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Simple models of clarinet instruments based on iterated maps have been used in the past to successfully estimate
the threshold of oscillation of this instrument as a function of a constant blowing pressure. However, when the
blowing pressure gradually increases through time, the oscillations appear at a much higher value, called dynamic
oscillation threshold, than what is predicted in the static case.
This is known as bifurcation delay, a phenomenon studied in [1, 2] for a clarinet model. In particular the dynamic
oscillation threshold is predicted analytically when the blowing pressure is linearly increased. However, the mouth
pressure cannot grow indefinitely. During a note attack, after an increasing phase, the musician stabilizes the
mouth pressure. In the present work, the analytical prediction of the dynamic oscillation threshold is extended
to a situations in which the mouth pressure approaches a steady state pressure according to an exponential time
profile. The predictions still show a good agreement with simulation of the simple clarinet-model. This situation
is compared in terms of dynamic oscillation bifurcation.

1 Introduction
One of the main sucesses of clarinet models, even if

extremely simplified, is that they can predict ranges of
parameters such as blowing pressure and lip force where
the instrument produces a sound. The oscillation threshold,
i. e. the minimum blowing pressure at which there can be a
sustained oscillation has been extensively studied [3, 4]. The
oscillation threshold can be measured by applying a constant
blowing pressure, allowing enough time to let the system
reach a permanent regime (either non-oscillating or strictly
periodic), and repeating the procedure for other constant
blowing pressures. This is a static or stationary view of the
threshold.

A model based on an iterated map can be used to predict
the asymptotic (or static) behavior (in particular the static
oscillation threshold) of a simplified clarinet model as a
function of a constant mouth pressure. This procedure
avoids the phenomenon of bifurcation delay [5], a shift of
the pressure at which the oscillation starts when the pressure
is gradually increased over time. In such a situation, the
value of blowing pressure at which sound is observed is
called dynamic oscillation threshold, in opposition to the
static oscillation threshold. The phenomenon has been
observed by Bergeot et al. in numerical simulations [1]
and experiments [6]. Using a simplified clarinet model the
dynamic oscillation threshold has also been predicted [1, 2]
when the mouth pressure is linearly increased.

In most realistic situations (for example during a note
attack) the pressure stabilises at a target value as the
oscillations grow to an audible level. The present paper
shows how analytical results of [1, 2] can be extended to
predict the dynamic oscillation threshold of the system for an
archetypal mouth pressure shape that smoothly approaches
the target value exponentially. The mathematical procedure
and a comparison of theoretical results with numerical
simulations are presented in section 3. Then, in section 4,
a preliminary investigation on the influence of the mouth
pressure shape on the onset of oscillations is performed. The
clarinet model and major results from [1, 2] are first briefly
recalled in section 2.

2 State of the art

2.1 Clarinet Model
This model divides the instrument into two elements: the

exciter and the resonator. The exciter is represented by a
nonlinear function F also called nonlinear characteristic of
the exciter, relating the pressure applied to the reed p(t) to the

flow u(t) through its opening. The resonator (the bore of the
instrument) is described by its reflection function r(t). p and
u are two non-dimensional state variables that are sufficient
to describe the state of the instrument.

The solutions p(t) and u(t) depend on the control
parameters: γ proportional to the mouth pressure Pm

according to

γ =
Pm

PM
=

Pm

kH
(1)

where PM = kH represents the pressure needed to close
the reed entrance (also used to normalize the pressure p(t)),
where 1/k is the acoustic compliance of the reed and H its
distance to the lay at rest. The other parameter is ζ which is
related to the opening of the embouchure at rest according to
the formula

ζ = Zc UA/PM = ZcwH

√
2

ρPM
. (2)

Here, Zc is the characteristic impedance at the input of
the bore, w the effective width of the reed, and UA the
maximum flow admitted by the reed valve. Biting harder
the embouchure reduces the value of ζ. For most of the
analysis below, this parameter is maintained at 0.5, but the
analysis can easily be reproduced for other values of ζ.
The nonlinear characteristic is provided by the Bernoulli
equation describing the flow in the reed channel plus some
additional hypothesis on the turbulent mixing within the
mouthpiece [7, 8].

The model is extremely simplified by considering
a straight resonator in which the eventual losses are
independent of frequency. In the current work, losses are
ignored in all calculations. The reed is considered as an
ideal spring [9, 10, 11, 4, 12]. With these assumptions,
the reflection function becomes a simple delay with sign
inversion. Using the variables p+ and p− (outgoing and
incoming pressure waves respectively) instead of the
variables p and u, the system can be simply described by an
iterated map [9]:

p+
n = G

(
p+

n−1, γ
)
. (3)

Function G can be determined from the nonlinear
characteristic F, which is done by Taillard [13] for ζ < 1.
This function depends on the control parameters γ and ζ.
The time step n corresponds to the round trip time τ = 2l/c
of the wave with velocity c along the resonator of length l.

Using the universal properties of iterated maps [14],
useful information about the instrument behavior can be
drawn from the study of the iteration function. Most of these
studies are done in the context of static bifurcation theory,



which assumes that the control parameter γ is constant.
For instance, it is possible to determine the steady state of
the system as a function of the parameter γ, and to plot
a bifurcation diagram shown in red in Fig. 1, in terms
of variable p+. When no losses are considered, we have
γst = 1/3. For all values of the control parameter γ below γst

the series p+
n converges to a single value p+∗ corresponding

to the fixed point of the function G, i.e. the solution of
p+∗ = G (p+∗). When the control parameter γ exceeds γst

the fixed point of G becomes unstable and the steady state
becomes a 2-valued oscillating regime.

2.2 Slowly linear time-varying mouth
pressure

2.2.1 Dynamic bifurcation

A control parameter γ increasing linearly with time is
taken into account by replacing Eq. (3) by Eqs. (4a) and (4b):

 p+
n = G

(
p+

n−1, γn

)
(4a)

γn = γn−1 + ε. (4b)

γ is assumed to increase slowly, hence ε is considered
arbitrarily small (ε � 1). When the series p+

n is plotted with
respect to parameter γn the resulting curve can be interpreted
as a dynamic bifurcation diagram and it can be compared to
the static bifurcation diagram (Fig. 1).

Because of the time variation of γ, the system in Eqs. (4)
is subject to the phenomenon of bifurcation delay [15, 5]:
the bifurcation point (in this case the oscillation threshold)
is shifted from the static oscillation threshold γst [4] to
the dynamic oscillation threshold γdt [1]. The difference
γdt − γst is called the bifurcation delay. In a previous work
[1], the bifurcation delay was found to depend very strongly
on noise, in particular due to round-off errors made by the
computer in numerical simulations, even if high precisions
were used.

According to dynamic bifurcation theory, two operative
regimes must be distinguished [15]:

• The Deterministic Regime (DReg.): In this case, the
noise does not affect the bifurcation delay which does
not depend on the slope ε of the blowing pressure.

• The Sweep-Dominant Regime (SDReg.): In this
case, the bifurcation delay is affected by the noise,
becoming larger as the blowing pressure γ is increased
quicker.

Articles [1, 2] provide an analytical study of the dynamic
bifurcation of the clarinet model (i.e. Syst. (4)) based on a
generic method given by Baesens [15]. The main results
of these studies are theoretical estimations of the dynamic
oscillation threshold of the clarinet: one for the DReg. [1]
and one for the SDReg. [2]. These expression are recalled
below.

2.2.2 Dynamic oscillation threshold for the deterministic
regime

A possible theoretical estimation of the dynamic
oscillation threshold consists in identifying the value of γ for
which the orbit of the series p+

n escapes from a neighborhood

Figure 1: Comparison between static and dynamic
bifurcation diagram as functions of γn. ε = 2 · 10−3, ζ = 0.5.

The phenomenon of bifurcation delay is highlighted.

of arbitrary distance of an invariant curve φ(γ, ε). More
precisely, the dynamic oscillation threshold is reached
when the distance between the orbit and the invariant curve
becomes equal to ε.

The invariant curve (i.e. invariant under the mapping (4),
described for example in [16]) can be seen as the equivalent
of a fixed point in static regimes. It satisfies the following
equation:

φε(γ) = G (φε(γ − ε), γ) . (5)

Although Eq. (5) usually leads to mathematical
expressions that cannot be calculated analytically, the
invariant curve can be determined approximately with a
perturbation method given by Baesens [15], leading to the
following general form:

φε(γ) =

n∑
i=0

ε iφi(γ) + o(εn+1), (6)

where the zeroth order term of the series is the fixed point
curve of the function G, φ0(γ) = p+∗(γ).

The procedure to obtain the theoretical estimation
γth

dt of the dynamic oscillation threshold is as follows: a
theoretical expression of the invariant curve is found for a
particular (small) value of the increase rate ε (i.e. ε � 1).
Equations (4) are then expanded into a first-order Taylor
series around the invariant curve and the resulting linear
system is solved analytically. Finally, γth

dt is derived from the
analytic expression of the orbit.

The analytic estimation of the dynamic oscillation
threshold γth

dt is defined in [1]:∫ γth
dt+ε

γ0+ε

ln
∣∣∣∂xG

(
φε(γ′ − ε), γ′

)∣∣∣ dγ′ = 0, (7)

where γ0 is the initial value of γ (i.e. the starting value of the
linear ramp).

2.2.3 Dynamic oscillation threshold for the sweep-
dominant regime

The effect of the noise can be taken into account by
introducing an uniformly distributed random variable in
the system described by Eqs. (4). This random variable is



an additive white noise with an expected value of zero and
variance σ2. In the case of a numerical simulation performed
with finite precision,1 σ = 10−precision.

The method to obtain the theoretical estimation of the
dynamic oscillation threshold for the SDReg. (noted γ̂th

dt) is
detailed in [2].

Because of noise, the bifurcation delay is reduced.
Therefore, the main approximation of the method is to
assume that the dynamic oscillation threshold is close to the
static oscillation threshold γst. Using this approximation, the
expression of γ̂th

dt is:

γ̂th
dt = γst +

√
−

2ε
K

ln
[(
π

K

)1/4 σ

ε5/4

]
, (8)

which is the theoretical estimation of the dynamic oscillation
threshold for the SDReg., K is a constant that depends on the
slope of ∂xG(p+(γ), γ), the derivative of the iteration function
at the fixed point.

3 Exponential variation of the mouth
pressure

During a note attack, the mouth pressure cannot grow
indefinitely, being stabilized to a targeted value before the
oscillations grow to an audible level. This section is devoted
to show how results presented in sections 2.2.2 and 2.2.3 can
be extended to predict the dynamic oscillation threshold of
the system for a profile in which the parameter approaches
asymptotically a target value through an exponential
function.

3.1 Prediction of the dynamic oscillation
threshold: mathematical procedure

When the mouth pressure follows an exponential
function, the system is described by the following system of
difference equations:

 p+
n = G

(
p+

n−1, γn

)
(9a)

γn = a γn−1 + γM(1 − a), (9b)

where γM is the targeted mouth pressure (it is always equal to
1 in this work). Eq. (9b) describes the exponential variation
of the mouth pressure, with γ0 = 0 and noting ε = − ln[a],
its formal solution is given by:

γn = γM
(
1 − e−nε) , (10)

Fig. 2 shows an example of numerical simulation
performed on the system described by Eqs. (9).

Using a change of parameters, Eqs. (9) can take the form
of (4). The iterative function G is replaced by H:

H (x, η) = G (x, γ(η)) , (11)

with a linearly increasing parameter η:

η (γ) = ln
[

γM

γM − γ

]
=⇒ γ (η) = γM

(
1 − e−η

)
. (12)

1The precision in here referred as the number of decimal digits used by
the computer.
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Figure 2: Numerical simulation performed on the
Syst. (9).The parameters used are: γM = 1, a = 0.995

(ε = 0.005), ζ = 0.5, γ0 = 0 and p+
0 = G (0; γ0).

The new system is written: p+
n = H

(
p+

n−1, ηn

)
(13a)

ηn = ηn−1 + ε. (13b)

Using Eqs. (7) and (8), it possible to predict the dynamic
oscillation thresholds, noted ηth

dt (for DReg.) and η̂th
dt (for

SDReg.), of the system of Eqs. (13). These thresholds are
then expressed in terms of mouth pressure using Eq. (12):
Γth

dt = γ
(
ηth

dt

)
and Γ̂th

dt = γ
(
η̂th

dt

)
.

A summary table of different notations of the oscillation
thresholds is provided in table 1.

Table 1: Notation for thresholds of oscillation.

Static oscillation thresholds
γst static oscillation threshold
ηst η (γst) calculated through Eq. (12)
Dynamic oscillation thresholds of Syst. (4)
(linear variation of the mouth pressure)
γth

dt theoretical estimation of the dynamic
oscillation threshold for DReg.

γ̂th
dt theoretical estimation of the dynamic

oscillation threshold for SDReg.
γnum

dt dynamic oscillation threshold calculated
on numerical simulations

Dynamic oscillation thresholds of Syst. (13)
(exponential variation of the mouth pressure)
ηth

dt theoretical estimation of the dynamic
oscillation threshold for DReg.

η̂th
dt theoretical estimation of the dynamic

oscillation threshold for SDReg.
ηnum

dt dynamic oscillation threshold calculated
on numerical simulations

Γth
dt, Γ̂th

dt,
Γnum

dt

γ
(
ηth

dt

)
, γ

(
η̂th

dt

)
, γ

(
ηnum

dt

)
calculated through

Eq. (12)

3.2 Benchmark of theoretical estimators for
the dynamic threshold

In this section, the above theoretical predictions of the
dynamic threshold obtained for an exponential variation of
the mouth pressure are compared to numerical simulations.
A numerical dynamic threshold ηnum

dt is estimated as the



value for which the distance between the simulated orbit
of Syst. (13) and its invariant curve is first larger than ε.
The comparison is carried out as a function of parameter ε.
Results are shown in terms of mouth pressure γ in Fig. 3
with Γnum

dt = γ
(
ηnum

dt

)
and for several values of the precision.

The choice of the precision is possible using mpmath, an
arbitrary precision library for Python.

Similarly to the case of a linear variation of the mouth
pressure γ [2], the evolution of Γnum

dt with respect to ε
allows to distinguish the deterministic and sweep-dominant
regimes: in certain areas of the figures, the dynamic
bifurcation threshold does not depend strongly on ε, this
is the DReg., while in other areas the dynamic bifurcation
threshold depends on ε, this is the SDReg.. The lower is the
precision, the larger is the value of ε for which the DReg.
appears. For each regime the theoretical results Γth

dt and
Γ̂th

dt provides a good estimation of the dynamic oscillation
threshold of the clarinet model (9).
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Figure 3: Graphical representation of Γnum
dt . Results are

compared to analytical static and dynamic thresholds: γst,
Γth

dt and Γ̂th
dt. Different precisions are used: prec. = 7, 15, 30,

100 and 400. γ0 = 0 and γM = 1.

4 Linear vs. exponential variation of
the mouth pressure

In this section, numerical dynamic threshold obtained
for an exponential variation of the mouth pressure (Γnum

dt )
is compared to numerical dynamic threshold obtained for
a linear variation of the mouth pressure (γnum

dt ). One can
raise the question of the chosen parameter to carry out this
comparison. As a preliminary investigation, we choose here
the time (noted N) needed to reach 99 per cent of the target
value γM (see Fig 4).

For a linear variation of the mouth pressure with an
increase rate ε, we have:

N = 0.99
γM

ε
. (14)

Inverting Eq. (10) gives:

n = −
1
ε

ln
[
1 −

γ

γM

]
. (15)

Therefore, for an exponential variation of the mouth
pressure, N is defined by:

N = −
1
ε

ln
[
1 −

0.99γM

γM

]
≈

4.6
ε
. (16)

To illustrate the definition of the parameter N, Fig. 4
shows a linear and an exponential functions plotted with the
same value of N.

N for linear and exponential variation of Γ

0.99 ΓM

ΓM

0

Exponential

Linear

n

Γ

Figure 4: Outline schematic showing the definition of N for
a linear and for an exponential variation of the mouth

pressure γ.

The comparison is depicted in Fig. 5. Fig. 5(a) compares
the dynamic oscillation thresholds Γnum

dt and γnum
dt : for the

DReg., γnum
dt is larger than Γnum

dt while, for SDReg., the
opposite is noticed.

To complete the study, it is also interesting to compare
the times Nnum

dt and nnum
dt (computed through Eq. (15)) needed

to reach Γnum
dt and γnum

dt (see Fig. 5(b)). For DReg. as well
as for SDReg., exponential shape appears to provide faster
onset of oscillations.
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Figure 5: Comparison between linear and exponential
variation of the blowing pressure with respect to N.

Different precisions are used: prec. = 7, 30, and 500. (a)
Comparison between the dynamic thresholds: Γnum

dt and
γnum

dt . (b) Comparison between the times to reach the
dynamic thresholds: Nnum

dt and nnum
dt .



5 Conclusion
The method presented in this article provides an

extension of the estimation of dynamic thresholds for
exponentially increasing parameters. The present method
can, in principle, be used for any other profile of time-
varying parameter that can be described analytically.

Previous works have shown that, for sufficient precision,
the dynamic threshold is independent of the rate of
variation of the parameter (Deterministic regimes). A
quick extrapolation of these results might have led to
the conclusion that in a generic profile, even if there is
a variation of the rate of change of γ, there would be no
significant changes in the dynamic threshold. However the
results in this article show that this is not the case, as the
deterministic regime has a threshold (approximately 0.7)
that is smaller than that of the linearly increasing profile
(approximately 0.9).

In real cases, however, the system is always far from a
deterministic regime, as the numerical or turbulence noise
introduces a stochastic variation in the parameter then brings
the system into the sweep-dominant regime. In these cases
(similarly to the deterministic regime), exponential shape
appears to provide faster onset of oscillations. Obviously,
additional works must be performed to state definitive
conclusions about the influence of the mouth pressure shape
on the onset of oscillations in a clarinet.
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