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Closed loop optimal experiment design for on-line parameter estimation

Jun QIAN1,2,3, Madiha NADRI1, Petru-Daniel MOROŞAN2 and Pascal DUFOUR1

Abstract— This paper focuses on the problem of closed
loop on-line parameter identification for dynamic systems. An
approach for the combined on-line optimal experiment design
and model parameter identification is presented. Based on the
observation theory and the model based predictive control
theory, this approach aims to solve an optimal constrained
control problem. During the designed experiment, the optimal
time-varying input applied is computed at each current time to
maximize the sensitivities of the model outputs with respect to
the unknown model parameters which are also estimated on-
line. The approach does not require to measure all the process
state. Moreover constraints may be specified to maintain the
system behavior in a prescribed region. A case study of chemical
process is used to illustrate the developed approach.

I. INTRODUCTION

The increasing power of computer techniques leads to

consider more complex and more realistic models for simula-

tion, control or optimization of dynamic processes. Therefore

all model parameters need to be numerically known. Many

contributions and developments for parameter identification

exist [1] and [2]. A classical technique for parameter esti-

mation is the optimal experiment design (OED). However,

many literature of OED is appealing to use past experimental

data for offline model parameter identification, and separate

parameter estimation from the optimal input design to get

new experimental data [2] and [3]. Hence it increases the

duration of use of the process for pure identification and the

cost of these particular experiments (such as material fed at

the process inlet, energy consumption during the experiment,

output materials with undesired properties). Moreover, most

applications of OED are reliable on linear or approximated

linearized models [1] and [4], whereas in many areas such

as biological and chemical processes, models are highly non

linear. This paper focuses on the coupled on-line optimal

experiment design and parameter estimation for multivariable

systems, which are nonlinear in terms of state representation

and/or in terms of parameters.

The commonly used criteria for OED aims to maximize

the information contents in each experiment for parameter

identification. Generally, the information contents are de-

scribed as the Fisher Information Matrix (FIM) which is

constituted by the sensitivities of the model output with
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respect to the unknown parameters [2] and [3]. Recently,

several authors combined on-line OED techniques with pa-

rameter estimation. In 2010, B. Jayasankar and his colleagues

developed the OED for on-line parameter estimation in the

multivariable case but without output constraint [5]. One year

later, in [6], Y. Zhu and B. Huang used the steady state anal-

ysis to add linear equality constraints in an extended Kalman

filter based approach to reduce the influence of poor initial

conditions. These developed techniques for closed-loop iden-

tification purpose were addressed to open loop stable systems

without input/output process constraint. Meanwhile, for real

industrial applications, it is often necessary to account for

process constraints (dealing with safety, maintain process

state within bounds, production, economic performance, user

comfort, etc). In such cases, closed loop constrained optimal

control approach, using a Model Predictive Control (MPC)

strategy, is a good choice for the controller.

MPC strategy is widely used since a few decades for

industrial applications for regulation or trajectory tracking.

For the OED, the main idea of a MPC approach is to deter-

mine an online optimal control sequence over a prediction

horizon by maximizing the specified sensitivity criterion with

the satisfaction of input and/or output constraints at each

current moment. Therefore, the dynamic sensitivity model

is established for feeding the sensitivity outputs into the

controller. Receding-horizon design for parameter estimation

has also been used in [13] for the linear case and in [6]

for the nonlinear case. The new approach has been initially

proposed in [8] where the authors considered first the mono-

variable case (a single input, a single measured state and

a single unknown constant parameter) for stable nonlinear

systems. Recently, we have showed that this approach may

also be applied for an unstable nonlinear system with one

input, two measured states and five unknown constant model

parameters ([7]). The present paper extends this approach to

another class of nonlinear systems.

In this approach, the observer design plays a very impor-

tant role for online estimating the unknown model states (if

any) but above all the unknown constant model parameters.

Different observers have been proposed for nonlinear dy-

namic systems such as: high gain observer, extended Kalman

filter (EKF) or adaptive-gain observer [9]. The choice of the

observer type depends on the model structure and the observ-

ability property (which may depends on the sensitivity of the

measurements with respect to the inputs). The convergence

of observers is important for the parameter estimation. For

example, in [6], the authors choose a classic EKF estimator

for a continuous stirred tank reactor (CSTR) also studied in

this paper. As we know, besides some numerical difficulties
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related to the gain calibration of the Riccati equation, it is

not obvious to verify the mathematical convergence of this

observer. Here, two high gain observers in cascade with proof

of convergence are used.

This paper is organized as follows. In the section II, the

proposed approach of closed-loop OED for on-line identifi-

cation is presented. In section III, a practical application of

this approach is given using a chemical process: a CSTR.

II. PROPOSED CLOSED-LOOP OPTIMAL IDENTIFICATION

APPROACH

The proposed approach combines the closed-loop OED

with an on-line identification for unknown model parameters

of a nonlinear dynamic system base on ordinary differential

equations. The non-linearity can be in terms of state repre-

sentation and/or in terms of parameters. Based on the chosen

model structure, an observer is designed for the augmented

system resulting in a combined estimation of the unmeasured

model states (if any) and the unknown model parameters.

Then, a sensitivity model is stated to get the dynamic of all

the sensitivities of the states and the output of the model with

respect to the unknown model parameters. Finally, the OED

problem is formulated by a cost function which maximizes

the information content in the experiments. The constrained

control problem is solved by a MPC strategy. The outputs

of the process, the model, the observer, and the sensitivity

model are used by the control law. The optimal inputs and

the parameter estimations are determined on-line. Figure

1 presents the structure of this closed loop identification

algorithm approach, where the principal components are

described in the followings.

Fig. 1. Proposed closed loop control structure for on-line identification.

A. Process

The proposed approach can be used for processes that

feature some dynamic behaviour. Meanwhile, at least one

on-line output measure yp(t) must be available and at least

one exogenous input u(t) must be manipulable on-line by

a controller. Some constraints may be specified on the

magnitude and velocity of the manipulated inputs. Other

constraints may be specified on the measured outputs or

estimation of the process states. Hence, this covers a very

large number of potential applications.

B. Model

The proposed approach can consider a large class of

industrial processes which are modelled by a nonlinear

dynamic multivariable model based on ordinary differential

equations:

(M)

{

ẋ(t) = f(x(t), θ, u(t))
y(t) = h(x(t), θ, u(t)),

(1)

where x ∈ Rn is the state vector, y ∈ Rp is the vector

of measured outputs,u ∈ U ⊂ Rm denotes the vector of

known manipulated inputs, θ ∈ Rq is the unknown model

parameters vector, f and h are nonlinear functions of suitable

dimensions.

Assumption 1: In this study, the unknown model param-

eters are all constant.

Assumption 2: In the system (1), f and h are C∞ w.r.t.

their arguments.

C. Observer design

An observer can be constructed to give an estimation

x̂(t) for the state x(t) by using a judicious model state of

the process and the knowledge of u(t′) and y(t′) for 0 ≤
t′ ≤ t. Moreover, in terms of model parameter identification,

the observer has to be designed to estimate on-line not

only model states (if any), but also the unknown constant

parameter vector θ. Hence, the observer design is based on

the following augmented model :

(Ma)







ẋ(t) = f(x(t), θ, u(t))

θ̇ = 0
y(t) = h(x(t), θ, u(t)),

(2)

In the follows, we denote the augmented state vector by xa =
[x θ]

T
and the vector function fa = [f 0]T .

Definition 1: A global observer for system (2) can be

given by a dynamical system under the form:

(O)







˙̂xa(t) = fa(x̂a(t), u(t)) + ...
...ga(t, h(x̂a(t), u(t))− yp(t))

with: ga(t, 0) = 0,
(3)

such that

i) if x̂a(0) = xa(0), then x̂a(t) = xa(t), ∀t ≥ 0;

ii) if ∀xa(0), ∀x̂a(0), then lim
t→+∞

‖x̂a(t)−xa(t)‖ = 0, where

ga is a function of the output estimation error to be designed

and yp is the process output vector (real measures).

Our estimation problem consists in determining a gain ga
such that the estimation error e(t) = xa(t)−x̂a(t) converges

asymptotically to zero.

Remark 1: In general, it is not required to measure all

the model states x(t) for our proposed approach. But it is

necessary and sufficient to measure a combination of some

states which allow to design an observer for the estimation

of the unknown states and unknown parameters, and also

to study the sensitivity of the model with respect to the

unknown parameters. In order to better illustrate the different

steps of the implementation of the approach, we can now

assume that the whole state is measured.
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D. Sensitivity model

The sensitivity analysis tells us how the unknown parame-

ters θ affect the system state x. Thus we define the sensitivity

function as:

∂

∂t
xθ =

d

∂t

(

∂x

∂θ

)

=
∂

∂θ

(

∂x

∂t

)

=
∂f

∂θ
+

∂f

∂x

∂x

∂θ
. (4)

Based on this definition, the sensitivity model is:

(Mθ)

{

ẋθ(t) = ∂f(x(t),θ,u(t))
∂x

xθ +
∂f(x(t),θ,u(t))

∂θ

yθ(t) = xθ(t),
(5)

where xθ ∈ Rn×q and yθ ∈ Rn×q are the sensitivity matrix

of the states (the outputs) with respect to the unknown model

parameters. Since physical values involved in the sensitivities

have usually different scales and units, each sensitivity is

normalized with the relative-sensitivity function:











x̄θ(i, j) =
θj
xi
xθ(i, j); i = 1, · · · , n; j = 1, · · · , q

ȳθ(i, j) =
θj
yi
yθ(i, j); i = 1, · · · , n; j = 1, · · · , q.

(6)

E. MPC strategy

MPC is widely used in the industry, particularly for

solving an optimal control problem (trajectory tracking,

processing time minimization, etc) with input constraints

or/and with output constraints:






























input constraints, (∀k > 0) :
{

umin 6 u(l) 6 umax

∆umin 6
u(l)−u(l−1)

Ts
6 ∆umax

state/output constraints, (∀k > 0) :
cn(yp(k), x̂a(k), y(l), x(l), u(l)) 6 0,
∀n ∈ I = 1, ...Nsoc,

(7)

where Nsoc is the number of the state/output constraints.

The objective of the online optimal control problem is here to

maximize the information content of the experiment, namely

to maximize the sensitivities of the model states with respect

to the unknown constant parameters at each instant. To do

so, we use the FIM based on the sensitivity matrix Z̄k at

the current instant k1, composed of the normalized outputs

sensitivity ȳθ:

Z̄k =













ȳθ(1, 1)|k ȳθ(1, 2)|k . . . ȳθ(1, q)|k

ȳθ(2, 1)|k
. . .

...
...

. . .
...

ȳθ(n, 1)|k . . . . . . ȳθ(n, q)k













. (8)

1To simplify the notation, here, s(k) (resp. s(l)) represents the value
of the signal s at the current (resp. future) discrete time k × Ts (resp.
l×Ts), where Ts is the constant sampling time. For the input, a zero order
hold is used between two consecutive sampling times. The various models
are still formulated in a continuous framework and are solved numerically.
Hence, sampled values may be taken at any discrete time. The initial value
of the model state at k is obtained from the real measurements or from the
state estimated by the observer. It is assumed that process data may also be
sampled at the same rate.

Then, the FIM Mk is given by:

Mk = Z̄T
k Z̄k. (9)

In order to optimize the information contents over a

receding horizon, we consider the cost function J :







J = φ(F (ȳθ|l|k, ul|k, yp(k), x̂a(k), x(k), y(k))),
with F (ȳθ|l|k, ul|k, yp(k), x̂a(k), x(k), y(k))

= 1
Np

∑k+Np

l=k+1 Ml|k

(10)

where φ(.) is the criteria described below and F is a matrix

which represents the average information during a predictive

horizon Np, at the current discrete time k. Ml|k is the FIM

computed over the prediction horizon Np at the current time

k. Finally, the E-optimality criterion is defined to maximize

the smallest eigenvalue of the matrix F . Geometrically, it

minimizes the size of the major axis of the join confidence

region of the estimated parameters. This allows to choose

the optimal input u⋆(k) to apply at k:

{

u∗
l|k = argmaxul|k

(

J(ul|k) =
λmin(F )
λmax(F )

)

ul|k = {u(k) . . . u(l) . . . u(k +Np)}, l ∈ [k k +Np].
(11)

This procedure is repeated at the next sampling time.

Finally, the optimal inputs and the parameter estimations are

both determined online.

III. CASE STUDY: CSTR

The proposed approach is now detailed step by step on a

simulation case from chemical engineering.

A. Process

In this section, the CSTR discussed in [6] for an identifica-

tion problem is used: it is a first-order exothermic irreversible

reaction. In [6], a steady state analysis led to create linear

equality constraints, whereas no other real constraint were

specified.

B. Model

This nonlinear dynamic system is described as follows:











˙cA(t) =
q
V
(cfA − cA(t))− k0 e

− E
RT (t) cA(t)

Ṫ (t) = q
V
(Tf − T (t)) + ∆H

ρCp
k0 e

− E
RT (t) cA(t)

+ UA
ρV Cp

(Tc(t)− T (t)),

(12)

where the temperature of cooling jacket Tc(t) is the ma-

nipulated input. The concentration of component A, cA(t),
and the reactor temperature, T (t), are the two states and

the two outputs. The parameters vector is θ = [ 1
ρ

k0].
The descriptions and values of the known (resp. target for

unknown) parameters in the system are listed in the table I

(resp. II) .
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TABLE I

CSTR: KNOWN MODEL PARAMETERS.

Parameter (units) Symbol Value

Volumetric flowrate (m3/s) q 100
Volume of CSTR (m3) V 100
Heat capacity of A-B mixture (J/kgK) Cp 0.239
Heat of reaction for A-B (J/mol) ∆H 5× 104

- (W/K) UA 5× 104

U : overall heat transfer coefficient

(W/m2K)
A: Area, this value is specific for the

U calculation (m2)

Feed concentration (mol/m3) cfa 1
Feed temperature (K) T f 350

Exponential factor (K) E
R

8750
E: Activation energy in the Arrhenius
equation (J/mol)
R: Universal gas constant, 8.31451
(J/mol/K)

TABLE II

CSTR: TARGET FOR THE UNKNOWN MODEL PARAMETERS.

Parameter (units) Symbol Value

Density of A-B mixture (kg/m3) ρ 1000
Pre-exponential factor (s−1) k0 7.2× 1010

C. Design of two observers in cascade

Using the notations: α = [ q
v
; cfA; −

E
R
; Tf ;

∆H
Cp

; UA
V Cp

]

(the known constant model parameters) and xa(t) =
[cA; T ;

1
ρ
; k0] (the augmented state vector), the augmented

system is2:







































ẋa1(t) = α1(α2 − xa1(t))− xa4e
α3

xa2(t) xa1(t)

ẋa2(t) = α1(α4 − xa2(t)) + α5xa3xa4e
α3

xa2(t) xa1(t)
+α6xa3(u(t)− xa2(t))

ẋa3(t) = 0
ẋa4(t) = 0

y(t) =

[

xa1(t)
xa2(t)

]

.

(13)

In order to estimate the unknown parameters, the aug-

mented model (13) can be rewritten as two interconnected

subsystems. To do so, we introduce the following notations

: z1 =
[

xa1 xa4

]T
, z2 =

[

xa2 xa3

]T
;

A1(y) =





0 −y1exp

(

α3

y2

)

0 0



 ; ϕ1(y) =

[

α1α2 − α1y1
0

]

;

A2(u, y, η1) =

[

0 α5z
1

2 exp
(

α3
y2

)

z11+ α6(u− y2)

0 0

]

;

ϕ2(y) =

[

α1α4 − α1y2
0

]

;C1 = C2 =
[

1 0
]

.

Using these notations, we get the following typical cascade

affine system up to output injection [10]

2For simplicity, we use the notation (·)i = (·)(i)















ż1 = A1(y)z
1 + ϕ1(y)

ż2 = A2(u, y, z
1)z2 + ϕ2(y)

y =

[

C1z
1

C2z
2

]

.
(14)

Assuming that for each single output subsystem i, one can

design an observer (Oi)(i = 1, 2), the point is to design an

observer for the whole system from the interconnection of

two observers (O1(ẑ
1))) and (O2(ẑ

1, ẑ2)).
Based on these two fully interconnected subsystems, one

use two classical observers as follows :

• Subsystem in z1 is a particular case of the form treated

in [14], then using the same assumptions, the following

high gain observer can be designed

˙̂z1 = A1(y)ẑ
1 + ϕ1(y)−G(C1ẑ

1 − y1), (15)

where ẑ1 is the estimated state vector, G = ∆−1S−1

λ CT
1 ,

∆ =

[

1 0
0 A1(1, 2)

]

, Sλ =

[

1

λ
−

1

λ2

−

1

λ2
2

λ3

]

and λ the

observer tuning parameter.

• Subsystem in z2 is state-affine system with output

injection for which an high gain observer can be

designed (for more details see [9]). To do so, we

introduce the following assumption.

Assumption 3: Let Φ1(t; s) be the transition matrix of

the state affine subsystem in z2 which satisfy

∂Φu

∂t
(t; z1) = A2(u, y, z

1(t))Φu(t; z
1) , t ∈ R

with Φu(0; z
1) = I.

(16)

For every z1(·), solution for the subsystem in z1, there

exists two positive constants T and η such that
∫ t

t−T

Φu(s; z
1)′C ′

2C2Φu(s; z
1) ds ≥ ηI , ∀t ∈ R .

Under this assumption, an observer can be given as
{

˙̂z2 = A2(u, y, ẑ
1)ẑ2 + ϕ2(y)− S−1CT

2 R(C2ẑ
2
− y2)

Ṡ = −µS −AT
2 (u, y, ẑ

1)S − SAT
2 (u, y, ẑ

1) + CT
2 RC2

(17)

where ẑ2 is the estimated state vector, S is a symmetric

positive definite (S.P.D.) matrix 2 × 2, R is a positive

constant, and µ is the tuning parameter for the observer.

Using the above, we can now state our result,
Theorem 1: there exist two constants µ∗ and λ∗ such that

for every µ ≥ µ∗ and λ ≥ λ∗, the following system is an
asymptotic observer for the whole system (14)






˙̂z1 = A1(y)ẑ
1 + ϕ1(u, y)−G(C1ẑ

1
− y1)

˙̂z2 = A2(u, y, ẑ
1)η̂2 + ϕ2(y)− S−1CT

2 R(C2ẑ
2
− y2)

Ṡ = −µS −AT
2 S − SA2 + CT

2 RC2

(18)

where ẑi is the estimated state vector, G and λ are given by

(15) and µ is given by (17).

Sketch of proof 1: Let us first consider the subsystem in

z1. Using the results given in [14] and [9], and the same

assumptions therein, we have directly the estimation error

e1(t) = z1(t)− ẑ1(t) that converges asymptotically towards

zero. To complete the proof, we have to study the behaviour

1816



of the second part of the estimation error e2(t) = z2 − ẑ2,

which depends on the convergence of e1. In [12], the authors

gave the proof of the observer convergence for the same

class of affine systems with output injection but without

interconnection (there was no dependence on z1). To use

of this result, it suffices to show that :

if S is solution of

Ṡ = −θS − SA2(ẑ
1)−A2(ẑ

1)TS + CT
2 C2,

then there exist two positive constants a1, a2 such that

a1I ≤ S(t) ≤ a2I. (19)

For more details, see [12].

Based on (19) and using classical Lyapunov approach, it

can be shown: limt→+∞ e2(t) = 0

D. Sensitivity model

The definition (4)-(5) of the sensitivity model in section

II is used to get the sensitivity model (xiθj = ∂xi

∂θj
). These

sensitivities are the normalized by (6).

E. MPC strategy

The input constraints in this case study are defined by:

250K 6 Tc(l) 6 320K, ∀l ∈ [k, k +Np] (20)

and an output constraint may be present or not in closed

loop:

cA(l) 6 0.95mol/m3, ∀l ∈ [k, k +Np]. (21)

F. Results and discussion

The MPC strategy solves the optimization problem at

the current time k to compute the optimal temperature of

cooling jacket Tc. At the same time, the constant unknown

parameters 1/ρ and k0 are estimated by the observers.

This proposed optimal identification approach is pro-

grammed in the ODOE4OPE3 software which is used and

developed in our research work. In order to evaluate this

approach, three different cases are considered:

• Case 1: identification in open loop with a constant input

(Tc = 300 K) satisfying the input constraints;

• Case 2: identification in closed loop by using the

proposed approach with the input constraints (20);

• Case 3: identification in closed loop by using the

proposed approach with the input constraints (20) and

the output constraint (21).

These three cases are all studied under the same initial

conditions and using the same parameter values which are

defined in table III.

In case 1, a constant input value is applied which allows

that both estimated model parameters converge to their target

value (Fig. 2 and Fig. 3). In closed loop, (case 2) both

estimated model parameters converge to their target faster

than in the open loop case (between 30 and 50% faster) and

with less error before the final convergence, especially for

3ODOE4OPE: optimal design of experiments for on-line parameter
estimation: http://ODOE4OPE.univ-lyon1.fr

TABLE III

INITIAL CONDITIONS AND PARAMETER VALUES FOR THE SIMULATIONS.

Initial conditions Symbol Value (uSI)

Initial parameter values [θ̂1(0)θ̂2(0)] [ 1

1100
6.3× 1010]

Initial model states [x1(0)x2(0)]m [0.9 305]
Initial estimated states [x̂1(0) x̂2(0)] [0.9 305]
Tuning parameters [λ µ] [1 1]

S.P.D matrix in (17) Sl(0)

[

1 0
0 1

]

Weight matrix in (17) R 3
Time of the simulation Tend (s) 50
Sampling period Ts (s) 0.5
Prediction horizon Np 10

ρ. Indeed, the controller is able to find better control actions

(in the sense of the criteria Fig. 4 and Fig. 5) which leads

to have a time-varying input profile (Fig. 6) which increases

from the initial point u(0) = 270K and converge to 282.7K.

The result is that cA increases monotonously and stops over

0.972 mol/m3 (Fig. 7). A smaller value is used to define

the upper bound in the new output constraint (21) which is

always satisfied (Fig. 7) in the case 3: here, both estimated

model parameters converge to their target value, but slower

than in case 2 (but still quicker than in case 1). The input

is still time-varying and it is found to be between the two

previous solutions (Fig. 6).

Therefore, the approach is able to decrease the operating

time needed to estimate the CSTR model parameters (hence

decrease the cost of the experiment) while keeping the state

inside a prescribed constrained set, which was not the case

with the method employed in [6].
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Fig. 2. Parameter estimation: k0.
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Fig. 4. Normalized sensitivities of model states with respect to the
estimated parameters.
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Fig. 5. Criterion E maximized.

IV. CONCLUSION

In this paper, an approach combining the closed loop

online parameter identification with optimal design of ex-

periments based on observer techniques has been proposed.

It aims to compute online the optimal profile of input to max-

imize the sensitivities of process outputs with respect to the

unknown constant model parameters which are estimated at

the same time. Using nonlinear observer techniques coupled

to a model based predictive controller, a cost function based

on the sensitivity criterion has been optimized. The efficiency

of the proposed algorithm has been evaluated through a

classical chemical process. The simulation results show that

the closed loop optimal identification approach can find the

optimal input and give a faster parameter estimation than the

experiment in the open loop, while the constraints specified

on the inputs and outputs can be well satisfied.
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