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We study the asymptotic behavior of the weighted least squares estimators of the unknown parameters of bifurcating integer-valued autoregressive processes. Under suitable assumptions on the immigration, we establish the almost sure convergence of our estimators, together with a quadratic strong law and central limit theorems. All our investigation relies on asymptotic results for vector-valued martingales.

Introduction

Bifurcating integer-valued autoregressive (BINAR) processes are an adaptation of integer-valued autoregressive (INAR) processes to binary tree structured data. It can also be seen as the combination of INAR processes and bifurcating autoregressive (BAR) processes. BAR processes have been first introduced by Cowan and Staudte [START_REF] Cowan | The bifurcating autoregressive model in cell lineage studies[END_REF] while INAR processes have been first investigated by Al-Osh and Alzaid [START_REF] Al-Osh | First-order integer-valued autoregressive (INAR(1)) process[END_REF][START_REF] Alzaid | An integer-valued pth-order autoregressive structure (INAR(p)) process[END_REF] and McKenzie [START_REF] Mckenzie | Some simple models for discrete variate time series[END_REF]. BINAR processes take into account both inherited and environmental effects to explain the evolution of the integer-valued characteristic under study. To the best of our knowledge, this is the first paper devoted to BINAR processes.

We can easily see cell division as an example of binary tree structure, the integervalued characteristic could then be, as an example, the number of parasites in a cell. Keeping this example in mind, we consider that each time a cell is dividing, the two sister cells inherits both some parasites depending on the number of parasites of the mother, and some parasites from the environment. Bansaye [START_REF] Bansaye | Proliferating parasites in dividing cells: Kimmel's branching model revisited[END_REF] used a Kimmel branching process to model this division process. This Kimmel process can be seen as the inheritance part of our BINAR process, where the parasites in the mother cell divide and then the offspring are distributed among the two sister cell. However, this model does not allow any environmental effect.

The first-order BINAR process is defined as follows. The initial cell is labelled 1 and the offspring of the cell labelled n are labelled 2n and 2n + 1. Denote by X n the integer-valued characteristic of individual n. Then, the first-order BINAR process is given, for all n ≥ 1, by (1.1)

X 2n = a • X n + ε 2n X 2n+1 = b • X n + ε 2n+1
where the thinning operator • will be defined in (2.1). The immigration sequence (ε 2n , ε 2n+1 ) n≥1 represents the environmental effect, while the thinning operator represents the inherited effect. The example of the cell division incites us to suppose that ε 2n ans ε 2n+1 are correlated since the environmental effect on two sister cells can reasonably be seen as correlated.

The purpose of this paper is to study the asymptotic behavior of the weighted least squares (WLS) estimators of first-order BINAR process via a martingale approach. The martingale approach has been first proposed by Bercu et al. [START_REF] Bercu | Asymptotic analysis for bifurcating autoregressive processes via a martingale approach[END_REF]. We also refer to Wei and Winnicki [START_REF] Wei | Estimation of the means in the branching process with immigration[END_REF] and Winnicki [START_REF] Winnicki | Estimation of the variances in the branching process with immigration[END_REF] for the WLS estimation of parameters associated to branching processes. We shall make use of the strong law of large numbers [START_REF] Duflo | Random iterative models[END_REF] as well as the central limit theorem [START_REF] Duflo | Random iterative models[END_REF][START_REF] Hall | Martingale limit theory and its application[END_REF] for martingales, in order to investigate the asymptotic behavior of the WLS estimators, as previously done by Basawa and Zhou [START_REF] Basawa | Non-Gaussian bifurcating models and quasi-likelihood estimation[END_REF][START_REF] Zhou | Least-squares estimation for bifurcating autoregressive processes[END_REF][START_REF] Zhou | Maximum likelihood estimation for a first-order bifurcating autoregressive process with exponential errors[END_REF]. In contrast with Bercu et al. [START_REF] Bercu | Asymptotic analysis for bifurcating autoregressive processes via a martingale approach[END_REF], we investigate the asymptotic behavior of a WLS estimator instead of a least squares one. On the one hand, it enables us to reduce the moment assumption on the immigration sequence. On the other hand, it also allows us to reduce the asymptotic variance in the central limit theorem for our estimates. This gain of efficiency is entirely due to the weighted sequence which was inspired by Wei and Winnicki [START_REF] Wei | Estimation of the means in the branching process with immigration[END_REF]. The fact that we consider an integer-valued process also forced us to adapt the proofs because of the thinning operator which needs to be manipulated more carefully than the classical product.

Several points of view appeared for both BAR and INAR processes and we tried to make a link between those approaches. On the one hand, for the BAR side of the BINAR process, we had a look to classical BAR studies as done by Huggins and Basawa [START_REF] Huggins | Extensions of the bifurcating autoregressive model for cell lineage studies[END_REF][START_REF] Huggins | Inference for the extended bifurcating autoregressive model for cell lineage studies[END_REF] and Huggins ans Staudte [START_REF] Huggins | Variance components models for dependent cell populations[END_REF] who studied the evolution of cell diameters and lifetimes, but also to bifurcating Markov chains models introduced by Guyon [START_REF] Guyon | Limit theorems for bifurcating Markov chains. Application to the detection of cellular aging[END_REF] and used in Delmas and Marsalle [START_REF] Delmas | Detection of cellular aging in a Galton-Watson process[END_REF]. However, we did not put aside the analogy with the Galton-Watson processes as studied in Delmas and Marsalle [START_REF] Delmas | Detection of cellular aging in a Galton-Watson process[END_REF] and Heyde and Seneta [START_REF] Heyde | Estimation theory for growth and immigration rates in a multiplicative process[END_REF]. We also refer to the interesting contribution of De Saporta et al. [START_REF] De Saporta | Parameters estimation for asymmetric bifurcating autoregressive processes with missing data[END_REF][START_REF] De Saporta | Asymmetry tests for bifurcating auto-regressive processes with missing data[END_REF][START_REF] De Saporta | Statistical study of asymmetry in cell lineage data[END_REF] dealing with statistical inference for BAR processes with missing data. On the other hand, concerning the INAR side of the BINAR process, we used the classical INAR definition but also had a look to Bansaye [START_REF] Bansaye | Proliferating parasites in dividing cells: Kimmel's branching model revisited[END_REF][START_REF] Bansaye | Branching Feller diffusion for cell division with parasite infection[END_REF] who studied an integer-valued process on a binary tree without using an INAR model, and also Kachour and Yao [START_REF] Kachour | First-order rounded integer-valued autoregressive (RINAR(1)) process[END_REF] who decided to study an integer-valued autoregressive process by a rounding approach instead of the classical INAR one. The approach of this paper has also been used for the study of random coefficient bifurcating autoregressive (RCBAR) process as in Blandin [START_REF] Blandin | Asymptotic results for bifurcating random coefficient autoregressive processes[END_REF] and Bercu and Blandin [START_REF] Bercu | A rademacher-menchov approach for random coefficient bifurcating autoregressive processes[END_REF]. RCBAR processes is the combination of BAR processes and random coefficient autoregressive processes. They have been previously investigated by Nicholls and Quinn [START_REF] Nicholls | The estimation of random coefficient autoregressive models[END_REF][START_REF] Nicholls | Random coefficient autoregressive models: an introduction[END_REF][START_REF] Quinn | The estimation of random coefficient autoregressive models[END_REF].

The paper is organised as follows. Section 2 is devoted to the presentation of the first-order BINAR process while Section 3 deals with the WLS estimators of the unknown parameters. Section 4 allows us to detail our approach based on martingales. Section 5 gathers the main results about the asymptotic properties of the WLS estimators. More precisely, we will propose the almost sure convergence, the quadratic strong law and the central limit theorem for our estimates. The rest of the paper is devoted to the proofs of our main results.

Bifurcating integer-valued autoregressive processes

Consider the first-order BINAR process given by (1.1) where the initial integervalued state X 1 is the ancestor of the process and (ε 2n , ε 2n+1 ) represents the immigration which takes nonnegative integer values. In all the sequel, we shall assume that E[X 8 1 ] < ∞. Moreover,

(2.1) a • X n = Xn i=1 Y n,i and b • X n = Xn i=1 Z n,i
where (Y n,i ) n,i≥1 and (Z n,i ) n,i≥1 are two independent sequences of i.i.d., nonnegative integer-valued random variables with means a and b and positive variances σ 2 a and σ 2 b respectively. Moreover, µ 4 a , µ 4 b and τ 6 a , τ 6 b are the fourth-order and the sixth-order centered moments of (Y n,i ) and (Z n,i ), respectively, and (Y n,i ) and (Z n,i ) admit eighth-order moments. We also assume that the two offspring sequences (Y n,i ) and (Z n,i ) are independent of the immigration (ε 2n , ε 2n+1 ). In addition, as in the literature concerning BAR processes, we shall assume that

0 < max(a, b) < 1.
One can see this BINAR process as a first-order integer-valued autoregressive process on a binary tree, where each node represents an individual, node 1 being the original ancestor. For all n ≥ 1, denote the n-th generation by

G n = {2 n , 2 n + 1, . . . , 2 n+1 -1}.
In particular, G 0 = {1} is the initial generation and G 1 = {2, 3} is the first generation of offspring from the first ancestor. Let G rn be the generation of individual n, which means that r n = [log 2 (n)]. Recall that the two offspring of individual n are labelled 2n and 2n + 1, or conversely, the mother of individual n is [n/2] where [x] stands for the largest integer less than or equal to x. Finally denote by

T n = n k=0 G k
the sub-tree of all individuals from the original individual up to the n-th generation. On can observe that the cardinality

|G n | of G n is 2 n while that of T n is |T n | = 2 n+1 -1. G 0 G 1 G 2 G n T n 1 2 3 4 5 6 7 i 2 n 2i 2i + 1 2 n+1 -1 Figure 1.
The tree associated with the BINAR

Weighted least-squares estimation

Denote by F = (F n ) n≥0 the natural filtration associated with the first-order BINAR process, which means that F n is the σ-algebra generated by all individuals up to the n-th generation, in other words F n = σ{X k , k ∈ T n }. We will assume in all the sequel that, for all n ≥ 0 and for all k ∈ G n ,

E[ε 2k |F n ] = c a.s. E[ε 2k+1 |F n ] = d a.s.
Consequently, we deduce from (1.1) that, for all n ≥ 0 and for all k ∈ G n , (3.1)

X 2k = aX k + c + V 2k , X 2k+1 = bX k + d + V 2k+1 , where V 2k = X 2k -E[X 2k |F n ] and V 2k+1 = X 2k+1 -E[X 2k+1 |F n ].
Therefore, the two relations given by (3.1) can be rewritten in the matrix form

(3.2) χ n = θ t Φ n + W n where χ n = X 2n X 2n+1 , Φ n = X n 1 , W n = V 2n V 2n+1 ,
and the matrix parameter

θ = a b c d .
Our goal is to estimate θ from the observation of all individuals up to T n . We propose to make use of the WLS estimator θ n of θ which minimizes

∆ n (θ) = 1 2 k∈T n-1 1 c k χ k -θ t Φ k
where the choice of the weighting sequence (c n ) n≥1 is crucial. We shall choose c n = 1 + X n and we will go back to this suitable choice in Section 4. Consequently, we obviously have for all n ≥ 1

(3.3) θ n = S -1 n-1 k∈T n-1 1 c k Φ k χ t k
where

S n = k∈Tn 1 c k Φ k Φ t k .
In order to avoid useless invertibility assumption, we shall assume, without loss of generality, that for all n ≥ 0, S n is invertible. Otherwise, we only have to add the identity matrix of order 2, I 2 to S n . In all what follows, we shall make a slight abuse of notation by identifying θ as well as

θ n to vec(θ) =     a c b d     and vec( θ n ) =     a n c n b n d n     .
Therefore, we deduce from (3.3) that

θ n = Σ -1 n-1 k∈Tn-1 1 c k vec(Φ k χ t k ), = Σ -1 n-1 k∈Tn-1 1 c k     X k X 2k X 2k X k X 2k+1 X 2k+1    
where Σ n = I 2 ⊗S n and ⊗ stands for the standard Kronecker product. Consequently, (3.2) yields to

θ n -θ = Σ -1 n-1 k∈T n-1 1 c k vec(Φ k W t k ), = Σ -1 n-1 k∈T n-1 1 c k     X k V 2k V 2k X k V 2k+1 V 2k+1     . (3.4)
In all the sequel, we shall make use of the following moment hypotheses. 

(
sup n≥2 E[ε 8 n ] < ∞
It follows from hypothesis (H.1) that V 2n and V 2n+1 can be rewritten as

V 2n = Xn i=1 (Y n,i -a) + (ε 2n -c) and V 2n+1 = Xn i=1 (Z n,i -b) + (ε 2n -d).
Hence, under assumption (H.2), we have for all n ≥ 0 and for all k

∈ G n E[V 2 2k |F n ] = σ 2 a X k + σ 2 c and E[V 2 2k+1 |F n ] = σ 2 b X k + σ 2 d a.s. (3.5) Consequently, if we choose c n = 1 + X n for all n ≥ 1, we clearly have for all k ∈ G n E [ V 2 2k | F n ] ≤ max(σ 2 a , σ 2 c )c k and E V 2 2k+1 F n ≤ max(σ 2 b , σ 2 d )c k a.s.
It is exactly the reason why we have chosen this weighting sequence into (3.3). Similar WLS estimation approach for branching processes with immigration may be found in [START_REF] Wei | Estimation of the means in the branching process with immigration[END_REF] and [START_REF] Winnicki | Estimation of the variances in the branching process with immigration[END_REF]. We can also observe that, for all k ∈ G n , under the assumption (H.3)

ρ = E[V 2k V 2k+1 |F n ] a.s.
Hence, we propose to estimate the conditional covariance ρ by

(3.6) ρ n = 1 |T n-1 | k∈T n-1 V 2k V 2k+1
where for all k ∈ G n ,

V 2k = X 2k -a n X k -c n , V 2k+1 = X 2k+1 -b n X k -d n .
For all n ≥ 0 and for all k ∈ G n , denote

v 2k = V 2 2k -E[V 2 2k |F n ]. We deduce from (3.5) that for all n ≥ 1 V 2 2n = η t Φ n + v 2n
where η t = σ 2 a σ 2 c . It leads us to estimate the vector of variances η by the WLS estimator (3.7)

η n = Q -1 n-1 k∈T n-1 1 d k V 2 2k Φ k
where

Q n = k∈Tn 1 d k Φ k Φ t k
and the weighting sequence (d n ) n≥1 is given, for all n ≥ 1, by

d n = (1 + X n ) 2 .
This choice is due to the fact that for all n ≥ 1 and for all k

∈ G n E[v 2 2k |F n ] = E[V 4 2k |F n ] -E[V 2 2k |F n ] 2 a.s. = 2σ 4 a X 2 k + (µ 4 a -3σ 4 a + 4σ 2 a σ 2 c )X k + µ 4 c -σ 4 c a.s. (3.8)
where we recall that µ 4 a is the fourth-order centered moment of (Y n,i ). Consequently, as d n ≥ 1, we clearly have for all n ≥ 1 and for all k

∈ G n E[v 2 2k |F n ] ≤ (µ 4 a -σ 4 a + 4σ 2 a σ 2 c + µ 4 c -σ 4 c )d k a.s.
We have a similar WLS estimator ζ n of the vector of variances

ζ t = σ 2 b σ 2 d by replacing V 2
2k by V 2 2k+1 into (3.7).

A martingale approach

In order to establish all the asymptotic properties of our estimators, we shall make use of a martingale approach. For all n ≥ 1, denote

M n = k∈T n-1 1 c k     X k V 2k V 2k X k V 2k+1 V 2k+1     .
We can clearly rewrite (3.4) as (4.1)

θ n -θ = Σ -1 n-1 M n .
As in [START_REF] Bercu | Asymptotic analysis for bifurcating autoregressive processes via a martingale approach[END_REF], we make use of the notation M n since it appears that (M n ) n≥1 a martingale. This fact is a crucial point of our study and it justifies the vector notation since most of asymptotic results for martingales were established for vector-valued martingales. Let us rewrite M n in order to emphasize its martingale quality. Let Ψ n = I 2 ⊗ ϕ n where ϕ n is the matrix of dimension 2 × 2 n given by

ϕ n =     X 2 n √ c 2 n X 2 n +1 √ c 2 n +1 . . . X 2 n+1 -1 √ c 2 n+1 -1 1 √ c 2 n 1 √ c 2 n +1 . . . 1 √ c 2 n+1 -1     .
It represents the individuals of the n-th generation which is also the collection of all Φ k / √ c k where k belongs to G n . Let ξ n be the random vector of dimension 2 n

ξ t n = V 2 n √ c 2 n-1 V 2 n +2 √ c 2 n-1 +1 . . . V 2 n+1 -2 √ c 2 n -1 V 2 n +1 √ c 2 n-1 V 2 n +3 √ c 2 n-1 +1 . . . V 2 n+1 -1 √ c 2 n -1 .
The vector ξ n gathers the noise variables of G n . The special ordering separating odd and even indices has been made in [START_REF] Bercu | Asymptotic analysis for bifurcating autoregressive processes via a martingale approach[END_REF] so that M n can be written as

M n = n k=1 Ψ k-1 ξ k Under (H.1), we clearly have for all n ≥ 0, E[ξ n+1 |F n ] = 0 a.s. and Ψ n is F n - measurable.
In addition it is not hard to see that under (H.1) to (H.3), (M n ) is a locally square integrable vector martingale with increasing process given, for all n ≥ 1, by

M n = n-1 k=0 Ψ k E[ξ k+1 ξ t k+1 |F k ]Ψ t k = n-1 k=0 L k a.s. (4.2) where (4.3) L k = i∈G k 1 c 2 i σ 2 a X i + σ 2 c ρ ρ σ 2 b X i + σ 2 d ⊗ X 2 i X i X i 1 .
It is necessary to establish the convergence of M n , properly normalized, in order to prove the asymptotic results for our BINAR estimators θ n , η n and ζ n . Since the sizes of Ψ n and ξ n double at each generation, we have to adapt the proof of vector-valued martingale convergence given in [START_REF] Duflo | Random iterative models[END_REF] to our framework.

Main results

In all the sequel, we will assume that the law of the immigration (ε 2n , ε 2n+1 ) does not depend on n. However, we shall get rid of the standard assumption commonly used in the INAR literature that the offspring sequences (Y n,i ) and (Z n,i ) share the same Bernoulli distribution. The only assumption that we will use here is that the offspring sequences (Y n,i ) and (Z n,i ) admit eighth-order moments. We have to introduce some more notations in order to state our main results. From the original process (X n ) n≥1 , we shall define a new process

(Y n ) n≥1 recursively defined by Y 1 = X 1 , and if Y n = X k with n, k ≥ 1, then Y n+1 = X 2k+κn
where (κ n ) n≥1 is a sequence of i.i.d. random variables with Bernoulli B (1/2) distribution. Such a construction may be found in [START_REF] Guyon | Limit theorems for bifurcating Markov chains. Application to the detection of cellular aging[END_REF] for the asymptotic analysis of BAR processes. The process (Y n ) gathers the values of the original process (X n ) along the random branch of the binary tree (T n ) given by (κ n ). Denote by k n the unique k ≥ 1 such that Y n = X k . Then, for all n ≥ 1, we have Lemma 5.1. Assume that (ε n ) satisfies (H.1) to (H.4). Then, we have

Y n L -→ T
where T is a positive non degenerate integer-valued random variable with

E[T 3 ] < ∞. Denote C 1 3 (R + ) = f ∈ C 1 (R + , R) ∃γ > 0, ∀x ≥ 0, (|f ′ (x)| + |f (x)|) ≤ γ(1 + x 3 ) . Lemma 5.2. Assume that (ε n ) satisfies (H.1) to (H.5). Then, for all f ∈ C 1 3 (R + ), we have lim n→∞ 1 |T n | k∈Tn f (X k ) = E[f (T )] a.s. Proposition 5.3. Assume that (ε n ) satisfies (H.1
) to (H.5). Then, we have

(5.3) lim n→∞ M n |T n-1 | = L a.s.
where L is the positive definite matrix given by

L = E 1 (1 + T ) 2 σ 2 a T + σ 2 c ρ ρ σ 2 b T + σ 2 d ⊗ T 2 T T 1 .
Our first result deals with the almost sure convergence of our WLS estimator θ n .

Theorem 5.4. Assume that (ε n ) satisfies (H.1) to (H.5). Then, θ n converges almost surely to θ with the rate of convergence

(5.4) θ n -θ 2 = O n |T n-1 | a.s.
In addition, we also have the quadratic strong law

(5.5) lim n→∞ 1 n n k=1 |T k-1 |( θ k -θ) t Λ( θ k -θ) = tr(Λ -1/2 LΛ -1/2 ) a.s.
where

(5.6) Λ = I 2 ⊗ A and A = E 1 1 + T T 2 T T 1 .
Our second result concerns the almost sure asymptotic properties of our WLS variance and covariance estimators η n , ζ n and ρ n . Let

η n = Q -1 n-1 k∈T n-1 1 d k V 2 2k Φ k , ζ n = Q -1 n-1 k∈T n-1 1 d k V 2 2k+1 Φ k , ρ n = 1 |T n-1 | k∈T n-1 V 2k V 2k+1 .
Theorem 5.5. Assume that (ε n ) satisfies (H.1) to (H.5). Then, η n and ζ n converge almost surely to η and ζ respectively. More precisely,

η n -η n = O n |T n-1 | a.s. (5.7) ζ n -ζ n = O n |T n-1 | a.s. (5.8)
In addition, ρ n converges almost surely to ρ with (5.9)

ρ n -ρ n = O n |T n-1 | a.s.
Remark 5.6. We also have the almost sure rates of convergence

η n -η 2 = O n |T n-1 | , ζ n -ζ 2 = O n |T n-1 | , ( ρ n -ρ) 2 = O n |T n-1 | a.s.
Our last result is devoted to the asymptotic normality of our WLS estimators θ n , η n , ζ n and ρ n .

Theorem 5.7. Assume that (ε n ) satisfies (H.1) to (H.5). Then, we have the asymptotic normality

(5.10) |T n-1 |( θ n -θ) L -→ N (0, (I 2 ⊗ A -1 )L(I 2 ⊗ A -1 )).
In addition, we also have

|T n-1 | ( η n -η) L -→ N (0, B -1 M ac B -1 ), (5.11) |T n-1 | ζ n -ζ L -→ N (0, B -1 M bd B -1 ), (5.12) where B = E 1 (1 + T ) 2 T 2 T T 1 , M ac = E 2σ 4 a T 2 + (µ 4 a -3σ 4 a + 4σ 2 a σ 2 c )T + µ 4 c -σ 4 c (1 + T ) 4 T 2 T T 1 , M bd = E 2σ 4 b T 2 + (µ 4 b -3σ 4 b + 4σ 2 b σ 2 d )T + µ 4 d -σ 4 d (1 + T ) 4 T 2 T T 1 .
Finally,

(5.13) |T n-1 | ( ρ n -ρ) L -→ N 0, σ 2 ρ where (5.14) σ 2 ρ = σ 2 a σ 2 b E[T 2 ] + σ 2 a σ 2 d + σ 2 b σ 2 c c 1 -a + ν 2 -ρ 2 , E[T 2 ] = Υc 1 -a + c 2 -Υc 1 -a 2 + 2(ac + bd)c (1 -a)(1 -a 2 ) , Υ = σ 2 a + σ 2 b 2(a -a 2 ) , a = a + b 2 , a 2 = a 2 + b 2 2 , c = c + d 2 , c 2 = σ 2 c + σ 2 d + c 2 + d 2 2 .
The rest of the paper is dedicated to the proof of our main results.

6. Proof of Lemma 5.1

We can reformulate (5.1) and ( 5.2) as

Y n = a n • a n-1 • . . . • a 2 • Y 1 + n-1 k=2 a n • a n-1 • . . . • a k+1 • e k + e n .
We already made the assumption that the law of the immigration (ε 2n , ε 2n+1 ) does not depend on n. Consequently, the couples (a k , e k ) and (a n-k+2 , e n-k+2 ) share the same distribution. Hence, for all n ≥ 2, Y n has the same distribution than the random variable

Z n = a 2 • . . . • a n • Y 1 + n-1 k=2 a 2 • a 3 • . . . • a n-k+1 • e n-k+2 + e 2 , = a 2 • . . . • a n • Y 1 + n k=3 a 2 • a 3 • . . . • a k-1 • e k + e 2 .
For the sake of simplicity, we will denote (6.1)

Z n = a 2 • . . . • a n • Y 1 + n k=2 a 2 • a 3 • . . . • a k-1 • e k .
For all n ≥ 2 and for all 2

≤ k ≤ n, let Σ n-k+2 n = a k • . . . • a n • Y 1 and Σ 1 n = Y 1 . We clearly have Σ n-k+2 n = a k • Σ n-k+1 n
. Consequently, it follows from the tower property of the conditional expectation that

E[Σ n n ] = E[a 2 • Σ n-1 n ] = E[a • Σ n-1 n ]P(a 2 = a) + E[b • Σ n-1 n ]P(a 2 = b),
leading to

E[Σ n n ] = 1 2   E   E   Σ n-1 n i=1 Y 2,i Σ n-1 n     + E   E   Σ n-1 n i=1 Z 2,i Σ n-1 n       , = 1 2   E   Σ n-1 n i=1 E [Y 2,i ]   + E   Σ n-1 n i=1 E [Z 2,i ]     , = 1 2 E[aΣ n-1 n ] + E[bΣ n-1 n ] = aE[Σ n-1 n ] = • • • = a n-1 E[Σ 1 n ] = a n-1 E[Y 1 ].
The stability hypothesis 0 < max(a, b) < 1 implies that 0 < a < 1 which leads to

∞ n=2 E[Σ n n ] = E[Y 1 ] ∞ n=2 a n-1 = E[Y 1 ]a 1 -a .
Then, we obtain from the monotone convergence theorem that (6.2)

lim n→∞ Σ n n = 0 a.s.
It now remains to study the right-hand side sum in (6.1). For all n ≥ 2, denote

T n = n k=2 a 2 • . . . • a k-1 • e k .
By the same calculation as before, we have for all n ≥ 2

E[T n ] = n k=2 a k-2 E[e k ] = c n-2 k=0 a k , which implies that lim n→∞ E[T n ] = c 1 -a .
Hence, the positive increasing sequence (T n ) converges almost surely to

T = ∞ k=2 a 2 • . . . • a k-1 • e k
which is almost surely finite, thanks to the monotone convergence, as

E[T ] < ∞.
Therefore, we can conclude from (6.1) and (6.2) that

lim n→∞ Z n = T a.s.
leading to

Y n L -→ T.
Let us prove that E[T 3 ] < ∞. First of all, we already saw that

E[a 2 • . . . • a n • e n+1 ] = a n-1 E[e 2 ] = a n-1 c.
In addition,

E[(Σ n n ) 2 ] = 1 2 E (a • Σ n-1 n ) 2 + E (b • Σ n-1 n ) 2 , = 1 2   E   E     Σ n-1 n i=1 Y 2,i   2 Σ n-1 n     + E   E     Σ n-1 n i=1 Z 2,i   2 Σ n-1 n       ,
and the first expectation is

E   E     Σ n-1 n i=1 Y 2,i   2 Σ n-1 n     = E     E     Σ n-1 n i=1 Y 2 2,i + Σ n-1 n i=1 Σ n-1 n j=1 j =i Y 2,i Y 2,j Σ n-1 n         , = E     Σ n-1 n i=1 E[Y 2 2,i ] + Σ n-1 n i=1 Σ n-1 n j=1 j =i E[Y 2,i ]E[Y 2,j ]     , = E[Σ n-1 n (σ 2 a + a 2 ) + Σ n-1 n (Σ n-1 n -1)a 2 ], = E[Σ n-1 n ]σ 2 a + a 2 E[(Σ n-1 n ) 2 ]
. Since the computation of the second expectation is exactly the same, we obtain

E[(Σ n n ) 2 ] = E[Σ n-1 n ] σ 2 a + σ 2 b 2 + a 2 E[(Σ n-1 n ) 2 ], = a n-2 σ 2 a + σ 2 b 2 E[Y 1 ] + a 2 E[(Σ n-1 n ) 2 ] = . . . = n-2 i=0 a n-i-2 a 2 i σ 2 a + σ 2 b 2 E[Y 1 ] + a 2 n-1 E[(Σ 1 n ) 2 ], = a n-1 -a 2 n-1 a -a 2 σ 2 a + σ 2 b 2 E[Y 1 ] + a 2 n-1 E[Y 2 1 ], = (a n-1 -a 2 n-1 )ΥE[Y 1 ] + a 2 n-1 E[Y 2 1 ] where Υ = σ 2 a + σ 2 b 2(a -a 2 ) .
In the same way, we can prove that

E[(a 2 • . . . • a n • e n+1 ) 2 ] = (a n-1 -a 2 n-1 )Υc + a 2 n-1 c 2 .
Consequently, as (e n ) is an integer-valued random variable,

E[(a 2 • . . . • a n • e n+1 ) 2 ] ≤ a n-1 (Υc + c 2 ) ≤ a n-1 (Υ + 1)c 2 .
Furthermore, we obtain from tedious but straightforward calculations that it exists some constant ξ > 0 such that for all 2 ≤ p ≤ 8

(6.3) E[(a 2 • . . . • a n • e n+1 ) p ] ≤ ξE[e p 2 ]a n-1 .
One can observe that the constant ξ only depends on the moments of (Y n,i ) and (Z n,i ) up to order 8. Hence, as 0 < a < 1, we deduce from (6.3) and the triangle inequality that

E[T 3 ] 1/3 ≤ ∞ k=2 E (a 2 • . . . • a k-1 • e k ) 3 1/3 , ≤ ξ 1/3 E[e 3 2 ] 1/3 ∞ k=2 a (k-2)/3 < ∞ which immediately leads to E[T 3 ] < ∞.
Finally, let us compute Var(T ) in order to prove that T is not degenerate. First, one can observe that

E[T 2 ] = E   ∞ k=2 a 2 • . . . • a k-1 • e k 2   , = ∞ k=2 E (a 2 • . . . • a k-1 • e k ) 2 + 2 ∞ k=2 ∞ l=k+1 E [(a 2 • . . . • a k-1 • e k ) (a 2 • . . . • a l-1 • e l )]
We already saw that

E (a 2 • . . . • a k-1 • e k ) 2 = (a k-2 -a 2 k-2 )Υc + a 2 k-2 c 2 .
Moreover, we have, for all l ≥ 3

E [e 2 (a 2 • . . . • a l-1 • e l )] = 1 2 E [ε 2 (a • . . . • a l-1 • e l )] + 1 2 E [ε 3 (b • . . . • a l-1 • e l )] , = 1 2 (E [ε 2 ] E[[(a • . . . • a l-1 • e l )] + E [ε 3 ] E[[(b • . . . • a l-1 • e l )]) , = 1 2 c(aa l-3 c) + d(ba l-3 c) , = (ac + bd)c 2 a l-3 .
In addition, for all k ≥ 2 and for all l ≥ k + 1

E [(a 2 • . . . • a k-1 • e k ) (a 2 • . . . • a l-1 • e l )] = 1 2 E [(a • . . . • a k-1 • e k ) (a • . . . • a l-1 • e l )] + 1 2 E [(b • . . . • a k-1 • e k ) (b • . . . • a l-1 • e l )] .
Let us tackle the first term

E [(a • . . . • a k-1 • e k ) (a • . . . • a l-1 • e l )] = E a 3 •...•a k-1 •e k i=1 Y k,i a 3 •...•a l-1 •e l j=1 Y l,j , = E a 3 •...•a k-1 •e k i=1 a 3 •...•a l-1 •e l j=1 E[Y k,i Y l,j |a 3 • . . . • a k-1 • e k , a 3 • . . . • a l-1 • e l ] , = E a 3 •...•a k-1 •e k i=1 a 3 •...•a l-1 •e l j=1 E[Y k,i Y l,j ] , = E a 3 •...•a k-1 •e k i=1 a 3 •...•a l-1 •e l j=1 a 2 , = a 2 E [(a 3 • . . . • a k-1 • e k ) (a 3 • . . . • a l-1 • e l )]
.

Hence, we obtained that

E [(a 2 • . . . • a k-1 • e k ) (a 2 • . . . • a l-1 • e l )] = a 2 E [(a 3 • . . . • a k-1 • e k ) (a 3 • . . . • a l-1 • e l )] , = a 2 k-2 E [e k (a k • . . . • a l-1 • e l )] , = a 2 k-2 (ac + bd)c 2 a l-k-1 .
Finally, we have

E[T 2 ] = ∞ k=2 (a k-2 -a 2 k-2 )Υc + a 2 k-2 c 2 + 2 ∞ l=3 (ac + bd)c 2 a l-3 + 2 ∞ k=3 ∞ l=k+1 a 2 k-2 (ac + bd)c 2 a l-k-1 , = Υc 1 1 -a - 1 1 -a 2 + c 2 1 -a 2 + (ac + bd)c 1 -a 1 + a 2 1 -a 2 , = Υc 1 1 -a - 1 1 -a 2 + c 2 1 -a 2 + (ac + bd)c (1 -a)(1 -a 2 )
.

To conclude, we can compute the variance of T

Var(T ) = E[T 2 ] -E[T ] 2 , = Υc 1 1 -a - 1 1 -a 2 + σ 2 c + σ 2 d 2(1 -a 2 ) + c 2 + d 2 2(1 -a 2 ) + (ac + bd)c (1 -a)(1 -a 2 ) - c 1 -a 2 , = Υc 1 1 -a - 1 1 -a 2 + σ 2 c + σ 2 d 2(1 -a 2 ) + 2(ad -bc + c -d) 2 (2 -(a 2 + b 2 ))(2 -(a + b)) 2 .
The first and the third terms of this sum are clearly nonnegative since max(a, b) < 1, and the second term is clearly positive under (H.2). This allows us to say that the variance of T 2 is positive and T is not degenerate.

Proof of Lemma 5.2

We shall now prove that for all f ∈ C 1 3 (R + ),

(7.1) lim n→∞ 1 |T n | k∈Tn f (X k ) = E[f (T )]. Denote g = f -E[f (T )], M Tn (f ) = 1 |T n | k∈Tn f (X k ) and M Gn (f ) = 1 |G n | k∈Gn f (X k ).
Via Lemma A.2 of [START_REF] Bercu | Asymptotic analysis for bifurcating autoregressive processes via a martingale approach[END_REF], it is only necessary to prove that

lim n→∞ 1 |G n | k∈Gn g(X k ) = 0 a.s.
We shall follow the induced Markov chain approach, originally proposed by Guyon in [START_REF] Guyon | Limit theorems for bifurcating Markov chains. Application to the detection of cellular aging[END_REF]. Let Q be the transition probability of (Y n ), Q p the p-th iterated of Q. In addition, denote by ν the distribution of Y 1 = X 1 and νQ p the law of Y p . Finally, let P be the transition probability of (X n ) as defined in [START_REF] Guyon | Limit theorems for bifurcating Markov chains. Application to the detection of cellular aging[END_REF]. We obtain from relation [START_REF] Bercu | Asymptotic analysis for bifurcating autoregressive processes via a martingale approach[END_REF] of [START_REF] Guyon | Limit theorems for bifurcating Markov chains. Application to the detection of cellular aging[END_REF] that for all n ≥ 0

E[M Gn (g) 2 ] = 1 2 n νQ n g 2 + n-1 k=0 1 2 k+1 νQ k P (Q n-k-1 g ⋆ Q n-k-1 g)
where, for all x, y ∈ N, (f ⋆ g)(x, y) = f (x)g(y). Consequently,

∞ n=0 E[M Gn (g) 2 ] = ∞ n=0 1 2 n νQ n g 2 + ∞ n=1 n-1 k=0 1 2 k+1 νQ k P (Q n-k-1 g ⋆ Q n-k-1 g), ≤ ∞ k=0 1 2 k νQ k g 2 + P ∞ l=0 |Q l g ⋆ Q l g| .
However, for all x ∈ N,

Q n g(x) = Q n f (x) -E[f (T )] = E x [f (Y n ) -f (T )] = E x [f (Z n ) -f (T )]
where Z n is given by (6.1). Hence, we deduce from the mean value theorem and Cauchy-Schwarz inequality that (7.2)

|Q n g(x)| ≤ E x [W n |Z n -T |] ≤ E x [W 2 n ] 1/2 E x [(Z n -T ) 2 ] 1/2 where W n = sup z∈[Zn,T ] |f ′ (z)|.
By the very definition of C 1 3 (R + ), one can find some constant α > 0 such that |f ′ (z)| ≤ α(1 + z 6 ). Hence, it exists some constant β > 0 such that

E x [W 2 n ] ≤ αE x [1 + Z 6 n + T 6 ] = α(1 + E x [Z 6 n ] + E[T 6 ]), ≤ β(1 + x 6 ). (7.3)
As a matter of fact, under hypotheses (H.1) to (H.5), E[T 6 ] < ∞ and it exists some constant γ > 0 such that E x [Z 6 n ] < γ(1 + x 6 ). Let us first deal with E[T 6 ]. The triangle inequality, together with 0 < a < 1 and (6.3) allow us to say that

E[T 6 ] 1/6 ≤ ∞ k=2 E (a 2 • . . . • a k-1 • e k ) 6 1/6 ≤ ξ 1/6 E[e 6 2 ] 1/6 ∞ k=2 a (k-2)/6 < ∞ which immediately leads to E[T 6 ] < ∞.
One the other hand, we infer from (6.1) that

E x [Z 6 n ] 1/6 ≤ E x [(a 2 • . . . • a n • Y 1 ) 6 ] 1/6 + n k=2 E x (a 2 • a 3 • . . . • a k-1 • e k ) 6 1/6 , ≤ ξ 1/6 E x [Y 6 1 ] 1/6 a n-1 + ∞ k=2 E (a 2 • a 3 • . . . • a k-1 • e k ) 6 1/6 , ≤ ξ 1/6 x + ∞ k=2 E (a 2 • a 3 • . . . • a k-1 • e k ) 6 1/6
and we have already proved that the sum in the right-hand term is finite. So we can conclude that there exists some constant γ > 0 such that

E x [Z 6 n ] < γ(1 + x 6 ). Furthermore Z n -T = a 2 • . . . a n • Y 1 - ∞ k=n+1 a 2 • . . . • a k • e k+1
and the triangle inequality allows us to say that

E x [(Z n -T ) 2 ] 1/2 ≤ E x [(a 2 • . . . a n • Y 1 ) 2 ] 1/2 + ∞ k=n+1 E x [(a 2 • . . . • a k • e k+1 ) 2 ] 1/2 .
We already saw in section 6 that

E x [(a 2 • . . . a n • Y 1 ) 2 ] = (a n-1 -a 2 n-1 )ΥE x [Y 1 ] + a 2 n-1 E x [Y 2 1 ], = (a n-1 -a 2 n-1 )Υx + a 2 n-1 x 2 = x(Υa n-1 + a 2 n-1 (x -Υ)) and E x [(a 2 • . . . • a k • e k+1 ) 2 ] = (a k-1 -a 2 k-1 )Υc + a 2 k-1 c 2 . Hence ∞ k=n+1 E x [(a 2 • . . . • a k • e k+1 ) 2 ] 1/2 = ∞ k=n+1 a k-1 Υc + a 2 k-1 c 2 -Υc 1/2 , ≤ ∞ k=n+1 a k-1 c + a k-1 c 2 -Υc 1/2 , ≤ ∞ k=n+1 √ a k-1 δ = δ √ a n 1 - √ a .
where

δ = max(c 2 , (1 + Υ)c -c 2 ).
To sum up, we find that

E x [(Z n -T ) 2 ] 1/2 ≤ √ x Υa n-1 + a 2 n-1 (x -Υ) 1/2 + δ 1 - √ a √ a n , ≤      √ x (Υa n-1 + a n-1 (x -Υ)) 1/2 + δ 1 - √ a √ a n if x > Υ, √ x √ Υ √ a n-1 + δ 1 - √ a √ a n if x ≤ Υ, ≤      x √ a n-1 + δ 1 - √ a √ a n if x > Υ, 1 + x 2 √ Υ √ a n-1 + δ 1 - √ a √ a n if x ≤ Υ, ≤ √ a n (1 + x) √ Υ 2 √ a + δ 1 - √ a . (7.4)
Finally, we obtain from (7.2) together with (7.3) and (7.4) that for some constant κ > 0

|Q n g(x)| ≤ β(1 + x 6 ) 1/2 √ a n-1 (1 + x) √ Υ 2 + δ 1 - √ a ≤ √ a n κ(1 + x 4 ).
Therefore,

P ∞ n=0 |Q n g ⋆ Q n g| ≤ κ 2 1 -a P (h ⋆ h)
where, for all x ∈ N, h(x) = 1 + x 4 . We are now in position to prove that

(7.5) E ∞ n=0 M Gn (g) 2 < ∞.
It is not hard to see that from hypothesis (H.5), it exists some constant λ > 0 such that for all x ∈ N, P (h ⋆ h)(x) ≤ λ(1 + x 8 ). Consequently, it exists some constant µ > 0 such that

∞ n=0 E M Gn (g) 2 ≤ ∞ k=0 1 2 k νQ k g 2 + P ∞ l=0 |Q l g ⋆ Q l g| , ≤ ∞ k=0 1 2 k E[g 2 (Y k )] + λκ 2 1 -a (1 + E[Y 8 k ]) , ≤ 2µ + λκ 2 1 -a 2 + ∞ k=0 1 2 k E[Y 8 k ] . (7.6)
Furthermore, we can deduce from (6.3) that it exists some constant ζ such that

E[Y 8 n ] 1/8 ≤ E (a 2 • . . . a n • Y 1 ) 8 1/8 + n k=2 E (a 2 • . . . a k-1 • e k ) 8 1/8 , ≤ E (a 2 • . . . a n • Y 1 ) 8 1/8 + ξ 1/8 E[e 8 2 ] 1/8 n k=2 a k-2 , ≤ ζ 1/8 E[Y 8 1 ] 1/8 a n-1 + ξ 1/8 E[e 8 2 ] 1/8 1 -a , ≤ ζ 1/8 E[Y 8 1 ] 1/8 + ξ 1/8 E[e 8 2 ] 1/8 1 -a . (7.7)
Then, (7.6) and (7.7) immediately lead to (7.5). Finally, the monotone convergence theorem implies that lim n→∞ M Gn (g) = 0 a.s.

which completes the proof of Lemma 5.2.

Proof of Proposition 5.3

The almost sure convergence (5.3) immediately follows from (4.2) and (4.3) together with Lemma 5.2. It only remains to prove that det(L) > 0 where the limiting matrix L can be rewritten as

L = E [Γ ⊗ B] where Γ = σ 2 a T + σ 2 c ρ ρ σ 2 b T + σ 2 d and B =     T 2 (1 + T ) 2 T (1 + T ) 2 T (1 + T ) 2 1 (1 + T ) 2     .
We have

L = E σ 2 a T 0 0 σ 2 b T ⊗ B + E σ 2 c ρ ρ σ 2 d ⊗ B , = σ 2 a 0 0 σ 2 b ⊗ E[T B] + σ 2 c ρ ρ σ 2 d ⊗ E[B]. (8.1)
We shall prove that E[B] is a positive definite matrix and that E[T B] is a positive semidefinite matrix. Denote by λ 1 and λ 2 the two eigenvalues of the real symmetric matrix E[B]. We clearly have

λ 1 + λ 2 = tr(E[B]) = E T 2 + 1 (1 + T ) 2 > 0
and

λ 1 λ 2 = det(E[B]) = E T 2 (1 + T ) 2 E 1 (1 + T ) 2 -E T (1 + T ) 2 2 ≥ 0
thanks to the Cauchy-Schwarz inequality and λ 1 λ 2 = 0 if and only if T is degenerate, which is not the case thanks to Lemma 5.1. Consequently, E[B] is a positive definite matrix. In the same way, we can prove that E[T B] is a positive semidefinite matrix. Since the Kronecker product of two positive semidefinite (respectively definite positive) matrices is a positive semidefinite (respectively positive definite) matrix, we deduce from (8.1) that L is positive definite as soon as ρ 2 < σ 2 c σ 2 d which is the case thanks to (H.3).

Proof of Theorem 5.4

We will follow the same approach as in Bercu et al. [START_REF] Bercu | Asymptotic analysis for bifurcating autoregressive processes via a martingale approach[END_REF]. For all n ≥ 1, let

V n = M t n Σ -1 n-1 M n = ( θ n -θ) t Σ n-1 ( θ n -θ).
First of all, we have

V n+1 = M t n+1 Σ -1 n M n+1 = (M n + ∆M n+1 ) t Σ -1 n (M n + ∆M n+1 ), = M t n Σ -1 n M n + 2M t n Σ -1 n ∆M n+1 + ∆M t n+1 Σ -1 n ∆M n+1 , = V n -M t n (Σ -1 n-1 -Σ -1 n )M n + 2M t n Σ -1 n ∆M n+1 + ∆M t n+1 Σ -1 n ∆M n+1
. By summing over this identity, we obtain the main decomposition (9.1)

V n+1 + A n = V 1 + B n+1 + W n+1
where

A n = n k=1 M t k (Σ -1 k-1 -Σ -1 k )M k , B n+1 = 2 n k=1 M t k Σ -1 k ∆M k+1 and W n+1 = n k=1 ∆M t k+1 Σ -1 k ∆M k+1 .
Lemma 9.1. Assume that (ε n ) satisfies (H.1) to (H.5). Then, we have

(9.2) lim n→∞ W n n = 1 2 tr((I 2 ⊗ A) -1/2 L(I 2 ⊗ A) -1/2 ) a.s.
where A is the positive definite matrix given by (5.6). In addition, we also have

(9.3) B n+1 = o(n) a.s. and (9.4) lim n→∞ V n+1 + A n n = 1 2 tr((I 2 ⊗ A) -1/2 L(I 2 ⊗ A) -1/2 ) a.s.
Proof. First of all, we have W n+1 = T n+1 + R n+1 where

T n+1 = n k=1 ∆M t k+1 (I 2 ⊗ A) -1 ∆M k+1 |T k | , R n+1 = n k=1 ∆M t k+1 (|T k |Σ -1 k -(I 2 ⊗ A) -1 )∆M k+1 |T k | .
One can observe that T n+1 = tr((

I 2 ⊗ A) -1/2 H n+1 (I 2 ⊗ A) -1/2 )
where

H n+1 = n k=1 ∆M k+1 ∆M t k+1 |T k | .
Our aim is to make use of the strong law of large numbers for martingale transforms, so we start by adding and subtracting a term involving the conditional expectation of ∆H n+1 given F n . We have thanks to relation (4.3) that for all n ≥ 0,

E[∆M n+1 ∆M t n+1 |F n ] = L n .
Consequently, we can split H n+1 into two terms

H n+1 = n k=1 L k |T k | + K n+1 ,
where

K n+1 = n k=1 ∆M k+1 ∆M t k+1 -L k |T k | .
It clearly follows from convergence (5.3) that

lim n→∞ L n |T n | = 1 2 L a.s.
Hence, Cesaro convergence immediately implies that (9.5)

lim n→∞ 1 n n k=1 L k |T k | = 1 2 L a.s.
On the other hand, the sequence (K n ) n≥2 is obviously a square integrable martingale. Moreover, we have

∆K n+1 = K n+1 -K n = 1 |T n | (∆M n+1 ∆M t n+1 -L n ).
For all u ∈ R 4 , denote K n (u) = u t K n u. It follows from tedious but straightforward calculations, together with Lemma 5.2, that the increasing process of the martingale

(K n (u)) n≥2 satisfies K(u) n = O(n) a.
s. Therefore, we deduce from the strong law of large numbers for martingales that for all u ∈ R 4 , K n (u) = o(n) a.s. leading to K n = o(n) a.s. Hence, we infer from (9.5) that (9.6)

lim n→∞ H n+1 n = 1 2 L a.s.
Via the same arguments as in the proof of convergence (5.3), we find that (9.7)

lim n→∞ Σ n |T n | = I 2 ⊗ A a.s.
where A is the positive definite matrix given by (5.6). Then, we obtain from (9.6) that

lim n→∞ T n n = 1 2 tr((I 2 ⊗ A) -1/2 L(I 2 ⊗ A) -1/2 ) a.s.
which allows us to say that R n = o(n) a.s. leading to (9.2) We are now in position to prove (9.3). Let us recall that

B n+1 = 2 n k=1 M t k Σ -1 k ∆M k+1 = 2 n k=1 M t k Σ -1 k Ψ k ξ k+1 .
Hence, (B n ) n≥2 is a square integrable martingale. In addition, we have

∆B n+1 = 2M t n Σ -1 n ∆M n+1 . Thus E[(∆B n+1 ) 2 |F n ] = 4E[M t n Σ -1 n ∆M n+1 ∆M t n+1 Σ -1 n M n |F n ] a.s. = 4M t n Σ -1 n E[∆M n+1 ∆M t n+1 |F n ]Σ -1 n M n a.s. = 4M t n Σ -1 n L n Σ -1 n M n a.s.
We can observe that

L n = k∈Gn 1 c 2 k σ 2 a X k + σ 2 c ρ ρ σ 2 b X k + σ 2 d ⊗ X 2 k X k X k 1
and

Ψ n Ψ t n = k∈Gn 1 c k I 2 ⊗ X 2 k X k X k 1 . For α = max(σ 2 a + σ 2 b , σ 2 c + σ 2 d ), denote ∆ n = αc n I 2 - σ 2 a X n + σ 2 c ρ ρ σ 2 b X n + σ 2 d .
It is not hard to see that ∆ n is a positive definite matrix. As a matter of fact, we deduce from the elementary inequality

(9.8) (σ 2 a + σ 2 b )X n + σ c + σ 2 d ≤ αc n that tr(∆ n ) = 2αc n -(σ 2 a + σ 2 b )X n + σ 2 c + σ 2 d ≥ αc n > 0.
In addition, we also have from (9.8) that

det(∆ n ) = αc n -(σ 2 a X n + σ 2 c ) αc n -(σ 2 b X n + σ 2 d ) -ρ 2 , = α 2 c 2 n -αc n (σ 2 a + σ 2 b )X n + σ 2 c + σ 2 d + (σ 2 a X n + σ 2 c )(σ 2 b X n + σ 2 d ) -ρ 2 , ≥ σ 2 a σ 2 b X 2 n + (σ 2 a σ 2 d + σ 2 b σ 2 c )X n + σ 2 c σ 2 d -ρ 2 , ≥ σ 2 c σ 2 d -ρ 2 > 0 thanks to (H.3). Consequently, σ 2 a X n + σ 2 c ρ ρ σ 2 b X n + σ 2 d ≤ αc n I 2
which immediately implies that L n ≤ αΨ n Ψ t n . Moreover, we can use Lemma B.1 of [START_REF] Bercu | Asymptotic analysis for bifurcating autoregressive processes via a martingale approach[END_REF] to say that

Σ -1 n Ψ n Ψ t n Σ -1 n ≤ Σ -1 n-1 -Σ -1 n . Hence E[(∆B n+1 ) 2 |F n ] = 4M t n Σ -1 n L n Σ -1 n M n a.s. ≤ 4αM t n Σ -1 n Ψ n Ψ t n Σ -1 n M n a.s. ≤ 4αM t n (Σ -1 n-1 -Σ -1 n )M n a.s.
leading to B n ≤ 4αA n . Therefore it follows from the strong law of large numbers for martingales that B n = o(A n ). Finally, we deduce from decomposition (9.1) that

V n+1 + A n = o(A n ) + O(n) a.s.
leading to V n+1 = O(n) and A n = O(n) a.s. which implies that B n = o(n) a.s. Finally we clearly obtain convergence (9.4) from the main decomposition (9.1) together with (9.2) and (9.3), which completes the proof of Lemma 9.1.

Lemma 9.2. Assume that (ε n ) satisfies (H.1) to (H.5). For all δ > 1/2, we have

(9.9) M n 2 = o(|T n |n δ ) a.s.
Proof. Let us recall that

M n = k∈T n-1 1 c k     X k V 2k V 2k X k V 2k+1 V 2k+1     . Denote P n = k∈T n-1 X k V 2k c k and Q n = i∈T n-1 V 2k c k .
On the one hand, P n can be rewritten as

P n = n k=1 |G k-1 |f k where f n = 1 |G n-1 | k∈G n-1 X k V 2k c k .
We already saw in Section 3 that for all k ∈ G n ,

E[V 2k |F n ] = 0 and E[V 2 2k |F n ] = σ 2 a X k + σ 2 c a.s.
In addition, for all k ∈ G n ,

E[V 4 2k |F n ] = 3σ 4 a X 2 k + X k (µ 4 a -3σ 4 a + 6σ 2 a σ 2 c ) + µ 4 c a.s.
which implies that (9.10)

E[V 4 2k |F n ] ≤ µ 4 ac c 2 k a.s..
where

µ 4 ac = µ 4 a + µ 4 c + 6σ 2 a σ 2 c . Consequently, E[f n+1
|F n ] = 0 a.s. and we deduce from (9.10) together with the Cauchy-Schwarz inequality that

E[f 4 n+1 |F n ] = 1 |G n | 2 k∈Gn X k c k 4 E[V 4 2k |F n ] + 3 |G n | 2 k∈Gn l∈Gn l =k X k c k 2 X l c l 2 E[V 2 2k |F n ]E[V 2 2l |F n ] a.s. ≤ µ 4 ac |G n | 2 (1 + 3 |G n |(|G n | -1)) k∈Gn c 2 k a.s. ≤ 3µ 4 ac |G n | k∈Gn c 2 k a.s. (9.11)
However, it follows from Lemma 5.2 that

lim n→∞ 1 |T n | k∈Tn c 2 k = E[(1 + T ) 2 ] a.s.
which is equivalent to say that (9.12)

lim n→∞ 1 |G n | k∈Gn c 2 k = E[(1 + T ) 2 ] a.s.
Therefore, we infer from (9.11) and (9.12) that

sup n≥0 E[f 4 n+1 |F n ] < ∞ a.s.
Hence, we obtain from Wei's Lemma given in [START_REF] Wei | Adaptive prediction by least squares predictors in stochastic regression models with applications to time series[END_REF] page 1672 that for all δ > 1/2,

P 2 n = o(|T n-1 |n δ ) a.s.
On the other hand, Q n can be rewritten as

Q n = n k=1 |G k-1 |g k where g n = 1 |G n-1 | k∈G n-1 V 2k c k .
Via the same calculation as before, E[g n+1 |F n ] = 0 a.s. and, as c n ≥ 1,

E[g 4 n+1 |F n ] ≤ 3µ 4 bd |G n | k∈Gn 1 c 2 k ≤ 3µ 4 bd a.s.
Hence, we deduce once again from Wei's Lemma that for all δ > 1/2,

Q 2 n = o(|T n-1 |n δ ) a.s.
In the same way, we obtain the same result for the two last components of M n , which completes the proof of Lemma 9.2.

Proof of Theorem 5.4. We recall from (4.1) that θ nθ = Σ -1 n-1 M n which implies

θ n -θ 2 ≤ V n λ min (Σ n-1 )
where

V n = M t n Σ -1 n-1 M n .
On the one hand, it follows from (9.4) that V n = O(n) a.s. On the other hand, we deduce from (9.7) that

lim n→∞ λ min (Σ n ) |T n | = λ min (A) > 0 a.s.
Consequently, we find that

θ n -θ 2 = O n |T n-1 | a.s.
We are now in position to prove the quadratic strong law (5.5). First of all a direct application of Lemma 9.2 ensures that V n = o(n δ ) a.s. for all δ > 1/2. Hence, we obtain from (9.4) that (9.13)

lim n→∞ A n n = 1 2 tr((I 2 ⊗ A) -1/2 L(I 2 ⊗ A) -1/2 ) a.s.
Let us rewrite A n as

A n = n k=1 M t k Σ -1 k-1 -Σ -1 k M k = n k=1 M t k Σ -1/2 k-1 ∆ k Σ -1/2 k-1 M k where ∆ k = I 4 -Σ 1/2 k-1 Σ -1 k Σ 1/2 k-1 .
We already saw from (9.7) that

lim n→∞ Σ n |T n | = I 2 ⊗ A a.s.
which ensures that

lim n→∞ ∆ n = 1 2 I 4 a.s.
In addition, we deduce from (9.4) that A n = O(n) a.s. which implies that (9.14)

A n n = 1 2n n k=1 M t k Σ -1 k-1 M k + o(1)
a.s.

Moreover we have

1 n n k=1 M t k Σ -1 k-1 M k = 1 n n k=1 ( θ k -θ) t Σ k-1 ( θ k -θ), = 1 n n k=1 |T k-1 |( θ k -θ) t Σ k-1 |T k-1 | ( θ k -θ), = 1 n n k=1 |T k-1 |( θ k -θ) t (I 2 ⊗ A)( θ k -θ) + o(1)
a.s. (9.15) Therefore, (9.13) together with (9.14) and (9.15) lead to (5.5).

Proof of Theorem 5.5

First of all, we shall only prove (5.7) since the proof of (5.8) follows exactly the same lines. We clearly have from (3.7) that

Q n-1 ( η n -η n ) = k∈T n-1 1 d k ( V 2 2k -V 2 2k )Φ k , = n-1 l=0 k∈G l 1 d k ( V 2 2k -V 2 2k )Φ k , = n-1 l=0 k∈G l 1 d k ( V 2k -V 2k ) 2 + 2( V 2k -V 2k )V 2k Φ k . (10.1)
In addition, we already saw in Section 3 that for all l ≥ 0 and k ∈ G l ,

V 2k -V 2k = - a l -a c l -c t Φ k .
Consequently,

( V 2k -V 2k ) 2 ≤ Φ k 2 ( a l -a) 2 + ( c l -c) 2 .
Hence, we obtain that

n-1 l=0 k∈G l ( V 2k -V 2k ) 2 d k Φ k ≤ n-1 l=0 k∈G l Φ k 3 d k ( a l -a) 2 + ( c l -c) 2 , ≤ n-1 l=0 ( a l -a) 2 + ( c l -c) 2 k∈G l c k , ≤ n-1 l=0 ( a l -a) 2 + ( c l -c) 2 |T l-1 | 1 |T l-1 | k∈G l c k . (10.2)
Moreover, we can deduce from Lemma 5.2 that (10.3) lim

n→∞ 1 |T n-1 | k∈Gn c k = E[1 + T ] a.s.
Then, we find from (10.2) and ( 10.

3) that n-1 l=0 k∈G l ( V 2k -V 2k ) 2 d k Φ k = O n-1 l=0 |T l-1 | ( a l -a) 2 + ( c l -c) 2 a.s.
However, as Λ is positive definite, we obtain from (5.5) that

n-1 l=0 |T l-1 | ( a l -a) 2 + ( c l -c) 2 = O(n) a.s.
which implies that (10.4)

n-1 l=0 k∈G l ( V 2k -V 2k ) 2 d k Φ k = O(n) a.s.
Furthermore, denote

P n = n-1 l=0 k∈G l ( V 2k -V 2k )V 2k d k Φ k .
We clearly have

∆P n+1 = P n+1 -P n = k∈Gn ( V 2k -V 2k )V 2k d k Φ k , = - k∈Gn V 2k d k Φ k Φ t k a l -a c l -c . In addition, for all k ∈ G n , E[V 2k |F n ] = 0 a.s. and E[V 2 2k |F n ] = σ 2 a X k + σ 2 c
≤ αc k a.s. where α = max(σ 2 a , σ 2 c ). Consequently, E[∆P n+1 |F n ] = 0 a.s. and

E[∆P n+1 ∆P t n+1 |F n ] = k∈Gn 1 d 2 k E[V 2 2k |F n ]Φ k Φ t k a l -a c l -c a l -a c l -c t Φ k Φ t k a.s. = k∈Gn σ 2 a X k + σ 2 c d 2 k Φ k Φ t k a l -a c l -c a l -a c l -c t Φ k Φ t k a.s.
Therefore, (P n ) is a square integrable vector martingale with increasing process P n given by

P n = n-1 l=1 E[∆P l+1 ∆P t l+1 |F l ] a.s. = n-1 l=1 k∈G l σ 2 a X k + σ 2 c d 2 k Φ k Φ t k a l -a c l -c a l -a c l -c t Φ k Φ t k a.s.
It immediately follows from the previous calculation that

P n ≤ α n-1 l=0 ( a l -a) 2 + ( c l -c) 2 k∈G l Φ k 4 c k d 2 k a.s. ≤ α n-1 l=0 ( a l -a) 2 + ( c l -c) 2 k∈G l c k a.s.
leading to

P n = O(n) a.s.
Then, we deduce from the strong law of large numbers for martingale given e.g. in Theorem 1.3.15 of [START_REF] Duflo | Random iterative models[END_REF] that (10.5)

P n = o(n) a.s.
Hence, we find from (10.1), (10.4) and (10.5) that

Q n-1 ( η n -η n ) = O(n) a.s.
Moreover, we infer once again from Lemma 5.2 that (10.6)

lim n→∞ 1 |T n | Q n = E T 2 (1+T ) 2 T (1+T ) 2 T (1+T ) 2 1 (1+T ) 2 a.s. which ensures that η n -η n = O n |T n-1 | a.s.
It remains to establish (5.9). Denote

W n = V 2n V 2n+1 and R n = k∈T n-1 W k -W k t JW k where J = 0 1 1 0 .
Then, we have

|T n-1 |( ρ n -ρ n ) = k∈T n-1 V 2k -V 2k V 2k+1 -V 2k+1 + R n .
It is not hard to see that (R n ) is a square integrable real martingale with increasing process given by

R n = n-1 l=0 k∈G l E ( W k -W k ) t JW k W t k J( W k -W k ) F n a.s. = n-1 l=0 k∈G l ( W k -W k ) t JE W k W t k F n J( W k -W k ) a.s. = n-1 l=0 k∈G l ( W k -W k ) t J σ 2 a X k + σ 2 c ρ ρ σ 2 b X k + σ 2 d J( W k -W k ) a.s. = n-1 l=0 k∈G l ( W k -W k ) t σ 2 b X k + σ 2 d ρ ρ σ 2 a X k + σ 2 c ( W k -W k ) a.s.
Consequently,

R n ≤ n-1 l=0 k∈G l (σ 2 a + σ 2 b )X k + σ 2 c + σ 2 d W k -W k 2 a.s. ≤ 2β n-1 l=0 ( a l -a) 2 + ( b l -b) 2 k∈G l X 2 k c k + 2β n-1 l=0 ( c l -c) 2 + ( d l -d) 2 k∈G l c k a.s.
where β = max(σ 2 a + σ 2 b , σ 2 c + σ 2 d ). As previously, we obtain through Lemma 5.2 together with (5.5) that R n = O(n) a.s. which ensures that R n = o(n) a.s. Moreover,

k∈T n-1 V 2k -V 2k V 2k+1 -V 2k+1 ≤ 1 2 k∈T n-1 V 2k -V 2k 2 + V 2k+1 -V 2k+1 2 , ≤ 1 2 n-1 l=0 θ l -θ 2 k∈G l (1 + X 2 k )
which implies via Lemma 5.2 and (5.5) that

k∈T n-1 V 2k -V 2k V 2k+1 -V 2k+1 = O(n) a.s.
Therefore, we obtain that

|T n-1 |( ρ n -ρ n ) = O(n) a.s.
which leads to (5.9). Finally, it only remains to prove the a.s. convergence of η n , ζ n and ρ n to η, ζ and ρ which will immediately lead to the a.s. convergence of η n , ζ n and ρ n through (5.7), (5.8) and (5.9), respectively. On the one hand, (10.7)

Q n-1 (η n -η) = N n = k∈Tn 1 d k Φ k v 2k
where we recall that v 2n = V 2 2nη t Φ n . It is clear that (N n ) is a square integrable vector martingale with increasing process N n given by

N n = n-1 l=0 k∈G l 1 d 2 k Φ k Φ t k (2σ 4 a X 2 k + (µ 4 a -3σ 4 a + 4σ 2 a σ 2 c )X k + µ 4 c -σ 4 c ) a.s.
Hence,

N n ≤ γ n-1 l=0 k∈G l 1 d k Φ k Φ t k a.s. where γ = µ 4 a -σ 4 a + 4σ 2 a σ 2 c + µ 4 c -σ 4 c , which implies that N n = O(|T n-1 |) a.s. Consequently, N n 2 = O(n|T n-1 |) a.s.
which leads via (10.6) and (10.7) to the a.s. convergence of η n to η and to the rate of convergence of Remark 5.6. The proof of the a.s. convergence of ζ n to ζ follows exactly the same lines. On the other hand

(10.8) |T n-1 |(ρ n -ρ) = H n = k∈T n-1 (V 2k V 2k+1 -ρ)
It is obvious to see that (H n ) is a square integrable real martingale with increasing process H n such that H n = O(|T n-1 |) a.s. Finally, as H 2 n = O(n|T n-1 |) a.s., we deduce from (10.8) that ρ n goes a.s. to ρ and that the rate of convergence of Remark 5.6 is verified, which completes the proof of Theorem 5.5.

Proof of Theorem 5.7

In order to establish the asymptotic normality of our estimators, we will extensively make use of the central limit theorem for triangular arrays of vector martingales given e.g. by Theorem 2.1.9 of [START_REF] Duflo | Random iterative models[END_REF]. First of all, instead of using the generationwise filtration (F n ), we will use the sister pair-wise filtration (G n ) given by

G n = σ(X 1 , (X 2k , X 2k+1 ), 1 ≤ k ≤ n).
Proof of Theorem 5.7, first part. We focus our attention to the proof of the asymptotic normality (5.10). Let M (n) = (M (n) k ) be the square integrable vector martingale defined as (11.1)

M (n) k = 1 |T n | k i=1 D i
where

D i = 1 c i     X i V 2i V 2i X i V 2i+1 V 2i+1     .
We clearly have (11.2)

M (n) tn = 1 |T n | tn i=1 D i = 1 |T n | M n+1
where t n = |T n |. Moreover, the increasing process associated to (M

k ) is given by

M (n) k = 1 |T n | k i=1 E D i D t i |G i-1 , = 1 |T n | k i=1 1 c 2 i σ 2 a X i + σ 2 c ρ ρ σ 2 b X i + σ 2 d ⊗ X 2 i X i X i 1 a.s.
Consequently, it follows from convergence (5.3) that

lim n→∞ M (n) tn = L a.s.
It is now necessary to verify Lindeberg's condition by use of Lyapunov's condition. Denote

φ n = tn k=1 E M (n) k -M (n) k-1 4 G k-1 .
We obtain from (11.1) that

φ n = 1 |T n | 2 tn k=1 E (1 + X 2 k ) 2 c 4 k (V 2 2k + V 2 2k+1 ) 2 G k-1 , ≤ 2 |T n | 2 tn k=1 E[V 4 2k |G k-1 ] + E[V 4 2k+1 |G k-1 ] .
In addition, we already saw in Section 9 that

E[V 4 2n |G n-1 ] ≤ µ 4 ac c 2 n , E[V 4 2n+1 |G n-1 ] ≤ µ 4 bd c 2 n a.s.
where

µ 4 ac = µ 4 a + µ 4 c + 6σ 2 a σ 2 c and µ 4 bd = µ 4 b + µ 4 d + 6σ 2 b σ 2 d . Hence, φ n ≤ 2µ 4 |T n | 2 tn k=1 c 2 k a.s.
where µ 4 = µ 4 ac + µ 4 bd . We can deduce from Lemma 5.2 that

lim n→∞ 1 |T n | k∈Tn c 2 k = E[(1 + T ) 2 ] a.s.
which immediately implies that lim n→∞ φ n = 0 a.s.

Therefore, Lyapunov's condition is satisfied and Theorem 2.1.9 of [START_REF] Duflo | Random iterative models[END_REF] allows us to say via (11.2) that

1 |T n-1 | M n L -→ N (0, L).
Finally, we infer from (4.1) together with (9.7) and Slutsky's lemma that

|T n-1 |( θ n -θ) L -→ N (0, (I 2 ⊗ A -1 )L(I 2 ⊗ A -1 )).
Proof of Theorem 5.7, second part. We shall now establish the asymptotic normality given by (5.11). Denote by

N (n) = (N (n)
k ) the square integrable vector martingale defined as

N (n) k = 1 |T n | k i=1 v 2i d i Φ i .
We immediately see from (10.7) that (11.3)

N (n) tn = 1 |T n | Q n (η n+1 -η) = 1 |T n | N n+1 .
In addition, the increasing process associated to (N

k ) is given by

N (n) k = 1 |T n | k i=1 E v 2 2i d 2 i Φ i Φ t i G i-1 , = 1 |T n | k i-1 1 d 2 i Φ i Φ t i (2σ 4 a X 2 i + (µ 4 a -3σ 4 a + 4σ 2 a σ 2 c )X i + µ 4 c -σ 4 c ) a.s.
Consequently, we obtain from Lemma 5.2 that

lim n→∞ N (n) tn = E 2σ 4 a T 2 + (µ 4 a -3σ 4 a + 4σ 2 a σ 2 c )T + (µ 4 c -σ 4 c ) (1 + T ) 4 T 2 T T 1
= M ac a.s.

In order to verify Lyapunov's condition, let

φ n = tn k=1 E N (n) k -N (n) k-1 3 G k-1 .
We clearly have

N (n) k -N (n) k-1 2 = 1 |T n | (1 + X 2 k )v 2 2k d 2 k ≤ 1 |T n | v 2 2k d k ,
which implies that

N (n) k -N (n) k-1 3 ≤ 1 |T n | 3/2 |v 2k | 3 d 3/2 k .
However, We clearly have from the identity

|v 2k | 3 = |V 2 2k -σ 2 a X k -σ 2 c | 3 ≤ (V 2 2k + σ 2 a X k + σ 2 c ) 3 ≤ V 6 2k + 3V
V 2k = A k + B k that (11.5) E[V 6 2k |G k-1 ] = E[A 6 k |G k-1 ] + 15E[A 4 k |G k-1 ]E[B 2 k |G k-1 ] + 20E[A 3 k |G k-1 ]E[B 3 k |G k-1 ] + E[A 2 k |G k-1 ]E[B 4 k |G k-1 ] + E[B 6 k |G k-1 ]. On the one hand, E[A 2 k |G k-1 ] = σ 2 a X k a.s. and E[A 4 k |G k-1 ] = µ 4 a X k + 3X k (X k -1)σ 4 a a.s.
Moreover, we have from Cauchy-Schwarz inequality that

E[A 3 k |G k-1 ] ≤ µ 2 a σ a X k a.s.
Furthermore, it follows from tedious but straightforward calculations that

E[A 6 k |G k-1 ] ≤ τ 6 a X k + 15X k (X k -1)µ 4 a σ 2 a + 15σ 6 a X k (X k -1)(X k -2) + 10µ 6 a X k (X k -1) a.s.
Then, it exists some constant α > 0 such that Therefore, Lyapunov's condition is satisfied and we find from Theorem 2.1.9 of [START_REF] Duflo | Random iterative models[END_REF] and (11.3) that (11.6)

E[A 6 k |G k-1 ] ≤ αc 3
1 |T n-1 | N n L -→ N (0, M ac ).
Hence, we obtain from (10.6), (11.6) and Slutsky's lemma that

|T n-1 |(η nη) L -→ N (0, B -1 M ac B -1 ).

Finally, (5.7) ensures that

|T n-1 |( η n -η) L -→ N (0, B -1 M ac B -1
).

The proof of (5.12) follows exactly the same lines.

Proof of Theorem 5.7, third part. It remains to establish the asymptotic normality given by (5.13). Denote by H (n) = (H (n) k ) the square integrable martingale defined as (11.7)

H (n) k = 1 |T n | k i=1 (V 2i V 2i+1 -ρ).
We clearly have from (10.8) that

H (n) tn = |T n |(ρ n+1 -ρ) = 1 |T n | H n+1 .
Moreover, the increasing process of (H

k ) is given by

H (n) k = 1 |T n | k i=1 E[V 2 2i V 2 2i+1 |G n-1 ] -ρ 2 .
As before, let

C k = X k i=1 (Z k,i -b) and B k = ε 2k+1 -d. As V 2k = A k + B k and V 2k+1 = C k + D k , we clearly have E V 2 2k V 2 2k+1 G k-1 = E A 2 k G k-1 E C 2 k G k-1 + E D 2 k G k-1 + E B 2 k G k-1 E C 2 k G k-1 + E B 2 k D 2 k G k-1 a.s.
Consequently,

(11.8) E V 2 2k V 2 2k+1 G k-1 = σ 2 a σ 2 b X 2 k + σ 2 a σ 2 d + σ 2 b σ 2 c X k + ν 2 a.s.
Then, we deduce once again from Lemma 5.2 that

lim n→∞ H (n) tn = σ 2 ρ a.s.
where σ 2 ρ is given by (5.14). In order to verify Lyapunov's condition, denote

φ n = tn k=1 E |H (n) k -H (n) k-1 | 3 G k-1 .
We obtain from (11.7) that

φ n = 1 |T n | 3/2 tn k=1 E |V 2k V 2k+1 -ρ| 3 G k-1 , ≤ 1 |T n | 3/2 tn k=1 E |V 2k | 3 |V 2k+1 | 3 G k-1 + 3|ρ|E V 2 2k V 2 2k+1 G k-1 (11.9) + 3ρ 2 E [ |V 2k ||V 2k+1 || G k-1 ] + |ρ| 3 .
It follows from Cauchy-Schwarz inequality together with the previous calculations that it exists two constants α, β > 0 such that

E [ |V 2k ||V 2k+1 || G k-1 ] ≤ αc k a.s. and E |V 2k | 3 |V 2k+1 | 3 G k-1 ≤ βc 3 k a.s.
In addition, we already saw from (11.8) that for some constant γ > 0

E V 2 2k V 2 2k+1 G k-1 ≤ γc 2 k a.s.
Consequently, we obtain from (11.9) that for some constant δ > 0 

φ n ≤ δ |T n | 3/2

In other words

|T n-1 |(ρ nρ) L -→ N (0, σ 2 ρ ). Finally, we find via (5.9) that

|T n-1 |( ρ n -ρ) L -→ N (0, σ 2 ρ )
which achieves the proof of Theorem 5.7.

(5. 1 )

 1 Y n+1 = a n+1 • Y n + e n+1 where (5.2) a n+1 = a if κ n = 0 b otherwise and e n = ε kn .

  ,ia) and B k = ε 2kc.

  hand, E[B 2 k |G k-1 ] = σ 2 c a.s. and E[B 4 k |G k-1 ] = µ 4 c a.s. In addition E[B 3 k |G k-1 ] ≤ µ 2 c σ c and E[B 6 k |G k-1 ] ≤ τ 6 c a.s.Consequently, we deduce from (11.5) that it exists some constant β > 0 such thatE[V 6 2k |G k-1 ] ≤ βc 3 k a.s.which implies from(11.4) that for some constant γ > 0,E[|v 2k | 3 |G k-1 ] ≤ γc 3 k a.s. Then, as c 2 k = d k , we can conclude that φ n ≤ γ |T n | a.s.which immediately leads to lim n→∞ φ n = 0 a.s.

  H.1) For all n ≥ 0 and for all k ∈ G n For all n ≥ 0 and for all k, l ∈ G n+1 , if [k/2] = [l/2], ε k and ε l are conditionally independent given F n , while otherwise it exists ρ 2 < σ 2

	(H.3) c σ 2 d such that, for all k ∈ G n a.s. E[(ε 2k -c)(ε 2k+1 -d)|F n ] = ρ (H.4) One can find µ 4 c > σ 4 c and µ 4 d > σ 4 d such that, for all n ≥ 0 and for all k ∈ G n E (ε 2k -c) 4 |F n = µ 4 c and E (ε 2k+1 -d) 4 |F n = µ 4 d a.s.
	In addition, it exists ν 4 ≤ µ 4 c µ 4 d such that, for all k ∈ G n a.s. E[(ε 2k -c) 2 (ε 2k+1 -d) 2 |F n ] = ν 2 (H.5) One can find τ 6 c > 0 and τ 6 d > 0 such that
	sup n≥1	sup k∈Gn	E[ε 6 2k |F n ] = τ 6 c	and	sup n≥1	sup k∈Gn	E[ε 6 2k+1 |F n ] = τ 6 d	a.s.
			E[ε 2k |F n ] = c	and	E[ε 2k+1 |F n ] = d	a.s.
	(H.2) For all n ≥ 0 and for all k ∈ G n Var[ε 2k |F n ] = σ 2 c > 0 and Var[ε 2k+1 |F n ] = σ 2 d > 0	a.s.

  4 2k (σ 2 a X k + σ 2 c ) + 3V 2 2k (σ 2 a X k + σ 2 c ) 2 + (σ 2 a X k + σ 2 c ) 3 (11.4) We already saw that E[V 2 2k |G k-1 ] = σ 2 a X k + σ 2 c a.s. and it follows from (9.10) that E[V 4 2k |G k-1 ] ≤ µ ac c 2

	k	a.s.
	It only remains to study E[V 6 2k |G k-1 ]. Denote	
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