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Abstract :

The objective of this work is to solve within a standard finite element software, the direct-retrograde
coupled time hyperbolic problems that arise when dealing with the identification of material parameters
in dynamic in presence of corrupted measurements by means of the adjoint state approach. This ques-
tion has given rise among others to Riccati methods and shooting methods. Those methods have several
drawbacks, namely their numerical complexity and the fact that their implementation in a commercial
software would require to entirely re-design the implementation, which is nearly impossible. Therefore
we are seeking an iterative method which could be easily implemented. The proposed method solves
alternatively a direct problem and a retrograde one. In order to ensure its convergence a relaxation
scheme is applied and optimized. Comparisons between the proposed approach and Riccati and shooting
methods in terms of complexity, numerical cost and robustness are given in the case of an elastic bar.

Résumé :

L’objectif de ce travail est de résoudre, par la méthode des éléments finis, un problème temporel hy-
perbolique direct-rétrograde qui se pose lorsqu’il s’agit d’identifier des paramètres matériaux en dyna-
mique en présence de mesures corrompues par l’approche de l’état adjoint. Cette question a donné
lieu entre autres à des méthodes de Riccati et aux méthodes de tirs. Ces méthodes présentent plu-
sieurs inconvénients, notamment leurs complexités numériques et le fait que leur mise en œuvre dans
un logiciel commercial exige de reconcevoir totalement l’implémentation, ce qui est impossible. C’est
pourquoi nous recherchons une méthode itérative qui pourrait être facilement implémentée. La méthode
proposée permet de résoudre alternativement un problème direct et un problème rétrograde. Afin de
garantir la convergence, un schéma de relaxation est appliqué et optimisé. Des comparaisons de la
méthode proposée avec les méthodes de Riccati et les méthodes de tirs en termes de complexité, de coût
de calcul et de robustesse sont présentées sur le cas d’une barre élastique.

Keywords : waveform relaxation ; intrusives methods ; dynamics ; identification ; time
direct-retrograde problem

1 Introduction

The identification of physical structural parameters is a difficult task especially in the context of
transient dynamics. Therefore this domain has given rise to a lot of proposals and dedicated methods
[2, 3, 4, 6, 12, 13]. A difficulty is that those methods often need to design new specialized softwares.
This is also the case of the method we proposed in order to deal with the identification of the dynamic
behavior of laminated composites up to failure [1, 4, 10, 14]. We are thus seeking a method which
could be used in a standard finite element code with as few implementation as possible. This paper is
a first step in that direction.

The type of inverse problem we are focused on concerns the identification of material parameters in
dynamics in the case of corrupted measurements. The identification strategy used is based on the
concept of the modified error in the constitutive relation [7].
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The minimization of the functional under constrains associated to the formulation leads to coupled
direct-retrograde wave propagation problems which exhibit exponential solutions, thus making the
problem highly ill-conditioned. This problem has previously been solved by combining two technics :
the resolution of an algebraic equation of Riccati [3, 9], which in the non-linear case was adressed using
the LATIN method to solve iteratively the problem globally on the whole time interval [1, 10, 14].
The implantation of those two methods within a commercial software is beyond what can be done in
a research team.

The basic idea of the proposed method is to solve alternatively, starting from an initial guess, a
sequence of direct and retrograde differential equations. A waveform relaxation is needed to improve
the convergence especially for wide time range. A numerical example shows the feasibility of the
method and comparisons with Riccati and shooting methods are given.

2 Description of the problem

2.1 The reference model

In this paper we have restricted the application of the method to a homogeneous isotropic linear
elastodynamic structure whose characteristics (Young’s modulus Eref, Poisson’s ratio νref and density
ρref) are known. However the method can be applied to more complicated cases. Nevertheless this
simplified development of the strategy based on the concept of the modified error in the constitutive
relation in presence of corrupted measurements in transient dynamics [7] here allows to test the
capabilities of the method. Moreover, work to extend the method to the nonlinear case is in progress.
The reference model consists in an elastic bar of length L (see Fig.1) that satisfies the following
boundary conditions :
– on the border x = 0, the structure is embedded ;
– on the border x = L, a half-sine chap load Fexp(t)

t∈[0, T ]
is applied.

E
ref

, ν
ref

, ρ
ref

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

-
F

ext
(t)

O t

F
ext

(t)

Figure 1 – The reference problem

2.2 Experimental data

Direct calculation is obtained by means of an implicit θ-method ; experimental displacement u and
experimental load σ are then obtained by solving the following problem :

equilibrium equation : ρref
∂2u

∂t2
(x, t)− ∂σ

∂x
(x, t) = 0 (1a)

constitutive relation : σ(x, t) = E
ref

∂u

∂x
(x, t) (1b)

initial conditions : u(x, 0) = u0 and
∂u

∂x
(x, 0) = v0 (1c)

boundary conditions : u(0, t) = 0 and Sσ(L, t) = F
ext

(1d)

The resolution of the direct problem provides the boundary conditions in displacements and forces
on the given finite-time interval [0, T ]. Perturbations such as white noise are then added in order to
simulate real measures :
– measured displacements : ũd at x = 0 and x = L ;
– measured forces : f̃d at x = 0 and x = L.
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3 The inverse problem

3.1 Formulation of the inverse problem
Our aim is to find the suitable space-time fields u and σ depending on the Young’s modulus E that at
the same time satisfies the constitutive relation and minimizes the distance to experimental datas ũd
and f̃d. The question is about finding a compromise between these equations considered as uncertain
under the constrains of reliable ones (i.e. : equilibrium and time initial conditions). The inverse problem
associated to the identification strategy based on the modified error in the constitutive relation [7, 8]
can then be written as follows :
Find the fields u, σ, ud, fd minimizing (2) :

J (u, σ, ud, fd) =

∫ T

0

{
1

2

∫ L

0
E−1 (σ − Eε)2 dx+

α

2

∣∣∣∣(fd − f̃d)2∣∣∣∣L
0

+
β

2

∣∣∣(ud − ũd)2∣∣∣L
0

}
dt (2)

Under the constrains : − ρrefü+ div(σ) = 0 and u(x, 0) = u0 and u̇(x, 0) = v0 (3)

3.2 Adjoint problem and derivation
The inverse problem involves the minimization of the cost function (2) under constrains (3). The
searched fields would be the ones for which the saddle point of the Lagrangian (4) is reached :

LE (u, σ, ud, fd, u
∗, λ, µ) = JE (u, σ, ud, fd)−

∫ T

0

{∫ L

0
(ρrefü− div (σ))u∗dx

}
dt

−
∫ T

0
|(u− ud)λ|L0 dt−

∫ T

0
|(σ.n− fd)µ|L0 dt

(4)

– u∗ is the Lagrange’s mutliplier associated to the model error ;
– λ is the Lagrange’s mutliplier for relaxation of the displacements boundary conditions ;
– µ is the Lagrange’s mutliplier for relaxation of the efforts boundary conditions.
This leads to the system (5) which is given in the strong form over ]0, L[ by :

σ (x, t) = E.
(
u,x (x, t) + u∗,x (x, t)

)
ρrefü (x, t)− E.u,xx (x, t)− E.u∗,xx (x, t) = 0
ρrefü

∗ (x, t)− E.u∗ (x, t),xx (x, t) = 0
(5)

The solution must satisfy the time initial and final conditions and the space boundary conditions (6) :

{
u (x, 0) = u0, u̇ (x, 0) = u̇0
u∗ (x, T ) = 0, u̇∗ (x, T ) = 0


E
(
u,x(0, t) + u∗,x(0, t)

)
= 1

βu
∗(0, t) + f̃0d (t)

E
(
u,x(L, t) + u∗,x(L, t)

)
= −1

β u
∗(L, t) + f̃Ld (t)

Eu∗,x(0, t) = −α
(
u(0, t)− ũ0d(t)

)
Eu∗,x(L, t) = α

(
u(L, t)− ũLd (t)

) (6)

The system (5) is then projected into a classical finite element space. This leads to the differential
equations (7) in which the searched direct and retrograde fields are respectively the unknown nodal
vectors U and U∗ :  M Ü(t) + K U(t) =

(
K̂ −K

)
U∗(t) + F̂ (t)

M Ü∗(t) + K U∗(t) = − ˆ̂
K U(t) +

ˆ̂
F (t)

(7)

U and U∗ must also satisfy the following initial and final conditions in time (8) :{
U(0) = U0, U̇(0) = U̇0

U∗(T ) = 0, U̇∗(T ) = 0
(8)

– M et K are respectively the mass and the stiffness matrices ;

– K̂ =


−1
α

0 . . . 0 0
0 0 . . . 0 0
...

... . . .
...

...
0 0 . . . 0 0

0 0 . . . 0 −1
α

 , F̂ (t) =


−f̃0d (t)

0
...
0

f̃Ld (t)

 ,
ˆ̂
K =


β 0 . . . 0 0
0 0 . . . 0 0
...

... . . .
...

...
0 0 . . . 0 0
0 0 . . . 0 β

 and
ˆ̂
F (t) =


−βũ0d(t)

0
...
0

−βũLd (t)
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Classical incremental methods can not be applied due to the presence of coupling between the forward
and backward equations in the system (7-8). Various methods have been proposed in the literature
[2, 3, 4, 6, 14] to address this type of system.

4 Resolution of the inverse problem using a waveform relaxation
method

4.1 Towards a non intrusive method
One can transform the systems (7 and 8) into the first-order state-space system (9) :{

Ẏ (t) = QY (t) +G(t), Y (0) =
(
U̇0, U0

)′
= Y0

Ż(t) = QZ(t) +H(t), Z(T ) = 0
(9)

with :
– Y (t) =

(
U̇(t), U(t)

)′
, Z(t) =

(
U̇∗(t), U∗(t)

)′
being the state vectors ;

– P =

(
0 M−1

(
K̂ −K

)
0 0

)
, Q =

(
0 M−1K
−I 0

)
and R =

(
0 M−1

ˆ̂
K

0 0

)
being constant ma-

trices of dimension 2n (n is the number of degrees of freedom (d.o.f.)) ;

– G(t) =
(
M−1F̂ , 0

)′
, H(t) =

(
M−1

ˆ̂
F, 0

)′
being the input vectors.

The application of the method of successive approximations [5, 11, 15] to the system (9) leads to the
following process (10) :{

Ẏ (k)(t) = QY (k)(t) + PZ(k)(t) +G(t), Y (k)(0) = Y0
Ż(k+1)(t) = QZ(k+1)(t) +RY (k)(t) +H(t), Z(k+1)(T ) = 0

(10)

This iterative procedure consists in solving alternatively the subsystem with initial time values forward
from t = 0 to t = T , then the other subsystem with final time values backward from t = T to t = 0.
Starting with a given initial guess field Z0, the calculation procedure is continued until convergence.
During the resolution of a subsystem, the coupled fields are considered as data, obtained from the
previous calculation over the range [0, T ]. However, the redundancy of the boundary conditions and
the instability due to the presence of an exponentiel phenomena in the solutions of the homogenous
equation associated to the reference problem [11] are the main reasons why no convergence arises from
such an iterative scheme.

4.2 Relaxation method
To help the convergence, the idea of the previous scheme is maintained, but a relaxation scheme is
applied. The evaluation of the forward field Y (t)

t∈[0, T ]
at the (k + 1)th iteration is obtained from a

weighted sum of the fields Z(t)
t∈[0, T ]

calculated at the (k + 1)th iteration and that calculated at the

kth iteration.Following this line, equation (10) becomes a recurrence process :

1. Initialization is performed by an initial guess Z(0) of the retrograde field, followed by an initial
evaluation Y (0) of the direct field by solving : Ẏ (0) = QY (0) + PZ(0) +G with Y (k)(0) = Y0

2. At step k, the direct and retrograde fields Y (k) and Z(k) are known. Then the fields Z(k+1)

and Y (k+1) are determined respectively by means of (a) the retordrade equation and its final
condition in time and (b) the direct equation and its initial condition in time

(a) Ż(k+1)(t) = QZ(k+1)(t) +RY (k+1)(t) +H(t), with Z(k+1)(T ) = 0

(b) Ẏ (k+1)(t) = QY (k+1)(t) + P
(
ωZ(k+1) + (1− ω)Zk(t)

)
+G(t), with Y (k+1)(0) = Y0

4.3 Numerical tests
In our experiments, the basic solver used is the implicit θ-method with θ = 1

2 (trapezoidal rule) and
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the time-step is 0.36µs for a given finite time interval [0, 0.63ms]. The direct calculation is used to
create measurements on a bar (Fig.1) of section S = 1cm2, length L = 1m and material parameters
Eref = 200GPa, νref = 0.3 and ρref = 800kg.m−3. White noise perturbations are then added in order
to simulate real measures.

To deal with the relaxation scheme, the initial guess field is set to zero and the error tolerance is 10−4.
The error used here is the holy norm of the differential equations (9). Plots in Fig.2-a gives an idea
of the effect of noise on the convergence of the method. Although there is a wide choice of relaxation
coefficients for which a few relaxation-iterations are spent until convergence, the nearest values to 1
are considered the best ones ; otherwise we do not have a real relaxation. We report on the right side
(see Fig.2-b) errors versus the number of the relaxation iterations arising from the costless values of
the relaxation coefficients obtained from the left side one.
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Figure 2 – Convergence of the relaxation method for a coupled system with various SNR ratios

Algorithm complexities of the proposed relaxation method, the Riccati method and the shooting
method are evaluated by calculating the number of Multiply-And-Accumulate (MAC) operations
needed to solve the above coupled problem (see Tab.1). According to this numerical test, the relaxation
method looks more suitable than other ones : indeed its complexity is O(42kmn2) while the Riccati
method is O(mn4) and the shooting method is O(320mn3), with k, m and n denoting respectively the
number of relaxation iterations, the number of time steps and the number of d.o.f.

Method Number of MAC operations

Riccati m(n4 + 16n3 + 68n2 + 86n+ 15) + n4 + (983 )n3 + 121n2 + 132n+ 25

Shooting m(320n3 + 160n2 + 42n+ 5) + 256n4 + 128n3 + 56n2 + 2n+ 12

Relaxation k(42n2m+ 7nm− 24n2 + 1)

Table 1 – MAC operations for the proposed method, the Riccati method and the shooting method

An evaluation of the algorithm complexity for various number of d.o.f. is given in Fig.3-a. It confirms
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Figure 3 – Robustness of the relaxation method compared to the Riccati and the shooting methods.
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not only the efficiency of the relaxation method but also its reliability compared to the other methods.
Robustness of the method to noise is also guaranteed : according to Fig.3-b, Young’s modulus were
properly identified even for an SNR value up to 2.5.

5 Conclusions
For a system of time coupled direct-retrograde second order differential equations here derived in the
case of an elastic bar, we proposed an iterative method that requires a reduced implementation time,
and for which convergence is guaranteed by a relaxation approach. Numerical tests presented here
tend to show the better efficiency and robustness of the proposed method compared to Riccati or
shooting methods.

Although only the one dimensional elastic problem has been studied here, the same approach can
directly be used for other linear two-point boundary value problems. The case of nonlinear materials
is now under consideration.
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[10] Ladevèze P. (1999). Nonlinear Computational Structural Mechanics - New Approaches and Non-
Incremental Methods of Calculation. Springer-Verlag. Nb pages 220.

[11] Raffort L. (1982). Convergence of relaxation methods for two-point boundary-value linear pro-
blems. Systems and Control Letters. Vol 2. Num 3. Pages 184-188.

[12] Roberts S.M. and Shipman J.S. (1967) Continuation in shooting methods for two-point boundary
value problems. Journal of mathematical analysis and applications. Vol 18. Num 1. Pages 45-58.

[13] Rota L. (1969). An inverse approach for identification of dynamic constitutive equations. In Ed
A.A.Balkema, editor, Int. Symposium on Inverse Problems. Pages 251-256.

[14] Sundararajan P. and Noah S. T. (1998). An algorithm for response and stability of large order
nonlinear systems - application to rotor systems. Journal of Sound and Vibration. Vol 214. Num 4.
Pages 695-723.

[15] Wendi B. and Yongzhong S. (2011). Two stage waveform relaxation method for the initial value
problems of differential-algebraic equations. Journal of Computational and Applied Mathematics.
Vol 236. Pages 1123–1136.

6


