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Abstract

In this article, we investigate the performance of RBF-PDE methods to ap-
proximate solenoidal fields. It is well know that global RBF collocations meth-
ods present a trade-off principle, which means that smoothness implies high
convergence order plus ill-condition. On the other hand, local methods have
recently appeared in the literature to solve this problem. In this paper, we per-
form a numerical investigation between RBF global and local methods in order
to investigate the possible advantage of local methods for the approximation of
vector fields. More precisely, we compare the local Hermite interpolation tech-
nique using inverse multiquadrics versus the non symmetric collocation method
of Kansa.

Keywords: Vector field approximation, radial basis functions, Runge
phenomenon

1. Introduction

Radial basis functions methods have proved to be highly effective for the
solution of problems both in the field of approximation theory and the solution of
PDEs problems. Among other elements, this is due to their capacity of handling
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complex geometries in higher dimensions for scattered nodes distributions, as
well as the possibility of having spectral convergence. Due to the importance of
approximating vector fields in subjects such as electromagnetism, meteorology,
scientific visualization among others, we explore the possibility of these methods
to solve such problems at great scale.

Despite their success, it is well known that one of the major limitations of ra-
dial basis functions (RBF) methods to solve PDEs problems is that they present
high instabilities when the number of data is large or when the mesh parameter
is large. This problem, known in the literature as the uncertainty principle of
Schaback [30, 31], means that when we have exponential convergence, the cor-
responding condition number of the Gram matrices increases in an exponential
way. Another limitation, which has recently been incorporated to this discus-
sion, is the so called Runge phenomenon. This important limitation is implied
by the fact that Gaussian RBFs interpolants in 1D, converge to a polynomial
as the shape parameter tends to zero (see [11, 12, 13] for more details).

We want to mention the following methods linked to this problem for global
RBFs: Fornberg et al. [14, 13] propose an expansion of the RBFs in terms of
spherical harmonics, a method called QR-RBF, allow the approximation, in a
stable way, of the solution for small values of the shape parameter and large
number of nodes. This, however, only applies to periodical domains, such as
disks or spheres, where the Runge phenomenon does not appear [12]. On the
other hand, for complex domains on the plane or in space, to our knowledge,
this algorithm has only been developed for non trivial node distributions [13].
However, we stress that these techniques are currently under research.

Platte and Driscoll [26] obtain node distributions making possible to calcu-
late stable solutions for temporal problems in one dimension, or using tensor
product techniques in two dimensions. They also remark that these distributions
can not be obtained for problems defined on general domains and suggest to use
minimum least square techniques of an over determined linear system built by
using twice the number of collocation points relative to the PDEs centers.

Elsewhere, Kee, Mao and Liu [20, 22, 25, 34] use a similar approach for
elasticity problems as well as inverse problems for Laplace equation by means of
a local approximating scheme and node adaptive techniques. In this case, the
over determination of the local systems is obtained by solving the differential
equations and the boundary conditions over a set of additional nodes on the
boundary.

Stevens, Power et al. [27] use a local approximating scheme, based on Her-
mite symmetric interpolation over local domains applied to the partial differen-
tial operator of the problem, resulting in a sparse linear system of equations for
the values of the solution in each center of the local domain.

In Le Guyader et al. [16], the authors propose an alternative approach: they
study a spline-based approximation of vector fields in the conservative case. In
the modeling, they introduce a minimization problem on an Hilbert space: they
introduce a regularized least-square problem defined on a space of potentials
(real-valued functions) to fit the vector field data-set. For any ε > 0, they
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consider the functional Jε defined as follows:

Jε :

{
Hm+1(Ω, R) → R

v 7→ 〈ρ(∇v)− u〉2N + ε|v|2m+1,Ω,R,

where u = (u1, · · · , uN )T ∈ (Rn)N is the vector field data-set and | · |m+1,Ω,R,
the semi-norm on the Sobolev space Hm+1(Ω, R). The authors establish the
existence and uniqueness of the solution, they also give convergence result in the
introduced Sobolev space using norm equivalence and compactness arguments.
Elsewhere, we can also mention several other approaches to study this problem:
finite element approximation (see Dzhabrailov et al. [9]), PDE-based methods
(see Amodei and Benbourhim [1]), spline and RBF approximations (see Awanou
and Lai [2], Dodu and Rabut [7], Benbourhim and Bouhamidi [3]-[4], Ettl-
Lowitsch et al. [10, 23, 24]).

Although we have emphasized the actual limitations of global RBF approx-
imation for general domains, we stress that they are currently under intensive
research and that several techniques, like domain decomposition methods [15]
among others, are under way to overcome these limitations [5]. In this work, we
propose local methods to get a solution of the considered vector field approx-
imation problem. Let us note that the resulting linear system of equations is
sparse.

It is important to stress that the main advantage of Steven’s method is that
by solving a set of small local systems of equations, a global sparse matrix is
build. This makes it possible, unlike Kansa’s method whose condition number
can grow in an exponential way, to solve large problems. Moreover, the local
systems do not increases their size as the number of nodes increases, which
makes it possible to solve them in parallel. In section 4 we further investigate
the running time of Stevens’ algorithm for our porblem.

We recall that compactly supported RBFs methods, see Wendlad [8], which
have been intensively studied, are a highly important alternative to these prob-
lems and in particular to vector field interpolation, but here we focus on RBFs
spectral type convergence methods.

2. Vector field approximation: modelling

In this section, given an initial vector field u0, which can be a prescribed
function or a given set of values, we describe the mathematical formulation to
approximate a vector field u as closed as possible to u0, such that u · n = 0 in
ΓN and ∇ · u = 0.

We formulate the problem by means of a variational approach, which led to
the solution of the corresponding Euler-Lagrange equations [17, 28]. In what fol-
lows we introduce the energy functional and the corresponding Euler Lagrange
equations.

Let Ω ⊂ Rd (d = 2 or 3) be an open, simply connected and bounded set with
boundary ∂Ω = ΓN ∪ ΓD, where ΓN 6= ∅ is the part of the boundary associated
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to the surface terrain (topography), ΓD 6= ∅ is the rest of the boundary and n
is an exterior normal vector to Ω ( see Figure 1).

Figure 1: The studied domain Ω with boundary conditions (Neumann and Dirichlet).

So, according to the proposed method by Sasaki [29]: given an initial field
u0, the exact field of divergence free is the result of minimizing the following
functional

L(u, λ) =
1
2

∫
Ω

{S(u− u0) · (u− u0) + λ[∇u]}dV

where λ is a Lagrange multiplier and S is a diagonal matrix related to the scales
of the components of the velocity, that is

S =

α2
1 0 0

0 α2
2 0

0 0 α2
3


where the αi are weight parameters called Gaussian precision moduli, related
to the scales of the respective components of the velocity field.

According to Ratto et al. [28] the Euler-Lagrange equations of the La-
grangian are

u = u0 + S−1∇λ (1)
λu · n = 0 (2)

Finally, in [18, 17], the authors show that the Lagrange multipliers satisfy
the next elliptic PDE:

−∇ · (S−1∇λ) = ∇ · u0 inΩ, (3)
B1λ = g1 onΓD (4)
B2λ = g2 onΓN (5)

where B1 and B2 are boundary conditions and g1 and g2 are given functions.
Once λ is calculated, the approximated field u can be recovered from (1).
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3. RBF solution

In this section, we use the classical Kansa’s collocation method, with inverse
multiquadric kernel φ(r) = (r2 + c2)−1/2 and we apply it on the reconstruction
of a 2 dimensional solenoidal vector field u.

3.1. Non-Symmetric Collocation Method
Here, we get a radial basis approximation, so that, we can obtain the adjusted

vector field u. To do that, we use Kansa’s approach [19] to solve numerically the
PDE system (3)-(5) for the Lagrange multiplier λ and then we obtain u from
(1).

In order to do that, let us introduce the following sets of points Ξ = {ξi}N
i=1

and χ = {xi}M
i=1 in Rd named centers and collocations points respectively (in

this case we will take Ξ = χ). Then, a radial approximation λ̂ of the Lagrange
multiplier λ, could be defined as follow:

λ̂(x) =
N∑

j=1

βjφ(rj) =
N∑

j=1

βjφ(‖x− ξj‖) (6)

where ‖x‖ =
√

x2
1 + · · ·+ x2

d, φ : Rd → R is the radial basis function, and the
set {β}N

j=1 are the coefficients that we must determinate.
To simplify the notations, we define the next differential operator

L :=−∇ · (S−1∇) (7)

Now, after substituting (6) in (3)-(5) we get

N∑
j=1

βjLφ(‖x− ξj‖)|x=xi
= ∇ · u0(xi) xi ∈ Ω, i = 1 . . . , NI (8)

N∑
j=1

βjB1φ(‖xi − ξj‖) = g1(xi) xi ∈ ΓD, i = NI + 1, . . . , NI + ND (9)

N∑
j=1

βjB2φ(‖x− ξj‖)|x−xi = g2(xi) xi ∈ ΓN , i = NI + ND + 1, . . . , N (10)

where NI ,ND and NN are the number of points in Ω, ΓD and ΓN respectively
(N = NI + ND + NN ). Equations (8)-(10), imply the algebraic system

Aβ = b (11)

where the Gram matrix

A =

 ÃL
ÃB1

ÃB2


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is defined as follow: for j = 1 . . . , N ,

(ÃL)i,j = Lφ(‖x− ξj‖)|x=xi fori = 1, . . . , NI (12)

(ÃB1)i,j = B1φ(‖xi − ξj‖), fori = NI + 1, . . . , NI + ND

(ÃB2)i,j = B2φ(‖x− ξ‖)|x=xi
for i = NI + ND + 1, . . . , N

(13)

To illustrate this approach, we now give an example which was studied in [17].

Example 1. We consider the two dimensional solenoidal vector field u(x, z) =
(x,−z) defined in Ω = (1, 2) × (0, 1). Assuming that u0(x, z) = (x, 0) as an
initial horizontal wind field and α1 = 1, α3 = 0.001, we consider the following
boundary conditions in (4) and (5)

B1λ = λ = g1 = 0 onΓD

B2λ = −S−1∇(λ) · n = g2 = u0 · n onΓN

In Table 1, we show the numerical results obtained with inverse multiquadric
as radial basis function in (6), with different numbers of nodes and shape pa-
rameters.

Note that the condition number grows as the number of node increases or
the shape parameter decreases in agreement with the uncertainty principle of
Schaback [30, 31]. In order to reduce the influence of ill-conditioning in the
inversion of the Gram matrix, the truncated SVD decomposition can be applied
to obtain a stable solution by means of a change of basis ([32]). The results
using this decomposition are displayed in Table 1. Note that the L2 error, for
the SVD case, is good enough and that the values of the errors are reasonable
when N grows or the shape parameter decreases.

c N κ(A) ∇ · û L2 Error

1 20 2.5e+10 2.3e-06 6.6e-01
1 60 1.1e+15 6.6e-06 7.0e-01
1 200 3.0e+23 2.0e-06 1.8e-03

0.1 20 3.1e+19 2.4e-06 4.9e-01
0.1 60 2.8e+23 1.7e-06 2.2e-05
0.1 200 4.1e+22 1.6e-06 3.7e-06
0.01 20 2.3e+19 1.7e-06 3.0e-04
0.01 60 2.7e+20 1.8e-06 2.8e-06
0.01 200 9.2e+20 1.1e-06 1.7e-06

Table 1: Inverse Gram matrix: SVD.

It is important to note that although the truncated SVD method improves
our results, this algorithm can not be applied in general to large scale prob-
lems, because the technique that eliminates the singular values, simultaneously
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remove their respective singular eigenvectors, degrading the basis of the space.
Moreover, it should be noted that the computation of this decomposition is of
order O(2N3) for square matrices, and due to this fact, some alternatives to
these techniques, like domain decomposition methods or techniques based on
local approximations have been developed.

In the following tables we use the notation: N number of nodes, κ(A) number
of condition the matrix A, ∇ · û divergence of the approximated field û and the
L2 error given by: ‖u−û‖2

‖û‖2 .

3.2. The Runge Phenomena
In the previous section, we noted that once the condition number is con-

trolled, it is possible to improve the relative error when the shape parameter
tends to zero, so we can expect further reducing (bounded to the machine ep-
silon) of this parameter, then it might be possible to obtain lower relative errors.
But as shown in Table 2, this trend is preserved only for values greater than
or equal to c = 10−4 (getting a relative error of order O(10−7)), since for lower
values, the relative error increases. This behavior which has been reported in
[29, 12], is due to the Runge phenomena which is well known in polynomial
interpolation for equidistant partitions.

c N κ(A) ∇ · û L2 Error

1 200 3.015e+23 2.0e-06 1.8e-03
0.1 200 4.1e+22 1.6e-06 3.7e-06

10−2 200 9.2e+20 1.1e-06 1.7e-06
10−3 200 1.6e+19 1.1e-06 2.2e-06
10−4 200 4.5e+20 2.9e-07 6.2e-07
10−5 200 4.0e+22 -3.5e-04 4.2e-04
10−6 200 6.3e+24 8.3e-03 7.0e-01
10−7 200 2.9e+26 8.7e-02 7.0e-01

Table 2: Runge phenomena for Kansa scheme.

The existence of the Runge phenomena for RBF approximations, was first
proved by Platte and Driscoll [29], the authors prove that Gaussian kernels
interpolants, for equispaced nodes in one dimension, converge to a polynomial
when the shape parameter tends to zero or the number of nodes increases.

4. Local Hermitian Interpolation Method

Due to the limitations observed for global collocation methods, i.e. the
uncertainty principle of Schaback and the Runge phenomena, in this section we
propose to apply the local algorithm developed by Stevens, Power et al. [27]
to the reconstruction of solenoidal fields. We aim to show that unlike Kansa’s
technique, the condition number of the global matrix corresponding to the Local
Hermitian Interpolation (LHI) method does not increases in an exponential way
as the number of nodes and or the shape parameter increases. In what follows
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we formulate the LHI method for the vector field problem and discuss whether
or not it is capable of attaining exponential order of convergence. That is, we
want to study if it is competitive with respect to the global collocation method
of Kansa. We shall do this by means of different numerical examples.

In this approach, the analytic solution u of a PDE system

Lu(x) = f(x) ∈ Ω (14)
Bu(x) = g(x) ∈ ∂Ω (15)

is approximated in a set of nodes Ωsc = {x1, . . . , xNsc} ⊂ Ω (called solution
centers), by means of Nsc local sub-systems defined for each xi as follows:

u(xi) = hi xi ∈ Ωsc (16)
Lu(x) = f(x) x ∈ Ωpdec (17)
Bu(x) = g(x) x ∈ ∂Ωfc (18)

where hi are the unknown parameters, Ωpdec = {x1, . . . , xNpdec
} ⊂ Ω is a set of

interior nodes related to the differential operator L and ∂Ωfc = {x1, . . . , xNfc
} ⊂

∂Ω the boundary nodes.
This procedure generates a set of local linear systems given by

A(k)β(k) = d(k) k = 1, . . . , Nsc (19)

which are obtained by substituting the Stevens radial Anzatz given by

û(k)(x) =
Nsc∑
j=1

β
(k)
j φj(r) +

Nsc+Nfc∑
j=Nsc+1

β
(k)
j Bξφj(r)+

Nsc+Nfc+Npdec∑
j=Nsc+Nfc+1

β
(k)
j Lξφj(r) + pm

k (20)

in (16)-(17), for the local domains displayed (in circles) in Figure 2. In (20),
k is the local system index, Nsc the number of solution centers, Npdec the
number of PDE centers in the local system and Nfc the number of boundary
centers in the local system. Moreover, Lξφj(r) := Lφ(‖x− ξ‖)|ξ=ξj , Bξφj(r) :=
Bφ(‖x− ξ‖)|ξ=ξj , φ(r) the inverse multiquadric and pm

k a polynomial in Rd and
degree m, which is defined by the null space of (14) and (15), i.e. for d = 2 and
m = 2, the polynomial is given by p(x, y) = a0 +a1x+a2y+a3xy+a4x

2 +a5y
2.

By using (19), we obtain the following Gram matrix and the right hand
vector

A(k) =


Φij Lξ[Φij ] Bξ[Φij ] Pij

Lx[Φij ] LxLξ[Φij ] LxBξ[Φij ] Lx[Pij ]
Φij Lξ[Φij ] Bξ[Φij ] Pij

Bx[Φij ] BxLξ[Φij ] BxBξ[Φij ] Bx[Pij ]

 and d(k) =


hi

fi

0
gi


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Figure 2: Centers and local subdomains for the LHI method.

Thus, each approximation û(k)(x) has the form

û(k)(x) = H(x)β(k)(h1, . . . , hNs) (21)

where

H(k)(x) =
[
φ(‖x− ξ‖) Lξφ(‖x− ξ‖) φ(‖x− ξ‖) Bξφ(x− ξ)

]
Finally, the local systems (19) are coupled in a global sparse linear system

whose unknowns are the hi values. This is performed by applying the differential
operator L to each local interpolator (21) and evaluating it at the corresponding
solution center, i.e.

L[û(k)(x)]|x=xi = f(xi) (22)

which is the discretization of (17). Once the values of the unknowns are ob-
tained, the approximation of u in each solution center (see (16)) can be deter-
mined.

In our problem, i.e the approximation of vector fields, as it has been men-
tioned, it is necessary to calculate an approximation of the Lagrange multiplier
λ by solving the corresponding Euler-Lagrange equations and by using equation
(1).

It should be noted, however, that in this case it is necessary to approximate
the gradient of λ, so the Stevens algorithm can not be applied directly. This
is because in their case they approximate the solution, whereas in our case we
need to estimate the components of the gradient of the Lagrange multiplier.

To achieve this result, we need to change the original Stevens Anzatz (20),

9



by incorporating the the partial derivatives in x and y in the following way

λ̂(k)
x (x) =

Nsc∑
j=1

β
(k)
j

∂φj(r)
∂x

+
Nsc+NB1∑
j=Nsc+1

β
(k)
j Bξ

1φ(r) +
Nsc+NB1+NB2∑
j=Nsc+NB1+1

β
(k)
j Bξ

2φ(r)+

(23)

+
Nsc+Nfc+Npdec∑
j=Nsc+Nfc+1

β
(k)
j Lξφj(r) + pm

k,x(x)

λ̂(k)
y (x) =

Nsc∑
j=1

β
(k)
j

∂φj(r)
∂y

+
Nsc+NB1∑
j=Nsc+1

β
(k)
j Bξ

1φ(r) +
Nsc+NB2∑
j=Nsc+1

β
(k)
j Bξ

2φ(r) (24)

+
Nsc+Nfc+Npdec∑
j=Nsc+Nfc+1

β
(k)
j Lξφj(r) + pm

k,y(x)

Where NB1 are the number of boundary nodes in ΓD and NB1 in ΓN respectively
and Nfc = NB1 + NB2 . The corresponding local systems are thus given by


∂
∂xλ(x)|x=xi = h′i xi ∈ Ωsc

Lλ(x) = f(x) x ∈ Ωpdec

B1λ(x) = g1(x) x ∈ ΓD

B2λ(x) = g2(x) x ∈ ΓN

(25)


∂
∂y λ(x)|x=xi = h′′i xi ∈ Ωsc

Lλ(x) = f(x) x ∈ Ωpdec

B1λ(x) = g1(x) x ∈ ΓD

B2λ(x) = g2(x) x ∈ ΓN

(26)

with L defined in (7) and B1 and B2 the boundary conditions, so that we can
calculate ∇λ = (λx(x), λy(x)). Note that pm

k,x and pm
k,y for our case are defined

by

p(x, y)2k,x = a1x + a2
x2

2
+ a3xy + a4

x2y

2
+ a5

x3

3
+ a6xy2 (27)

p(x, y)2k,y = a1y + a2xy + a3xy + a3
y2

2
+ a5

xy2

3
+ a6

y3

3
(28)

This is, in our opinion, a significant modification, which yields an effective
methodology to compute numerical solutions of the problem, according to the
results that we will show bellow. We conjecture that this type of modifications
may be useful to approximate, not only the gradient, but also other type of
differential operators like the rotational, when solving partial differential equa-
tions.

In order to illustrate the effectiveness of the LHI method, we display in tables
(3) and (4) the CPU time of the Kansa’s collocation method using SVD and
the LHI method of Stevens, Power et al. ([27]) for example number 1.

We can appreciate from these tables that the CPU time (in a Intel core 2,
2.13GHz) of the LHI technique decreases at least one order of magnitude with
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c N κ(A) L2 Error CPU

0.1 60 2.8e+23 2.2e-05 0.00181
0.1 200 4.1e+22 3.7e-06 0.032
0.1 400 1.4e+24 1.4e-06 0.1873
0.01 60 2.7e+20 2.8e-06 0.00175
0.01 200 9.2e+20 1.7e-06 0.0273
0.01 400 4.8e+25 5.7e-06 0.1821

Table 3: Inverse Gram matrix: SVD.

κ(A) L2 Error CPU

2.8e+13 2.4e-06 0.000210
2.1e+14 9.99e-03 0.00556
1.26e+14 6.85e-03 0.0171
8.1e+13 4.4e-05 0.000204
1.3e+14 2.4e-04 0.00164
2.41+14 2.5e-03 0.00663

Table 4: Inverse Global matrix: LHI.

respect to the SVD-Kansa’s method. Note also that for the LHI method, a
quad-tree algorith of numerical complexity O(n log(n)) plus the invesion of the
local matices corresponding to each solution center, must be taken into acount.

We denote Ax and Ay the global Gram matrices resulting from applying
the differential operator L to each Anzatz (23) and (24), and evaluating them
at the solution centers in agreement to equation (22). Simultaneously, ALoc

x

and ALoc
y are the matrices which corresponds to the local systems arising form

substituting (23) and (24) in equation (25) and (26) respectively.
In what follows, we shall consider first the case where the boundary condi-

tions are of Dirichlet type and then the case where Neumann boundary condi-
tions are taken into account. We aim to investigate whether the LHI scheme is
capable to attain exponential orders of convergence, with low condition num-
bers for the global matrices, and if it can improve the performance of the global
collocation method of Kansa. We also analyze the limitations of this method.

For this purpose, in the following numerical experiments, we display, in the
first two columns of the following tables, the condition number and the L2 er-
ror of the global matrices. Our intention is to examine whether exponential
convergence can be reached and a low condition number can be attained simul-
taneously. On the other hand we display, in columns four and five, the condition
numbers of the local systems to analyze whether this values influence the size
of the condition number of the global matrix and the L2 error.

Example 2. Approximation with Dirichlet boundary conditions.
In this example we solve the same problem as in Example 1, but in this case

we take Dirichlet boundary conditions i.e.

B1λ(x) = λ(x) = g1(x)
B2λ(x) = λ(x) = g2(x)

with g1(1, z) = g1(2, z) = α2
3
2 (1−z2), g1(x, 1) = 0 and g2(x, 0) = α2

3
2 . The results

are showed in the Tables (5), (6) and Figure 3.
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Figure 3: Top: Radius v.s. condition number and Radius v.s. L2 Error for c = 0.1 (table 5),
Down: Radius v.s. condition number and Radius v.s. L2 Error for c = 0.01 (table 6).

Radius Global κ(Ay) ∇ · û L2 Error Max local κ(ALoc
y ) Min local κ(ALoc

y )

.2 3.8e+06 7.8e+00 1.4e-01 3.4e+27 1.2e+12

.3 1.3e+12 4.1e-02 4.9e-01 2.9e+28 1.1e+17

.4 7.4e+15 1.5e-01 4.0e+00 1.7e+29 1.0e+18

.5 1.1e+17 3.9e-03 4.4e-01 1.1e+30 1.0e+27

.6 1.9e+12 3.1e-03 2.1e-06 2.2e+30 1.6e+27

.7 5.9e+12 4.1e-03 4.2e-06 5.6e+30 1.6e+27

.8 2.7e+11 4.0e-03 3.7e-06 1.0e+30 2.6e+27

.9 1.3e+17 3.4e-03 3.5e-01 3.5e+30 4.7e+27

Table 5: LHI approximation with Dirichlet boundary conditions, number of interior nodes =
100 (50 solution centers and 50 PDE centers) and 20 boundary nodes, with shape parameter
c =0.1.
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Radius Global κ(Ay) ∇ · û L2 Error Max local κ(ALoc
y ) Min local κ(ALoc

y )

.2 7.6e+08 8.5e+02 1.2e+02 1.5e+27 2.5e+16

.3 2.3e+18 6.8e+02 8.2e+00 1.8e+27 9.1e+19

.4 1.1e+15 4.7e+01 2.8e+01 2.9e+28 3.6e+20

.5 3.7e+12 3.0e-02 1.0e-01 3.7e+27 1.7e+25

.6 1.4e+13 3.7e-03 3.1e-02 2.3e+27 3.0e+25

.7 1.4e+12 2.8e-02 3.1e-04 1.6e+27 5.3e+25

.8 3.3e+10 9.0e-02 1.3e-05 1.0e+28 4.0e+25

.9 1.3e+17 7.9e-01 3.8e+00 1.4e+27 7.2e+25

Table 6: LHI approximation with Dirichlet boundary conditions, number of interior nodes =
100 (50 solution centers and 50 PDE centers) and 20 boundary nodes, with shape parameter
c =0.01.

Example 3. Approximation with Dirichlet-Neumann boundary condi-
tions.

In this example we solve the same problem as in Example 1 but this time
with the same Dirichlet-Neumann boundary conditions i.e.

B1λ = λ = g1 = 0 onΓD

B2λ = −S−1∇(λ) · n = g2 = u0 · n onΓN

The results are showed in the Tables (7), (8) and Figure 4.

Radius Global κ(Ay) ∇û L2 Error Max local κ(ALoc
y ) Min local κ(ALoc

y )

.2 4.6e+10 4.3e+00 3.7e+00 1.2e+22 3.8e+18

.3 1.0e+16 1.9e-01 5.4e+00 3.7e+28 3.3e+19

.4 3.6e+20 3.1e-01 5.6e-01 1.6e+29 4.9e+19

.5 3.1e+16 6.2e-01 5.4e-01 4.1e+29 8.0e+19

.6 6.8e+14 8.2e-03 1.0e-05 4.7e+30 8.1e+26

.7 3.0e+14 6.3e-03 7.7e-03 2.8e+30 1.3e+27

.8 1.6e+15 4.4e-03 1.2e-01 5.1e+29 3.7e+27

.9 2.9e+20 4.4e-01 3.1e-01 7.6e+29 4.4e+27

Table 7: LHI approximation with Dirichlet-Neumann boundary conditions, number of interior
nodes = 200 (100 solution centers and 100 PDE centers) and 40 boundary nodes, with shape
parameter c =0.1.

In tables (5, 6, 7 and 8) only the condition number of Ay is showed while
Ax is omitted, the reason is that both values have a very similar numerical
behavior.

In Tables (5) and (6) we display, for Dirichlet boundary conditions, the
numerical results for two different values of the shape parameter, namely for
c = 0.1 and c = 0.01. It can be observed, that the condition number of the
global matrix Ay, increases with the number of nodes contained in the circle.
This happen within an interval and then the condition number slows down
within a region around the value 0.6. In this region it can be observed that
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Radius Global κ(Ay) ∇û L2 Error Max local κ(ALoc
y ) Min local κ(ALoc

y )

.2 1.1e+14 1.5e+02 6.7e+01 1.7e+28 3.9e+16

.3 7.1e+21 2.8e-01 5.7e-01 2.0e+27 8.7e+19

.4 2.9e+21 5.9e-01 5.3e-01 1.1e+27 3.9e+20

.5 6.8e+17 1.4e-01 6.4e-01 5.5e+27 1.1e+21

.6 2.4e+14 3.6e-03 4.5e-03 1.8e+28 1.3e+25

.7 2.3e+15 1.7e-02 5.2e-03 3.3e+28 2.4e+25

.8 3.8e+12 3.4e-02 1.1e-01 1.0e+28 5.7e+25

.9 2.7e+22 4.3e-01 4.1e-01 2.7e+28 5.3e+25

Table 8: LHI approximation with Dirichlet-Neumann boundary conditions; number of interior
nodes = 200 (100 solution centers and 100 PDE centers) and 40 boundary nodes, with shape
parameter c =0.01.

Figure 4: Top: Radius v.s. condition number and Radius v.s. L2 Error for c = 0.1 (table 7),
Down: Radius v.s. condition number and Radius v.s. L2 Error for c = 0.01 (table 8).

0

5e+19

1e+20

1.5e+20

2e+20

2.5e+20

3e+20

3.5e+20

4e+20

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C
o

n
d

iti
o
n

Radius

Radius vs Condition with c = 0.1

value

0

1

2

3

4

5

6

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

L
2

 E
rr

o
r

Radius

Radius vs L2 Error with c = 0.1

value

0

5e+21

1e+22

1.5e+22

2e+22

2.5e+22

3e+22

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C
o

n
d

iti
o

n

Radius

Radius vs Condition with c = 0.01

value

0

10

20

30

40

50

60

70

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

L
2

 E
rr

o
r

Radius

Radius vs L2 Error with c = 0.01

value

14



both the condition number and the error, decreases. In fact, the error is of the
order of 10−6, which is of the same order obtained with the global method of
Kansa. These results are displayed in Figure 3. Also, it can be appreciated that
the numerical approximation of the divergence is reduced within this region and
its value remains constant having an order of 10−3.

It can also be observed that it does not exists a direct relation between the
maximum (Max local κ(ALoc

y )) and minimum (Min local κ(ALoc
y )) value of the

condition number of the local matrices ALoc
y .

In tables (5) and (6) we display the numerical results when the boundary
conditions are of Dirichlet-Neumann type. In this case it can be observed that
the behavior is similar to the Dirichlet case, the main difference is that the error
is of the order of 10−5 instead of 10−6. These results are display in Figure 4.

We stress that in both cases, Dirichlet and Dirichlet-Neumann boundary
conditions, there is a region for the value for the radius, i. e. for the number
of local nodes, where the approximation is nearly as good as for the global
collocation method, i.e of spectral type.

5. Conclusions

In this work we have studied numerically the approximation of solenoidal
vector fields. Our main objective was to compare global radial basis functions
techniques, of spectral type, with local methods for inverse multiquadric ker-
nels. Our numerical results indicate that unlike global methods, local techniques
and in particular the LHI method may solve problems of great scale since the
global systems of equations has a global sparse matrix with a corresponding low
condition number.

The Anzatz of the LHI is flexible and it is possible to incorporate differential
operators that depend to the studied problem. However, in our case, this con-
dition was not strong enough and it was necessary to modify the Anzatz itself
in order to approximate the gradient of the Lagrange multipliers. This modifi-
cation of the Anzatz is a significant innovation and confirm that this technique
produces good results for problems like the one considered here.

We point that in the case of Dirichlet boundary conditions, local methods
achieve an error equivalent to the error obtained by the global approximation
collocation techniques for this problem. The numerical experiments for vector
fields were done for Cartesian meshes as well as for random data (Halton nodes)
verifying that LHI scheme produced similar error in both cases. This LHI local
method is highly adequate for parallel computing because the computation of
the inverse of each local matrix, corresponding to each solution center, can be
performed independently for multiple processors.

On the other hand, we observed that for Dirichlet-Neumann boundary con-
ditions the LHI method produces errors which are less accurate than global
collocation schemes. This agree both, with the numerical experiments per-
formed by Stevens, Power et al. ([27]) as well as the the results for least square
methods reported by Liu ([20]). In both cases the authors found that Neumann
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boundary conditions produce instabilities with local methods. This behavior is
a subject of current research at the scientific community.

The numerical results obtained in this work, showed that for the LHI method
there is a “tread-off” principle similar to the one that exists for the compact
support RBF method developed by Wendlad ([8]). More precisely, when the
support of the local basis functions increases, the error of the approximated
solution decreases and the condition number increases. On the other hand,
if the support is small, the condition number is low but the error increases.
Moreover, as it is displayed in Figures 3, 4, there is a region where the sizes of
the supports of the local functions, presents small -in fact spectral- errors, and
this is true for different values of the shape parameter c. Simultaneously, in this
same region it can be observed, see Figure 3, that the condition number of the
global matrices reaches minimum values.

Although the maximum and minimum condition number of the local basis
functions are high, our results indicate that the increase of the error and the
condition number of the global matrix do not depends on these values. The
study of this behavior is currently a topic of our current research.
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