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Decidable Topologies for Communicating

Automata with FIFO and Bag Channels⋆

Lorenzo Clemente1, Frédéric Herbreteau2, and Grégoire Sutre2

1 Université Libre de Bruxelles, Brussels, Belgium
2 Univ. Bordeaux & CNRS, LaBRI, UMR 5800, Talence, France

Abstract. We study the reachability problem for networks of finite-state
automata communicating over unbounded perfect channels. We consider
communication topologies comprising both ordinary FIFO channels and
bag channels, i.e., channels where messages can be freely reordered. It is
well-known that when only FIFO channels are considered, the reachability
problem is decidable if, and only if, there is no undirected cycle in the
topology. On the other side, when only bag channels are allowed, the
reachability problem is decidable for any topology by a simple reduction
to Petri nets. In this paper, we study the more complex case where the
topology contains both FIFO and bag channels, and we provide a complete
characterisation of the decidable topologies in this generalised setting.

1 Introduction

Communicating finite-state automata (CFSA) are a fundamental model of com-
putation where concurrent processes exchange messages over unbounded, reliable
channels. Depending on the context, messages are delivered in the order they were
sent (FIFO channel), or in any order (bag channel). On the one hand, FIFO chan-
nels can be used, e.g., to model communications through TCP sockets, as TCP
preserves the order of messages. It is well-known that the reachability problem
for CFSA with only FIFO channels is undecidable [5,18]. This problem becomes
decidable when the communication topology is required to be acyclic [18,14].
Many other decidable subclasses and under/over-approximation techniques have
been considered in the literature [3,2,7,6,14,8,4,11,10,1]. On the other hand, bag
channels can be used, e.g., to model asynchronous procedure calls [19,12,9].
Indeed, libraries supporting asynchronous programming do not guarantee, in
general, that procedures are executed in the order they were asynchronously
called. The reachability problem for CFSA with only bag channels is decidable
(without any further restriction), by an immediate reduction to reachability in
Petri nets, which is known to be decidable [16,13,15].

Contributions. While the reachability problem is well-understood for communi-
cation topologies of just FIFO or bag channels, we go one step forward and we
study topologies comprising both FIFO and bag channels. Our main result is

⋆ This work was partially supported by the ANR project Vacsim (ANR-11-INSE-004).
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a complete characterisation of decidable topologies of FIFO and bag channels,
and a detailed complexity analysis in the decidable case. As a consequence of
our results, we show that certain non-trivial cycles comprising FIFO and bag
channels can be allowed while preserving decidability.

In addition to being the right model in some contexts, bag channels also
provide a non-trivial over-approximation of FIFO channels. Indeed, it is always
possible to over-approximate the reachability set by turning all channels into bag
channels. Thanks to our characterisation, a much finer analysis may be obtained,
in practice, by selectively over-approximating only some of the FIFO channels.

Preview. Let us illustrate our main techniques with some example. While the
topology in Fig. 1a is undecidable when all channels are FIFO, it becomes
decidable when b is bag. Indeed, the FIFO channel c can be “made synchronous”
by forcing receptions to occur right after transmissions. This, in turn, can be
implemented by replacing c with two opposite bag channels c0, c1 implementing
a simple rendezvous protocol. We thus obtain the topology in Fig. 1b, which is
decidable since it contains only bag channels.

A more difficult case is the one in Fig. 3a. As above, reachability is undecidable
if all channels are FIFO, but it becomes decidable when one channel, say b, is
bag. However, the correctness argument is more involved here, since, unlike in the
previous example, channel c cannot be made synchronous. The problem is that
making c synchronous requires rescheduling the actions of the receiver q to occur
earlier. But this is not possible since q might try to read on the other channel b,
which could be empty. The crucial observation is that we can always schedule
all actions of p to occur before all actions of q. Therefore, in this topology, the
order between transmissions and receptions can be relaxed. The only property
that matters is that the string of messages which is received is the same as the
one which is sent. We can thus split the bag channel b into two bag channels b0
and b1 (see Fig. 3b), where q’s potentially blocking receptions on b are replaced
with non-blocking transmissions on b1. The new process r just matches incoming
messages on b0 and b1. In the new topology, c can be made synchronous, and we
proceed as above to obtain the decidable topology in Fig. 3c.

Finally, we also have undecidable topologies which mix in a non-trivial way
FIFO and bag channels. For example, consider the one in Fig. 2, where c is FIFO
and b0 and b1 are bags. This topology is undecidable, even when b0 and b1 are
unary bag channels (i.e., the message alphabet is a singleton). The idea is to use
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the two bag channels b0 and b1 to implement a synchronisation protocol between
processes p and q. This protocol is then used by p to decide which message
is to be received by q from c, thus simulating a channel machine (which has
undecidable reachability).

Outline. The rest of the paper is organised as follows. We start with preliminaries
in Sec. 2. In Sec. 3 we show techniques for synchronising and splitting channels
(decidability). In Sec. 4 we explain how unary bag channels can be used to
simulate rendezvous synchronisation (undecidability). In Sec. 5 we present our
characterisation of decidable topologies and study the complexity of the decidable
instances. Finally, in Sec. 6 we compare our techniques with the work of Chambart
and Schnoebelen [8], and in Sec. 7 we end with directions for future work. Full
proofs can be found in the appendix.

2 Preliminaries

A labelled transition system (LTS for short) is a tuple A = 〈S, SI , SF , A,→〉
where S is a set of states with initial states SI ⊆ S and final states SF ⊆ S,
A is a finite set of actions, and → ⊆ S ×A× S is a labelled transition relation.
For simplicity, we write s

a
−−→ s′ in place of (s, a, s′) ∈ →. An LTS is called

finite when its set of states is finite. A run in A is an alternating sequence
(s0, a1, s1, . . . , an, sn) of states si ∈ S and actions ai ∈ A, with n ≥ 0, such that

si−1
ai−−→ si for all 1 ≤ i ≤ n. The natural number n, which may be zero, is

called the length of the run. An accepting run is a run starting in an initial state
(i.e., with s0 ∈ SI) and ending in a final state (i.e., with sn ∈ SF ). Given two
runs σ = (s0, a1, s1, . . . , am, sm) and τ = (t0, b1, t1, . . . , bn, tn) such that sm = t0,
their join is the run σ · τ = (s0, a1, s1, . . . , am, sm, b1, t1, . . . , bn, tn).

Topologies. We consider systems that are composed of several processes commu-
nicating through the asynchronous exchange of messages. Communications rely
on point-to-point FIFO channels between processes. In our setting, each channel
is equipped with a message alphabet that specifies the set of messages that can
be conveyed over the channel. To simplify the presentation, we assume a special
message, written 1, that is always in the message alphabet. Formally, a commu-
nication topology is a tuple T = 〈P,C,M, src, dst,msg〉, where P is a finite set of
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processes, C is a finite set of channels, M is a finite set of messages containing the
special message 1, src : C → P and dst : C → P are mappings assigning to each
channel a source and a destination process, and msg : C → {N ⊆ M | 1 ∈ N}
is a mapping assigning to each channel its message alphabet. For convenience,
we assume that the sets P , C and M are pairwise disjoint. A channel c ∈ C is
called unary when msg(c) is a singleton, i.e., when msg(c) = {1}.

The following graph-theoretic concepts and notations3 will be used throughout
the paper. Consider a topology T = 〈P,C,M, src, dst,msg〉. For each channel

c ∈ C, we let
c

==⇒ denote the binary relation on P defined by p
c

==⇒ q if p = src(c)

and q = dst(c). The inverse of
c

==⇒ is written
c
⇐==. A directed walk in T is an

alternating sequence (p0, c1, p1, . . . , cn, pn) of processes pi ∈ P and channels

ci ∈ C, with n ≥ 0, such that pi−1
ci==⇒ pi for all 1 ≤ i ≤ n. The natural

number n, which may be zero, is called the length of the directed walk. To
improve readability, directed walks will usually be written p0

c1==⇒ p1 · · ·
cn==⇒ pn.

A directed walk is said to be closed when it starts and ends in the same process
(i.e., when p0 = pn). A directed path is a directed walk in which all channels are
pairwise distinct, and all processes—except, possibly, the first and last ones—are
pairwise distinct. The notation p

∗
==⇒ q means that there is a directed walk—or,

equivalently, there is a directed path—from p to q (i.e., with p0 = p and pn = q).
A directed cycle is a closed directed path of non-zero length.

We also need undirected variants of the above notions. For each channel
c ∈ C, we let

c
=== denote the binary relation on P defined by p

c
=== q if {p, q} =

{src(c), dst(c)}. Observe that p
c

=== q if, and only if, p
c

==⇒ q or p
c
⇐== q. The

notions of undirected walk, undirected path and undirected cycle are defined as
the directed ones, except that

c
==⇒ is replaced by

c
===.

Communicating processes. Given a topology T = 〈P,C,M, src, dst,msg〉, the set
of possible communication actions for a process p ∈ P , written Ap

com, is the union
of the set {c!m | c ∈ C ∧ src(c) = p ∧m ∈ msg(c)} of its transmission actions
and of the set {c?m | c ∈ C ∧ dst(c) = p ∧m ∈ msg(c)} of its reception actions.
The set of all communication actions is Acom =

⋃

p∈P Ap
com. Actions not in Acom

are called internal actions.

Definition 2.1. A system of communicating processes is a pair S = 〈T , {Ap}p∈P 〉

where T = 〈P, . . .〉 is a topology, and, for each p ∈ P , Ap = 〈Sp, S
p
I , S

p
F , A

p,→p〉
is a finite labelled transition system such that Ap∩Acom = Ap

com. For convenience,
we assume4 that the sets of actions Ap, with p ∈ P , are pairwise disjoint.

We give the operational semantics of a system of communicating processes
S as a global labelled transition system JSK = 〈X,XI , XF , A,→〉. States of S
are called configurations to prevent confusion with those of Ap. A configuration

3 In this paper, we use contemporary graph terminology (see, e.g., [20]). For instance,
the term walk is used for “paths” that may repeat channels and/or processes.

4 This assumption is not restrictive as it only concerns internal actions. Indeed, the
sets Ap

com, with p ∈ P , are already pairwise disjoint by definition.
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of JSK is pair x = (s,w) where s maps each process p to a state in Sp, and
w maps each channel c to a word over its message alphabet msg(c). Formally,
X = (

∏

p∈P Sp)× (
∏

c∈C msg(c)∗). A configuration is initial (resp. final) when
each process is in its initial state (resp. final state) and all channels are empty.
Formally, XI = (

∏

p∈P S
p
I ) × {ε} and XF = (

∏

p∈P S
p
F ) × {ε}, where ε maps

each channel c ∈ C to the empty word ε. The set of actions A of S is given by
A =

⋃

p∈P Ap. Observe that {Ap}p∈P is a partition of A. We define the transition
relation → of JSK to be the set of all triples (x1, a, x2), where x1 = (s1,w1) and
x2 = (s2,w2) are configurations, such that, for some process p ∈ P , the following
conditions are satisfied:

– s
p
1

a
−−→ s

p
2 is a transition in Ap, and s

q
1 = s

q
2 for all other processes q ∈ P \{p}.

– If a is an internal action, then w1 = w2.
– If a = c!m, then wc

2 = wc
1 ·m and wd

2 = wd
1 for all other channels d ∈ C \ {c}.

– If a = c?m, then wc
1 = m ·wc

2 and wd
2 = wd

1 for all other channels d ∈ C \ {c}.

So, in a transition x1
a
−−→ x2, exactly one process p moves (namely, the unique

p ∈ P such that a ∈ Ap), and the others stay put. The channels are updated
according to the action a that is performed by the transition. Given a process
p ∈ P , a move of p is any transition x1

a
−−→ x2 such that a ∈ Ap. Following [11],

we define the causal-equivalence relation ∼ over runs as the least congruence,
with respect to join, such that (x1, a, x2, b, x3) ∼ (x1, b, x

′

2, a, x3) whenever a, b
are actions of distinct processes. Informally, two runs are causal-equivalent if
they can be transformed one into the other by iteratively commuting adjacent
moves that (i) are not from the same process and (ii) do not form a “matching
send/receive pair”. It is readily seen that causal-equivalent runs necessarily start
in the same configuration and end in the same configuration.

Statement of the problem. Given a topology T , the reachability problem for
systems of communicating processes with topology T , denoted by Reach(T ), is
defined as follows:

Input: a system of communicating processes S with topology T ,
Output: whether there exists an accepting run in JSK.

Observe that we require all channels to be empty at the end of an accepting
run. Also note that Reach(T ) is parametrised by a topology T . The main result
of this paper is a characterisation of the topologies T for which Reach(T ) is
decidable. Our techniques are based on topological transformations that induce
reductions between the associated reachability problems. We let �m denote
the many-one reducibility relation between decision problems. For example,
Reach(T ) �m Reach(U) when T is obtained from U by removing channels.

When only unary channels are present, the reachability problem is decidable
by an immediate reduction to reachability in Petri nets.

Theorem 2.2 ([16,13,15]). If T is a topology with only unary channels, then
Reach(T ) is decidable.
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On the other hand, when the topology contains only non-unary channels the
following characterisation for Reach(T ) is well-known.

Theorem 2.3 ([18,14]). Given a topology T with no unary channel, Reach(T )
is decidable if, and only if, T has no undirected cycle.

In Sec. 5, we refine the latter condition to account for topologies with both unary
and non-unary channels (see Theorem 5.3). We further generalise it in Sec. 6 to
a more general setting comprising both FIFO and bag channels.

3 Synchronising and Splitting Channels

A useful technique in the analysis of communicating processes is to transform
asynchronous communications into synchronous ones, without compromising
the behaviour of the system. To this end, we use the notion of synchronous
runs from [8,11]. Formally, a run ((s0, w0), a1, (s1, w1), . . . , an, (sn, wn)) is syn-
chronous for a given channel c if wc

0 = wc
n = ε and wc

i = ε ∨ wc
i+1 = ε for

all 0 < i < n. Intuitively, this means that each transmission on c is immedi-
ately followed by its matching reception, i.e., communication over c behaves like
rendezvous synchronisation [17]. It is well-known that in a polyforest topology
(i.e., with no undirected cycle), every run can be reordered to have all channels
synchronous, and reachability can be solved by exploring the resulting finite
transition system [18,14,8,11]. Since we are interested in analysing more complex
topologies where not all channels can be simultaneously made synchronous in
general, we need to consider channels individually rather than globally.

Synchronising essential channels. Whether a channel can always be made syn-
chronous (by reordering moves in runs) is a semantic condition that depends
on the complex behaviour of the whole system. In fact, this condition is an
undecidable problem in general (by an easy reduction from the reachability
problem). Therefore, we are interested in syntactic conditions that are sufficient
for a channel to be made synchronous. One such condition is that of essential
channel [8], which is a structural condition depending only on the topology.

Definition 3.1 ([8]). A channel c is essential if all directed paths from src(c)
to dst(c) contain c. In particular, src(c) 6= dst(c).

Lemma 3.2 ([8]). If c is an essential channel, then every run that starts and
ends with c empty is causal-equivalent to a run that is synchronous for c.

Thus, we can replace asynchronous communications on an essential channel
by synchronous ones. We loosely implement the latter through a topological
transformation that replaces an essential channel c, with source p and destination
q, by one unary channel cm from p to q for each message m ∈ msg(c), as well as
one unary channel cack back from q to p. These unary channels are enough to
simulate synchronous communications over c. Each message m conveyed over c is
placed in the corresponding unary channel cm instead. After each transmission on
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cm, the process p waits for an acknowledgement from cack. Conversely, q notifies
p via cack after each reception from cm. While it applies to arbitrary essential
channels, this topological transformation is only useful for non-unary ones.

Definition 3.3. Given a topology T = 〈P,C,M, src, dst,msg〉 and a channel
c ∈ C, the synchronisation of c in T is the topology U = 〈P,C ′,M, src′, dst′,msg′〉
defined by C ′ = (C \ {c}) ∪ {cm | m ∈ msg(c)} ∪ {cack} and

(src′(d), dst′(d),msg′(d)) =











(src(d), dst(d),msg(d)) if d ∈ C \ {c}

(src(c), dst(c), {1}) if d = cm

(dst(c), src(c), {1}) if d = cack

where cm, for m ∈ msg(c), and cack are new channels that are not in P ∪C ∪M .

Proposition 3.4 (Synchronisation). If c is an essential channel in T , then
Reach(T ) �m Reach(U) where U results from the synchronisation of c in T .

Remark 3.5. An essential channel could, alternatively, be removed by merging its
endpoints (see [8]). Instead, our synchronisation construction replaces an essential
channel by a collection of new unary channels. While either technique could be
used for decidability (see Subsec. 5.2), synchronisation yields simpler proofs and
avoids taking the product of LTSes at the process level, which cirvumvents an
immediate exponential blow-up in our reduction to reachability in Petri nets (see
Subsec. 5.3). From a practical viewpoint, the new unary channels are 1-bounded
by construction; analyzers for Petri nets could take advantage of this fact.

Splitting irreversible channels. According to Proposition 3.4 above, a topology
containing an essential non-unary channel c can always be simplified by synchro-
nising c. The resulting topology is simpler in the sense that it contains one less
non-unary channel. However, there are situations where a channel is not essential,
and thus it cannot be synchronised in general, but it can be made essential after
a small modification. We have shown one such simple case on Fig. 3a, where the
channel c is not essential but it can be made so by splitting5 the other channel

p
b

==⇒ q into two channels p
b0==⇒ r and q

b1==⇒ r for a new process r, see Fig. 3b.
Here, r is a new process that simply matches messages received from b0 and b1;
receptions on b become transmissions on b1. Clearly, the new system with the
split topology has at least the same runs as the original system. Moreover, in
this case, the converse holds as well, since we can always schedule all actions of p
before any action of q, thus causality between transmissions and receptions can
be relaxed. Formally, the splitting operation is defined as follows.

Definition 3.6. Given a topology T = 〈P,C,M, src, dst,msg〉 and a channel
c ∈ C, the split of c in T is the topology U = 〈P ′, C ′,M, src′, dst′,msg′〉 defined

5 Despite having similar names, this splitting notion and the splitting technique of [8]
have little in common (see Sec. 6).
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by P ′ = P ∪ {r}, C ′ = (C \ {c}) ∪ {c0, c1}, and

(src′(d), dst′(d),msg′(d)) =











(src(d), dst(d),msg(d)) if d ∈ C \ {c}

(src(c), r,msg(c)) if d = c0

(dst(c), r,msg(c)) if d = c1

where r is a new process and c0, c1 are new channels that are not in P ∪ C ∪M .

To justify splitting, we introduce the notion of causal run. Intuitively, in a
run which is causal for a process p, only those processes that can “transitively”
send messages to p may be scheduled before p.

Definition 3.7. A run (x0, a1, x1, . . . , an, xn) is causal for a given process p if

q
∗

==⇒ p for every process q such that ai ∈ Aq and aj ∈ Ap for some 1 ≤ i < j ≤ n.

Lemma 3.8. Given a process p, every run is causal-equivalent to a run that is
causal for p.

Recall that the idea behind splitting is to relax the causality between trans-
missions and receptions. This does not introduce “spurious” runs provided that
every run can be reordered to have all actions of the receiver after the last action
of the sender. A sufficient condition is given by the notion of irreversible channel.

Definition 3.9. A channel c is reversible if there is a directed path from its des-
tination dst(c) to its source src(c). A channel is irreversible if it is not reversible.

The following proposition states that the reachability problem for a given
topology T can be reduced to the reachability problem for the topology obtained
from T by splitting c. As we will see in Sec. 5, splitting will be the first of a series
of reductions for decidable topologies.

Proposition 3.10 (Split). If c is an irreversible channel in T , then it holds
that Reach(T ) �m Reach(U) where U results from the split of c in T .

4 The Power of Unary Channels

Let u be a process in a topology T , and let U be a topology which is the
same as T except that u is expanded into a strongly-connected sub-topology. In
this section, we show that the behaviour of u in T can be distributed over its
expansion in U . We achieve this by demonstrating how processes in a strongly-
connected sub-topology can simulate global rendezvous synchronisation over a
finite alphabet of shared actions, which allows them to synchronise with each
others and to step-wise simulate the behaviour of u. This technique works even
when distributing behaviour over unary channels only, and it will be used to
show the undecidability part of our characterisation (see Subsec. 5.1).

To formally define how a process is expanded into a sub-topology, it is more
convenient to describe how to fuse a set of channels D. Intuitively, the fusion of
D in a given topology is the topology obtained by merging together, in a single
process, all endpoints of channels in D, by removing D, and by redirecting the
other channels in the natural way.

8
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Fig. 4: Synchronisation protocol for a simple directed cycle

Definition 4.1. Given a topology T = 〈P,C,M, src, dst,msg〉 and a set of chan-
nels D ⊆ C, the fusion of D in T is the topology U = 〈P ′, C ′,M, src′, dst′,msg′〉
defined by P ′ = (P \ {src(c), dst(c) | c ∈ D}) ∪ {u} where u is a new process
that is not in P ∪ C ∪M , C ′ = C \D, and, for every c ∈ C ′, msg′(c) = msg(c),
src′(c) = src(c) if src(c) ∈ P ′ and src′(c) = u otherwise, and similarly for dst′.

This section shows that fusing a strongly-connected sub-topology makes the
reachability problem easier. We first deal with the simple case of directed cycles.
The support of a directed walk/cycle is the set of channels that it visits.

Lemma 4.2. If D is the support of a directed cycle in a topology T then
Reach(U) �m Reach(T ) where U results from the fusion of D in T .

Proof. Consider a directed cycle p0
c1==⇒ p1

c2==⇒ · · ·
cn==⇒ pn = p0 in T such that

D = {c1, . . . , cn}. This directed cycle is depicted in Fig. 4c. Denote by U the
topology that results from the fusion of D in T , and let u be the process in U
that corresponds to the merging of all endpoints of D. Consider a system of
communicating processes S with topology U . We construct a new system R with
topology T that simulates S by “distributing” the behaviour of the process u

over p1, . . . , pn. All other processes are left unchanged.
As a first step, let us assume that the processes p1, . . . , pn can perform multi-

way rendezvous synchronisation over a finite alphabet of actions Σ. By multi-way,
we mean that each time some process pi performs an action a in Σ, then in fact
all processes p1, . . . , pn perform the action a at the same time. For brevity, we
will omit the “multi-way” qualifier from now on. It is easily shown (see App. B
for details) that rendezvous synchronisation, even over a binary alphabet, allows
p1, . . . , pn to coordinate in T and simulate the behaviour of u in U . This way, we
obtain from S a new system S ′, with topology T , such that JSK has an accepting
run if, and only if, JS ′K does. Moreover, S ′ does not use any channel in D.

As a second step, we explain how rendezvous synchronisation between p1, . . . , pn
over a binary alphabet, say {a, b}, can be achieved through communications on
the channels in D. In our simulation, rendezvous synchronisations are initiated by
p0, and then propagated along the directed cycle p0

c1==⇒ p1
c2==⇒ · · ·

cn==⇒ pn back
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to p0. The latter then checks that the other processes correctly performed the
desired rendezvous action. More precisely, whenever p0 wants to handshake on
some action (a or b), it sends some number of messages on c1 to p1 and waits for
an acknowledgement on cn before proceeding to its next move. In the meantime,
the processes p1, . . . , pn−1 do the same, but first receive and then transmit. The
number of messages received by pi+1 from ci+1 is exactly the same as the number
of messages sent by pi on ci+1. The precise protocol is shown in Fig. 4, where
each dashed transitions in S ′ is replaced in R by the alternative sequence below
it (by introducing intermediate states). All other transitions are left unchanged.
In R, actions a and b are to be interpreted as internal, non-rendezvous actions.
For instance, to simulate the rendezvous action a, p0 first sends a message on c1,
internally performs a, and then receives a message from cn.

To conclude the proof, we show that JS ′K has an accepting run if, and only
if, JRK does. By construction, each rendezvous synchronisation in JS ′K can be
reproduced, through the above protocol, in JRK. We now argue that the protocol
does not introduce any spurious behaviour. Recall that the channels c1, . . . , cn
are empty at the beginning. So, for each 1 ≤ i ≤ n− 1, the process pi may only
simulate a rendezvous action after p0 has initiated a synchronisation round. Let
us look at the first rendezvous action that is simulated by p0. If this action is a,
then p0 sends one message on c1 and receives one message from cn. This entails
that all the other processes p1, . . . , pn−1 simulate the rendezvous action a. At the
end of this synchronisation round, all the channels c1, . . . , cn are again empty. If
the first rendezvous action that p0 simulates is b, then p0 sends two messages
on c1 and receives n+ 1 messages from cn. Again, this entails that p1, . . . , pn−1
simulate, each, the rendezvous action b. Indeed, by contradiction, if pi simulates
a, then it must continue simulating a since there are not enough messages in
ci anymore to simulate b. Therefore, it simply relays messages from ci to ci+1,
and cannot produce on ci+1 the extra message that pi+1 expects to simulate
b. By applying the same arguments to the remaining processes pi+1, . . . , pn−1,
we obtain that pn−1 is not able to produce on cn the n + 1 messages that p0
expects to complete its simulation of b, a contradiction. Again, at the end of this
synchronisation round, all the channels c1, . . . , cn are empty. By repeating this
analysis for each synchronisation round, we obtain that every accepting run of
JRK can be mapped back to an accepting run of JS ′K. ⊓⊔

We now show that the previous lemma still holds for closed directed walks,
i.e., where processes/channels can be repeated. The proof is by induction on the
cardinality of D. As expected, the induction step follows from Lemma 4.2.

Proposition 4.3 (Fusion). If D is the support of a closed directed walk in a
topology T , then Reach(U) �m Reach(T ) where U results from the fusion of
D in T .

5 Characterisation of Decidable Topologies

We are now ready to state and prove our characterisation of decidable topologies.
The characterisation is expressed in the same vein as Theorem 2.3, and generalises
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it. We first introduce some additional definitions and notations. Consider a
topology T = 〈P,C,M, src, dst,msg〉, and let D ⊆ C be a subset of channels.
Two processes p and q are synchronizable over D, written p ≈D q, if there exists
a directed path from p to q and a directed path from q to p, both using only
channels in D. Note that ≈D is an equivalence relation on P .

A jumping circuit is a sequence (p0, c1, q1, p1, . . . , cn, qn, pn) of processes
pi, qi ∈ P and channels ci ∈ C, with n ≥ 1, such that c1, . . . , cn are pairwise
distinct non-unary channels, p0 = pn, and pi−1

ci=== qi ≈D pi for all 1 ≤ i ≤ n,

where D = C \ {c1, . . . , cn}. Recall that the binary relation
c

=== is the union of
c

==⇒ and
c
⇐==. A jumping cycle is a jumping circuit (p0, c1, q1, p1, . . . , cn, qn, pn)

such that qi 6≈D qj for all 1 ≤ i < j ≤ n. To improve readability, jumping circuits

and jumping cycles will often be written p0
c1=== q1 ≈D p1 · · ·

cn==== qn ≈D pn.

Remark 5.1. Every jumping circuit can be transformed into a jumping cycle.

Remark 5.2. For every jumping cycle p0
c1=== q1 ≈D p1 · · ·

cn==== qn ≈D pn, there
exist n pairwise disjoint subsets D1, . . . , Dn of the set D = C \ {c1, . . . , cn} such
that qi ≈Di

pi for all 1 ≤ i ≤ n.

Theorem 5.3. Given a topology T , Reach(T ) is decidable if, and only if, T
has no jumping cycle.

The two directions of the theorem are proved in the two subsections below. To
illustrate our characterisation, let us give some examples of decidable topologies.
Certainly, polyforest topologies are decidable since they contain no undirected
cycle, therefore no jumping cycle. Moreover, decidability is preserved if we add,
for each channel of the polyforest, a unary channel in the opposite direction
(see Lemma 5.4 below). Even further, we still get a decidable topology if each
process is expanded into a sub-topology containing only unary channels. These
operations introduce non-trivial cycles of unary and non-unary channels. Finally,
adding unary channels looping on the same process always preserves decidability,
as well as adding additional unary channels in parallel to already existing ones.

5.1 Undecidability

Consider a topology T containing a jumping cycle ξ = (p0, c1, q1, p1, . . . , cn, qn, pn).

By Remark 5.2, it holds that p0
c1=== q1 ≈D1

p1 · · ·
cn==== qn ≈Dn

pn for some pair-
wise disjoint subsets D1, . . . , Dn of C \{c1, . . . , cn}. We may assume, w.l.o.g., that
each Di is the support of a closed directed walk in T . To prove that Reach(T )
is undecidable, we show that Reach(U) �m Reach(T ) for some topology U
with an undirected cycle containing only non-unary channels, hence, for which
reachability is undecidable by Theorem 2.3. To do so, we build a sequence of
topologies U0,U1, . . . ,Un by fusing together synchronizable processes, as follows:
We define U0 = T , and, for each 1 ≤ i ≤ n, we let Ui result from the fusion of Di

in Ui−1. Pairwise disjointness of D1, . . . , Dn ensures that every channel in Di is
still a channel in Ui−1. It is routinely checked (see Appendix C.1 for details) that:
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– Di is still the support of a closed directed walk in Ui−1, and
– ξ induces a closed undirected walk u0

c1=== u1 · · ·
cn==== un in Un.

The first item entails, by Proposition 4.3, that Reach(Ui) �m Reach(Ui−1). By
the transitivity of �m, we get that Reach(Un) �m Reach(U0). Since c1, . . . , cn
are pairwise distinct non-unary channels, we derive, from the second item, that
Un contains an undirected cycle with only non-unary channels. It follows from
Theorem 2.3 that Reach(Un) is undecidable. As U0 = T , we conclude that
Reach(T ) is undecidable.

5.2 Decidability

Starting from a topology T with no jumping cycle, we apply a sequence of
topological transformations that produce a topology U with only unary chan-
nels, and such that Reach(T ) �m Reach(U). Since the latter is decidable by
Theorem 2.2, the former is decidable as well.

Given a topology T and a channel c in T , an acknowledgement channel for c
is a new unary channel, written←−c , with source dst(c) and destination src(c). The
following lemma says that adding an acknowledgement channel for an essential
non-unary channel preserves the absence of jumping cycle. It immediately entails
Corollary 5.5 below, and its full proof can be found in App. C.2.

Lemma 5.4. Consider a topology T and an essential non-unary channel c

therein. Let U be the topology obtained from T by adding an acknowledgement
channel for c. Then T contains a jumping cycle if U contains a jumping cycle.

Proof (sketch). Assume that T has no jumping cycle, but adding ←−c yields a

topology U with a jumping cycle p0
c1=== q1 ≈D1

p1 · · ·
cn==== qn ≈Dn

pn = p0.
Observe that←−c cannot be one of c1, . . . , cn since it is unary. If←−c does not appear
in any Di, then T has a jumping cycle. Hence, ←−c appears on a closed directed
walk π that synchronises two processes qi and pi. Since c is essential, it must
appear on π too. We may assume, w.l.o.g., that ←−c appears on the directed path
from pi to qi on π, and that c appears on the directed path from qi to pi. We get

that qi
∗

==⇒ p
c

==⇒ q
∗

==⇒ pi
∗

==⇒ q
←−c
==⇒ p

∗
==⇒ qi. Therefore, qi can synchronise with

p using only channel from Ei = Di \ {c,
←−c }, and similarly pi can synchronise

with q via Ei. So we can build a jumping cycle in T from the jumping cycle in U
by replacing qi ≈Di

pi by qi ≈Ei
p

c
==⇒ q ≈Ei

pi, a contradiction. ⊓⊔

Corollary 5.5. Consider a topology T and an essential non-unary channel c
therein. Let U be the topology resulting from the synchronisation of c in T . Then
T contains a jumping cycle if U contains a jumping cycle.

Remark 5.6. The converse of Corollary 5.5 also holds, but it is not required for
the proof of Theorem 5.3.

We say that a topology T is divided if the destination of every irreversible
unary channel is a sink (i.e., is not the source of some channel) and is not the
destination of some non-unary channel. The following two properties of divided
topologies are crucial in the proof of Theorem 5.3.
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Lemma 5.7. Consider a topology T and a non-unary channel c therein. If T is
divided, then so is the topology resulting from the synchronisation of c in T .

Lemma 5.8. If T is a divided topology with no jumping cycle, then every non-
unary channel in T is essential.

We now prove the “if” direction of Theorem 5.3. Assume that T has no
jumping cycle. Let c1, . . . , cn denote the non-unary channels of T . We first build
U0 from T by splitting all unary channels that are irreversible in T . Note that
U0 does not depend on the order in which the irreversible unary channels of
T are split. It follows from Proposition 3.10 and the transitivity of �m that
Reach(T ) �m Reach(U0). By construction, the topology U0 is divided, and it
still has no jumping cycle. So, by Lemma 5.8, every non-unary channel in U0 is
essential. Notice that U0 has the same non-unary channels as T , namely c1, . . . , cn.
For each 1 ≤ i ≤ n, let Ui be the topology resulting from the synchronisation
of ci in Ui−1. By induction, it is immediate to prove that, for every 0 ≤ i ≤ n,
Ui has no jumping cycle, the induction step holding by Corollary 5.5, that Ui is
divided, by Lemma 5.7, that ci+1, . . . , cn are still essential in Ui, by Lemma 5.8,
and that Reach(Ui−1) �m Reach(Ui), by Proposition 3.4. By the transitivity
of �m, we get that Reach(T ) �m Reach(Un). Since Un contains only unary
channels, Reach(Un) is decidable by Theorem 2.2. Thus Reach(T ) is decidable.

5.3 Complexity

We consider the reachability problem for systems of communicating processes
whose topology has no jumping cycle. This problem, written ReachNJC, is the
union of the problems Reach(T ) for topologies T with no jumping cycle. Note
that deciding whether a topology has a jumping cycle is a simple graph-theoretic
problem that can be solved in polynomial time. Hence, it can be checked efficiently
whether a given system of communicating processes is an instance of ReachNJC

or not. Here, we show that ReachNJC is equivalent to reachability in Petri nets.

The size of a labelled transition system A = 〈S, SI , SF , A,→〉 is defined as
|A| = |S|+ |→|. Similarly, the size of a topology T = 〈P,C,M, src, dst,msg〉 is
|T | = |P |+ |C|+

∑

c∈C |msg(c)|. Finally, the size of a system of communicating
processes S = 〈T , {Ap}p∈P 〉 is |S| = |T | +

∑

p∈P |A
p|. The algorithm in Sub-

sec. 5.2 transforms a system S over a topology with no jumping cycle, into a
system S ′ with unary channels only. Since unary channels are essentially counters
(over the natural numbers) that may only be incremented and decremented, S ′

can be naturally interpreted as a Petri net. Crucially, we show that S ′ (and thus
the Petri net) has size polynomial in |S|. This is possible since the synchronisa-
tion operation from Sec. 3 avoids taking the product of processes (at the cost of
introducing 1-bounded unary channels/counters).

Theorem 5.9. ReachNJC is equivalent to reachability in Petri nets under
polynomial-time many-one reductions.
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6 Discussion

Unary vs. bag channels. A bag channel is a channel where messages can be freely
reordered. Therefore, it suffices to count how many messages of each type are
in the channel. So, a bag channel over a message alphabet of cardinality n can
be implemented with n unary channels in parallel. A topology of bag and FIFO
channels is a topology (as defined in Sec. 2) where, in addition, each channel has
a flag indicating whether it is ordered (FIFO) or not (bag). Our characterisation
from Sec. 5 immediately generalises to bag channels by modifying the definition
of jumping cycle and requiring that the ci’s be non-unary FIFO channels (instead
of just non-unary).

Unary/bag vs. lossy channels. Another over-approximation incomparable with
bag channels is provided by lossy channels, where messages might be lost at
any moment [2,7]. A complete characterisation of decidable topologies mixing
perfect and lossy channels has been presented in [8]. In order to reduce to basic
decidable topologies, they consider two reduction rules. The first one is the
fusion of essential channels. This is similar in spirit to our synchronisation (see
Proposition 3.4), with the only difference that fusing channels requires to take the
product of the underlying processes, while synchronising channels just replaces
one channel with several 1-bounded unary channels. This allows us to obtain
precise complexity bounds in Subsec. 5.3. The second reduction rule is splitting
a complex topology T into T1 and T2 when all channels between T1 and T2 are
unidirectional and lossy. Despite similar names, this is different to our splitting
technique (see Proposition 3.10), because we split (irreversible) channels, and
not topologies. However, while lossy channels cannot be split, the lossy channels
involved in the splitting of T in the sense of [8] are irreversible in our terminology,
and thus could be split if they were perfect channels. Moreover, if we replace lossy
channels with perfect bag channels, it additionally holds that, if T1, T2 above are
decidable in our characterisation (i.e., no jumping cycles), then the same holds
for T . Since also fusion/synchronisation preserves decidable topologies in both
settings, we have that any decidable topology of perfect and lossy channels is
still a decidable topology by replacing lossy channels with perfect bag channels.

Moreover, some topologies which are undecidable with lossy channels become
decidable with bag channels. For example, the topology with three parallel
channels c, d, e between two processes with c perfect FIFO and d, e lossy FIFO is
undecidable, while if d, e are bag channels it becomes decidable.

Finally, while the topology in Fig. 2 is undecidable when channels b0 and b1
are either both bag channels or both lossy channels, our construction with unary
bag channels is correct even if those are unary and lossy. Indeed, as soon as any
message gets lost due to lossiness, our synchronization protocol gets irremediably
stuck. However, the construction from [8] does not generalise to unary channels
in this case. Thus, we extend their undecidability result to this topology.
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7 Conclusions and Future Work

We have presented a complete characterisation of the decidable topologies for
networks of finite-state automata communicating over FIFO and bag channels.
Remarkably, every decidable topology can be solved using two simple techniques
(synchronising essential channels and splitting irreversible channels), whereas
every topology that cannot be solved with these two techniques is undecidable.

The same characterisation problem is solved in [8] but for networks mixing
perfect and lossy FIFO channels. A direction for future research is to characterise
decidable topologies of lossy/perfect FIFO/bag channels.

Relaxing FIFO channels to the bag type can be applied in other contexts
as well. For example, the work [11] studies topologies of networks of pushdown
automata communicating over FIFO channels, and it is natural to ask what
happens when some channels and/or pushdown stores are bags instead of strings.
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Leroux, and we thank the anonymous reviewers for helpful comments.
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A Proofs for Section 3

Consider a topology T = 〈P,C,M, src, dst,msg〉 and a system of communicating
processes S = 〈T , {Ap}p∈P 〉. We first prove Lemma 3.8 since we use it in the
proof of Lemma 3.2. The notion of causal run is formalised in Definition 3.7,
while the relation of causal-equivalence is defined in Sec. 2.

Lemma 3.8. Given a process p, every run is causal-equivalent to a run that is
causal for p.

Proof. We show, by induction on the length of runs, that every run ρ satisfies
the following property: for every process p, there exists a run causal for p that is
causal-equivalent to ρ. This property obviously holds for runs of length at most
one. Consider a run ρ of length two, written as ρ = tp · tq, where tp and tq are
moves of processes p and q, respectively. This run is obviously causal for every
process distinct from q. If p

∗
==⇒ q, then it is also causal for q. Otherwise, p 6= q

and there is no channel with source p and destination q. So the moves of p and q

can be swapped in ρ, yielding a causal-equivalent run that is causal for q.

Consider now a run ρ of length at least three, and let p be a process. If ρ
contains no move of p, then ρ is trivially causal for p. So we assume, for the
remainder of the proof, that ρ contains a move of p. We first show that ρ is
causal-equivalent to a run whose first move is by a process r such that r

∗
==⇒ p.

The run ρ may be written as ρ = t · χ, where t is the first move of ρ and χ is a
run of length at least two. If t is a move of p, then ρ is already in the desired
form (since p

∗
==⇒ p). Otherwise, χ necessarily contains a move of p. According to

the induction hypothesis, χ is causal-equivalent to a run χ′ that is causal for p.
The run χ′, whose length is at least two, may be written as χ′ = tq · χ

′′ · t′ where

tq is a move of a process q such that q
∗

==⇒ p. Notice that ρ is causal-equivalent
to t · tq · χ

′′ · t′. By applying the induction hypothesis to the process q and the
run t · tq · χ

′′, we get a run ρ′ causal for q that is causal-equivalent to t · tq · χ
′′.

Observe that ρ is causal-equivalent to ρ′ · t′. Moreover, since ρ′ is causal for q and
contains a move of q, the first move of ρ′ is by a process r such that r

∗
==⇒ q

∗
==⇒ p.

We have shown that ρ is causal-equivalent to a run tr · ρ
′′ whose first move tr is

by a process r such that r
∗

==⇒ p. Replacing ρ′′ by a causal-equivalent run that is
causal for p (which is possible by the induction hypothesis) concludes the proof
of the lemma. ⊓⊔

The proof of Lemma 3.2 given in [8] uses concepts and techniques from the
theory of true concurrency. Here, we provide an alternative, more direct proof.

Lemma 3.2 ([8]). If c is an essential channel, then every run that starts and
ends with c empty is causal-equivalent to a run that is synchronous for c.

Proof. By induction on the length of runs. The basis is trivial. Consider a run ρ,
of non-zero length, that starts and ends with c empty. If the first action of ρ is not
a transmission on c, then we obtain a causal-equivalent run that is synchronous
on c by applying the induction hypothesis to the remainder of ρ. Assume, on the
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contrary, that ρ starts with a transmission on c. The run ρ may be decomposed

into ρ = x1
c!m
−−→ x′1 · ρ1 · x2

c?m
−−−→ x′2 · ρ2 where ρ1 contains no reception on c.

Let p and q denote the source and target of c, respectively. We first show

that the run χ = x1
c!m
−−→ x′1 · ρ1 can be reordered into a run of the form

χ1 · y1
c!m
−−→ y′1 · χ2 such that χ1 contains no move of p and χ2 contains no move

of q. Consider the system Ŝ obtained from S by removing the channel c and
transforming all communication actions on c into internal actions (written “c!m”
and “c?m”). Let χ̂ denote the run in Ŝ obtained from χ in the obvious way. Since
c is essential in T , there is no directed path from p to q in the topology T̂ of Ŝ.
By Lemma 3.8, the run χ̂ is causal-equivalent to a run that is causal for q. Hence,

the latter is of the form χ̂1 · ŷ1
“c!m”
−−−−→ ŷ′1 · χ̂2 such that χ̂1 contains no move of p

and χ̂2 contains no move of q. Observe that this run contains no “c?m”. So it
can be mapped back to S, and yields a run that is causal-equivalent to χ and of
the desired form.

The run ρ is causal-equivalent to the run χ1 · y1
c!m
−−→ y′1 · χ2 · x2

c?m
−−−→ x′2 · ρ2.

Since χ2 contains no move of q, the run χ2 · x2
c?m
−−−→ x′2 can be reordered

into a run of the form y2
c?m
−−−→ y′2 · χ3. So the run ρ is causal-equivalent to

χ1 · y1
c!m
−−→ y′1 · y2

c?m
−−−→ y′2 · χ3 · ρ2. Since χ1 contains no move of p, the channel

c is empty in y′2. It follows from the induction hypothesis that χ3 · ρ2 is causal-
equivalent to a run that is synchronous for c, hence, so does ρ. ⊓⊔

Proposition 3.4 (Synchronisation). If c is an essential channel in T , then
Reach(T ) �m Reach(U) where U results from the synchronisation of c in T .

Proof. We assume that T and U are given as in Definition 3.3. Consider an in-
stance ofReach(T ), i.e., a system of communicating processesR = 〈T , {Ap}p∈P 〉.
We construct a new system S = 〈U , {Bp}p∈P 〉 such that JRK has an accepting
run if, and only if, JSK does. Let p and q denote the source and destination of c,
respectively. Processes different from p and q are left unchanged, i.e., Br = Ar for
r ∈ P \ {p, q}. The LTSes Bp and Bq are obtained from Ap and Aq, respectively,
by the following modifications:

– A transmission transition s
c!m
−−→ t in Ap becomes s

cm!1
−−−→ ·

cack?1−−−−→ t in Bp.
– A reception transition s

c?m
−−−→ t in Aq becomes s

cm?1
−−−→ ·

cack!1−−−−→ t in Bq.
– All the other transitions are left unchanged.

It is understood that a new intermediate state is created in Bp and Bq for each
modified transition (i.e., for each communication on c).

We now show that S faithfully simulates R. Assume that JRK has an accepting
run. By Lemma 3.2, JRK has an accepting run ρ which is synchronous for c. So

each communication on c in ρ is of the form (s,v)
c!m
−−→ ·

c?m
−−−→ (t,v), with vc = ε.

By construction, S can simulate this situation via the following run:

(s,w)
cm!1
−−−→ ·

cm?1
−−−→ ·

cack!1−−−−→ ·
cack?1−−−−→ (t,w) (1)
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where w is obtained from v in the obvious way: wd = vd for all d ∈ (C \ {c})
and wd = ε for all d ∈ (C ′ \ C). By simulating in this fashion all synchronous
communications on c in ρ, we obtain an accepting run in JSK.

Conversely, assume that JSK has an accepting run σ. By construction of Bp

and Bq, we may decompose σ into a join of runs of the form

χ0 · x1
cm!1
−−−→ y1 · χ1 · x2

cm?1
−−−→ y2 · χ2 · x3

cack!1−−−−→ y3 · χ3 · x4
cack?1−−−−→ y4 · χ4 (2)

such that each χi contains no communication action on C ′ \ C. It is readily seen
that the channels in C ′ \ C are all empty in x1, y2, x3 and y4. Moreover, p does
not move in χ1, χ2 and χ3, and q does not move in χ2. So we may reorder the
run (2) into a causal-equivalent run of the same form such that χ1, χ2 and χ3

are all of zero length. It follows that σ is causal-equivalent to a join σ′ of runs
that either contain no communication action on C ′ \ C, or are of the form (1).

By construction, R can simulate the latter by a run (s,v)
c!m
−−→ ·

c?m
−−−→ (t,v),

where v is obtained from w in the obvious way. By simulating in this fashion all
runs of the form (1) in σ′, we obtain an accepting run in JRK. ⊓⊔

Proposition 3.10 (Split). If c is an irreversible channel in T , then it holds
that Reach(T ) �m Reach(U) where U results from the split of c in T .

Proof. We assume that T and U are given as in Definition 3.6. Consider an in-
stance ofReach(T ), i.e., a system of communicating processesR = 〈T , {Ap}p∈P 〉.
We construct a new system S = 〈U , {Bp}p∈P 〉 such that JRK has an accepting
run if, and only if, JSK does. Let p and q denote the source and destination of c,
respectively. Processes different from p and q are left unchanged. The LTSes Bp

and Bq are the same as Ap and Aq, respectively, except that transmissions c!m
of p are replaced by transmissions c0!m, and receptions c?m of q are replaced by
transmissions c1!m. The new process r just matches messages from c0 and c1: B

r

has a state sidle which is both initial and final, and one intermediate state sm for

each message m ∈ msg(c), along with transitions sidle
c0?m−−−→ sm

c1?m−−−→ sidle.

It is readily seen that an accepting run in JRK can be step-wise translated
into a run in JSK that ends with the same contents in c0 and c1. This latter
run can be extended into an accepting one by appending moves of r to match
messages in c0 and c1, until both of them become empty.

Conversely, assume that JSK has an accepting run. By Lemma 3.8, JSK has
an accepting run σ which is causal for p. Note that there is no directed path
from q to p in U , by irreversibility of c in T . Since σ is causal for p, each move
of p occurs before each move of q. So, in σ, all transmissions on c0 occur before
any transmission on c1. Moreover, the definition of r ensures that the strings
received from c0 and c1 are equal. Therefore, we massage σ as follows: we replace
transmissions c0!m of p by c!m, we replace transmissions c1!m of q by receptions
c?m, and we remove the moves of r. The result is an accepting run in JRK. ⊓⊔
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B Proofs for Section 4

Distribution of a process via multi-way rendezvous synchronisation. Consider a
topology T = 〈P,C, . . .〉 and a non-empty setD ⊆ C of channels in T , and assume
that U results from the fusion of D in T . Let p1, . . . , pn denote the endpoints
of D. The set of processes of U is, by definition, Q = (P \ {p1, . . . , pn}) ∪ {u},
where u 6∈ (P ∪ C ∪ M) corresponds to the merging of p1, . . . , pn. We show
that (multi-way) rendezvous synchronisation allows p1, . . . , pn to coordinate in
T and simulate the behaviour of u in U . Consider a system of communicating
processes S = 〈U , {Bq}q∈Q〉. We construct a new system S ′ = 〈T , {Ap}p∈P 〉, with
rendezvous synchronisation between p1, . . . , pn, such that JSK has an accepting
run if, and only if, JS ′K does.

Processes different from u are left unchanged, i.e., Aq = Bq for q ∈ Q \ {u}.
The processes p1, . . . , pn behave like u, except that pi simply internalises the
communication actions on channels that it is not connected to. For the simulation
to be faithful, we use rendezvous synchronisation to guarantee that p1, . . . , pn
all follow the same “local” run of u. To this end, we take the synchronisation
alphabet Σ to be the set of transitions of Bu. Formally, the LTS Api is obtained
from Bu by the following modifications:

– Communication actions of Bu that are not in Api
com are replaced by a new

internal action skip.

– Each transition s
a
−−→ t in Bu becomes two transitions s

(s,a,t)
−−−−→ ·

ai−−→ t in
Api , with a new intermediate state in-between, and where ai is defined by
ai = a if a ∈ Api

com and ai = skip otherwise. The first transition performs a
rendezvous synchronisation to ensure that all other pj ’s perform the same
transition. The second transition makes pi execute a only if a is under pi’s
responsibility.

It is easy to see that, by construction, JSK has an accepting run if, and only if,
JS ′K has an accepting run.

Restriction to two-message alphabets. While the distribution construction above
requires a synchronisation alphabet with many actions in general, we only show
in Sec. 4 how to simulate rendezvous synchronisation over just two (abstract)
actions {a, b}. This makes the synchronisation protocol and its correctness proof
simpler. In fact, there is no loss of generality, since rendezvous synchronisation
over a larger alphabet Σ = {m0, . . . ,mk} can be simulated with just a binary
alphabet {a, b}. Indeed, a single rendezvous synchronisation over mi ∈ Σ can be
replaced by i+ 1 rendezvous synchronisations aib, where a is used to encode mi

in unary, and b is used as a separator. Of course, other encodings are possible.

Proposition 4.3 (Fusion). If D is the support of a closed directed walk in a
topology T , then Reach(U) �m Reach(T ) where U results from the fusion of
D in T .

20



Proof. By induction on the cardinality of D. The base case D = ∅ follows
from the observation that the fusion of ∅ in T is identical to T except that
it contains one additional process that is not connected to any channel. For
the induction step, let D be a non-empty set of channels, and assume that
the proposition (“if . . . then . . . ”) holds for all proper subsets of D. Denote
by U the fusion of D in T . By definition, there exists a closed directed walk
p0

c1==⇒ p1
c2==⇒ · · ·

cn==⇒ pn = p0 in T whose support is D = {c1, . . . , cn}. If this
directed walk is also a directed cycle, i.e., p1, . . . , pn are pairwise distinct, then
we conclude thanks to Lemma 4.2. Otherwise, there exist 1 ≤ k ≤ l ≤ n such

that pk−1
ck==⇒ pk

ck+1

===⇒ · · ·
cl==⇒ pl is a directed cycle. By Lemma 4.2, it holds

that Reach(T̂ ) �m Reach(T ) where T̂ results from the fusion of {ck, . . . , cl}
in T . Denote by p̂ the process in T̂ that corresponds to the merging of all
endpoints of {ck, . . . , cl}. Let D̂ = D \ {ck, . . . , cl}. The closed directed walk

p0
c1==⇒ p1

c2==⇒ · · ·
cn==⇒ pn = p0 of T gives rise to a closed directed walk in T̂ with

support D̂. Indeed, the latter is obtained by collapsing, into p̂, all pi−1
ci==⇒ pi

with 1 ≤ i ≤ n and ci ∈ {ck, . . . , cl}. Observe that U also results from the
fusion of D̂ in T̂ . Since D̂ is a proper subset of D, we derive from the induction
hypothesis that Reach(U) �m Reach(T̂ ) �m Reach(T ), which concludes the
proof of the proposition. ⊓⊔

C Proofs for Section 5

C.1 Technical Details for Subsection 5.1

Recall that ξ = (p0, c1, q1, p1, . . . , cn, qn, pn) is a jumping cycle in T , and that

p0
c1=== q1 ≈D1

p1 · · ·
cn==== qn ≈Dn

pn

for some pairwise disjoint subsets D1, . . . , Dn of C \ {c1, . . . , cn} that are each
the support of a closed directed walk in T . Recall also that U0 = T and that
Ui results from the fusion of Di in Ui−1, for each 1 ≤ i ≤ n. It follows from
Definition 4.1 that Ui = 〈Pi, Ci,M, srci, dsti,msgi〉 satisfies:

Pi = (Pi−1 \ {src(c), dst(c) | c ∈ Di}) ∪ {ui}

Ci = Ci−1 \Di

srci(c) = fi(srci−1(c))

dsti(c) = fi(dsti−1(c))

msgi(c) = msgi−1(c)

where ui is a new process that is not in Pi−1 ∪ Ci−1 ∪Mi−1, and fi : Pi−1 → Pi

is defined by fi(p) = p if p ∈ Pi and fi(p) = ui otherwise. Put differently,
the function fi maps each process p in Pi−1 to either ui if p is among the
endpoints of Di, or p otherwise. Let us introduce the functions g0, . . . , gn defined
by gi = fi ◦ · · · ◦ f1. It is understood that g0 is the identity function on P .
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It is readily seen that Ci = C \ (D1 ∪ · · · ∪Di) for every 1 ≤ i ≤ n. Moreover,
srci(c) = gi(src(c)) and dsti(c) = gi(dst(c)) for all c ∈ Ci. It follows that for

every processes p, q ∈ P and for every channel c ∈ Ci, if p
c

==⇒ q in T , then
gi(p)

c
==⇒ gi(q) in Ui. We derive the following property.

Claim. For every 0 ≤ i < j ≤ n, there exists in Ui a closed directed walk whose
support is Dj and that visits gi(qj) and gi(pj).

Proof. Let 0 ≤ i < j ≤ n. Recall that Dj is the support of a closed directed walk
π in T . Since qj ≈Dj

pj in T , π necessarily visits both qj and pj . Observe that
Dj ⊆ Ci. So by applying gi to each process in π, we obtain a closed directed
walk in Ui whose support is Dj and that visits gi(qj) and gi(pj), which concludes
the proof of the claim. ⊓⊔

This property entails the two following facts, that are used without proof in
Subsec. 5.1.

– For all 1 ≤ i ≤ n, the set Di is the support of a closed directed walk in Ui−1.

– ξ leads to a closed undirected walk gn(p0)
c1=== gn(p1) · · ·

cn==== gn(pn) in Un.
This follows from the observation that, for all 1 ≤ i ≤ n,
• Cn = C \ (D1 ∪ · · · ∪Dn) and each Dj is contained in C \ {c1, . . . , cn},

hence, ci ∈ Cn.
• gi−1(qi) and gi−1(pi) are among the endpoints of Di in Ui−1, which entails
that gi(qi) = ui = gi(pi), hence, gn(qi) = gn(pi).

C.2 Proof of Lemma 5.4

Lemma 5.4. Consider a topology T and an essential non-unary channel c

therein. Let U be the topology obtained from T by adding an acknowledgement
channel for c. Then T contains a jumping cycle if U contains a jumping cycle.

Proof. We first fix some notations. Assume that T = 〈P,C,M, src, dst,msg〉.
Consider the topology U = 〈P,C ′,M, src′, dst′,msg′〉 defined by C ′ = C ∪ {←−c }
and

(src′(d), dst′(d),msg′(d)) =

{

(src(d), dst(d),msg(d)) if d ∈ C

(dst(c), src(c), {1}) if d =←−c

where ←−c is a new channel that is not in P ∪ C ∪M . Suppose that U contains a
jumping cycle (p0, c1, q1, p1, . . . , cn, qn, pn). It follows from Remark 5.2 that, in
the topology U ,

p0
c1=== q1 ≈D1

p1 · · ·
cn==== qn ≈Dn

pn = p0

for some pairwise disjoint subsets D1, . . . , Dn of C ′ \{c1, . . . , cn}. By Remark 5.1,
it is enough to show that T contains a jumping circuit. Observe that ci 6=

←−c
for all 1 ≤ i ≤ n, since ←−c is a unary channel. If ←−c is not in D1 ∪ · · · ∪Dn, then
(p0, c1, q1, p1, . . . , cn, qn, pn) is a jumping circuit in T , and we are done. Otherwise,
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←−c is contained in exactly one of the sets Di. We may assume, w.l.o.g., that
the set Di containing

←−c is D1. If q1 and p1 are synchronizable over D1 \ {
←−c },

then, again, (p0, c1, q1, p1, . . . , cn, qn, pn) is a jumping circuit in T , and we are
done. So we suppose, for the remainder of the proof, that q1 and p1 are not
synchronizable over D1 \ {

←−c }. Note that this entails, in particular, that p1 6= q1.
Define E1 = D1 \ {c,

←−c }. The existence of a jumping circuit in T will follow from
the two following properties:

c ∈ D1 (3)

(p ≈E1
p1 ∧ q ≈E1

q1) or (p ≈E1
q1 ∧ q ≈E1

p1) (4)

where p and q are the source and destination of c, respectively. Let us prove
these properties. Since q1 ≈D1

p1 in U , there exists a directed path π from p1
to q1, and a directed path χ from q1 to p1, such that both π and χ use only
channels in D1. Moreover, at least one of them contains ←−c , since q1 and p1 are
not synchronizable over D1 \ {

←−c }. The concatenation π · χ is a closed directed
walk containing ←−c . By essentiality of c, this closed directed walk necessarily
contains c (since ←−c has source q and destination p). We have shown that π · χ
contains both c and ←−c . We derive that c ∈ D1, i.e., that (3) holds. Moreover,
since π and χ are open6 directed paths, we obtain that:

– Either π contains exactly one occurrence of c and no occurrence of ←−c , and
χ contains exactly one occurrence of ←−c and no occurrence of c. So we may
decompose π and χ into

π = π′ · p
c

==⇒ q · π′′ and χ = χ′ · q
←−c
==⇒ p · χ′′

where π′, π′′, χ′ and χ′′ are directed paths that neither contain c nor ←−c , i.e.,
that use only channels in E1. The paths π′ and χ′′ show that p ≈E1

p1, and
the paths π′′ and χ′ show that q ≈E1

q1.

– Or π contains exactly one occurrence of ←−c and no occurrence of c, and χ

contains exactly one occurrence of c and no occurrence of←−c . We obtain, with
the same arguments as in the previous case, that p ≈E1

q1 and q ≈E1
p1.

We obtain in both cases that (4) holds.

Let us exploit the properties (3) and (4) to transform the jumping cycle
(p0, c1, q1, p1, . . . , cn, qn, pn) into a jumping circuit that does not use ←−c . Recall
that ←−c 6∈ {c1, . . . , cn} ∪D2 ∪ · · · ∪Dn. So

←−c is only used in q1 ≈D1
p1. Expand,

in the jumping cycle, (q1, p1) into (q1, p, c, q, p1) or (q1, q, c, p, p1), depending on
which disjunct of (4) holds. The resulting sequence is a jumping circuit in T .
Indeed, it follows from (3) that c was not already among c1, . . . , cn, and that
c 6∈ Di for all 2 ≤ i ≤ n. This concludes the proof of the lemma. ⊓⊔

6 A directed walk is called open when it is not closed, i.e., when it starts and ends in
distinct processes.
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C.3 Proofs of Corollary 5.5, Lemma 5.7 and Lemma 5.8

Corollary 5.5. Consider a topology T and an essential non-unary channel c
therein. Let U be the topology resulting from the synchronisation of c in T . Then
T contains a jumping cycle if U contains a jumping cycle.

Proof. Assume that U contains a jumping cycle (p0, c1, q1, p1, . . . , cn, qn, pn). Let
V be the topology obtained from T by adding an acknowledgement channel ←−c
for c. It is readily seen that (p0, c1, q1, p1, . . . , cn, qn, pn) is also a jumping cycle
in V. It follows from Lemma 5.4 that T contains a jumping cycle. ⊓⊔

Lemma 5.7. Consider a topology T and a non-unary channel c therein. If T is
divided, then so is the topology resulting from the synchronisation of c in T .

Proof. We assume that T and U are given as in Definition 3.3. Consider an
irreversible unary channel b in U . Observe that no channel in C ′ \C is irreversible.
It follows that b is also a unary channel in T . Furthermore, its destination is the
same process in T and U , say r. It is routinely checked that b is also irreversible
in T . Since T is divided and c is non-unary, we obtain that r is neither the source
nor destination of c. Moreover, in T , r is a sink and is not the destination of
some non-unary channel. It follows that these two properties also hold in U . ⊓⊔

Lemma 5.8. If T is a divided topology with no jumping cycle, then every non-
unary channel in T is essential.

Proof. Consider a non-unary channel c in T , with source p and destination q.
Assume, by contradiction, that c is not essential. This means that there exists a
directed path π from p to q that does not contain c.

We first show that c is irreversible. If q
∗

==⇒ p, then there is a directed path
from q to p that does not contain c. It follows that (p, c, q, p) is a jumping cycle
in T , which contradicts the assumption that T contains no jumping cycle.

Let us decompose π into a join of directed paths that either remain in the
same strongly-connected component, or contain a single irreversible channel (i.e.,
a channel between two different strongly-connected components). Note that π
contains at least one irreversible channel since there is no directed path from q

to p. Formally,

π = χ0 · p0
c1==⇒ q1 · χ1 · · · pn−1

cn==⇒ qn · χn

where n ≥ 1, each ci is an irreversible channel, and each χi is a directed path
containing only reversible channels. Since T is divided, the channels c1, . . . , cn
are necessarily non-unary. Indeed, if ci is unary, then qi is a sink, hence i = n

and χn has length zero. This entails that qi = q is the destination of the non-
unary channel c, which contradicts the assumption that T is divided. Define
q0 = p and pn = q. Each directed path χi starts in qi and ends in pi. Recall
that all channels in χi are reversible. Hence, there exists a directed path χ′i
from pi to qi, and χ′i also contains only reversible channels. We derive that
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qi ≈D pi for all 0 ≤ i ≤ n, where D = C \ {c, c1, . . . , cn}. Consider the sequence
ξ = (p0, c1, q1, p1, . . . , cn, qn, pn, c, p, p0). The channels c, c1, . . . , cn are pairwise
distinct since π is a directed path that does not contain c. We obtain that ξ is a
jumping circuit, which, together with Remark 5.1, contradicts the assumption
that T contains no jumping cycle. ⊓⊔

C.4 On Remark 5.6

The following fact is not used to prove Theorem 5.3, but it was mentioned in
Remark 5.6.

Lemma C.1. Consider a topology T and an essential non-unary channel c
therein. Let U be the topology resulting from the synchronisation of c in T . Then
T contains a jumping cycle only if U contains a jumping cycle.

Proof. We assume that T and U are given as in Definition 3.3. Suppose that T
contains a jumping cycle

p0
c1=== q1 ≈D p1 · · ·

cn==== qn ≈D pn = p0

where D = C \ {c1, . . . , cn}. By Remark 5.1, it is enough to show that U
contains a jumping circuit. Let us define D′ = C ′ \ {c1, . . . , cn}. Observe that
D′ = (D \ {c}) ∪ {cm | m ∈ msg(c)} ∪ {cack}. We derive that ≈D′ contains
≈D. Hence, qi ≈D′ pi for every 1 ≤ i ≤ n. If c 6∈ {c1, . . . , cn} then we get
that (p0, c1, q1, p1, . . . , cn, qn, pn) is a jumping circuit in U , and we are done.
Otherwise, c ∈ {c1, . . . , cn}. We may assume, w.l.o.g., that cn = c. Observe
that c1, . . . , cn−1 are pairwise distinct non-unary channels in U . Moreover, it
holds that pn−1 ≈D′ qn since cn = c. By transitivity of ≈D′ , we obtain that

qn−1 ≈D′ pn. So we may remove pn−1
cn==== qn from the sequence. To prove that

the resulting sequence (p0, c1, q1, p1, . . . , cn−1, qn−1, pn) is a jumping cycle in U ,
we only need to show that n ≥ 2. By contradiction, suppose that n = 1. This
means that (p0, c, q1, p1) is a jumping cycle in T , It follows that p ≈D q and
c 6∈ D. Hence, there exists a directed path from p to q using only channels in D,
which contradicts the assumption that c is essential. ⊓⊔

C.5 Proof of Theorem 5.9

Theorem 5.9. ReachNJC is equivalent to reachability in Petri nets under
polynomial-time many-one reductions.

Proof. Let S = 〈T , {Ap}p∈P 〉 be a system of communicating processes over
a decidable topology T = 〈P,C,M, src, dst,msg〉. We reduce the reachability
problem in S to the reachability problem of a Petri net of size polynomial in |S|.

Recall that our decidability argument involves a series of polynomial many-
one reductions from the original topology T comprising unary and non-unary
channels into a final topology U containing only unary channels.
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The first reduction step involves splitting irreversible unary channels in T .
Every such channel c is replaced by two unary channels c1 and c2. A new process
is added to match the contents of c1 and c2. We thus obtain a new topology with
at most |C| extra processes and |C| extra channels. The system S is transformed
into another system S0 where the extra processes have 2 states and 2 transitions
each, i.e., constant size. Thus, |S0| = |S|+O(|C|) = O(|S|).

All the subsequent reduction steps consist of making (essential) non-unary
channels synchronous by replacing them with unary channels (see Sec. 3). More

precisely, each reduction step replaces a non-unary channel p
c

==⇒ q by |msg(c)|
unary channels from p to q, plus one unary channel back from q to p. Thus,
the number of channels in the topology increases by

∑

c∈C |msg(c)|. Regarding
the alphabet size, since the original channel c is replaced by |msg(c)|+ 1 unary
channels, the total alphabet size is increased just by O(|C|). Consequently, the
size of the topology is increased by O(|C|+

∑

c∈C |msg(c)|).
In the resulting topology, every transmission of message m by process p on

channel c is replaced by a transmission on the corresponding unary channel cm,
followed by a reception of an acknowledgement from q on the back channel. Thus,
each communication transition on a non-unary channel c in S0 results in two
transitions and an intermediate state in the new system S ′. Since each transition
in S0 is replaced at most once, the size of S0 is increased by at most 2·

∑

p∈P | →
p |.

In the end, we obtain: |S ′| = |S0|+O(|C|+
∑

c∈C |msg(c)|) +O(
∑

p∈P | →
p |) =

O(|S|).
Clearly, unary channels can be interpreted as counters. Thus system S ′ can

be interpreted as a counter machine (or equivalently a Petri net) with at most
2|C| +

∑

c∈C(|msg(c)| + 1) counters (split channels + synchronised channels)
whose control is obtained by taking the disjoint union of the controls of at most
|P | + |C| processes. Notice that this does not require to compute the product
of the processes. Thus the counter machine has size linear in |S ′|. Clearly, the
counter machine has an accepting run iff JS ′K has an accepting run iff JSK has
an accepting run. ⊓⊔
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