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Polarimetric Incoherent Target Decomposition by

Means of Independent Component Analysis
Nikola Besic, Student Member IEEE, Gabriel Vasile, Member IEEE, Jocelyn Chanussot, Fellow IEEE,

and Srdjan Stankovic, Senior Member IEEE

Abstract—This paper presents an alternative approach for
polarimetric incoherent target decomposition dedicated to the
analysis of very-high resolution POLSAR images. Given the non-
Gaussian nature of the heterogeneous POLSAR clutter due to the
increase of spatial resolution, the conventional methods based on
the eigenvector target decomposition can ensure uncorrelation of
the derived backscattering components at most. By introducing
the Independent Component Analysis (ICA) in lieu of the eigen-
vector decomposition, our method is rather deriving statistically
independent components. The adopted algorithm - FastICA,
uses the non-Gaussianity of the components as the criterion for
their independence. Considering the eigenvector decomposition
as being analogues to the Principal Component Analysis (PCA),
we propose the generalization of the ICTD methods to the level of
the Blind Source Separation (BSS) techniques (comprising both
PCA and ICA). The proposed method preserves the invariance
properties of the conventional ones, appearing to be robust
both with respect to the rotation around the line of sight and
to the change of the polarization basis. The efficiency of the
method is demonstrated comparatively, using POLSAR Ramses
X-band and ALOS L-band data sets. The main differences with
respect to the conventional methods are mostly found in the
behaviour of the second most dominant component, which is
not necessarily orthogonal to the first one. The potential of
retrieving non-orthogonal mechanisms is moreover demonstrated
using synthetic data. On expense of a negligible entropy increase,
the proposed method is capable of retrieving the edge diffraction
of an elementary trihedral by recognizing dipole as the second
component.

Index Terms—ICTD, ICA, non-Gaussianity, independence,
non-orthogonality

I. INTRODUCTION

Target decomposition (TD), introduced in the first place

in [1], aims to interpret polarimetric data by assessing and

analysing the components involved in the scattering process

[2]. When estimating scattering components, conventional

algebraic incoherent target decompositions (ICTD) rely on the

Hermitian nature of the positive semi-definite target coherence

(or covariance) matrix [3], [4]. Eigenvector decomposition of

the space averaged coherence matrix results in a set of mutu-

ally orthogonal target vectors, representing the three dominant
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single scatterers in a scene. Accompanying eigenvalues define

the contribution of the corresponding scatterers to the total

scattering. The product of the derived target vector with its

Hermitian conjugate, multiplied by the matching eigenvalue,

results in the coherence matrix of a single scatterer. Therefore,

using the coherence matrix, the backscattering mechanism is

expressed as the incoherent sum of three elementary mecha-

nisms, considered as independent. The two essentially used

algebraic decompositions are the H/α decomposition, pro-

posed by Cloude and Pottier [5] and the Touzi decomposition

[6]. They differ in terms of parametrization of the derived

target vectors: the first one uses α− β − γ − δ model, while

the second uses the Target Scattering Vector Model (TSVM),

which ensures roll-invariance in case of both symmetric and

non-symmetric targets.

The Independent Component Analysis (ICA) is a Blind

Source Separation technique (BSS) aiming to recover indepen-

dent source signals without having any physical knowledge

of the mixing process [7]. Unlike the Principal Component

Analysis (PCA), as well considered a BSS technique, but

limited to the second order statistics of the observations

[8], the ICA is rather based on the knowledge of higher

order statistical moments. The PCA results in statistically

uncorrelated sources at best, which appears to be sufficient

in case of Gaussian observations where uncorrelated equals

to independent [9]. However, if the observed mixture signals,

analysed as random variables, are not Gaussian, which happens

to be simultaneously the basic condition for applying the

ICA, independence turns out to be a more rigorous way of

discrimination than uncorrelation [10].

Under certain constraints, the eigenvector decomposition of

the scattering coherence matrix, provides the same results as

the PCA of the corresponding representative target vector [11].

Thus, the conventional approach in POLSAR images target

decomposition results in deriving uncorrelated components.

This is adequate if we consider the conventional statistical

model assuming Gaussian homogeneous clutter [12]. However,

given the improvement in spatial resolution, the POLSAR data

can be rather characterised by non-Gaussian heterogeneous

clutter [13]. In this case decorrelation cannot be considered

as the most meticulous way for separating the scattering

sources present in the scene. It appears that more advantageous

solutions, capable of deriving independent components, are

needed. Applying the ICA seems to be one of such solutions.

The ICA method have been already successfully employed

on SAR data: in speckle reduction, feature extraction and

data fusion [14], [15]. The application on polarimetric data
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was, however, either restricted on analysis of two-components

polarimetric target vector [16], either rather related to the POL-

InSAR data analysis [17].

The main idea of this article is to propose a generalization

of the polarimetric decompositions to the level of blind source

separation techniques by introducing the ICA method instead

of the eigenvector decomposition. Essentially, our motivation

is the possibility to exploit higher order statistics of the non-

Gaussian target vector in order to recover a set of independent

dominant scatterers. In this particular case, the recovered lin-

early independent scattering target vectors are not necessarily

mutually orthogonal, which is demonstrated using a synthetic

data set. At first, we apply the statistical classification algo-

rithm (for example [18]) in order to obtain stationary sets of

polarimetric observations - scattering matrices projected onto

the Pauli basis. Then, the target vectors of the single scatterers

are estimated by applying Complex Non-Circular FastICA

algorithm [19] on each of the sets derived in the previous step.

They are parametrised using the TSVM, allowing the Poincaré

sphere representation with direct physical interpretation [20].

The share of the component in the total backscattering is

computed by the squared ℓ2 norm of the single scatterer

target vector. The proposed method is invariant, both under

the rotation around the line of sight (LOS) and under the

change of polarization basis. The latter is demonstrated using

the projection of the observations onto the circular polariza-

tion basis, coupled with the Circular Polarization Scattering

Vector (CPSV) model [21] and furthermore, by additionally

employing α− β − γ − δ model in Pauli basis [5].

The method particularities with respect to the conventional

approach are demonstrated using RAMSES X-band and ALOS

L-band data sets. Comparative analysis points out strong

similarity when dealing with the first most dominant com-

ponents. However, there is a remarkable difference in the

behaviour of the second components. It appears that on the

expense of a negligible increase in entropy, the second most

dominant component contains some valuable information. In

the first data set, acquired over urban area, while analysing the

class which corresponds to the elementary trihedral placed in

the scene, we detect the diffraction scattering by identifying

dipole as the second most dominant component. On the other

side, when dealing with the distributed targets (mountainous

region), we are able to rely on the symmetry of the second

most dominant component in discriminating between different

types of snow cover and the bare ground. In terms of the

second component, we demonstrate also the advantage of

the ”global” (classification) over the ”local” approach (sliding

window) in selecting observation datasets.

The article is organized as follows: in Chapter II we are

discussing the main differences between the existing (PCA)

and the proposed solution (ICA), in terms of statistics. Further,

chapter III contains the description of the method, comprising

the details concerning the applied ICA algorithm and an

introduction to the Touzi’s TSVM parametrisation [6]. The

roll-invariance properties are as well discussed in this chapter.

Application on two real data-sets, followed by corresponding

discussion are given in chapter IV. This chapter contains an

application on a synthetic data set as well, used to demonstrate

the capability of retrieving non-orthogonal mechanisms. The

polarization basis invariance analysis is demonstrated using

one of the real data sets. Finally, chapter V concludes the

article and provides future perspectives.

II. PCA AND ICA

Blind Source Separation techniques use a set of observation

vectors (x) to retrieve the sources vector (s) and the mixing

matrix (A), which gives the share of the sources in the

observed process [22]:





x1(i, j)
x2(i, j)
x3(i, j)
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A′′
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
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s′′2 (i, j)
s′′3 (i, j)



 .

However, the criterion for separation varies upon the method

being used. Principally, the sources are expected to be either

mutually uncorrelated (s′) or mutually independent (s′′) (if the

higher order statistical moments differ from zero, which is the

case for non-Gaussian observations). The former criterion is

used in the Principal Component Analysis, while the latter is

associated to the Independent Component Analysis.

If we introduce the spatially averaged covariance matrix of

the observation vector as Cx, the mixing matrices A
′ and A

′′

can be represented as factorizations of the covariance matrix

[11]:

Cx = A
′
A

′† = A
′′
A

′′†, (2)

and they are mutually related by an unitary matrix P:

A
′′ = A

′
P. (3)

Choosing the columns of A′ to be denormalized eigenvec-

tors of Cx, ensures decorrelation between the elements of (s′).

The denormalization assumes multiplying by the square root

of eigenvalue and it is emphasized since it is the denormalized

eigenvector which forms a coherence matrix of a single scat-

terer in a conventional approach. Even though multiplication

of A
′ with an arbitrary unitary matrix (rotation) preserves

decorrelation, maximum energies for the components of s′ are

achieved with the matrix of eigenvectors. For this reason, we

identify the first step of the conventional approach in ICTD

(eigenvector decomposition) with the PCA [11].

On the other side, matrix A
′′ cannot be retrieved using only

second-order statistics, unless we treat Gaussian observations.

Even though it is intrinsically linked to the matrix Cx, the

mixing matrix of independent sources cannot be estimated

using this matrix only. Namely, considering the equation 3,

it appears that the estimation of the unitary ”floating” matrix

P requires knowledge of the higher order statistics.

Therefore, it is necessary to apply a method capable of

exploiting higher order statistical moments - the ICA. The

ICTD method, proposed in this article, is based on the fixed-

point FastICA algorithm which relies on non-Gaussianity as a

measure of the statistical independence [10], [19].
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Fig. 1: RAMSES POLSAR X-band, Brétigny, France: (a) Pauli RGB coded
image, (b) Statistical classification performed in the first step.

III. METHOD

The proposed incoherent polarimetric decomposition

method consists in three main steps:

• Data selection - the observation data sets are selected

using statistical classification of the POLSAR image

(”global approach”). This choice, rather than a sliding

window (”local approach”) is discussed in the following

section, dealing with the performance analysis.

• Estimation of the independent components - Non-Circular

(NC) FastICA algorithm is applied on each of the for-

merly derived data sets in order to estimate the most

dominant single scatterers.

• Parametrization - derived target vectors are parametrized

using the Touzi’s Target Scattering Vector Model [6].

After the first step, we can assume having defined stationary

sets of observed target vectors. The novelty with respect to

both the H/α and the Touzi’s decompositions is introduced

mostly in the second stage.

A. Estimation of the independent components

The core of the novel ICA based polarimetric decomposition

is the estimation of the mixing matrix A
c, for each of the

derived classes (c). There are several criteria for determining

the elements of Ac in order to ensure the mutual independence

of the sources in s
c. The common factor for all of them is the

assumption of high-resolution polarimetric SAR images [23] -

at most one of the sources is Gaussian and thus their mixture

or the observation data prove to be non-Gaussian [10]:

k
c(i, j) =





Ac11 Ac12 Ac13
Ac21 Ac22 Ac23
Ac31 Ac32 Ac33



 ·





sc1(i, j)
sc2(i, j)
sc3(i, j)



 = A
c
s
c(i, j). (4)

In our case, the observation data are the Pauli target vectors

corresponding to the a priori defined class (kc ∈ Kc), meaning

that we finally obtain one mixing matrix A
c for each of the

classes c. In the particular case of ICTD, we are facing the

complex nature of the observation data.

By applying different criteria in the Complex FastICA

algorithm, we compare, in the framework of ICTD, the per-

formances of several strategies used in the estimation of the

complex independent components [24]. The selected approach

is specifically adapted to the scenario where sources may

eventually exhibit non-circular distributions [19].

Pre-processing of the observation data consists in centering

and whitening. The former assumes subtracting the mean

values, making the estimated sources inconvenient for taking

over the intuitive role of the eigenvalues. The later is the

orthogonalization transform V applied on the set of vectors

k
c and therefore on the mixing matrix A

c as well:

k̃ = ED
−1/2

E
H
k
c = Vk

c = VA
c
s
c = Ãs

c, (5)

with E being a matrix of eigenvectors of E{kc
k
cH} and

D a diagonal matrix containing corresponding eigenvalues.

However, at this stage, the components are not scrupulously

decorrelated, which can be deduced from non-diagonalized

pseudo-covariance matrix E{k̃k̃T } [19].

The FastICA algorithm is a fast converging algorithm based

on a fixed-point iteration scheme for finding the global non-

Gaussianity maximum for each estimated source y = w
H
k̃

[25], with k̃ being the whitened observation data vector and

w the mixing vector (column of the estimated mixing matrix

W) converging to one of the columns of the whitened mixing

matrix Ã (y converging to the corresponding source s).
The Complex FastICA algorithm is based on a bottom-

up approach: emphasizing the non-Gaussanity of the sources

by maximizing an arbitrary nonlinear contrast function whose

extrema coincides with the independent component [26]:

JG(w) = E{G(|wH
k̃|2)}. (6)

The performances of the algorithm strongly depend on the

choice of the nonlinear function G(y), which is supposed to

be suited to the particular application. Therefore, we use here

three different functions, leading to different criteria (C) in

deriving the independent target vectors:

• kurtosis (C1):

G1(y) =
1

2
y2, (7)

• logarithm (C2):

G2(y) = log (0.05 + y), (8)
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Fig. 2: Nonlinear functions used in the Complex Non-Circular FastICA
algorithm, along with the tangents in the point ∼ 1, indicating the

difference in the monotony.
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Fig. 3: RAMSES POLSAR X-band, Brétigny, France: entropy estimation using (a) PCA - Pauli basis, (b) PCA - circular basis, (c) ICA - Pauli basis (C2
criterion), (d) ICA - circular basis (C2 criterion), (e) ICA - Pauli basis (C3 criterion), (f) ICA - Pauli basis (C1 criterion), (g) Entropy estimated for the

trihedral class (Class 8).

• square root (C3):

G3(y) =
√

0.05 + y. (9)

In the first case, the contrast functions becomes essentially

a measure of the fourth statistical moment of the source -

kurtosis. As its value in case of the Gaussian variable equals

zero, by maximizing the kurtosis of each of the sources,

we ensure their independence. Being slowly growing non-

linear functions (Fig. 2), G2(y) and G3(y) allow more robust

estimation with respect to the presence of outliers.

Additionally, by including the pseudo-covariance matrix

of the observation target vectors in maximizing the contrast

function (Eq. 6), the applied algorithm is generalized to the

case of complex sources having a non-circular distribution

[19]. This way, despite the modulus in Eq. 6, the phase

information is preserved.

Finally, the estimated mixing matrix is de-whitened by using

the inverse orthogonalisation transform V
−1:

A
c = V

−1
W. (10)

The result of the incoherent target decomposition is the set

of target vectors representing elementary scatterers and a set

of scalars, providing their proportion in the total scattering. In

our case, the target vectors of the independent scatterers are

the columns of the estimated de-whitened mixing matrix A
c.

The contributions to the total backscattering are computed

as the squared ℓ2 complex norms of the mixing matrix columns

- the energies of the single scatterers [27]:

||Ai||
2

2
= |A1i|

2 + |A2i|
2 + |A3i|

2. (11)

In the framework of the formalism introduced in the section

II, the contributions summed up in Eq. 11 could be defined

as diagonal elements of the matrix A
′′
A

′′†. In the same way,

eigenvalues are diagonal elements of A′
A

′†. Even though the

matrix A
′′ is not orthogonal and therefore some information

contained in the non-diagonal elements of A′′
A

′′† is lost, the

entropy estimated in these two cases is significantly similar. In

the earlier attempt of introducing the ICA into the POLSAR

data analysis [17], the contributions were estimated by rather

relying on the derived sources (Pi = 1

3
s(i)sH(i)), which

doesn’t appear to be an appropriate choice, given the variances

of the estimated sources being set to the unit value.

B. Parametrization

Being based on Kennaugh-Huynen condiagonalization [28],

[2] projected onto the Pauli basis, the TSVM [6] allows

the parametrization of the target vector in terms of rotation

angle (ψ), phase (Φs), maximum amplitude (m), target helicity

(τm), symmetric scattering type magnitude (αs) and symmetric

scattering type phase (Φαs
), among which the last four are

roll-invariant:

k = m|k|mejΦs





1 0 0
0 cos 2ψ − sin 2ψ
0 sin 2ψ cos 2ψ









cosαs cos 2τm
sinαse

jΦαs

−j cosαs sin 2τm



 . (12)

In order to avoid an ambiguity related to the Kennaugh-

Huynen condiagonalization, the range of the orientation angle

is reduced to the [−π/4, π/4], by introducing the identity:

k(Φs, ψ, τm,m, αs,Φαs
)=k(−Φs, ψ ± π/2,−τm,m, αs,−Φαs

).
(13)

Using TSVM parameters, it is eventually possible to rep-

resent the obtained independent target vectors on either sym-

metric or non-symmetric target Poincaré sphere [29], [30]. In

our case, they do not necessarily form an orthogonal basis.

C. Roll-Invariance

One of the major conveniences of the conventional approach

is the roll-invariance of the coherence matrix constructed from

a linear combination of the eigenvectors [3]. Even though the

proposed method does not directly conserve the roll-invariance

through the reconstruction from a linear combination of the

eigenvectors, it appears as well to be invariant to the rotation

R(θ) of the observed target vectors (Table III):

c©2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any

copyrighted component of this work in other works.



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, DOI:10.1109/TGRS.2014.2336381 (postprint) 5

s
1

s
3

s
2

(a)

x
3

x
1

x
2

(b)

x
3

x
1

x
2

(c)

Fig. 4: The joint probability density functions of: (a) three uniformly
distributed real sources, (b) the mixture, (c) the mixture rotated about the

line of sight (x1 axis) for θ = 30◦.

k
cθ = R(θ)kc =





1 0 0
0 cos(2θ) − sin(2θ)
0 sin(2θ) cos(2θ)



k
c. (14)

In order to prove and justify this, we ought to reconsider

the formerly introduced ICA method in a rather ”geometrical”

manner. For instance, let us presume having three uniformly

distributed real sources s (Fig. 4a). By multiplying them

by a non-orthogonal mixing matrix A, we get the set of

observations x (Fig. 4b). The role of the ICA algorithm is

to find a mixing matrix which does exactly the inverse -

transforms the data from the space in Fig. 4b to the one given

in Fig. 4a. Given that the whitening and de-whitening deal with

the form (transforming data in Fig. 4b into ”the cube”), the

estimated mixing matrix actually accounts for the orientation

of ”the cube”, representing a 3D rotation, defined with three

angles corresponding to three degrees of freedom.

Switching to the complex domain does not change the

essence of the presented ”geometrical” interpretation. In the

context of our application (x = k
c), with implicitly assumed

whitening and de-whitening, the rotation around the line of

sight R(θ) affects only one of the angles defining A(φ, ξ, χ)
(Fig. 4c):

k
c
r = R(θ)kc = R(θ)A(ψ, ξ, χ)s = Ar(ψ + θ, ξ, χ)s. (15)

The other rotation angles (ξ and χ) remain the same, which

do not change with the performed inversions (demixing matrix

B) and they provide us the roll-invariant parameters in the

estimated mixing matrix Ar:

B = A
−1

r = (RA)−1 = A
−1

R
−1, (16)

Ar = B
−1 = RA. (17)

The columns of the estimated mixing matrix Ar are the es-

timated backscattering components and, as the derived TSVM

parameters are invariant with respect to change of the ψ of

the component, they are equally invariant with respect to the

change introduced by the rotation applied on the observation

target vectors ψ + θ. Therefore, even though the FastICA

algorithm itself is not invariant under the rotations of the

observation data (Ar 6= A), the TSVM parameters derived

in our case are indeed invariant.

For the purpose of comparison, in this case we neglect the

identity in Eq. 13, which however, does not compromise the

validity of the derived conclusions.

IV. PERFORMANCE ANALYSIS

After discussing the data selection criteria, we demonstrate

the particularities of the proposed method through the applica-

tion on two real POLSAR data sets: RAMSES X-band image

acquired over Brétigny, France and ALOS L-band images

acquired over Chamonix, Mont Blanc, France. Aside from

that, using a synthetically generated data set, we emphasise the

difference with respect to the conventional approach (PCA).

A. Data selection

The principal drawback of the proposed method is the size

of the observation dataset, which has to be somewhat larger

than the size of the sliding window used in the well established

methods. The inevitable consequence is the bigger number of

the independent components out of which not more that the

most dominant three can be estimated [17]. In view of this,

rather than using a very large sliding window, we rather rely

on a classification algorithm in the data selection.

Therefore, the first step is the classification of the POLSAR

image. In this article, we choose to classify the input image

using the statistical classifier developed for highly textured

POLSAR data [18]. Unlike the classical H/α/A unsupervised

classification [3], assuming Gaussian homogeneous clutter and

therefore relying on the Sample Covariance Matrix (SCM)

estimate, classical mean and Wishart distance [31], [32], the

non-Gaussian heterogeneous clutter is taken into account.

Under the Spherically Invariant Random Vector (SIRV)

model assumption of the POLSAR clutter [33], [13], the

initialization is performed through the H/α unsupervised

classification based on the Fixed Point (FP) Covariance Matrix

estimator [34]. The barycenters of the initialized classes are

calculated iteratively using the Riemannian metric correspond-

ing to the geometric mean [18]. At the end, pixels are assigned

using the Wishart criterion.

At this point, we obtain the set of representative target

vectors for each of the classes. These vector sets represent

the observation data for the BSS, while the selection method

assures relevance in the case of incoherent targets.

B. Synthetic data set

In this section, we demonstrate the capability of retrieving

non-orthogonal mechanisms using synthetic POLSAR data

[11]. The observation data set is created using the non-

orthogonal complex mixing matrix:

A =





−0.484 − 0.410i 0.051 + 0.202i 0.156 − 0.265i
0.055 − 0.304i −0.016 + 0.218i 0.055 − 0.347i
0.005 + 0.002i 0.617 − 0.150i 0.468 + 0.260i



 , (18)

and three independent sources characterized by the Gamma

distribution, each of them having different k and θ parameters:

G(s|k, θ) =
1

θkΓ(k)
sk−1e−

s

θ . (19)
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Fig. 5: Synthetic data set analysis: (a) matrix A autocorrelation, (b)
cross-correlation of A and AICA, (c) cross-correlation of A and APCA.

The components retrieved in case of applying the ICA

algorithm correspond approximately to the components in Eq.

18. On the other side, because the mixing matrix A is not

orthogonal, the PCA is not capable of retrieving the original

matrix:

AICA =





−0.446 − 0.402i −0.018 + 0.195i −0.172 − 0.229i
0.059 − 0.285i −0.092 + 0.195i −0.275 − 0.170i
0.007 + 0.022i 0.599 + 0.119i 0.395 − 0.306i



 ,

APCA =





−0.463 + 0.223i 0.562 + 0.507i −0.267 − 0.303i
0.839 + 0.157i 0.044 + 0.437i −0.107 − 0.258i
0.085 0.483 0.871



 .

This is confirmed through the analysis of their 2D cross-

correlations [35] illustrated in Fig. 5:

CM1,M2
(k, l) =

M−1
∑

m=0

N−1
∑

n=0

M1(m,n)M2

†(m− k, n− l). (20)

This section demonstrated that the ICA, aside from being

able to assure the independence of the components, identifies

the second component without any constrain of orthogonality.

C. Data set I: Urban area

The results presented in this section are obtained by apply-

ing the proposed ICTD on the RAMSES POLSAR X-band

image acquired over Brétigny, France. Fig. 1 illustrates the

Pauli RGB coded image and shows the classification map used

to define the observation data sets for the ICA algorithm.

1) The criterion selection: The goal is to compare and

choose the appropriate Non-Circular FastICA criterion in the

context of ICTD (Eq. 7, 8 and 9).

The first point of comparison between the proposed criteria

in complex independent components derivation (C1, C2 and

C3) is the possibility of identifying the class of trihedral

reflectors present in the scene (Class 8 in Fig. 1). The mask

derived from the classification map allows us to select the

observation data set containing only target vectors from the

regions in the image where the reflectors were placed. Further,

one mixing matrix is estimated using each of the three criteria.

In each case, the first and the second dominant components are

presented on the symmetric scattering target Poincaré sphere

(Fig. 6) [6]. The third component parameters are provided in

the Table I but, due to the values of helicity and symmetric

scattering type phase, the illustration using a sphere is not

possible.

The method is able to identify the class corresponding to

the trihedral reflectors placed in the scene. A curious fact is

that the second dominant component in this case appears to be

symmetric as well. The kurtosis criterion results however in

both first and second components almost matching trihedral.

This indicates apparent ”splitting” of the trihedral on the

two dominant components, which cannot be granted as a

good estimation. On the other side, in case of the logarithm

and the square root criteria, the second component, although

symmetric, rather represents weaker dipole backscattering.

The second point of comparison is entropy estimation

[3] (Fig. 3). Having PCA based classic decomposition as a

reference, we compare the overall estimation of entropy (all

classes), paying particular attention to the trihedral class. The

entropy estimation scheme appears to be far better with the

criteria (C2 and C3).

The overall performance of the analysed ICA criteria in

the frame of ICTD, seems to depend directly on the growth

rate of the employed nonlinear function. The ICA based on

slowly growing nonlinear functions (logarithm and square

root) are more efficient in both identifying trihedral as the

most dominant backscattering mechanism and, although it is

an implication, in estimating entropy.

After choosing the second criterion (C2) as the most appro-

priate one, we compare the ICA based ICTD with the PCA

classic counterpart. The estimated first dominant component is

nearly equivalent in both cases (Fig. 7). It was this fact which

inclined us toward the comparison of the estimated entropy as

one of the criteria for selecting the appropriate non-linearity.

The second component, however, appears to be significantly

different (Fig. 7). This is both due to the constraint of mutual

orthogonality present in the conventional approach and due to

the useful information contained in the higher order statistical

moments. The same class used in comparing the different

criteria (Class 8) happens to be favourable for demonstrating

the utility of the second dominant component (Table I and

Fig. 6). Namely, dipole as the second strongest single scatterer

indicates the capability of recognizing the trihedral’s edge

diffraction, eventually.

2) Polarisation basis invariance: The same dataset is used

to demonstrate the invariance with respect to more complex

unitary transform - the change of the polarization basis. The

TABLE I: RAMSES X-BAND POLSAR DATA OVER BRÉTIGNY,
FRANCE: ROLL-INVARIANT PARAMETERS OF THE SINGLE

SCATTERERS IN THE TRIHEDRAL CLASS (CLASS 8).

Comp. τm[◦] αs[◦] Φαs
[◦]

trihedral 0 0 [-90,+90]

PCA
1st -0.23 0.50 -51.25
2nd -37.15 89.21 -18.64
3rd 36.15 87.90 68.86

ICA (C2)

1st -0.28 0.53 -27.42
2nd -0.24 39.91 2.56
3rd 19.84 58.49 77.92

ICA (C1)

1st -0.33 1.49 7.54
2nd -0.42 7.34 -9.60
3rd 7.11 24.82 -83.22

ICA (C3)

1st -0.28 0.53 -27.70
2nd -0.36 41.20 -3.33
3rd 5.77 54.97 -68.60
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(a) (b) (c) (d)

Fig. 6: RAMSES POLSAR X-band, Brétigny, France: Poincare sphere representation of the trihedral class (Class 8) single scatteres (red - first component,
orange - second component, blue - trihedral) using (a) PCA, (b) ICA - C2 criterion, (c) ICA - C3 criterion, (d) ICA - C1 criterion.

observed scattering matrices are projected on the circular

polarization basis and the obtained components parametrized

using Circular Polarization Scattering Vector (CPSV) [36],

[37]:

kc =
1

2





Shh − Svv + 2jShv√
2j(Shh + Svv)

−Shh + Svv + 2jShv



 = (21)

=
√

SPANejΦ







sinαc cosβce
j(− 4

3
Υc−2ψ)

cosαce
j 8

3
Υ

− sinαc sinβce
j(− 4

3
Υc+2ψ)






.

Among four parameters invariant to the rotation around

the LOS (ψ) and to the target absolute phase (Φ): energy

(SPAN), angle Υc, angle αc and helicity defined as Helc =
sin2 αc

[

cos2 βc − sin2 βc
]

, we compare the last three with

their counterparts derived from TSVM parametrisation in the

Pauli basis. The angles Υc and αc, if the target is symmetric

(τm = 0), correspond, respectively, to ΥTVSM = (π/2 −
Φαs

)/4 and αs. Helicity HelTVSM is defined as a function

of τm and the Huynen con-eigenvalues polarizability γH [28],

[2]:

HelTVSM =
cos 2γH sin 2τm

cos4 γH (1 + tan4γH)
. (22)

On one side, as it is demonstrated in the Fig. 8 and in the

Table III, we obtain the perfect matching in terms of Hel (if

we ignore Eq. 13). On the other side, even for the symmetric

classes (τm ≈ 0), we don’t have a perfect matching of Υ,

which is justified by the values of αc, which converge either

to 0 or π/2, when this parameters becomes meaningless [21].

The angle αc agrees perfectly with αs in case of symmetric

TABLE II: ALOS L-BAND POLSAR DATA OVER CHAMONIX, MONT
BLANC, FRANCE: COMPARISON OF TSVM PARAMETERS OF THE
2ND DOMINANT COMPONENT, OBTAINED EITHER BY MEANS OF

PCA OR ICA, FOR THE LABELLED CLASSES.

Image - Class τm[◦] αs[◦] Φαs
[◦]

Class descrip. PCA ICA PCA ICA PCA ICA

I-1 bare gr. 6.41 -2.42 12.64 20.33 18.45 -58.20

I-2 wet snow -5.83 -14.83 68.77 72.50 -22.73 8.87

II-1 wet snow 5.84 -7.72 5.55 3.45 25.96 -48.09

II-2 dry snow -6.96 6.59 20.22 18.49 -32.46 12.17

II-3 dry snow -6.47 9.30 10.27 5.50 -85.02 -62.80

target. However, in order to reinforce this robustness proof,

we introduce α− β − γ − δ parametrization, as well [5]:

kp =
1√
2





Shh + Svv
Shh − Svv

2Shv



 = (23)

= |kp|ejθ




1 0 0
0 cos 2ψ − sin 2ψ
0 sin 2ψ cos 2ψ









cosαp
sinαp cosβpe

jδ

sinαp sinβpe
jγ



 .

As it can be seen in the Table III, the derived αp parameter,

as expected, matches perfectly αc, regardless of symmetry.

Aside from this, we compare the α − β − γ − δ parameters

derived conventionally (using PCA) with the ones obtained

using our approach. It is the angle αc which fortify the con-

clusion arising from the TSVM parameters - the first dominant

components are quite similar, but the second (non-orthogonal

in our case) contains undoubtedly different information.

D. Data set II: Mountainous region

In order to analyse the performances in case of a distributed

target, the proposed ICTD is applied on POLSAR images ac-

quired over mountainous regions. Two ALOS L-band images

of Chamonix, Mont Blanc in France, are used for this purpose.

Their classification is given in Fig. 9.

Based on a priori known ground truth1, we label the classes

(Table II) in two images with one of the four labels (dry snow,

wet snow, bare ground and foldover) [20]. Using both the PCA

based method (the first and the second component) and the first

component of the ICA based method, we do not manage to

characterize the labelled classes with any of the derived roll-

invariant parameters from Eq. 12. However, the second most

dominant component of the ICA based ICTD proves to be

useful. As it is demonstrated in Table II, the bare ground can be

characterized with helicity parameter close to zero (symmetric

target), the dry snow appears to have positive helicity, while

the negative values can be associated to the wet snow.

The same data set serves to demonstrate the advantage

of the ”global approach” (observation data selected using

classification) with respect to the ”local” one (sliding window

based selection). As it can be seen in Figure 9, the local

1Meteorological data provided by the EDF company.
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Fig. 7: RAMSES POLSAR X-band, Brétigny, France: comparison between the TSVM parameters obtained by means of PCA (first most dominant
component (a) and second most dominant component (c)) and by means of ICA (first most dominant component (b) and second most dominant component

(d)): (i) τm , (ii) αs, (iii) Φαs
.

approach cannot be used to discriminate between the labelled

classes. The reason is the insufficient size of the observation

dataset, selected by a sliding window.

V. CONCLUSION

In this article we presented a novel method for Polarimetric

Incoherent Target Decomposition, based on the Independent

Component Analysis [7]. Motivated by the non-Gaussian

nature of the clutter in high resolution POLSAR images, we

aimed to exploit higher order statistical moments in retrieving

single scatterers present in a scene. Given the stated equiv-

alence between the Principal Component Analysis and the

eigenvector decomposition (conventional approach), we gener-

alized ICTD to the level of Blind Source Separation techniques

(which comprise both PCA and ICA). After comparing several

criteria, the Non-Circular FastICA algorithm [19] based on

maximizing the logarithmic non-linear function in order to

achieve mutual independence of sources, proved to be the best

approach in the framework of ICTD.

The proposed method is able to retrieve non-orthogonal sin-

gle scatterers, which was illustrated using a synthetic POLSAR

data set. It is invariant both under the rotations of the observed

target vectors and to the change of the polarization basis.

The results obtained by applying the proposed method on

the airborne POLSAR image, acquired over Brétigny, antici-

pate the potential of the additional information provided by the

second dominant component. This was possible by properly

taking advantage of both the non-orthogonality property and

the higher order statistical moments.

Finally, the second dominant component appeared to be of

great interest, also when dealing with the distributed targets.

This was illustrated using Touzi’s roll-invariant parameters, by

achieving a better discrimination between the a priori labelled

classes in mountainous regions.
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Fig. 8: RAMSES POLSAR X-band, Brétigny, France: comparison between the CPSV parameters obtained by means of PCA (first most dominant
component (i) and second most dominant component (iii)) and by means of ICA (first most dominant component (ii) and second most dominant component

(iv)): (a) Helc, (b) HelTSVM, (c) αc, (d) Υc, (e) ΥTSVM.

Future work will enroll in two main directions. Firstly,

we will try to explore as much as possible all the benefits

of the new information contained in the second dominant

component. Secondly, we will continue with applying and

comparing different ICA methods in order to achieve the

optimal decomposition with respect to the class of stochastic

processes under study. The approach which seems to be

particularly interesting is to achieve BSS using Maximum

Likelihood Estimation.
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TABLE III: RAMSES X-BAND POLSAR DATA OVER BRÉTIGNY, FRANCE: COMPARISON OF THE DERIVED TSVM, CLOUDE-POTTIER AND
CPSV PARAMETERS.

Parameter
Method

Class II Class IV Class VI Class VIII
(rotation) 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd

τm[◦](−20◦)
PCA 0.04 43.25 42.21 -0.22 2.71 -42.84 -6.71 1.7 -42.87 -0.23 -37.15 36.15
ICA -0.15 -25.12 42.73 -0.64 1.27 2.92 -4.71 6.15 -29.42 -0.28 -0.24 19.84

τm[◦](0◦)
PCA 0.04 43.25 42.21 -0.22 2.71 -42.84 -6.71 1.7 -42.87 -0.23 -37.15 36.15
ICA -0.15 -25.12 42.73 -0.64 1.27 2.92 -4.71 6.15 -29.42 -0.28 -0.24 19.84

τm[◦](20◦)
PCA 0.04 43.25 42.21 -0.22 2.71 -42.84 -6.71 1.7 -42.87 -0.23 -37.15 36.15
ICA -0.15 -25.12 42.73 -0.64 1.27 2.92 -4.71 6.15 -29.42 -0.28 -0.24 19.84

Φαs
[◦](−20◦)

PCA -34 20.19 -24.89 -38.39 38.36 -84.16 6.02 -5.72 69.01 -51.25 -18.64 68.86
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