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This paper focuses on efficient techniques for the analysis of complex structures in the medium-
frequency range taking into account elaborate joint behavior. The accurate prediction of the am-
plitude of the response in this frequency range requires sophisticated interface models. Indeed,
experiments on generic assemblies clearly showed that joint stiffness and damping must be taken
into account. We deal with these problems through the use of a dedicated approach, the Varia-
tional Theory of Complex Rays (VIT'CR). This method can be viewed as a means of expressing the
power balance at the different boundaries between substructures (hence the importance of interface
modeling) using two-scale shape functions which verify the dynamic equation and the constitutive
relation, which leads to very low computational costs. Despite the fact that the classical VTCR
formulation is entirely dedicated to such calculations, it has shortcomings. Here, we introduce an
original substructured version of the VITCR which enables the equations of the joints to be sep-
arated from those of the substructures in order to improve the flexibility of the behavior at the
interfaces.

1. Introduction

The prediction of the response of a complex structure in the medium-frequency (MF) range
presents two major difficulties. The first difficulty is that the solution of a problem involves
small-wavelength phenomena. Therefore, using the finite element method (FEM), the cal-
culation of this solution leads to a huge number of degrees of freedom. Indeed, at least seven
elements per wavelength are necessary to represent oscillating solutions properly. Moreover,
since k3h? must remain constant (Deraemacker, et al. 1999), the cost of FE analysis in-
creases with the frequency. The second difficulty is that due to the high modal density in
the MF domain the response is governed mainly by the level and the nature of the dissi-
pative phenomena, whose mechanisms are very difficult to describe, model and measure.
In the case of thin structures - such as car chassis, satellites or submarines -, damping is
localized mainly in the joints between substructures, which can be of different types.
Many research works have been devoted to answering the first point. Some aim at
extending the classical low-frequency approaches (FEM) to the medium-frequency range
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(Farhat, et al. 2001, Farhat, et al. 2003, Harari & Haham 1998). Other approaches, such
as Statistical Energy Analysis (SEA) (Lyon & Maidanick 1967), try to relax some of the
assumptions associated with high-frequency methods in order to become applicable to the
MF domain.

In this study, we use the Variational Theory of Complex Rays (VTCR) (Ladeveze, et al.
2001), which deals with the first difficulty by using two-scale shape functions which verify
the dynamic equations and the constitutive law of the substructures. This leads to a small,
frequency-independent linear system (Rouch & Ladeveze 2003, Ladeveze & Riou 2005). We
focus particularly on the second difficulty.

Noting that one of the specificities of the VI'CR is its variational formulation of all
the boundary conditions between substructures, we concentrate on the modeling of joints
between substructures: this feature allows us to develop the equations of complex interfaces
involving a dissipative part easily, which is necessary to obtain accurate predictions of the
behavior of real structures.

To improve this process, we derive a substructured version of the VI'CR which allows
us to treat interfaces with greater flexibility. Indeed, in the classical version of the VTCR,
all the interface conditions of the entire structure are coupled, which can be exceedingly
involved to improve only some joint equations, for example when updating the transmission
conditions of the structure using experimental data or when analyzing multiresolution prob-
lems. This substructured reformulation is based on a condensation approach which consists
in separating the properly modeled substructures and boundaries from the more inaccurate
complex joints. After the introduction of interface degrees of freedom, one ends up with a
constrained minimization problem.

Finally, in order to predict the behavior of real structures accurately, we introduce models
of complex joints involving a dissipative part. These models were implemented into the
VTCR. We present applications concerning 3D plate assemblies connected by heterogeneous
joints with distributed parameters (such as mass, stiffness and damping) which can be
identified on generic assemblies.

2. A substructured version of the VITCR
2.1. Introduction

The classical version of the VICR (Ladeveze et al. 2001), which will not be detailed in
this paper, is entirely dedicated to the modeling of joints, since it is based on the decom-
position of the structure into simple substructures, which involves transmission conditions.
However, this formulation treats all the boundaries and interfaces of the structure globally,
which makes it cumbersome for studying the vibrations of the same structure with different
joint equations if, for example, one wants to model the interfaces using stochastic inter-
face parameters to describe the dispersion due to the production process. Therefore, after
introducing the reference problem, we derive a substructured version of the VT'CR.

Many substructuration methods have appeared from the beginning of numerical meth-
ods. The first studies were based on modal analysis of each substructures (see the Com-
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ponent Modal Synthesis (CMS) (Hurty 1965)). The Craig-Bampton approach proposes to
compute substructures modes with clamped interfaces (Craig & Bampton 1968). In the Mc-
Neal method, the substructures modes are computed with free interface conditions (McNeal
1971). Farhat and Géradin proposed a method allowing non compatible interfaces (Farhat
& Géradin 1994).

Other domain decomposition methods are not based on modal analysis, but introduce
various interface quantities : the Balancing Domain Decomposition method (Roux 1990,
Mandel 1993) uses primal quantities, whereas the FETI method (Farhat & Roux 1991,
Farhat, et al. 1994, Farhat & Mandel 1998) uses dual interface quantities. Hybrid methods
like the LATIN approach (Ladeveze 1998) propose not to favour dual or primal quantities.

2.2. The reference problem

Here, for the sake of simplicity, the problem will be formulated for an assembly of only
two substructures, but this can be easily generalized to an assembly of n substructures.
As an illustration, let us consider two thin, homogeneous, isotropic and elastic Kirchhoff-
Love plates and study the steady-state vibrations of this assembly. Classically, all quantities
are defined in the complex domain and depend on the space quantities alone: the complex
quantity Qx) is associated with Q(x ;) by the relation Q(x ¢ = Q(x)-exp(iwt), where w
is the fixed angular frequency.

Fig. 1. The reference problem

Let S1 and S, be two plates, 057 and 055 their respective boundaries solicited har-
monically at a fixed angular frequency w, and I'12 the interface between S7 and Sy, which,
for clarity, will first be considered to be perfectly rigid. The boundary conditions are the
following, with [ = 1, 2: prescribed out-of-plane displacement wld on a part 0,45 of 05,
prescribed slope wfil on 8wg517 prescribed bending moment Mld on 0,45 and, finally,

prescribed Kirchhoff shear K on dxaS; (see Fig. 1). The quantities of interest are the
displacements w; and the moments M;.

For S;, let us introduce the admissibility space Séd of the displacement-moment pairs
s; = (wy, M) defined on S such that:



April 10, 2006 9:0

4 0. Dorival, P. Rouch, O. Allix

w; € U (the set of the finite-energy displacement fields H (25))

M; € § (the set of the finite-energy moment fields [L%S)]?’)

5] € Séd < AAw; — kfw; =0 on S (1)
2h3 ,
M, = TZO +im) Ky, ps X (w)
| for [=1,2
3 2 1— 2
with ki = S (1= v)

(1 +im) Eyh}

where k; is the wave number and p;, v;, n;, E; and 2h; denote respectively the density,
Poisson’s ratio, structural damping coefficient, Young’s modulus and thickness of Plate ;.
K, ps is Hooke’s tensor for plane stress and A" is the curvature operator. The fields of Séd
are admissible in the sense that they verify both the local equilibrium and the constitutive
relation exactly. The reference problem is:

Problem 1. Find s; such that: s; € Séd

w; = wld on 0,45 w1 = wa on I'io
Wy, g, = wgl on 8wg5’l Wi p, = W2, on I
M, =M on DnsaSy M+ My =0 on I'io (2)
K, = Kld on  JxaS Ki+Ky=0 on I'io
for 1=1,2

with M, =nM;n; and K; =n;div[M] + (M),

The reference problem has one solution if (Ladeveze et al. 2001):

e Hooke’s tensors are positive definite,
e 77, > 0.

2.3. A substructured version of the VITCR

Let us introduce a substructured version of the VI'CR which consists in separating the
properly modeled substructures from the less accurate complex joints. The cornerstone of
this new formulation is the introduction of interface quantities, which we denote ®. Then,
the interface equations can be solved by minimizing a functional under a set of constraints
expressing the compatibility between substructures and interfaces in the form of classical
VTCR problems, which will be briefly reminded. In doing this, we ensure that the solution
within the substructures is exact: the only error, which is perfectly acceptable, is in the
VTCR discretization of the substructures (anterior studies(Rouch & Ladeveze 2003) have
focused on the influence of the VI'CR discretization and it will not be the subject of the
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present paper). Besides, the joints are dealt with less accurately through the minimization
problem. This reformulation gives us greater flexibility to modify the interface equations:
the substructures’ minimization problem with constraints is built once and for all, and the
calculation with a different set of joints requires changes only in the minimized interface
residual. In future works, we will take advantage of this new formulation to calculate sto-
chastic joint behavior, to deal with multiresolution problems or to identify joint parameters.
In this paper, we concentrate on the presentation of this new formulation.

2.3.1. Formulation of the continuous substructured VITCR

This reformulation is based on the separation of the equations of the joints through the
introduction of interface quantities. For clarity, we present only the separation of the inter-
face’s bending behavior. Considering the interface I'12, we introduce the interface quantities
(W1,n,, M1) and (Wa, p,, M2) of Substructures 1 and 2 respectively. Each interface quantity

(ﬁl’ﬂl, M) must be equal to the corresponding substructure quantity (wi,n,, M) (at least
in the continuous case). The interface, which can be viewed as a real entity, has its own
behavior described by an equilibrium equation and a constitutive law involving the inter-
face quantities (W1, n,, M) and (w2, Ty M>). Thus, the basic problem is divided into two
subproblems (see Fig. 2): Substructure ! must verify a substructure/interface compatibility
problem while the interface quantities must minimize a L? residual of joint equations.

2.3.2. The substructure/interface compatibility problem

Among several possible options, we chose a condensation approach with which prescribed
interface quantities M;:

Pﬂ

Ju—
D

=l
= X
Xl

=
=

Fig. 2. The VTCR problem with substructuration
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Substructure 1 /interface compatibility problem:

- dynamic equation
- constitutive relation

- boundary conditions: prescribed slope: wg, 1= wi ; on (91% S
prescribed bending moments: M; = Mld on 8%451

prescribed interface quantities: M, = M, on I'19

Wp, | = Wp, | on I'1y

This problem is solved through the use of the VI'CR, which we are about to introduce.
The VTCR is primarily a global formulation of the boundary conditions and transmission
conditions in terms of both displacements and moments:

Problem 2;. Find s; in Sid such that:

Aps, (0s1, s1) — Las (6s1) + Cr, (8sq, s1,51) =0 (@)
Vis; € szd for =1, 2,

where:
Aps, (051, s1) — Las, (0s1) = Re{ —fw ( —/(9 ; K (w — wfl)*dL
pd St

+/ (5Ml (wlﬂl — wf’ﬂl)* dL
0 4S5

Wn

+/ (M — M) 6w}, dL
On, S, =

S RCERIE )} (5)

and with the prescribed interface quantities on I':

Cr = R{ i (/FH(MZ ) ou dL)} (6)

Re(Q) and Q* designate the real part of Q and the conjugate of @) respectively. Let us
note that the terms which appear in this formulation are powers. The use of R.(—iw) is not
reducing, because it is redundant with the equation that would result from Z,,(—iw). In
practice, the VI'CR, procedure consists of two stages: first, one builds admissible fields of S fl d
as will be described further on; then, one introduces the boundary conditions through the
discretization of the variational formulation associated with a set of admissible fields chosen
among the elements of Sé 4+ Consequently one can make a parallel with Trefftz methods (Kita
& Kamiyar 1995), which also use frontier equations formulations in which fields defined on
each substructure are implemented.
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Thus, one obtains the substructure quantity wy, ,,, which must be equal to the interface
quantity w; n,- The expression of the interface/substructure [ compatibility can then be

summarized by the admissible space S};C’ll:
1= @0, M) €S, & Wi =HM)+gf (7)

where gld comes from the prescribed quantities on 0.5;, and f; is an operator coming from
the condensation onto I'.

2.3.3. The final problem

Once the substructure’s equations have been obtained through the substructure/interface
compatibility problem (7), the final step consists in solving the equations of the joints by
minimizing a residual called the interface error. For example, for a perfectly rigid joint, the
interface’s behavior is described by the following equations:

- compatibility 51,@1 = ﬁz,m

p— 8
- equilibrium Mi+My=0 (®)

which is the key to the construction of the interface’s L? residual:

E%nterface = / ”ﬁl,ﬂl - 52,22 HQdL + g/ ”Ml + MQ’PCZL (9)
IND IND
where g must homogenizes the dimensions of the two terms. It is actually chosen in order
to prevent numerical difficulties relative to the conditioning number of the problem, which
are generally encountered with Trefftz methods.
Then, the final problem consists in a constrained minimization:

Final Problem.

Find 5 = (wy,,,, M)) € S(l;il, VI, which minimizes:

E%nterface = me Hw1;ﬁ1 - w27QQH2dL + ng12 HMl + M2H2dL

One can show that this problem is equivalent to the reference problem. As will be detailed
later, once the compatibility space Scl:él has been discretized, this constrained minimization
problem is solved using Lagrange multipliers.

Let us note that since the interfaces are treated only in a weak way and priority is given
to the equations of the substructures it is important to verify that this formulation actually
enable us to take into account elaborate joint models. An example will show that this is
indeed the case.

2.4. Construction of the admissible fields

Let us now describe how the VT'CR shape functions are defined. This stage is a fundamental
and classical aspect of the method (Ladeveze et al. 2001, Rouch 2003). The VTCR uses a
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two-scale representation of subsets of Sfld. For example, in the vicinity of a point X of .5},
the solution is described as the superposition of modes which can be expressed as follows:

Wix,p = eVEE UL (11)
The moments are deduced from the constitutive relation:
MZ(K,B) = (1 +Z77I)KPSX(WI(X,£)) (12)

eVwPX represents the “fast” part of the field, which is defined explicitly. Uix, py is the
“slow” part. P denotes a vector which characterizes the local vibration mode and is chosen
such that the mode verifies the dynamic equations and the constitutive relation of Plate I.
There are many possible options and choosing among them depends on the zone one is
particularly interested in. The VT CR distinguishes the interior zone, the edge zone and the
corner zone. For example, let us concentrate on the properties of n"-order complex rays
for the interior zone. In this case, U; includes an n'?-order polynomial in X. If the damping
factor n; is small, U; can be expressed as:

n
— ¢ iVWP X/

Ui (x,p) (X, P) 2 (p)] (13)

The coefficients g, (p) of the polynomial V(x p)[a;(py] are unknowns; they form a column
la; ( B)] of “generalized amplitudes”. Consequently, all the unknowns are large-wavelength
quantities. The damping of the wave being modeled is represented by the expression
o VWP X

These fields can be viewed as vibration modes in an infinite domain having the same
mechanical properties as Substructure S;: therefore, they belong to Séd.

In the following sections, for the sake of simplicity, we will consider the particular case
of a 0t*-order complex ray and omit the index [ of the plate. In that case, the simplified
expression of the complex ray is:

(IVeP-X) (VeP-X) _

Wix, p) = ape (P)We (X, P) (14)

a(p) being the complex magnitude of the elementary complex ray w, x, p)-
The admissibility relation

AAW —E'W =0 on S (15)
3pw?(1 —v?)
4 _
where k* = (T i) BR2
requires:
1— 2
(PP =" with #:”%é” (16)

Therefore, the locus of the end of the admissible wave vector P for the interior zone is a
circle C of radius r (see Fig. 3). This curve is a characteristic of the material. As one follows
the circular path, every direction of the plate is taken into account. Examples of such modes
can be seen in Fig. 4. The definitions of corner modes and edge modes are very similar.
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(]

Fig. 3. Admissible P for interior modes

Fig. 4. Admissible interior modes for a plate

For the interior zone, one takes into account all admissible ray directions. The solution

w*? can be expressed as:

U)’(Sg) = /CW(X’P) ds (17)

The integrals are calculated along Curve C. Clearly, w*® depends on the generalized
amplitude [a] relative to P defined on C.

2.5. The discretized form of the VI CR

All that is needed in order to derive approximations from the VI'CR is the selection of a
subspace Séd, p of Sclbd. In practice, one discretizes Curve C into n elements which can be of
different sizes (for example, in Fig. 5, C is discretized into eight elements of the same size.)
The amplitude a(p) is considered to be constant throughout angular sectors a?. Then:

wiy) = Z a; /C we (x, p) ds = Z ajwl ) = Wi, - a" (18)
=1 % =1

The generalized amplitude a? is associated with the basic function w?( X) corresponding

to the integral of an elementary ray over an angular sector related to C;. Let us note that since
the admissible Equations (1) are linear, the basic function w?( X) derive from the integration
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in respect with the ray direction ¢ and keep on satisfying the governing equations. This point
preserves the variational consistency of the VI'CR approach. In practice, the integration
is performed thanks to a multiscale approach : indeed, a complex rays is composed of two
parts : a fast one and a slow one. The fast part of the complex ray is treated analytically
while the slow part is integrated by a numerical approach.

Then, the subspace szd, 5, of the approximations deduced from S(lld is defined by:

h h o h
ho~ ol wixy =Wix)-a
51 €Sadn = {M&) — Al (19)

The same procedure can be applied to corner zones and edge zones.

In order to end up with a finite-dimension problem, the interface quantities must also
be discretized. Let us note that there is no obligation for the interface quantities and the
substructure quantities to be discretized in the same way.

—h =h

—h _ oll wixy=Wix)-a

Sl € Sad,h And :24&) :h(i) —h (20>
M) =Ax)-a

The interface/substructure compatibility problem (7) leads to the following linear problem:

- I, al
@) € S W & Kaand | 2] = Faan (21)

while the interface error leads to a quadratic form:
1! [a a

E%nteTface = 5 |:a:| [Kerr] |:CL:| (22)

Fig. 5. Admissible interior modes for a plate
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Thus, the final problem (10) can be expressed as the following constrained minimization
problem:

Final Discretized Problem.
. = . P . 2 1t Q Q
Find (a, @) which minimizes E7 ..t =3 |= | Kerr] -

under the compatibility constraints [Kggm] a] =F

Finally, the constrained minimization problem is solved using Lagrange multipliers A:

| S

%(Kerr +t Kerr) _tKadm:| |:

O -] (21)

adm

> 12l 18

Let us note that the minimization constraints do not depend on the joint parameters,
which are contained in the residual: the admissibility system is built once and for all, and
changes in interface behavior affect only the residual matrix K.,

Anterior studies have shown that in practice, it is not necessary to take into account
order greater than zero in the slow part a”, which will be the case in the examples presented
in this paper. In the rest of the presentation, for numerical reasons, we choose to discretize
the interface quantities using the same space szd, ;, as for the corresponding substructure
quantities, or a subspace of this space. The discretization of the interface quantities will be
studied in the last part.

2.6. Effective quantities

From a mechanical point of view, the spatial distribution of the solution has no reliable
physical meaning in the medium-frequency range.

Indeed, the response at a specific location and for a specific frequency is extremely
sensitive to perturbations. In order to interpret the response, spatially-averaged quantities
are more useful. Thus, it is necessary to extract from the solution some effective quantities
defined on a domain greater than one wavelength.

On a given substructure S, let us designate the quantities of interest by Q(x), which
can represent, for example, the strain energy, the kinetic energy or the dissipation work. In
the vicinity of any test point, the associated effective quantities are defined over a domain
D by:

1
Qp = D/D Qx| dX (25)

For instance, in the last section, the domains D considered will be composed of each
plate S; of the structure.
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3. Modeling of the interfaces

Today, the modeling of beams, plates, shells and their combinations no longer presents
difficulties for the VT'CR. Dedicated techniques allows us to implement more precise details
like uncertainties (holes for an example) located in the interior of substructures (Ladeveze,
et al. 2003). However in actual thin structures (such as cars, satellites or launchers), most
of the damping, which governs the amplitude of the response to dynamic solicitations, is
localized in the different connections between substructures. These joints (whether welded,
riveted or bolted) modify the structural response considerably and can be used by engineers
to adjust the structure’s vibrational properties. As an illustration, experiments on three
generic assemblies (a flat plate, a folded plate and a welded plate) clearly show that joint
stiffness and damping must be taken into account. The experimental setup is not described
in this paper since it is the subject of an additional one. The results are synthesized in Table
I and on Fig. 6. They shows that the damping of the joints depends on the type of connexion
which is used, and on the frequency of the solicitation. Consequently the modeling of the
joints must be improved in order to take into account more realistic joint behavior.

| Frequency (Hz) [ 200 - 400 [ 400 - 800 | 800 - 1600 | 1600 - 3200

Flat plate
Pin; (107°W) 4.61 3.90 1.38 0.93
V2 (107%m2.s72) | 13.48 5.17 1.42 0.41
n 0.000467 | 0.000513 | 0.000332 | 0.000389
An 0.000173 | 0.000496 | 0.000001 | 0.000005
Folded plate
Pinj (107W) 0.97 1.01 0.48 0.28
V2 (107°m?.572) 1.56 0.89 0.19 0.05
VZ (107%m?2.5s72) 2.04 1.39 0.44 0.37
n 0.000376 | 0.000311 | 0.000302 | 0.000267
An 0.000002 | 0.000003 | 0.000006 | 0.000003
Welded plate
Pin; (1075W) 6.44 1.93 0.92 0.10
V2 (107 m?.5s72) 0.94 0.18 0.10 0.03
VZ (107%m?2.5s72) 1.50 0.67 0.19 0.03
n 0.003795 | 0.002398 | 0.001148 | 0.000269
An 0.000075 | 0.000327 | 0.000217 | 0.000138

Table I. Results of global damping estimation

The joints presented here are described by distributed interface parameters, such as
mass, stiffness and damping coefficients (see Fig. 7), which enable us to model complex
heterogeneous connections. These coefficients can be identified on generic assemblies to
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Fig. 6. Global damping values for several frequency ranges

provide more realistic structural behavior.

3.1. Modeling of the joints

The local behavior can be modeled by interface relations which represent elastic and/or
dissipative joint characteristics. Each joint is considered to be a mechanical entity whose
own specific behavior depends on the type of connection. Many different types of joints can
be modeled by this approach.

As in the case of perfect joints, there are four local boundary/interface conditions for
each side of a plate: two equilibrium equations (one for the bending moments and the other

Fig. 7. Generic assembly modeling



April 10, 2006 9:0

14 O. Dorival, P. Rouch, O. Allix

for the Kirchhoff shears) and two compatibility equations (one for the displacements and the

other for the slopes). For example, Equation (9) is the residual of perfectly rigid interface
equations for bending moments:

Wi, n, — Wm,n,, =0 continuity of the slopes (26)

M+ M, =0 equilibrium of the bending moments

The residual for Kirchhoff shears would be very similar. In order to obtain a more realistic
model of the connections, let us now describe the local behavior by the following equations
of a complex elastic and/or dissipative joint:

{ (=M + My,) = —ky(1 + i) (Wi, n, — Wi, n,,) constitutive relation (27)

M; + M, = —JT“’Q(U)LEZ + Wi, n, ) dynamic equation

where k, and J are the line density of bending stiffness and inertia respectively, and
models the corresponding dissipative part.
We built the residual of Equations (27) as:

= fr12 H%(_Ml + M) + k(1 + i??b)(wz,m - Wm,n )||2dL

E2
) i 28
g fo, 1My + Mo+ 2 (g, + )2 (28)

Inter face

where ¢ is chosen to balance the order of magnitude of the two terms in order to avoid
numerical problems.

Similarly, we can introduce new clamping conditions between the structure and the
ground, which seems to be more realistic than prescribing zero slope:

My = —kp(1 + inp)wy, p, bending spring with the ground (29)

This condition can be implemented thanks to the following residual:
Bhersoce = [ 1M+ b1+ im ) A (30)
0

Let us note that in order to improve accuracy the interface coefficients, such as stiffness,
mass and damping, can be made to vary along the interface. For example, a riveted joint
can be modeled by a stiffness coefficient which is infinite and zero alternatively, as shown
in Fig. 8 (where the joint’s stiffness is denoted k). In order to implement such parameters
numerically, it is necessary to discretize them. Considering that in actual structures most
of the joints have periodic characteristics, we chose to use a Fourier decomposition of the
interface coefficients, such as:

+00 +N
k= D kne" X N A X Xer (31)
n=-—00 n=—N

with A being the period of the pattern describing the junction.
Fig. 8 and Fig. 9 show an example of such a calculation in which the joint’s bending
stiffness and translation stiffness have both been taken into account. The VT CR calculations
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Out-of-plane displacements
-
x 10

E =210Gpa
p = T800kg.m~3
r=03
h=0.7mm
n=0.01 VTCR

Fig. 8. The heterogeneous interface model and its calculation

required 260 degrees of freedom (128 interior modes and 33 edge modes per edge). The
results confirm that the boundary conditions are accurately respected. In this case, modeling
the joint with constant parameters along the interface could not have given an acceptable
result. In order to validate this VIT'CR solution, we compared it with the solution obtained
with the traditional FEM code NASTRAN. The FEM calculation was conducted using
at least 10 elements per wavelength, according to the so-called “rule of the thumb” (see
(Thlenburg & Babuska 1995), (Ihlenburg & Babuska 1997)). 82,863 degrees of freedom were
required. The maximum displacements obtained were 5.26 10~*m with the VITCR and
4.9610* m with NASTRAN, which amounts to a difference of about 6 %.

3.2. Numerical example

In this section, we present the influence of the joint’s bending stiffness and damping on
the response of an assembly of two plates connected by a complex joint (see Fig. 10).
Here, the interface parameters were considered to be constant along the interface. To make
comparisons possible, we used the effective displacements of each plate as defined in 2.5.
The domains D considered in this definition are composed of each plate S; of the structure.
These quantities were averaged over [100Hz 200Hz]. Let us note that for the calculations
with the VTCR only 200 degrees of freedom were used: 68 d.o.f. for a plate (32 interior
modes and 9 edge modes per edge), and 32 other d.o.f. for the interface quantities relative
to the plate. The minimization contraints add 68 Lagrange multipliers per plate (as many
as the number of test functions of each plate). Consequently, the final size of the problems
is 336 degrees of freedom, which seems to be very reasonable.

We can observe on Fig. 11 that a stiffness per unit length greater than 10> N.m.rd~! is
equivalent to a perfectly rigid joint. Similarly, for a joint stiffness equal to 10> N.m.rd ",
damping is significant if it is greater than 10~!. This value can seem very high, but it should
not be compared directly to the damping of the plate (equal to 0.01) because what matters
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2.31-04
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NASTRAN

Fig. 9. Heterogeneous interface (245 Hz): (a) VITCR solution, (b) NASTRAN solution

is the contribution of the joint’s dissipation to the total energy dissipation of the structure.

3.3. Example

Let us compare the results obtained with the classical VI'CR formulation, used as the refer-
ence, with those obtained by the new formulation using the minimization of the interface’s
residual. Here the discretization on each plate required 68 degrees of freedom for the classical
VTCR formulation (32 interior basis functions per plate, 9 edge modes per edge), and the
new formulation introduces for each plate 32 interface degrees of freedom and 68 Lagrange

E =210Gpa
p = 7800kg.m3

r=10.3 /
h = 0.Tmm 5

n=0.01 7y

Fig. 10. Assembly of two plates with a complex constant joint
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Fig. 11. Influence of the joint’s parameters: (a) stiffness (zero damping) , (b) damping (stiffness equal to
102 N.m.rd™1)

multipliers respectively. Fig. 12 shows the solutions obtained by the two methods for the
two-plate assembly with a perfectly rigid joint and a 220 H z solicitation. The solutions are
very similar, as can be seen from the effective displacements (Table II).

Effective quantities
Classical formulation | Substructured formulation
Plate 1 16.33310° 16.389 10°
Plate 2 12.11710° 12.061 10°

Table II. Validation of the substructured version of the VICR

The next calculations concern the same assembly of two plates, solicited at 100 H z, but
with a complex joint and different values of the joint’s stiffness. The discretization requires
68 degrees of freedom per plate (32 interior modes and 9 edge modes per edge) for each
substructures. Different discretizations were used for the interface quantities: discretizations
(a), (b) and (c) consisted of the border complex rays (9 edge modes per edge), the interior
complex rays (32 interior modes per plate), and both the border and the interior complex
rays (32 interior modes and 9 edge modes per edge) respectively. (d) is the reference cal-
culated with the classical global formulation involving 68 degrees of freedom per plate (32
interior modes and 9 edge modes per edge).

Fig. 13 shows that the results are exactly the same and that a coarse discretization of
the interface is sufficient, provided that it contains the interface’s complex rays relative to
the joint being considered.
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Fig. 12. Solutions obtained with the two formulations
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Fig. 13. Comparison between the classical VICR and the substructured VITCR

4. Conclusion

The Variational Theory of Complex Rays is a predictive approach which is very well-suited
to medium-frequency vibration analysis of complex structures. Its main features are the
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use of shape functions with a strong mechanical meaning and a variational formulation
which results in a very low cost, independent of the frequency. The variational formulation
is associated with the boundary conditions, which is very useful in order to take into ac-
count different complex connections between substructures. Since the modeling of actual
heterogeneous joints is very important in order to obtain an accurate response in medium-
frequency vibrations with this type of structure, we introduced more sophisticated interface
equations through mass-stiffness-damping joint behavior. We presented a new formulation
of the theory which enables one to analyze the same structure with different connections
more conveniently. This new formulation is based on the minimization of a L? residual of
interface equations while the admissibility of the well-modeled substructures is enforced one
and for all by minimization constraints. This formulation should not meet any theoretical
difficulty to treat more complex structures like assemblies of beams, plates, or shells. In
future works, we will take advantage of this formulation to identify the parameters of the
joints using experimental results.
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