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ABSTRACTJoints between substructures play a significant role in tibeational behavior of
complex structures because they govern energy flow and rinthet dissipative phenomena. In
order to identify joint models, this paper proposes a rohuygtating method which was initially
based on studies of the error in constitutive relation iratin to finite element model updating.
Here, it is redesigned in order to focus on joint models in imedfrequency problems. In order
to do that, we use an alternative numerical approach called\fariational Theory of Complex
Rays (VTCR). After introducing the new formulation, thegragnalyzes the effectiveness of the
approach in identifying a joint’s stiffness and damping.

RESUME.Les liaisons entre sous-structures jouent un role crucehglla réponse vibratoire
d’'une structure complexe, en régissant les transfertsgéigjues ainsi qu’'une grande partie
de la dissipation. Pour identifier ces modéles de liaisortr@eail s'inspire d’'une méthode de
recalage robuste, initialement basée sur les travaux snréur en relation de comportement
pour la correction de modeéles éléments finis. La formulaéshrevisitée pour se concentrer
sur le probléme des jonctions en moyennes fréquences. g uae approche numérique al-
ternative aux éléments finis, la théorie variationnelle dg®ns complexes (TVRC) est utilisée.
Apres avoir présenté la nouvelle formulation, nous étuslitetficacité de cette approche pour
I'identification des paramétres de raideur et d’amortissetnd’une liaison.

KEYworDSmedium frequency, joints, damping, updating, VTCR, im/preblem, domain de-
composition methods

MOTS-CLES moyennes fréquences, liaisons, amortissement, recala&fRC, probléme inverse,
décomposition de domaine
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1. Introduction

The treatment of dissipation is of primary importance ink&gg the numerical
response of vibrating structures. In many real systemscanalecompose the struc-
ture into simple linear viscoelastic substructures andmler) coarsely modeled in-
terfaces. The behavior of joints, which usually involvempbex dissipative phenom-
ena (micro/macro frictional contact, microshocks, hegtin.), must be accounted
for because in vibration problems energy losses affect thgnitude of the struc-
tural response directly. In addition, the stiffness of §einan significantly influence
how the injected power is distributed among the differettsswctures. Regarding
the low-frequency range, updating methods for joints hakeady been the subject
of much research (Mottersheati al., 1993; Deraemaeker, 2001); for high frequen-
cies, the identification of coupling loss factors (Magital., 2001) is an unavoidable
step of methods derived from Statistical Energy AnalysiEAB(Lyon, 1975). Be-
tween these two extremes, medium frequencies present wiffjoulties because of
their high modal density and their high sensitivity to boandconditions. This pa-
per presents a method for updating joint parameters - in asg,goint stiffness and
damping - with special emphasis on the robustness of thimtqae.

Different methods are available in order to deal with vasitypes of inverse phys-
ical problems (Bonnett al., 2005). Our method uses theodified error in constitutive
relationapproach (Ladevézt al,, 1999), which is derived from the well-known con-
cept of error in constitutive relation for the quantificatiof finite element discretiza-
tion errors (Ladevezet al, 1983). Starting with a complete set of available infor-
mation coming from the numerical model as well as experiaentasurements, the
method consists in dividing the corresponding equatiotwstimo groups according to
their reliability. The reliable equations (in relation toth the numerical model and
the experimental model) are to be satisfied exactly, whiauttreliable equations can
be solved approximately through the minimization of a casttion. In the case of a
joint modeling problem, the equations of the continuous ehade divided as follows:
the substructures are considered to be reliable compqgrvemie the joint equations
- including the model parameters which need to be identifiae-unreliable parts of
the structure. Regarding the experimental informatioadications and directions of
the sensors and the prescribed angular frequency andtéxcitarce are assumed to
be reliable. The quantities measured by the sensors, whéchnavoidably noisy, are
considered unreliable. Table 1 summarizes the charaitsred these different types
of information. The solution of the unreliable equationadhieved by minimizing a
cost function composed of two termsmendeling errorwhich quantifies the satisfac-
tion of the joint equations, and a&xperimental errowhich represents the discrepancy
between the numerical solution and the experimental measamts.

Then, a numerical scheme must be applied in order to solverbielem. In
dealing with medium-frequency problems, classical meshecounter serious dif-
ficulties. Finite element calculations require the use oégyvefined mesh in order
to avoid what one callpollution errorsdue to the small-wavelength phenomena in-
volved (Ihlenburget al., 1997); this leads to sharp increases in computationat cost
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High-frequency methods must be modified in order to releaseesof the SEA as-
sumptions which are no longer valid in the medium-frequenregyme. Among the
various possible methods (Farlatal, 2003; Stroubouligt al., 2006), we chose to
use the Variational Theory of Complex Rays (VTCR) (Ladeveéizal., 2003), which
has been found to be easy to adapt to the separation of théatudiscussed pre-
viously. This Trefftz method consists in building over eatlbstructure two-scale
shape functions which satisfy the dynamic equilibrium dreldonstitutive law of the
substructure exactly. (These equations are considered teliable.) The bound-
ary conditions of each subdomain are applied weakly threughriational equation
which can be viewed as a balance between virtual powers &icitvedaries. In order
to distinguish joint equations from other boundary comdhig, we use a substructured
formulation of the VTCR which was presented in (Doriedlal., 2006). Further de-
tails of the formulation and its discretization can be foim¢{Dorival et al., 2008).

This paper is organized as follows: Section 2 briefly deswrithe formulation.
Section 3 presents the identification of the joint’s stiffs@nd damping parameters
for a simple simulated structure, which illustrates theusibess of the method.

Table 1. The proposed method for carrying out joint updating

Continuous model Experimental model
- Geometry - Angular frequency
Reliable | - Substructure equations: - Sensor locations
Information - local dynamic equilibrium - Sensor directions
- constitutive law - Prescribed forces

- Reliable boundary conditions

- Joint equations: - Measured amplitudes
Unreliable - constitutive law of the joint (with noise)
information - dynamic equilibrium of the joint

2. Formulation of the inverse problem using a substructuredTrefftz method
2.1. A substructured Trefftz method for the equations of the contous model

This first section deals with the equations of the continumasiel alone. The
experimental equations will be introduced in the next secin order to produce an
inverse problem. The approach is based on a substructurgidivef the VTCR which
was detailed in (Dorivaét al, 2006). For the sake of simplicity, let us consider two
substructures); ;—1 2 and denote the displacement field and the stress tensord
g, respectively.

The substructureQ; are distinct from the joint" to be identified (see Figure 1).
The joint is considered to be a real substructure with its eguations and interface
unknowns denote®’, and £, (which are distinct from the unknowns of the adjacent
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substructures). Interface forcﬁs are applied to each substructure. The equations
of the substructures are considered to be reliable andisdtexactly. The numerical
treatment of each substructune involves a classical formulation of the VTCR: the
solution within each substructure is sought as a linear @oation of complex rays
(see Figure 2) which satisfies the local dynamic equilibramd constitutive law ex-
actly. Boundary conditions are applied in variational forin practice, the strong
physical meaning of the shape functions enables one to ugaeery small number
of unknowns - about one hundred per substructure. It is itapoto observe that
the numerical cost does not increase with the frequencyghminsidered. Additional
details on the VTCR can be found in (Ladevétel, 2003). The problems in each
substructurd?; lead to admissibility constraints associated with adrhibi spaces
Sk

(b)

Figure 2. Examples of complex rayéa) interior ray and(b) ray localized at an edge

Joint equations with joint unknow@i andEi must be satisfied. In our case,
we assume that line spring-mass-dampers are distribubed #he interfacé’. The
equations are satisfied by minimizing a residual, calledtiedeling error which is
constructed as follows:

. s
Epa = w5 Jo |Ey + By + 255 (W, + W) 2dl

+ﬁ Jr W, — W, + g(ﬁ1 —E)|?dl [1]
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The line massn and line stiffnesg can vary along the joint and dissipative behavior
can be represented as a complex parbofind k. Then, the joint unknowns are
discretized in the same way as the matching substructumeowrs in order to obtain

a conforming discretization.

The continuous problem consists in minimizing the modeknr E2 ,, under
the admissibility constraints? ;. This is achieved by solving the corresponding la-
grangian problem.

2.2. Experimental information and the inverse problem

In order to produce an inverse problem, experiments ar@peaed on the actual
structure. Let us designate measured quantitie& a#/hen dealing with medium-
frequency vibrations, the hypersensitivity of the struetvequires the use of non-
classical measurement techniques. Indeed, intrusivaigpeds modify the structure’s
mass and stiffness locally, and pointwise measurementgdaronly very local infor-
mation. Laser vibrometry, which is widely used in high-faeqcy measurements, is
an appealing technique to overcome these difficulties kscaus nonintrusive and
can provide field measurements capable of capturing theleeay phenomena which
occur in this frequency range.

Given a set of measurement poids, , let us define the followingneasurement
error in order to quantify the distance between the simulation thedexperimental
results:

1 ~
Epes = N Z ||2(§m) - Q(gm)HQ (2]

The summation of the measurement error and the modelingleads to thenod-
ified error:

E12nod = (1 - T) E72ndl + TE?nes [3]

wherer is used to balance the two terms according to one’s relatméidence in the
model and in the experiments. /if= 0 is chosen, the modified error only accounts
for the interface model. On the contraryrif= 1, the interface equations have no
weight and the solution tries to satisfy the experimentsiilts at best. For chosen
betweer) andl1, one obtains a solution which is a compromise between theunea
data and the joint model chosen by minimizing the modifiedrarnder admissibility
constraintsS:, , i = 1, 2. Atypical value of0.8 will be used in Section 3.

Since the modified error depends brjoint parametergy, the inverse problem
consists in finding the optimum joint parametgf¥’:

01" = re iy Ert .

The corresponding nonlinear optimization problem can beesbthrough classical
Newton-like methods.
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3. Example of the identification of a joint’s stiffness and danping

3.1. The experimental structure (simulated)

10cm Iw
10cm

Figure 3. Simulated experimental structure consisting of two platmsnected by a
joint

Figure 3 presents a very simple structure consisting of tkatep connected by a
joint. One plate is fixed along an edge and the other is sudiject a harmonic line
shear force with angular frequenecy= 155 Hz. The dots represent measurement
points. The experimental data were simulated by a clas¥it&@R calculation using
the following plate properties: Young’s moduliis = 210e9 M Pa, Poisson’s ratio
v = 0.3, plate thicknes& = 0.0007 m, mass density = 7, 800 kg.m 3, structural
dampinga = 0.01.

For the sake of simplicity, the shear behavior of the joimissumed to be perfectly
rigid and, therefore, the rotational behavior of the joior@ needs to be identified. In
our case, the joint’s rotational stiffness of the “actuaitisture wasky = 10> N.m
and its mass was neglected. Viscous joint damping was asbwittetwo dissipation
levels: a slightly dissipative joint witlp = 0.1 and a highly dissipative joint with
n = 10. At this frequency, the first case dissipateth of the total energy and the
second case’ %. The rotational joint equations are:

ny M, ny +ng M, ny, =20 moment equilibrium
nMn = —ko(1+in) i, constitutive law

whereM,; and; n respectively denote the bending moment and the normalontat
overT'. The overbar notatiom ,, (respectivelyM) represents the average value of
normal rotations (resp. bending moments) avetn order to simulate measurement
noise, the experimental data were perturbeed®0 % uniform random noise.
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In the identification process, a classical valu® éfwas assigned to the weighting
parameter. The inverse problem was discretized usiiiy complex rays 64 inte-
rior complex rays and x9 edge rays for each plate, and the same for the interface
DOFs. In the following section, we investigate the pos#ipdf identifying the joint's
stiffness and damping separately. Indeed, a real strucamreequire the identifica-
tion of a large number of joints, and the optimization problgl] can become very
costly. Therefore, separate identification can be usefuhddition, for identifiability
reasons (Wangt al, 1991), it is advisable to seek the stiffness first, then draging
coefficient. The effectiveness of this approach is studigtié next section.

3.2. Identification of joint stiffness

Noise ¥20%
r=0.8

‘mod

Modified error E
5

Emd —exact 7

e A B2 -y 450%
mod

- B2 -y -50%

mod |
2
2 9
o Enm([ 1 +300%
2 —
mod ~
“““ exact k 0

o E -95%

10 10 10° 10° 10*
Joint’s stiffness kO(N.m)

Figure 4. The negligible influence of an erroneapsn the minimum of the cost func-
tion E2 , (ko) for a slightly dissipative joint. The vertical dotted linepresents the

exact parameter to be identified (where the minimum shoulddaded)

Figure 4 shows the evolution of the modified error when idgintiy the stiffness
of a slightly dissipative jointf = 0.1). The cost function is sufficiently convex to
be minimized without difficulty both for exact and highly eneous damping coef-
ficients. The errors o) have no impact: the identified stiffness is very close to the
exact stiffness represented by a vertical dotted line. Eheasily explained by the
fact that for this slightly dissipative joint (in comparisavith the substructures’ dis-
sipation) the joint's damping coefficient does not play anigant role. Let us note
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that the minimum of the cost function is due to the measurémaise, which has no
influence on the location of the minimum because of the desighe cost function
and the field measurements.

Figure 5 shows the same results for a highly dissipativa jein= 10). With an
exact damping coefficient (continuous line), the jointiffiséss is correctly identified.
This is not true with an erroneous damping coefficient, inchhtase the identified
stiffness differs from the exact value (vertical dottece)in We conclude that for a
highly dissipative joint the damping parametgplays a significant role and must be
modeled accurately in order to recover the correct stifnes

1

10

Noise *20% -

o
©

2
‘mod

FZ

K — exac
mod exact 7

Modified error E
IS

2
/ A Bl 450%
2
= B =1

2
o El —n +300%

=50%

059
o Em(d n -95%

. - T
1 2 3 4

Joint’s stiffness ko (N.m)

Figure 5. The strong influence of an erroneopsn the minimum of the cost function
EZ (ko) for a highly dissipative joint. The vertical dotted line repents the exact
parameter to be identified (where the minimum should be éahat

3.3. Identification of the joint damping

In this section, we address the identification of the joidésnping with particular
emphasis on the influence of an erroneous joint stiffnessunierstand this better,
the measurement noise was removed. The evolution of thefied@irror as a func-
tion of the damping parameterin the case the highly dissipative joint is shown in
Figure 6. The minimization of the cost function leads to thaat damping parameter,
even if the stiffness is highly erroneous. The explanatioquite simple: in the case
of a highly dissipative joint (in comparison with the sulbstiures’ dissipation), the
response is influenced mainly by the damping coefficientclvigads to a very robust
identification ofy.
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In the case of a slightly dissipative joint (see Figure 7§ ¢volution of the cost
function is less affected by the damping parametdf the stiffness is taken equal to
the exact value (continuous line), the damping paramegettified at the minimum of
the cost function is exact. Unfortunately, the existencerodneous joint stiffnesses
perturbs this minimum, or even causes it to vanish, whichendle updating process
even trickier. In this case, the influence of the damping mpetar is not significant
enough because the dissipation in the joint is negligiblegared to the dissipation in
the substructures. Consequently, classical difficultigbé identification of; (Wang
et al, 1991) seem unavoidable.

4. Concluding remarks

In this paper, we presented an updating method for joint nssodéhis technique
uses a suitable separation of all information in order towivent the difficulties re-
lated to medium-frequency vibrations as well as emphakz&déhavior of the joints.
The numerical approach for discretizing the inverse prolflilows exactly the same
lines. The robustness of the method was briefly illustras#dgia simulated structure.
We found that the identification of a joint’s stiffness andrgang by a step-by-step
process cannot be successful if the joint's dissipatiorigh.hin this case, damping
should be identified first. This conclusion is a consequefitkensensitivity of the
response to the two parameters. At this stage, the exper@hihe engineer is of
great importance for industrial applications. Althougk tiumerical framework de-
veloped here turns out to be effective and efficient, furtitiedies should focus on the
derivation of a physically consistent experimental parttfie cost function) suitable
for medium-frequency phenomena.
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