps. The first one 

consists in decomposing the signal using the Empirical Mode 

Decomposition (EMD) method. The EMD has been described 

as an adaptive time-frequency data analysis method for 

nonlinear and non-stationary signals [20]. Unlike standard 

approaches that decompose a signal (data) into series of pre-

defined basis functions (harmonic, wavelet), the EMD is 

derived from data. The EMD produces a representation of a 

discrete signal in terms of elementary modes based on the 

local characteristic time-scale of the signal and hence leading 

to physical meaning. The multi-components signal is 

expressed as a sum of a series of intrinsic mode functions 

(imfs) and can be expressed by 
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The decomposition details can be found in [20]. 

Nevertheless, one major drawback of the EMD is the mode 

mixing. This phenomenon means that the detail related to one 

scale can appear in two different intrinsic modes as clearly 

shown by Fig. 2. The mixed mode makes the individual imf 

devoid of a physical meaning. To overcome this drawback, the 

Ensemble EMD was introduced by [22]. The EEMD is 

described as a new noise-added method, which automatically 

mitigate the EMD mode mixing. This friendly-noise 

decomposition is base on the EMD and is described by Fig. 3. 

The second step relies on applying the Hilbert transform to 

each imf obtained through the EEMD algorithm. Since the imfs 

are discrete, it is necessary to use the Discrete Hilbert 

Transform (DHT) [23]. 
 

 
 

Fig. 2. Empirical mode decomposition and the mixed mode phenomena. 
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Fig. 3. EEMD algorithm flowchart. 
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Using (3), the instantaneous amplitude IA, denoted ˆ( )a n , is 

given by 

 

22ˆ( ) ( ) ( [ ( )])x xa n imf n H imf n              (9) 

 

B. Failure Detector 
 

Several fault detectors based on amplitude demodulation 

have been proposed in the literature, and most of them use 

complicated classifier [20]. Furthermore these methods 

assume that a training database is available, which can be 

difficult to obtain for wind turbines. In this section, we 

propose a low complexity detector which does not require any 

training set. The detector is based on the variance of the 

dominant imf. After applying EEMD and locating the most 

energized imf due to the failure occurrence, its IA is computed 

through (9). A statistical criterion is then applied to assess a 

failure indicator. 



IV. TEST FACILITY DESCRIPTION 
 

Figure 4 describes the experimental setup that is operated 

in the motor configuration for experimental easiness. It is 

composed of two parts: a mechanical part that has a tacho-

generator, a three-phase induction motor and an alternator. 

The tacho-generator is a DC machine that generates 90 V at 

3000 rpm. It is used to measure the speed. It produces linear 

voltage between 2500 and 3000 rpm. The alternator is a three-

phase synchronous machine with a regulator and a rectifier 

circuit that stabilize the output voltage at 12 VDC. The 

advantage of using a car alternator instead of DC generator is 

obtaining constant output voltage at various speeds. The 

induction motor could be identically loaded at different 

speeds. Figure 5 illustrates the experimental test philosophy, 

while bearings with artificially deterioration are shown in Fig. 

6. The induction generator and the bearings data and 

parameters are given in the Appendix. 

 

 
 

Fig. 4. Experimental set up. 

 

V. FAILURE DETECTOR ASSESSMENT AND RESULTS 
 

In this section, the results of the proposed approach are 

presented with experimental signals. The EEMD algorithm 

was adjusted for e = 0.3 and N = 100. This decomposition was 

applied to logged stator current for several loads during 

operation with healthy and faulty bearing. 
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Fig. 5. Experimental test philosophy. 

 

 
 

Fig. 6. Artificially deteriorated bearings: (a) outer race deterioration, (b) inner 
race deterioration, (c) cage deterioration, (d) ball deterioration [25]. 

Figure 7 depicts the first five imfs and the residue for a 

40% loaded healthy and faulty machine. It can be seen that the 

4
th

 imf is more energized when the bearings are defected; 

whatever the bearing failure; except when it is defected by 

outer race, as shown in Fig. 8. In this case, the 4
th

 imf seems to 

be no more different from the healthy one. This is mainly due 

a bad emulation of the failure. This imf can therefore be 

investigated for bearing failure detection. Owing to this 

ascertainment, the mean of the instantaneous amplitude of this 

imf for several loads and cases is therefore computed. 

 

 
 

(a) Healthy bearings. 

 

 
 

(b) Faulty bearings (cage damage). 

 

Fig. 7. Stator current EEMD. 

 

 
 

Fig. 8. 4th imf for healthy and faulty bearings. 



After Hilbert transform, ne samples have been removed at 

the beginning and at the end of the instantaneous amplitude of 

the 4
th

 imf, to avoid the edge effects problem of the Hilbert 

transform. Figure 9 displays the instantaneous amplitude IA of 

the 4
th

 imf for a healthy and faulty bearings. Readable 

information on failure detection performance using the IA 

mean are illustrated by the bar graph of Fig. 10. Compared to 

the healthy case, the IA mean is higher in the faulty case. In 

particular, this criterion is multiply by 3 for a bearing failure. 

In this context, a bearing failure can be detected by setting 

the hypothesis test threshold to an adjusted value during 

normal conditions and operations. 

 

VI. CONCLUSION 
 

This paper dealt with the assessment of a demodulation 

technique for bearing failure detection through the generator 

stator current in wind turbines context. The proposed 

technique is based on a modified version of the Hilbert Huang 

transform. In this version, the use of the EEMD algorithm 

allows overcoming the well-known mixed mode. In this 

context, the current was first decomposed into intrinsic mode 

functions through the EEMD. 

 

 
 

Fig. 9. Instantaneous amplitude of the 4th imf for healthy and faulty bearings. 

 

 
 

Fig 10. 4th imf instantaneous amplitude mean for healthy and faulty bearings. 

It was then found that the 4
th

 one is the most energized when 

bearing faults occur. The instantaneous amplitude of the 4
th

 

imf mode is then analyzed using a statistic criterion based on 

the mean value. The achieved results clearly show that it can 

be used as a reliable indicator for bearing failures regardless 

training data. 

 

APPENDIX 

 
INDUCTION GENERATOR AND BEARINGS PARAMETERS 

 

Induction Generator 

Power rate 0.75KW 

Voltage rate 220/3380V 

Current rate 1.95/3.4A 

Rate speed 2780 rpm 

Frequency 50Hz 

Bearings Parameters 

  

Type 6204.2ZR 

Outside diameter 47mm 

Inside diameter 20mm 

Pitch diameter Dp 31.85mm 

Number of balls N 8 

Diameter of balls DB 12mm 
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