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Abstract
Amongst the speech enhancement techniques, statistical mod-
els based on Non-negative Matrix Factorization (NMF) have re-
ceived great attention. In a single channel configuration, NMF
is used to describe the spectral content of both the speech and
noise sources. As the number of components can have a cru-
cial influence on separation quality, we here propose to inves-
tigate model order selection based on the variational Bayesian
approximation to the marginal likelihood of models of differ-
ent orders. To go further, we propose to use model averag-
ing to combine several single-order NMFs and we show that a
straightforward application of model averaging principles is in-
efficient as it turned out to be equivalent to model selection. We
thus introduce a parameter to control the entropy of the model
order distribution which makes the averaging effective. We also
show that our probabilistic model nicely extends to a multiple-
order NMF model where several NMFs are jointly estimated
and averaged. Experiments are conducted on real data from the
CHiME challenge and give an interesting insight on the entropic
parameter and model order priors. Separation results are also
promising as model averaging outperforms single-order model
selection. Finally, our multiple-order NMF shows an interesting
gain in computation time.
Index Terms: Variational Bayes, Non-negative Matrix Factor-
ization, Model Averaging, Speech Enhancement

1. Introduction
Speech enhancement has received great attention since it is at
stake in numerous industrial applications. The literature pro-
poses a variety of methods which fall into two categories [1] :
multichannel vs. single-channel. In a single-channel configura-
tion, which is the focus of this paper, spatial diversity cannot be
exploited. Single-channel techniques can be classified into three
main categories [2]: spectral subtractive algorithms [3], sub-
space algorithms [4] and statistical-model-based algorithms [5].
Amongst the latter, various models aim at describing the spec-
tral content of both the speech and background noise sources
in order to be able to distinguish between them. To build such
models, one can resort for instance to Gaussian mixture mod-
els [6], exemplar-based methods [7] or codebook-driven tech-
niques [8, 9]. Non-negative Matrix Factorization (NMF) is one
of the most popular class of source models [10, 11, 12, 13] and
it has achieved great performance in the latest CHiME contest
[13, 14].

The order of an NMF model, also called the number of
components, is known to have a noticeable influence on separa-
tion quality [15]. However, there is a few literature about how
to determine the best number of components [9] and choosing it
is often driven by an experimental assessment. The introduction
of a statistical formulation of NMF [16] has made the applica-
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tion of model selection principles possible. To do so, the liter-
ature advocates the use of a full Bayesian framework [17, 18]
in order to compute the marginal likelihood of a model, also
named the evidence. For a given task, once the marginal likeli-
hood has been estimated for several models of different orders,
the model with the highest marginal likelihood is reputed to be
the most likely model to explain the observation. In practice, a
full Bayesian treatment of NMF is intractable and approximate
inference is required instead. In particular, Variational Bayesian
(VB) inference is becoming popular since it is less computation-
ally demanding than sampling methods [17, 19].

VB proposes to approximate the marginal likelihood by a
lower bound called the free energy. This free energy can then
be used in place of the true marginal likelihood for model order
selection. Two types of approaches have been exploited so far:
parametric methods which consist in computing several NMFs
and selecting the one which has the highest free energy [19], and
nonparametric methods which consider a single NMF with a
potentially infinite number of components and which iteratively
deactivates the irrelevant components [20].

To go further, we propose here to apply model averaging
principles to NMF models [18]. Indeed, the study in [21] has
shown that it is worth combining several NMFs of different or-
ders instead of selecting a unique one. The free energy given
by VB inference can be used to compute the posterior proba-
bility of each number of components and to weight each NMF
[17]. We also derive from our averaging of single-order NMFs
a novel multiple-order model which jointly estimates and av-
erages several NMFs of different orders. However, our con-
tribution underlines that a straightforward application of model
averaging based on the free energy is inefficient as it turns out
to select a single NMF. To avoid this behaviour, we propose to
use a parameter which controls the entropy of the distribution of
the number of components. As this entropic parameter and the
order priors need to be chosen beforehand, we propose to learn
them on a training database. Our experiments conducted on real
data from the CHiME challenge [22] show promising results
as both the multiple-order NMF and the averaging of single-
order NMFs outperform single-order model selection, thanks
to the introduction of the entropic parameter. Moreover, our
multiple-order NMF turns out to be less computationally ex-
pensive than the averaging of single-order models for equivalent
performance.

In the following, Section 2 will be dedicated to the presen-
tation of the single-order NMF model and its averaging. In Sec-
tion 3, we will introduce our novel multiple-order NMF model.
The entropic parameter will be presented in Section 4 before be-
ing experimentally evaluated in Section 5. Section 6 will give a
concise conclusion.

2. Single-order NMF
Our single-order NMF model is a single-channel simplified for-
mulation of the model exposed in [23]. The degraded speech
signal is supposed to be a linear mixture of a clean speech sig-



nal and a background noise signal. As such, the mixing equa-
tion can be written in the short-time Fourier transform (STFT)
domain as

xfn = Asfn + εfn = s1,fn + s2,fn + εfn (1)

in which f denotes the frequency bin and n the time frame,
s1,fn is the target speech signal, s2,fn is the background noise
and εfn represents sensor noise. By denoting the source vec-
tor as sfn = [s1,fn s2,fn]T , the mixing equation can also be
written in a matrix form thanks to the mixing matrix A = [1 1].
Such a formulation permits future extension of our model to
more sources and channels.

2.1. Probabilistic model
Speech and background noise sources are both treated in the
same way and indexed by j = {1, 2}. We assume that the
source sj,fn follows a circularly-symmetric complex normal
distribution sj,fn ∼ N (0, vj,fn) whose variance is the result
of an NMF so that

vj,fn =

Kj∑
k=1

wj,fkhj,kn. (2)

Kj is the order of the NMF, a.k.a. the number of components.
In this single-order NMF formulation, it is an hyperparameter
to be chosen. The variance of source j can also be written in a
matrix form so that Vj = WjHj . Wj and Hj are commonly
called the dictionary and the activation matrix. To achieve full
Bayesian inference, the parameters of both the dictionary and
activation matrix are seen as random variables as well. Contrary
to [23], we assume as in [20] that the NMF parameters follow a
Gamma distribution

wj,fk ∼ Γ(a, a) , hj,kn ∼ Γ(b, b) (3)

where a and b are hyperparameters to be chosen. Finally, sensor
noise is supposed to follow a Gaussian distribution of variance
σ2. Denoting X = {xfn}n=1..N

f=1..F and S = {sfn}n=1..N
f=1..F for

the sake of readability, the log-likelihood can be formulated as

log p(X|S) =

N∑
n=1

F∑
f=1

logN
(
xfn|Asfn, σ

2) . (4)

2.2. Variational inference
In the following, we denote the set of all model parameters
as Z = {S,W,H} with W = {Wj}j=1,2 and H =

{Hj}j=1,2. VB inference aims at approximating the poste-
rior distribution of the model parameters p(Z|X) with a fac-
torized variational distribution q(Z) which is here defined as
q(Z) = q(S)q(W)q(H) so that

q(Z) =
∏
fn

q(sfn)
∏
j,fk

q(wj,fk)
∏
j,kn

q(hj,kn). (5)

In VB inference, minimizing the Kullback-Leibler divergence
between q(Z) and p(Z|X) is equivalent to approximating the
log marginal likelihood log p(X) by the so-called free energy
L [q] defined as

L [q] =

∫
q(Z) log

p(X,Z)

q(Z)
dZ = EZ

[
log

p(X,Z)

q(Z)

]
(6)

with p(X,Z) = p(X|S) p(S|W,H) p(W) p(H) being the
joint distribution. VB inference then consists in iteratively max-
imizing the free energy with respect to each factor in (5). In
practice, the computation of the free energy is intractable and it
needs to be further approximated by a parametric lower bound
B [q]. For a detailed explanation, the reader is referred to [23].

Deriving B [q] with respect to each factor leads to the
update rules. The variational distribution of the sources is

identified to a bivariate Gaussian distribution [23] q(sfn) =
N
(
µs,fn,Σs,fn

)
with parameters

µs,fn = Σs,fnAT xfn
σ2

, Σs,fn =

(
C−1
fn +

1

σ2
J

)−1

(7)

where J is a matrix of ones of size 2 × 2, Cfn =
diag(Cj,fn)j=1,2 and

Cj,fn =

Kj∑
k=1

EZ\sj

[
1

wj,fkhj,kn

]−1

(8)

The notation EZ\Zi
[.] denotes the expectation over all model

parameters Z except Zi.
The variational distributions of the NMF parameters are

identified to generalized inverse Gaussian (GIG) distributions
[20] which are controlled by three parameters τ , ρ and γ. The
updates of these parameters for the activation matrix Hj of
source j are given by:

τHj = E
[

1

Hj

].2
◦

(E [ 1

Wj

].−1
)T (

E
[
|Sj |.2

]
◦C.−2

j

)
ρHj

= b+ E [Wj ]
T E [Vj ]

.−1 , γHj
= b (9)

where the notation ◦ denotes the Hadamard product, M.x

and MT respectively denote element-wise exponentiation and
transposition of matrix M. Cj is the matrix composed of the
coefficients Cj,fn defined in (8). Note that the same update
rules can be found for Wj by replacing and reordering the
terms accordingly.

In a speech enhancement context, the variable in which we
are interested is the clean speech source s1,fn. The STFT coef-
ficients of the estimated sources are given by the mean µs,fn of
the posterior distribution q(sfn) in (7). For the speech source
s1,fn, this expectation simplifies to

µs1,fn =
C1,fn

C1,fn + C2,fn + σ2
xfn. (10)

We recognize the classical expression of the Wiener filter where
deterministic estimates of the source power spectra have been
replaced by the expectations Cj,fn.

2.3. Model averaging
We now assume that the above single-order NMF framework
has been used withM different models. The modelm is defined
by its order denoted Km = {K1m,K2m}, in whichK1m (resp.
K2m) is the number of components of the speech source (resp.
background noise source). The posterior distribution qm(Z) has
thus been estimated for each model m = 1..M .

Bayesian model averaging [18] proposes to average these
posterior probabilities with respect to the posterior probability
p(Km|X) of each model. Thanks to Bayes’ rule, this posterior
probability can be expressed as the product of the prior proba-
bility πm of model m and its likelihood p(X|Km) so that

p(Km|X) ∝ πm p(X|Km). (11)

As we have already highlighted, the computation of the like-
lihood p(X|Km) is intractable. However, the choice of a VB
framework gives us the opportunity to replace it with the free
energy expressed in (6) so that p(X|Km) ≈ exp(Lm).

Applying model averaging to the M posterior distributions
of the sources leads to the new estimate

q(sfn) =
1

δ

M∑
m=1

πme
Lm qm(sfn) (12)



where qm(sfn) is the source posterior distribution estimated for
model m and δ =

∑M
m=1 πme

Lm aims at normalizing the pos-
terior probability of Km so that it sums to 1. The STFT co-
efficients of the estimated speech source is now given by a lin-
ear combination of the expectations µs1m,fn computed for each
modelm as in (10). This formulation is equivalent to the tempo-
ral fusion by linear combination introduced in [21] but differs
from it in that the fusion coefficients now depend on the signal
to be processed through the free energy Lm.

3. Multiple-order NMF
Our novel multiple-order NMF model introduced here aims at
jointly estimating and averaging several NMFs of different or-
ders. For more details on the model and the derivation of the
VB inference, the reader is referred to [24].

3.1. Probabilistic model
Contrary to the single-order NMF model of Section 2, the num-
ber of components Kj of source j is now seen as a random
variable which follows a categorical distribution

Kj ∼ Cat
(
πj1, ..., πjm, ..., πjMj

)
(13)

where m indexes the Mj possible number of components{
Kj1, ...,Kjm, ...,KjMj

}
, each having an a priori probability

of πjm. As above, we assume that each number of components
has its specific NMF parameters so that in the following, they
will be indexed with m such as wjm,fk and hjm,kn. The priors
on the NMF parameters and the sources remain unchanged in
comparison with Section 2. The main difference is that a single
posterior distribution of the sources is now estimated.

By denoting K = {K1,K2}, W = {Wjm}
m=1..Mj

j=1,2 ,

H = {Hjm}
m=1..Mj

j=1,2 and p(K) = p(K1)p(K2), the joint
distribution becomes

p(X,Z,K) = p(X|S) p(S|W,H) p(W|K) p(H|K) p(K).

3.2. Variational inference
In order to include the variables related to the numbers of com-
ponents, the variational distribution of (5) is modified as follows

q(Z,K) = q(S) q(W|K) q(H|K) q(K). (14)
By minimizing the corresponding free energy, the posterior
probability of the number of components q(Kj) is obtained as

log q(Kj) = EZ\Kj
[log p(X,Z,K)]

− EZ\Kj
[log q(Wj |Kj)]− EZ\Kj

[log q(Hj |Kj)] + const.

By developping, reordering and taking the exponential of these
terms, the posterior probability of Kj can be formulated as

∀m, q(Kjm) ∝ πjm eLjm (15)

in which the term Ljm = EZ\Kj

[
log p(X,Z)

q(Z)

]
is similar to

the free energy expressed in (6) in the single-order NMF case.
The inference of the variational distributions over the NMF pa-
rameters remains unchanged in comparison to the single-order
NMF model and the variational distribution of the sources is
still identified as a bivariate Gaussian distribution with the pa-
rameters defined in (7). The only difference relies in the term
C−1
fn which is now a linear combination of terms related to each

NMF order so that, with δ =
∑Mj

m=1 πjme
Ljm ,

∀j, C−1
j,fn =

1

δ

Mj∑
m=1

πjme
Ljm C−1

jm,fn. (16)

4. Controlling the order posterior entropy
We introduced two NMF frameworks which both combine sev-
eral NMFs of different orders. In Section 2, the scheme consists
in computing several single-order NMFs and combining them
after the variational inference thanks to the linear combination
in (12). In Section 3, the scheme jointly estimates and average
several NMFs according to (16). However, the averaging is sim-
ilar in both cases as the averaging weights of (12) and (16) are
of the form πm exp(Lm).

To enforce this comparison, we now assume as a particular
case that the number of components of the background noise
K2 is fixed. In the single-order NMF framework, the averaging
rule (12) remains unchanged. The model m is now entirely de-
fined by the number of components K1m of the speech source.
In the multiple-order case, the number of componentsK1 of the
speech source is now the only one to be considered as a random
variable and the average is only effective on the related NMF
parameters and not on the background noise side. Hence, (16)
only holds for j = 1 and by dropping the index j when un-
necessary, it becomes C−1

1,fn = 1
δ

∑M
m=1 πme

Lm C−1
1m,fn. As

a consequence, Lm and πm now have the exact same significa-
tion in both cases. πm denotes the prior probability of model
m of order K1m whereas Lm denotes its free energy. Note
however that in the multiple-order case, all speech models share
the same background noise estimate whereas in the single-order
case, one background noise model is estimated per order K1m.

As stated in [21, 24], it is worth combining NMFs of differ-
ent orders instead of selecting a unique order as it can improve
the separation performance. However, our models, which ap-
ply model averaging in a straightforward way, are not achieving
that goal. Indeed, preliminary tests have shown that the free en-
ergies Lm being very large valued, the posterior probabilities
q(K1m) are all equal to zero except the one which depends on
the highest free energy and which is thus equal to 1. As such,
model averaging turns out to be model selection. To avoid this
behaviour, we propose to scale the free energies Lm by a factor
β ≥ 1 to be determined. Hence, the posterior probability of
order K1m becomes

q(K1m) ∝ πm eLm/β . (17)
This is equivalent to controlling the entropy of the distribution
q(K1m) in a way similar to [25]. Small values of β will favor
peaky distributions with one q(K1m) close to 1 as in model se-
lection, whereas higher values of β will result in a more uniform
distribution. The determination of the values of β and πm will
be addressed in Section 5.

5. Experiments
In this section, we propose to evaluate and compare both the
multiple-order NMF model and the model averaging of single-
order NMFs. We also explore oracle and learning methods to
determine the prior probabilities of the number of components
πm as well as the entropic parameter β. To do so, we rely on the
PASCAL CHiME corpus [22] which features recordings of real
domestic noise and speech utterances from diverse speakers.
5.1. Dataset
The CHiME corpus is divided in three datasets using 34 distinct
speakers. Firstly, the training set is composed of 500 utterances
of each speaker in reverberated conditions. This allows us to
learn an NMF dictionary W1m to describe each speaker by ap-
plying a single-order NMF on the concatenation of these utter-
ances with a chosen number of components K1m. All these
learned dictionaries hence describe the same source but at dif-
ferent levels of details. The other datasets, namely the develop-



-6 dB -3 dB 0 dB 3 dB 6 dB 9 dB Average Average time (ms)

Baseline VB selection 4.56 6.84 3.26 9.91 7.34 10.60 7.08 54.4
Oracle selection 5.28 7.87 5.52 10.34 9.22 12.03 8.38 54.4

Oracle πm and β
so-NMF averaging 5.80 8.16 5.55 10.34 9.79 12.34 8.66 54.4
mo-NMF 5.18 8.11 4.65 11.14 9.70 11.07 8.31 13.3

Learned πm and β
so-NMF averaging 5.47 7.81 4.52 10.54 9.44 11.26 8.17 54.4
mo-NMF 5.25 7.80 4.37 10.99 9.63 11.30 8.22 13.4

Table 1:Average SDR (dB) and computation time for VB and oracle selections, simple-order NMF averaging and multiple-order NMF

ment and test sets, are both composed of 600 reverberated utter-
ances. Each utterance, pronounced by one of the 34 speakers,
has been mixed within a noise background so that the mixture
of clean speech and noise achieved a given signal-to-noise ratio
(SNR) amongst: -6, -3, 0, 3, 6 and 9 decibels (dB). The noise
background signals come from real recordings of a domestic
living room and the utterances have been placed at controlled
time stamps according to the desired SNR. This allows us for
each utterance to select 10 seconds of noise without speech, af-
ter and/or before the utterance, in order to learn an NMF dictio-
nary W2 in a way similar to the learning of the NMF speaker
models. We chose a single-order NMF with a fixed number of
components K2 = 16.

In the following, we have used the development set for
learning purpose, whereas for evaluation, we have randomly se-
lected in the test set a total of 24 utterances, i.e., 4 by SNR.
As the original data were two channel mixtures, we will work
here on the mean of both channels to restrain our study to
the single channel case. Both the single-order NMFs and the
multiple-order NMF have been used with numbers of compo-
nents K1m = 2m with m = 1..7 for the speaker source. The
dictionaries of noise and speech NMFs have been fixed to their
learned values and the activation matrices have been initialized
with the mean activation values estimated in the corresponding
learning step. The hyperparameter of the Gamma prior related
to the activation matrices has been fixed to b = 0.2 and sen-
sor noise is assumed to be of variance σ2 = 10−6. Finally, the
separation quality has been evaluated by the signal-to-distortion
ratio (SDR) of the target speech, expressed in decibels [26].

5.2. Learning the priors and the entropic parameter
In order to average the NMFs, we need to determine the prior
probabilities πm of each number of components as well as the
entropic parameter β. To do so, we propose two approaches.
In particular, we propose to learn both πm and β thanks to the
development set. Indeed, as the original reverberated signals are
available, we can evaluate the performance of the single-order
NMF scheme on each mixture l of the development dataset and
for each number of components K1m = 2m. We can thus find
the set of πm and β which maximizes the mean SDR of the
speech signals over theL examples of the development set. This
is equivalent to solving the non-linear optimization problem

argmin
(π1,...,π7,β)

∑
l,fn

∣∣∣∣∣∣µ(l)
s1,fn

− s̃(l)1,fn

∣∣∣∣∣∣2 (18)

in which s̃(l)1,fn is the original reverberated speech signal of ex-

ample l, µ(l)
s1,fn =

∑
m πm exp(Lm/β)µ

(l)
s1m,fn and µ(l)

s1m,fn

is defined for example l as in (10) for the number of components
K1m. Note that such a learning is impossible in the multiple-
order NMF case as the averaging rule (16) is computed at each
iteration of the inference algorithm. However, these learned val-
ues of πm and β can be used in both the averaging of single-
order NMFs and the multiple-order NMF model. For computa-
tional convenience, we have restrained the size of the develop-
ment set for learning. We thus propose to learn the parameters
on L = 36 randomly picked examples, i.e., 6 by SNR.

In order to evaluate the performance of the learned πm and

β, we can also solve the optimization problem (18) for the ex-
ample of the test set being processed. However, it is worth not-
ing that such a result is unreachable in practice and is thus de-
noted as the oracle result. As in the learning case, oracle πm
and β will be used in both the single-order and multiple-order
schemes.

5.3. Results and comments
Table 1 shows the results of our study grouped in three cate-
gories. The SDRs are averaged for each SNR over the 4 selected
examples as well as over the whole selected test set. The base-
line is given by the VB selection result, which consists in select-
ing for each example the single-order model that has the highest
free energy Lm, and the oracle selection result which, on the
basis of the original reverberated speech signal, consists in se-
lecting for each example the single-order model which gives the
best SDR. Note that VB selection is equivalent to the averaging
of single-order NMFs without using the entropic parameter we
proposed in Section 4. The second group of results is based on
the oracle πm and β values whereas the third group is based on
the learned πm and β values, as explained in Section 5.2. For
each example of the test set, these oracle and learned parame-
ters have been used for both the single-order NMF (so-NMF)
averaging and the multiple-order NMF (mo-NMF).

These results first show that regardless of the SNR, the VB
selection always fails to select the best model in term of SDR.
In average, the VB selection underperforms oracle selection by
1.3 dB. Oracle results show that the averaging of single-order
NMFs can always outperform both VB and oracle selection.
The multiple-order NMF using these same oracle parameters
implies a loss of only 0.35 dB in comparison with the single-
order averaging. However, this loss is somehow counterbal-
anced by an interesting gain in computation time as mo-NMF is
4 times faster than the averaging of so-NMFs.

Recalling that oracle methods are not reachable in practice,
the results based on learned πm and β show an interesting per-
formance. Indeed, both single-order and multiple-order meth-
ods outperform VB selection which is the only other method to
be practicable. Moreover, both methods nearly reach the SDR
of the oracle selection. Our proposed method to learn πm and β
is thus efficient as it allows to improve separation performance
by almost 1.1 dB. We can also notice that in realistic conditions,
the multiple-order NMF gives similar SDRs to the averaging of
single-order NMFs but it is far less computationally demanding.

6. Conclusion
We introduced two different NMF frameworks which aim at
combining several NMFs of different orders: a single-order
model scheme which applies Bayesian model averaging and a
novel multiple-order model which jointly estimates and aver-
ages several NMFs. The parameter we introduced to control the
entropy of the order posterior has been shown to be essential in
order to make the averaging effective in both models. Finally,
experimental results on real data showed that both models out-
perform traditional VB selection, the multiple-order NMF be-
ing furthermore less computationally demanding. Future works
will focus on the study of a time-varying model averaging.
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