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Smooth critical points of planar harmonic mappings

M. El Amrani, M. Granger, J.-J. Loeb, L. Tan
LAREMA, Angers (July 11, 2014)

Abstract

In [9], Lyzzaik studies the local properties of light harmonic mappings. More
precisely, he classifies their critical points and accordingly studies their topological
and geometrical behaviour. One aim of our work is to shed some light on the case
of smooth critical points, thanks to miscellaneous numerical invariants. Inspired
by many computations, and with a crucial use of Milnor fibration theory, we get
a fundamental and quite unexpected relation between three of these invariants. In
the final part of the work we offer some examples providing significant differences
between our harmonic setting and the real analytic one.

1 Introduction

A map f : W → R2 defined on a domain W of R2 is called planar harmonic if both
components of f are harmonic functions. When W is simply connected, identifying R2

with C, the map f can also be written in the complex form p(z) + q(z) where p and q
are holomorphic functions on W . We are interested on germs f of planar harmonic maps
defined in a neighborhood of a point a and we will use mainly the local complex form.

For such a germ, we restrict ourselves to the situation given by the two following
conditions:

1. The fiber at f(a) is the single point a.

2. The critical set Cf is a smooth curve at the point a. (The critical set is the vanishing
locus of the Jacobian).

The first condition means that f is light in the sense of Lyzzaik. In our paper, we will
also present some remarks for the non light case. The second condition implies that Cf
is not a single point. Otherwise, one can prove that up to C1 change of coordinates, f is
holomorphic or anti-holomorphic .

The critical value set Vf = f(Cf ) will play an important role in our work.

In our setting, the following natural equivalence relation is introduced: we say that two
germs f, g of planar harmonic maps defined respectively at points a and b, are equivalent
if there exists a germ of biholomorphism u between neighborhoods of a and b, and a
real affine bijection ℓ such that: ℓ ◦ f ◦ u = g. For this relation, we get four numerical
invariants and miscellaneous normal forms. These tools allow to understand analytic and
topological facts about germs of harmonic maps. In particular they shed a new light on
the geometric models which appear in the work of Lyzzaik.
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In order to fully understand these invariants, the study of the complexification of f
plays a fundamental role.

Explicitly, the four numerical invariants are:

– the absolute value d of the local topological degree. In our situation, Lyzzaik’s work
shows that d is 0 or 1,

– the number m which is the lowest degree of a nonconstant monomial in the power
series expansion of the harmonic germ f at the point a,

– the local multiplicity µ of the complexified map of f is defined as the cardinality of
the generic fiber,

– the number j which is the valuation of the analytic curve Vf , in a locally injective
parametrization.

Inspired by Lyzzaik’s models [9], we prove in a self-contained way that the germs f
are classified topologically by the numbers m and d or equivalently by m and the parity
of m + j. We give a simple description of these classes in terms of generalized folds and
cusps.

A main result of our work is that the conditions j ≥ m and µ = j +m2 are necessary
and sufficient for the existence of a harmonic planar germ satisfying the conditions 1. and
2. above.

The second relation was at first guessed, using many computations. Our proof is based
on the theory of Milnor fibration for germs of holomorphic functions on C2.

The number j occurs also at another level. In fact we prove that the critical value set
Vf can be parametrized by: x(t) = Ctj + h.o.t and y(t) = C ′tj+1 + h.o.t, where C and
C ′ are nonzero constants. In other words, Vf is a curve with Puiseux pair (j, j + 1), and
Puiseux theory gives a topological characterization of the complexification of the critical
value set. This pair completes also Lyzzaik’s description of Vf itself.

Every equivalence class of harmonic germs contains a normal form p(z)m− zm, with p
a holomorphic germ tangent to the identity at 0. When m = 1, µ is equal to the order at
the origin of the holomorphic germ p ◦ p where p(z) is defined as p(z). As a by-product,
one gets an algorithm to compute µ in the polynomial case. We obtain also relations
between the numerical invariants of p(z)− z and p(z)m − zm.

The condition m = 1 for a harmonic germ means that the gradient of its Jacobian
does’nt vanish at the point a. In an appendix, we generalize results obtained for numerical
invariants in the harmonic case to real and complex analytic planar germs satisfying the
previous Jacobian condition. In this situation, we get that Vf has still Puiseux pair
(j, j + 1), with the same geometric consequences. Moreover, as for the harmonic case,
µ = j + 1.

In this analytic case, we get also an algorithm to compute µ inspired by a fundamental
work of Whitney [12] on cusps and folds . At the end of the appendix, some examples are
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presented in order to compare the harmonic situation to the real analytic one.

Lyzzaik has also studied the case of non smooth critical sets. In a next work, we hope
to extend some of our results to this more general situation.

2 Basic concepts and main results

Let K = R or C. Let U be a domain in K2. By convention a domain is a connected open
set. Consider a planar mapping.

f : U → K2,

(

x
y

)

7→
(

f1(x, y)
f2(x, y)

)

.

We say that f is a K-analytic map if each of f1 and f2 can be expressed locally as
convergent power series. In this case denote by
– Jf the jacobian of f
– Cf = {Jf = 0 } the critical set
– Vf = f(Cf ) the critical value set.

We say that
– z0 ∈ Cf is a regular critical point of f if ∇Jf (z0) 6= (0, 0);
– z0 ∈ Cf is a smooth critical point of f if Cf is an 1-dimensional submanifold near z0.

By implicit function theorem a regular critical point is necessarily a smooth critical
point. But the converse is not true. We will see many examples in the following.

We say that f is a planar harmonic map if K = R and each of f1, f2 is C2 with a
laplacian equal to zero. Recall that ∆fj(x, y) = (∂2x + ∂2y)fj(x, y). Note that in this case
each of fi is locally the real part of a holomorphic map. Thus a planar harmonic map is
in particular R-analytic.

The order of an analytic map f : Km → Kn at a point p in the source, is the lowest
total degree on a non zero monomial in the coordinate-wise Taylor expansions of one of
the components of f − f(p) around p.

For an C-analytic map F : W → C
n withW an open set of Cn and for a point w0 ∈ W ,

we define the multiplicity of F at w0, by (see [3])

µ(F,w0) = lim sup
w→w0

#F−1F (w) ∩X

whereX is an open neighborhood of w0 relatively compact inW such that F−1F (w0)∩X =
{w0}. If such X does not exist, set µ(F,w0) = ∞.

In the situation above there is an open neighborhood U of F (w0) and an open dense
subset U1 ⊂ U such that for all w ∈ U1, µ(F,w0) = #F−1F (w) ∩X . For a holomorphic
map η : U → C with U an open set of C, and w0 ∈ U , the two notions coincide.

For a R-analytic map f : U → R2, in particular a planar harmonic map, we define
its multiplicity at a point to be the multiplicity of its holomorphic extension in C2. We
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will also frequently use the well known fact that for a holomorphic map f : U → C
2 its

multiplicity at a point p0 = (x0, y0) ∈ U is equal to the codimension in the ring of power
series of the ideal defined by its component :

µ(f, p0) = dimC

C{u, v}
f1(x0 + u, y0 + v), f2(x0 + u, y0 + v)

.

See for example [4, theorem 6.1.4].

One objective of this work is to show that harmonic maps around a smooth critical
point of a given order have only two types of topological behaviours, depending on the
parity of the multiplicity.

Our investigation is based on Whitney’s singularity theory on C∞ planar mappings,
multiplicity theory of holomorphic maps of two variables and Lyzzaik’s work on light
harmonic mappings.

A smooth 1-dimensional manifold in R2 admits a smooth parametrization. If the crit-
ical set of a harmonic mapping is smooth somewhere, there is actually a parametrization
that is in some sense natural. This induces a natural parametrization β(t) of the critical
value set.

Definition 2.1. We denote by R≥k(s) a convergent power series on s whose lowest power
in s is at least k. A planar K-analytic curve β : {|s| < ε} ∋ s 7→ β(s) ∈ K2 is said to
have the order pair (j, k) at β(0), for some 1 ≤ j < k ≤ ∞, if up to reparametrization
in the source and an analytic change of coordinates in the range K2, the curve takes the

form β(s) = β(0) +

(

Csj +R≥j+1(s)

C ′sk +R≥k+1(s)

)

with C · C ′ 6= 0.

Let us assume that k is not a multiple of j, and that the complexified parametrization
of β is locally injective. This is the case in particular if (j, k) are co-prime. Then the
order j and more generally the order-pair (j, k) ∈ N2 is an analytic invariant of the curve
independently of such a parametrisation : j is the minimum, and k the maximum of the
intersection multiplicities (β, γ) among all smooth K-analytic curves γ. This order-pair
is also a topological invariant of the complexified curve because 1

gcd(j,k)
(j, k) is its first

Puiseux pair. Such a unique order-pair exists unless j = 1, or j = +∞.

Our main goal is to establish a relationship between the order of the critical value
curve and the multiplicity, and then to connect these invariants to Lyzzaik’s topological
models. More precisely, we will prove:

Theorem 2.2. Let f be a planar harmonic map in a neighborhood of z0 with z0 as a
smooth critical point.

1. (Critical value order-pair) The critical value curve has a natural parametrization
and an order j at f(z0). It has an order-pair of the form (1,∞) if j = 1, and
(j, j + 1) if 1 < j <∞.
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2. (Critical value order and multiplicity) The three invariants m order of f , j order of
the critical values curve and µ multiplicity of the complexified map on (C2, z0) are
related by the (in)equalities :

{

∞ ≥ j ≥ m ≥ 1
j +m2 = µ.

(2.1)

3. (Topological model) Assume µ < ∞. Let D be the unit disc in C. There is a
neighborhood ∆ of z0, a pair of orientation preserving homeomorphisms h1 : ∆ →
D, z0 7→ 0, h2 : C → C, f(z0) 7→ 0, and a pair of positive odd integers 2n± − 1
satisfying (2.2) below, such that

h2 ◦ f ◦ h−1
1 (reiθ) =

{

rei(2n
+−1)θ 0 ≤ θ ≤ π

re−i(2n−−1)θ π ≤ θ ≤ 2π .

Moreover #f−1(z) = n+ + n− or n+ + n− − 2 depending on whether z is in one
sector or the other of f(∆)rβ.

µ even,

(

2n+ − 1

2n− − 1

)

∈
{(

m
m

)

,

(

m+ 1
m+ 1

)}

µ odd,

(

2n+ − 1

2n− − 1

)

∈
{(

m+ 1
m− 1

)

,

(

m− 1
m+ 1

)

,

(

m
m+ 2

)

,

(

m+ 2
m

)}

(2.2)

We want to emphasise that guessing and proving the relation µ = j + m2 was the
main point of the work. Our starting point was the case m = 1, which corresponds to the
critically regular case. We could establish then µ = j+1. But this case does not indicate
a general formula. A considerable amount of numerical experiments have been necessary
to reveal a plausible general relation, and then results in singularity theory about Milnor’s
fibres had to be employed to actually prove the relation.

We will deduce the topological model from our formula (2.1) and a result of Lyzzaik
[9]. More precisely, we will parametrize the critical value curve β in a natural way and
then express its derivative, as did Lyzzaik, in the form β ′(t) = Ceit/2 · R(t), with C 6= 0
and R(t) a real valued analytic function.

Lyzzaik defined in his Definition 2.2 the singularity to be of the first kind if R(t)
changes signs at 0, which is equivalent to j > 0 even, and of the second kind if R(0) = 0
and R(t) does not change sign at 0, which is equivalent to j ≥ 1 odd. He then deduced
the local geometric shape of β (cusp or convex) in Theorem 2.3 following the kind. What
we do here is to push further his calculation to determine the order-pair of the critical
value curve β, which then gives automatically its shape (cusp or convex).

Lyzzaik then provided topological models in his Theorem 5.1 following the parity of
an integer ℓ (which corresponds to our m − 1) and the kind (or the shape of β) of the
singularity, corresponding in our setting to the parity of m + j. Thanks to our relation
(2.1) , we may then express Lyzzaik’s topological model in terms of the parity of µ.
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Lyzzaik’s proof relies on previous results of Y. Abu Muhanna and A. Lyzzaik [1]. We
will reestablish his models with a self-contained proof.

As a side product, we obtain the following existence result (which was a priori not
obvious):

Corollary 2.3. Given any triple of integers (m, j, µ) satisfying (2.1) , there is a harmonic
map g(z) with a smooth critical point z0 such that Ordz0(g) = m, µ(g, z0) = µ, and
(j, j + 1) is the order-pair of the critical value curve at g(z0).

Given any pair of integers n± ≥ 1 satisfying

{

n+ = n− or
|n+ − n−| = 1

, there are two consec-

utive integers k, k + 1 and harmonic maps with order m = k and m = k + 1 respectively
realising the topological model (2.2) for the pair n± and the order m.

3 Normal forms for planar harmonic mappings

Recall that any real harmonic function on a simply connected domain in C is the real part
of some holomorphic function. Therefore, if U ⊂ C is simply connected, and f : U → C

is a harmonic mapping, then f = p + q where p and q are holomorphic functions in U
that are unique up to additive constants. We will say that p+ q is a local expression of f .
In a study around a point z0 we will often take the unique local expression in the form
f(z) = f(z0) + p(z) + q(z) with p(z0) = q(z0) = 0.

3.1 Existence and unicity of the normal forms

Definition 3.1. A natural equivalence relation. For Z,W open sets in C, with z0 ∈ Z,
w0 ∈ W , and for harmonic mappings f : Z → C and g : W → C, we say that (f, z0) and
(g, w0) are equivalent and we write

(f, z0) ∼ (g, w0)

if there is a bijective R-affine map H : C 7→ C, z 7→ az + bz + c and a biholomorphic map
h : W ′ → Z ′ with z0 ∈ Z ′ ⊂ Z, w0 ∈ W ′ ⊂W such that h(w0) = z0 and g = H ◦ f ◦ h on
W ′.

Lemma 3.2. Let f be a non-constant harmonic map defined on a neighborhood of z0.
Then

(f, z0) ∼ (g, 0) for some g(z) = zm − zn(1 +O(z)) (3.1)

with ∞ ≥ n ≥ m ≥ 1 (here O(z) denotes a holomorphic map near 0 vanishing at 0).

Moreover if another map G(z) = zM − zN (1 +O(z)) with ∞ ≥ N ≥ M ≥ 1 satisfies

(G, 0) ∼ (g, 0) then (M,N) = (m,n). If m < n then g(z) =
1

cm
G(cz) for c an (m+ n)-th

root of unity.
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Proof. We may assume z0 = 0 and f(0) = 0.

I. We may assume that f is harmonic on a simply connected open neighborhood V of
0. One can thus write f(z) = p(z) − q(z) with p, q holomorphic on V . Replacing f by
f − f(0) we may assume f(0) = 0, and we may also assume p(0) = q(0) = 0.

Case 0. Assume p ≡ 0 or q ≡ 0. Replacing f(z) by f(z) if necessary we may assume
q ≡ 0. In this case p(z) = azm(1 + O(z)) with a 6= 0 and there is a bi-holomorphic map
h so that p(z) = (h(z))m. Therefore f(z) = g(h(z)) with g(w) = wm.

II. Assume now that none of p, q is a constant function. Replacing f(z) by f(z) if
necessary we may assume p(z) = azm(1 +O(z)) and q(z) = bzn(1 +O(z)) with ∞ > n ≥
m ≥ 1 and a · b 6= 0.

Replacing f by (bλ)−nf(λz) changes a to (bλ)−na ·λm and b to 1. We may thus assume
f(z) = Azm(1 +O(z))− zn(1 +O(z)), A 6= 0.

Case 1. m < n. Choose ρ so that
A · ρm
ρn

= 1. Replace f by
f(ρz)

ρn
we may assume

f(z) = zm(1 +O(z))− zn(1 +O(z)).

Case 2. m = n. We choose τ so that
A · τm
τn

=
A · τm
τm

∈ R∗
+. We may thus assume

f(z) = czm(1 +O(z))− zm(1 +O(z)), c > 0.

If c = 1 we stop. Assume c 6= 1. Then H(z) := z +
1

c
z is an invertible linear map. And

as c is real, we get easily :

H(f(z)) = (c− 1

c
)zm(1 +O(z))− O(zm+1) with c− 1

c
6= 0 .

Replacing f by H ◦ f we are reduced to Case 0 or Case 1.

Therefore in any case we may assume

f(z) = zm(1 +O(z))− zn(1 +O(z)), 1 ≤ m ≤ n, m <∞, n ≤ ∞.

Now there is a holomorphic map h with h(0) = 0, h′(0) = 1 defined in a neighborhood of
0 so that the holomorphic part of f can be expressed as h(z)m. Then

f ◦ h−1(z) = zm − zn(1 +O(z)), 1 ≤ m ≤ n, m <∞, n ≤ ∞

on some neighborhood of 0. This establishes the existence of normal forms.

Let us now take a map G(z) = zM − zN (1 +O(z)) with ∞ ≥ N ≥ M ≥ 1 so that
(G, 0) ∼ (g, 0) with g(z) = zm − zn(1 +O(z)) and m ≤ n. It is easy to see that M = m.
Let now h(z) = cz(1 + O(z)) be a holomorphic map with c 6= 0 and H(z) = az + bz so
that H ◦G ◦ h(z) = g(z). Then

a · (h(z))m−a · (h(z))N (1 +O(z))+b · (h(z))m−b · (h(z))N (1+O(z)) = zm−zn(1 +O(z)).
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Assume n > m =M . If N = m then the terms zm and zm have coefficients (a− b)cm and
(b− a)c̄m on the left hand side, and (1, 0) on the right hand side. This is impossible. So
N > m as well.

Comparing the zm term on both sides we get b = 0, and then the zm term we get
acm = 1. Comparing then the holomorphic part of both sides we get h(z) = cz. Now the
anti-holomorphic part gives N = n and acn = 1. It follows that c−mcn = 1. So |c| = 1,
cm+n = 1 and c−mG(cz) = g(z). q.e.d.

We remark that in the case m = n the normal form is not unique. Here is an example:

Let G(z) = z + iz2 − z. For any ℜb 6= −1
2
the map is equivalent to G(z) + bG(z) +

bG(z) = (z + iz2 + biz2)− z + biz2 = w +O(w2)− w̄ =: g(w) for w = z + biz2.

3.2 Criterion and normal forms for critically smooth points

We say that a subset set Q of C is a locally regular star at z0 of ℓ-arcs if there is a
neighborhood U of z0 and a univalent holomorphic map φ : U → C with φ(z0) = 0 so
that Q ∩ U = {z, φ(z)ℓ ∈ R}. If ℓ = 1 then Q is a smooth arc in U .

Lemma 3.3. Let f be a harmonic map in a neighborhood of z0. The following conditions
are equivalent:

1) Cf is a non-constant smooth R-analytic curve in a neighborhood of z0.

2) For m := Ordz0(f), in a local expression f(z) = p(z) + q(z), we have m =

Ordz0(p) = Ordz0(q) <∞, the map ψ(z) :=
p′(z)

q′(z)
extends to a holomorphic map at

z0, with |ψ(z0)| = 1 and ψ′(z0) 6= 0.

3) (f, z0) ∼ (g, 0) with

g(z) = zm + bzm+1 +O(zm+2) + zm, |b| = 1; (3.2)

Every equivalence class of such (f, z0) has a representative in any of the following forms
(with any choice of signs): (f, z0) ∼ (h, 0) with

h(z) = ±zm + bzm+1 +O(zm+2)± zm or h(z) = ±
(

z+ bz2 +O(z2)
)m

± zm, |b| = 1.

(3.3)
Furthermore, z0 is a regular critical point if and only if m = 1.

Proof. Assume at first f(z) = p(z) + q(z), with

p(z) = zm + bzm+k +O(zm+k+1), q(z) = zm, k ≥ 1, b 6= 0.

Note that Jf = |p′|2 − |q′|2. Set ψ(z) = p′(z)

q′(z)
. We have

Cf = {Jf = 0} = {q′ = 0} ∪ {|ψ| = 1} = {0} ∪ ψ−1(S1) = ψ−1(S1) .
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But ψ−1(S1) is a locally regular star at 0 of k-arcs. So Cf is smooth at 0 if and only if
k = 1, or equivalently, ψ′(0) 6= 0.

This proves in particular the implication 3)=⇒1).

Let us prove 1)=⇒3). We may assume f is in the local normal form (3.1) . If m 6= n
then it is easy to see that z0 is an isolated point of Cf . This will not happen under the
smoothness assumption of Cf . So m = n.

Replace f by f(az)/am with a2m = −1 we have f(z) = p(z) + q(z), with

p(z) = zm + bzm+k +O(zm+k+1), q(z) = zm, k ≥ 1, b 6= 0.

Since Cf is smooth at 0 by the argument above we have k = 1. We may then replace f

by f(λz)/λm for λ =
1

|b| > 0 to get a normal form so that |b| = 1. This is (3.2) .

The rest of the proof is similar. We leave the details to the reader. q.e.d.

4 Order j(f, z0) of the critical value curve for a har-

monic map

For a harmonic map near a smooth critical point, we will introduce what we call the
natural parametrization of the critical value curve, and then compute its order-pair in
this coordinate.

Points 3, 4 and 5 of the following result are due to Lyzzaik, [9]. Just to be self-contained
we reproduce Lyzzaik’s proof here (with a somewhat different presentation).

Lemma 4.1. Assume f(z) = p(z)+q(z) is an harmonic mapping and is critically smooth

at z0. Set ψ(z) =
p′(z)

q′(z)
and m = Ordz0f .

1. We have λ := ψ(z0) ∈ S1 and ψ′(z0) 6= 0. The critical set Cf in a neighborhood of
z0 coincides with ψ−1(S1), is locally a smooth arc. We endow this arc what we call
the natural parametrization by γ(t) := ψ−1(λeit);

2. We then endow the critical value set what we call its natural parametrization by
β(t) := f(γ(t)). Set j = Ord0(β(t)). Either β(t) ≡ β(0) = f(z0), in which case
j = +∞ by convention, or ∞ > j ≥ m.

3. For the line L = {f(z0) + s
√
λ, s ∈ R}, the set f−1(L) is a locally regular star at z0

with 2(m+ 1) branches.

4. We have β ′(t) =
√
λeitR(t), with R(t) = 2ℜ

(√
λeit

d

dt
q(γ(t))

)

, an R-analytic real

function of t.
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5. In the case β ′(t) 6≡ 0, the curve t 7→ β(t) is locally injective, has a strictly positive
curvature in a punctured neighborhood of 0, turns always to the left, is tangent to L
at β(0).

6. We have j − 1 = Ord0(R) and ∞ ≥ j ≥ m. Either j = ∞ and β ≡ β(0), or the
curve β has the order-pair (j, j + 1) at 0.

Proof. Point 1. We have

Cf = {Jf = 0} = {q′ = 0} ∪ {|ψ| = 1} = {q′ = 0} ∪ ψ−1(S1) .

But q(z) is not constant (otherwise ψ ≡ ∞) we know that {q′ = 0} is discrete and
avoids a punctured neighborhood of z0. Therefore, reducing U if necessary, we have
{Jf = 0} ∩ U = ψ−1(S1) ∩ U , and we may choose a holomorphic branch of

√

ψ(z) for
z ∈ U . From Lemma 3.3 we know that ψ(z0) ∈ S1, ψ′(z0) 6= 0 and so ψ is locally injective.
Reducing U further if necessary, we see that {Jf = 0} ∩ U is a smooth arc. We call the
parametrization γ(t) = ψ−1(ψ(z0) · eit) the natural parametrization of Cf .

Point 2. We endow the critical value set with the natural image parametrization
β(t) = f(γ(t)).

Write f(z) = p(z)+q(z), p(z) = a(z−z0)m+h.o.t. and q(z) = q(z0)+A(z−z0)m+h.o.t.
for some a, A 6= 0. Due to the smoothness of the critical set at z0, we have γ(t) =
z0 + γ′(0) · t+ h.o.t. with γ′(0) 6= 0. So

β(t) = f(γ(t)) = p(γ(t)) + q(γ(t)) = β(0) + (aγ′(0)m + Aγ′(0)m)tm + h.o.t .

It follows that j = Ord0β(t) satisfies m ≤ j ≤ +∞.

Point 3. Without loss of generality we may assume z0 = 0 and f(z0) = 0. Choose a
local expression f(z) = p(z) + q(z) so that p(0) = q(0) = 0. Then p(z) = azm +O(zm+1)

and q(z) = bzm +O(zm+1) for some a, b 6= 0. We have
a

b
= ψf (0) = λ. Rewrite now f in

the form

f(z) =
√
λ
(

P (z) +Q(z)
)

=
√
λ
(

P (z)−Q(z) +Q(z) +Q(z)
)

with P (z) = p(z)/
√
λ. Then P (z) and Q(z) have identical coefficient for the term zm and

Ord0(P ) = Ord0(Q) = m. Set

F (z) = P (z)−Q(z), r(z) = Q(z) +Q(z) so that f(z) =
√
λ
(

F (z) + r(z)
)

. (4.1)

Note that r(z) is real-valued, and F (z) is holomorphic with multiplicity greater than m.
Write F in the form F (z) = czm+n(1+O(z)) with c 6= 0 and n ≥ 1. As P (z) = Q(z)+F (z),
we have

ψf(z) =

√
λP ′(z)

√
λQ′(z)

= λ
(

1 +
F ′(z)

Q′(z)

)

.

It follows that n = Ord0ψf . But Ord0ψf = 1 by the smoothness assumption of the critical
set. So n = 1 and F takes the form F (z) = czm+1(1 +O(z)) with c 6= 0.
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Finally f−1L = {f(z) ∈
√
λ · R} = {F (z) + r(z) ∈ R} = {F (z) ∈ R} = F−1

R. This
set is therefore a locally regular star of 2(m+ 1) branches.

Point 4. We follow the calculation of Lyzzaik. Let z ∈ Cf . Then |ψ(z)| = 1. So there

are two choices of
√

ψ(z). Fix a choice of the square root.

Df |z = p′(z)dz + q′(z)dz

= q′(z)ψ(z)dz + q′(z)dz

=
√

ψ(z)
(

√

ψ(z)q′(z)dz +
√

ψ(z)q′(z)dz
)

=
√

ψ(z)ℜ
(

2
√

ψ(z)q′(z)dz
)

.

As γ(t) is defined by ψ(γ(t)) = λeit, we have

β ′(t) = Df |γ(t)(γ′(t)) =
√
λeitR(t), where R(t) = ℜ

(

2
√
λeit

d

dt
q(γ(t))

)

.

Points 5 and 6. Assume that β is not constant. Then Ord0(β) = j < ∞, R(t) 6≡ 0

and Ord0R = j−1. So
β ′(t)

R(t)
→

√
λ as t→ 0. It follows that β(t) is tangent to L at β(0).

Furthermore,
R(t) = C(tj−1 + btj +O(tj+1)) , C ∈ R

∗, b ∈ R .

A simple calculation shows that β ′′(t) =

(

R′(t)

R(t)
+
i

2

)

β ′(t). As
R′(t)

R(t)
is real, we see

already that the oriented angle from β ′ to β ′′ is in ]0, π[. One can also check the sign of
the curvature of β:

κβ(t) =
ℑ (β ′(t) · β ′′(t))

|β ′(t)|3 =
1

2|β ′(t)| > 0, t ∈]− δ, δ[r{0} . (4.2)

This shows that there is some δ > 0 such that β(t) is on the left of its tangent for any
t ∈]− δ, δ[r{0} if β ′(0) = 0 and for any t ∈]− δ, δ[ if β ′(0) 6= 0.

Moreover,

β(t) = β(0) +

∫ t

0

β ′(s)ds = β(0) + C
√
λ

∫ t

0

eis/2
(

sj−1 + bsj + h.o.t.
)

ds

= β(0) + C
√
λ

∫ t

0

(

sj−1 + (b+
i

2
)sj + h.o.t.

)

ds.

So

ℜβ(t)− β(0)

C
√
λ

=

∫ t

0

sj−1(1 +O(sj))ds, ℑβ(t)− β(0)

C
√
λ

=

∫ t

0

sj

2
(1 +O(sj+1))ds.

It follows that t 7→ β(t) is locally injective and β has the order pair (j, j + 1) at 0. q.e.d.
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Definition 4.2. Let f be a harmonic map and z0 be a smooth critical point. We denote by
j(f, z0) the integer so that the critical value curve has the order-pair (j(f, z0), j(f, z0)+1)
in its natural parametrization. We will call j(f, z0) the critical value order of f at z0.

Let us notice that j(f, z0) is an analytic invariant hence is a fortiori invariant under
our equivalence relation on harmonic maps.

5 Between critical value order and multiplicity

The objective here is to prove the following

Theorem 5.1. Given a harmonic map G together with a smooth critical point z0, the
three local analytic invariants m order of f , j order of the critical values curve and µ
multiplicity of the complexified map on (C2, z0) are related by the (in)equalities :

{

∞ ≥ j ≥ m ≥ 1
j +m2 = µ.

5.1 A formula for the multiplicity µ

For p(z) =
∑

aiz
i we use p(z) to denote the power series p(z) =

∑

aiz
i. The following

lemma provides a formula for the multiplicity, which in the case of a polynomial p leads
to an algorithm.

Lemma 5.2. Let p(z) be a holomorphic map with p(0) = 0. Let f(z) = p(z) − z̄ and
g(z) = p(z)m − zm (with m ≥ 1 an integer). Then µ(f, 0) = Ord0(p̄ ◦ p(z)− z) and more
generally :

µ(g, 0) =
∑

ξm=ηm=1

Ord0

(

η p(ξ p(z))− z
)

.

Proof. Consider the following holomorphic extensions of f and g in C2:

Mf :

(

u
v

)

7→
(

p(u)− v
p(v)− u

)

, Mg :

(

u
v

)

7→
(

p(u)m − vm

(p(v))m − um

)

.

By definition µ(f, 0) = µ(Mf , 0) and µ(g, 0) = µ(Mg, 0). Let us work directly with Mg.
It is known for example by [4, theorem 6.1.4] that µ(g, 0) <∞ if and only if the germs of
planar curves p(u)m−vm = 0 and p(v))m−um have no branch in common. This condition

means that there is a neighborhood of (0, 0) in C2, in which

(

0
0

)

is the only solution of

the system of equations Mf

(

u
v

)

=

(

0
0

)

. Since this system is equivalent to the existence

of ξ, η, such that

ξm = ηm = 1, and v = ξp(u), ηp(ξp(u))− u = 0

12



the condition µ(g, 0) = ∞ is indeed equivalent to the finiteness of the order in the right-
hand side of the statement of lemma 5.2.

We denote µ1 =
∑

ξm=ηm=1Ord0

(

η p(ξ p(z)) − z
)

this order. Solving the equation

Mg

(

u
v

)

=

(

0
t

)

, we get










v − ξp(u) = 0
∏

ξm=ηm=1

(ηp(ξp(u))− u) = t

There are µ1 distinct solutions in the variable u for the second equation, hence µ1

solutions for the system which merge at a single solution (0, 0) when t → 0. These
solutions are all simple which means that Mg is locally invertible. Applying again [4,
theorem 6.1.4], this proves that µ(Mg, 0) = µ1. q.e.d.

Note that |p′(0)| 6= 1 iff µ(f, 0) = 1. Otherwise µ(f, 0) ≥ 2.

5.2 Normalizations

Lemma 5.3. Any harmonic map G near a smooth critical point z0 is equivalent to (g, 0)
with g(z) = p(z)m − zm for some integer m ≥ 1 and some holomorphic function p(z) =
z + bz2 +O(z3), |b| = 1. Furthermore, setting fξ(z) = ξ · p(z)− z, ξ ∈ C, we have

µ(G, z0) = µ(g, 0) =

{

m2 +m if (−b2)m 6= 1
µ(f−b2, 0) + (m− 1)(m+ 2) > m2 +m otherwise.

Note that in the particular case m = 1, the above formula becomes

µ(G, z0) = µ(g, 0) =

{

2 if b2 6= −1
µ(f1, 0) > 2 otherwise.

Proof. The existence of the model map g follows from Lemma 3.3. In the following the
sums are over the m-th roots of unity for both η and ξ. By Lemma 5.2,

µ(g, 0) =
∑

ξm=ηm=1

Ord0

(

η p(ξ p(z))− z
)

=

[

∑

ηξ 6=1

+
∑

ηξ=1

]

Ord0

(

η p(ξ p(z))− z
)

=
∑

ηξ 6=1

Ord0

(

η p(ξ p(z))− z
)

+
∑

ξm=1

Ord0

(

ξp(ξ p(z))− z
)

Lem.5.2
=

∑

ηξ 6=1

Ord0

(

η p(ξ p(z))− z
)

+
∑

ξm=1,ξ 6=−b2

Ord0

(

ξp(ξ p(z))− z
)

+ Cµ(f−b2, 0)

where C = 0 if −b2 does not coincide with any m-th root of unity, and C = 1 otherwise.
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There are m(m − 1) pairs of (η, ξ) with ηm = 1 = ξm and ηξ 6= 1. For each pair of

them, Ord0

(

η p(ξ p(z))− z
)

= 1. This gives m(m− 1) for the first sum above.

Now for any ξ with ξm = 1, ξ 6= −b2, we have Ord0

(

ξp(ξ p(z)) − z
)

= 2. If −b2
does not equal to any m-th root of unity, there are m terms in the middle sum above,
so µ(g, 0) = m(m − 1) + 2m = m2 +m. Otherwise there are m − 1 terms, so µ(g, 0) =
m(m− 1) + 2(m− 1) + µ(f−b2, 0) = m2 +m− 2 + µ(f−b2 , 0). In this case one can check
easily that µ(f−b2 , 0) > 2. So µ(g, 0) > m2 +m. q.e.d.

Consider now

g(z) = p(z)m − zm =
(

z + bz2 +O(z3)
)m

− zm, |b| = 1.

A direct calculation using the first term of γ(t) = ψ−1
g (−eit) shows that the critical value

curve β in its natural parametrization satisfies β(t) =
2i

(m+ 1)m
ℑ
( im

bm

)

tm + o(tm).

Clearly m = Ord0(g). Let j be the ordre of β(t) at 0, and µ the multiplicity of g at
0. We want to prove

j ≥ m and µ = j +m2.

Note that for |b| = 1,

(−b2)m = 1 ⇐⇒
( i

b

)2m

= 1 ⇐⇒
( i

b

)2m

= 1 ⇐⇒
( i

b

)m

= ±1 ⇐⇒ ℑ
( im

bm

)

= 0 .

This, together with Lemma 5.3, gives:

Corollary 5.4. (The generic case) For p(z) = z + bz2 +O(z3), |b| = 1 with (−b2)m 6= 1,
and g(z) = p(z)m − zm, we have

j = m and µ = j +m2 = m+m2.

If (−b2)m = 1 then j > m.

It remains to work on the degenerate case (−b2)m = 1.

Lemma 5.5. Any harmonic map of the form g(z) = (z+bz2+o(z3))m−zm with (−b2)m =
1 is equivalent to a map of the form (z + iz2 + o(z2))m − zm.

Proof. One just need to replace g by g(λz)/λ
m
for λ = 1/(−ib). q.e.d.

5.3 The normalised degenerate case

The following statement will complete the proof of Theorem 5.1. This is by far the hardest
case.
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Theorem 5.6. Let p(z) = z + iz2 + O(z3) be a holomorphic map in a neighborhood of 0
and m ≥ 1 be an integer. Set g(z) = p(z)m − zm. Then g is a harmonic map with 0 as
a smooth critical point. Let j be the ordre of the critical value curve at g(0) = 0 in its
natural parametrization, and µ the multiplicity of g at 0. Then

j > m and µ = j +m2.

Proof. We know already that 0 is a smooth critical point of g and j > m (Corollary 5.4).
Let’s look at the complexification of g:

G

(

u
v

)

=

(

p(u)m − vm

−um + p(v)m

)

=

(

um(1 + iu+ o(u))m − vm

−um + vm(1− iv + o(v))m

)

=

(

G1

G2

)

.

The critical set in C2 of G contains the set {(uv)m−1 = 0} which consists of two
branches u = 0 and v = 0.

The corresponding critical value branches are

G

(

0
v

)

=

(

−vm
vm(1− iv +O(v2))m

)

, G

(

u
0

)

=

(

um(1 + iu+O(u2))m

−um
)

.

Both are plane curves with order pair (m,m + 1). The other branch gives a critical
value curve β with order pair (j, j + 1), as we already know from the real calculation.
By comparing the two parametrizations, an elementary calculation shows that these two
branches are distinct. They are also distinct from the third branch since we shall prove
that j > m hence that they have different first Puiseux pairs.

The local behavior of G at each of these critical branches, off the origin, is given by
the following:

Lemma 5.7. The multiplicity of G at a real critical branch point (off the origin) is 2,
and the multiplicity of G at a non-real critical branch point (off the origin) is m.

Proof. The expression of G at the point

(

0
v0

)

in local coordinates

(

u
w

)

=

(

u
v − v0

)

is

G

(

u
v0 + w

)

−
(

−vm0
p(v0)

m

)

=

(

p(u)m −mvm−1
0 w +O(w2))

−um +Q(v0)w +O(w2)

)

.

By using to Taylor formula for p(v0 + w)m we find Q(v0) = mp(v0)
m−1p′(v0). In order to

see that the germ of G at the point

(

0
v0

)

is equivalent by analytic coordinates changes

to the germ

(

û
v̂

)

→
(

ûm

v̂

)

, it is sufficient to check that Q(v0) 6= mvm−1
0 for any small

enough non zero v0. The proof for the branch u→ G

(

u
0

)

is similar. q.e.d.

The preimage G−1(S), of S a small sphere centered at the origin, is a smooth 3-
manifold, and in fact we are going to prove a stronger result stating that the pair
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(G−1(B), G−1(S)) is diffeomorphic to the pair made of the standard ball and the standard
sphere.

We notice that G−1(S) is defined by the equation N(u, v) :=

∥

∥

∥

∥

F

(

u
v

)∥

∥

∥

∥

2

= ǫ2, and is

the boundary of G−1(B) =

{

(

u
v

)

|
∥

∥

∥

∥

F

(

u
v

)∥

∥

∥

∥

2

≤ ǫ2

}

. The above result will then follow

from a general statement about a function N defined on an open set of Rn given in the
next lemma.

Lemma 5.8. Let N : W → R be a positive real analytic map defined in a neighborhood
of 0 ∈ Rn such that N−1(0) = {0}. Then there is ǫ0 > 0 such that for 0 < ǫ ≤ ǫ0 the pair
of sets

(

{x ∈ R
n | N(x) ≤ ǫ2}, {x ∈ R

n | N(x) = ǫ2}
)

is diffeomorphic to the standard ball and the standard sphere.

Proof. First we prove that N is a submersion outside the origin if we restrict to a small
enough neighborhood of 0 : there is a constant r0 > 0 such that if 0 < ‖x‖ ≤ r0 we have

gradN(x) :=

(

∂N

∂x1
, . . . ,

∂N

∂xn

)

(x) 6= 0.

Indeed if this was not true, we could by the curve selection lemma [10, lemma 3.1] find
an analytic path γ : [0, η0[−→ W such that γ(0) = 0 and γ(t) 6= 0 for t ∈]0, η0[, and
gradN(γ(t)) = 0. But then we would have d

dt
(N(γ(t))) = 〈γ′(t), gradN(γ(t))〉 = 0. But

then N(γ(t)) would be constant equal to N(γ(0)) = 0 and this contradicts γ(t) 6= 0 for
t 6= 0.

In a second step we show that the gradient of N tends to point out from 0 when t→ 0.
More precisely this means that given an analytic path γ : [0, η0[ such that γ(0) = 0 and
γ(t) 6= 0 for t ∈]0, η0[→ W , we have:

lim
t→0

〈γ(t), gradN(γ(t))〉
‖γ(t)‖ · ‖gradN(γ(t))‖ ≥ 0.

Indeed let α, β be the valuations of γ and gradN ◦ γ. We have power series expansions
with initial vector coefficients a, b ∈ R4 :

γ(t) = atα + o(tα), gradN(γ(t)) = btβ + o(tβ)

and the limit above is 〈a,b〉
‖a‖‖b‖

. The expansion of the derivative of γ is γ′(t) = αatα−1 +

o(tα−1), and therefore d
dt
(N(γ(t))) = 〈γ′(t), gradN(γ(t))〉 = α〈a, b〉tα+β−1 + o(tα+β−1).

Since N(γ(t)) > 0 for small enough positive t, this forces the inequality 〈a, b〉 ≥ 0 and we
are done.

We deduce a quantified version of this behaviour of the gradient vector field, showing
that the angle of the vectors x, gradN(x) is bounded away from π. Precisely making the
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constant r0 above smaller if necessary we may assume that for 0 < ‖x‖ ≤ r0 :

〈x, gradN(x)〉
‖x‖ · ‖gradN(x)‖ ≥ −1

2
.

This claim is a consequence of the curve selection lemma, because the limit property of
gradN(x) implies that 0 cannot be in the closure of the semi analytic set

Z := {x ∈ W | 0 < ‖x‖ ≤ r0, 〈x, gradN(x)〉 < −1

2
‖x‖ · ‖gradN(x)‖}.

Our third and last step is to show that we have a homotopy between Σ = N−1(ǫ2) and
the standard ball ‖x‖2 = ǫ2 because the gradient of interpolations between N and ‖x‖2
never vanishes outside the origin. Indeed the choice we made for r0 has the following
consequence: for any t ∈ [0, 1], we have 2tx + (1 − t)gradN(x) 6= 0 and this implies
that the the relative gradient with respect to (x1, . . . , xn) of the deformation N(t, x) :=
t‖x‖2 + (1− t)N(x) is non zero for any x 6= 0:

∀t ∈ [0, 1], ∀x, 0 < ‖x‖ ≤ r0, gradxN(t, x) =

(

∂N

∂x1
, . . . ,

∂N

∂xn

)

(t, x) 6= 0.

Using the continuity of N let us choose ǫ0 < r0 such that N(x) ≤ ǫ20 =⇒ ‖x‖ < r0.
Then the property we obtained on the gradient shows that for each t ∈ [0, 1] the set
Σt := N−1

t (ǫ2)) (resp Σ := N−1(ǫ2)) is a submanifold of the open ball B(0, r0) (resp. of
the product [0, 1]× B(0, r0)). The set Bt = N−1

t ([0, ǫ20]) is a manifold with boundary St

and interior an open set of Rn. Similarly Σ is a part of the boundary of B = N−1([0, ǫ0]) ⊂
[0, 1]×B(0, r0) to be completed by B0∪B1

1. We notice that (B1,Σ1) is the standard ball
of radius ǫ0 with its boundary.

Finally the restriction to Σ of the projection (t, x) −→ t is a submersion. This implies
by the version with boundary of a well known theorem of Ehresmann [5] that the pair
(B,Σ) is locally trivial above [0, 1] which means that we have a diffeomorphism

(B,Σ) −→ [0, 1]× (B0,Σ0).

In particular we have a diffeomorphism (B0,Σ0) −→ (B1,Σ1) as expected. q.e.d.

Let us now come back to the map G. Take a small round closed ball D of radius
ǫ0 and its preimage B so that G : B → D is a covering of degree µ outside the critical
value curves, and that ∂D is transverse to the critical value set. It follows from lemma
5.8 applied to N = ‖G‖2 that ∂B is a smooth 3-variety diffeomorphic to a sphere. We
take r0 as in this lemma and denote : Bǫ = {x | N(x) ≤ ǫ2} ⊂ Dr0, Σǫ = ∂Bǫ for all
0 < ǫ ≤ ǫ0.

Let ℓ :

(

x1
x2

)

7→ ax1 + bx2 be a generic linear form. For ǫ0 small enough the disc

(ℓ = 0) ∩D intersects the critical value set V only at the origin. Therefore for t a small

1we might avoid easily to consider a manifold with a corner along S0 ∪ S1 by enlarging slightly the
range of t to an open interval ]− η, 1 + η[.
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enough non zero complex number, the line Lt with equation ℓ(u, v) = t is transversal to
the boundary of D and Lt∩D is a disc ∆t. Furthermore if t 6= 0 Lt, intersects the critical
value set V at j + 2m points contained in the interior of D.

Set Yt := {ℓ(G1, G2) = t} = G−1({ℓ = t}).
Proposition 5.9. With well chosen r0, ǫ0, as in the proof of lemma 5.8 and t 6= 0 small
enough, Xt := Yt ∩Bǫ0 is diffeomorphic to the Milnor fiber of the function ℓ(G1, G2).

Proof. In the proof of lemma 5.8 we may choose if necessary a smaller r0 to guarantee

that the standard ball B′
r0 =

{

(

u
v

)

|
∥

∥

∥

(

u
v

)

∥

∥

∥ ≤ r0

}

is a Milnor ball which means that

X0 is transverse to the standard sphere ∂B′
r for each r ∈]0, r0] and the Milnor fiber is by

definition Xt ∩ B′
r0

for 0 < |t| ≤ η0, with η0 small enough. By this very definition B′
r is

also a Milnor ball and Xt ∩ B′
r a Milnor fiber provided that we restrict the condition

on t to 0 < |t| ≤ η for an appropriate η < η0. In fact for such a t the inclusion
Xt ∩ B′

r ⊂ Xt ∩ B′
r0 yields a deformation retract between two diffeomorphic varieties.

Now we have the inclusion Bǫ0 ⊂ B′
r0

and choosing r small enough to get B′
r ⊂ Bǫ0 we

can perform again the construction of lemma 5.8 and we get the chain of inclusions:

Bǫ0 ⊂ B′
r ⊂ Bǫ0 ⊂ B′

r0
. (5.1)

Let us choose η0 small enough both for the validity of the Milnor fibration and for the
transversality of the intersections Lt ∩ ∂D as described above, with D of radius ǫ0. We
have to notice also that L0 is transverse to Dǫ for all ǫ ≤ ǫ0. Then at any point y ∈
∂Xt = Yt ∩ Σǫ0 , the two varieties Yt and Σǫ0 are also transversal, and so are Y0 and Σǫ

for 0 < ǫ ≤ ǫ0. Indeed at such a point y we have avoided V and the map G is a local
diffeomorphism.

Because of these transversalities we can construct Milnor fibrations with Milnor fiber
Yt ∩ Bǫ using ”pseudo Milnor balls” Bǫ which make a basis of neighborhoods of 0. The
arguments are exactly the same as with the standard Milnor fibration. It is known (see[
[7], Theorem 3.3) that this Milnor fiber is diffeomorphic to the standard one. The proof
uses the chain of inclusions (5.1). Indeed we choose t small enough for the intersections of
Yt with the four terms in (5.1), to be Milnor fibers. The two inclusions Yt ∩Bǫ ⊂ Yt ∩Bǫ0

and Yt ∩Dr ⊂ Yt ∩Dr0 are homotopy equivalences. Therefore, in the sequence of maps

H i(Yt ∩ Bǫ)
α1

//H i(Yt ∩Dr)
α2

// H i(Yt ∩ Bǫ0)
α3

// H i(Yt ∩Dr0)

α3◦α2 and α2◦α1 are isomorphisms and this forces the middle arrow to be an isomorphism
for i = 0, 1. Since we work on surfaces with boundaries this is enough to obtain that they
are diffeomorphic. q.e.d.

Proposition 5.10. The surface Xt is connected and χ(Xt) = 2m−m2. Furthermore its

boundary has m connected components and its genus is g(Xt) =
(m−1)(m−2)

2
.

Proof. Since Xt is a smooth real surface with boundary its Euler characterictic is
χ(Xt) = 1 − dim(H1(Xt),C) because it is connected by [10]. The first statement in the
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proposition is equivalent to the fact that the Milnor number µ(ℓ ◦ G) = dim(H1(Xt),C)
(m − 1)2. To check this fact recall that µ(ℓ ◦ G) is an analytic invariant (and even a
topological one) of the function. Let us calculate a standard form up to an analytic
change of coordinates, for L := ℓ(G1, G2):

L(u, v) = a(p(u)− vm) + b(−um + p(v)

= (a− b)um(1 +O(u))− (a− b)vm(1 +O(v)) = Um − V m

where Φ :

(

u
v

)

7→
(

ϕ(u)
ψ(v)

)

is a diagonal change of coordinates. We can now check that

µ(ℓ(G1, G2)) = (m − 1)2 by the formula for the Milnor number as the codimension of
the Jacobian ideal : µ(L) = dimC C{u, v}/(∂L∂u , ∂L∂v ) = dimCC{U, V }/(Um−1, V m−1). The
last statement follows since the number of components of the boundary is the number of
irreducible local components of the curve L(u, v) = 0. q.e.d.

Now we are ready to finish the proof of theorem 5.6. We already know that F : Xt →
∆t is a ramified cover of degree µ with j +2m critical values and that above each critical
value there is exactly one critical point.

By the proof of 5.7 we know that the germ of the map F , at a critical point different
from (0, 0), is up to analytic changes of coordinates, equivalent to one of the two germs
(z1, z2) → (z1, z

2
2) or (z1, z2) → (z1, z

m
2 ). Since the disc ∆t is transversal to the critical

value curve, we deduce that for F : Xt → ∆t the critical points are simple on the smooth
branch, and of local multiplicity m (therefore counts as m− 1 critical points), above the
fantom curves.

By Riemann-Hurwitz, χ(Xt) + #{critical points} = µχ(∆) = µ. So 1 − (m − 1)2 +
(j + 2m(m− 1)) = µ. That is µ = j +m2. q.e.d.

Combining with Lemma 5.3, in which we plug in b = i, µ(f−b2, 0) = µ(f, 0) we get:

Corollary 5.11. Form ≥ 1, f(z) = (z+iz2+O(z3))−z and g(z) = (z+iz2+O(z3))m−zm,
the four quantities j(f), µ(f), j(g), µ(g) at 0 are related as follows:

µ(g) = µ(f) +m2 +m− 2, j(g) = µ(g)−m2 = j(f) +m− 1 = µ(f) +m− 2.

In particular each of these number determines the three other ones.

6 Topological models for harmonic smooth critical

points

Notice that due to the equality µ = j+m2, the integers µ and m+j have the same parity.
In this section we will reformulate Lyzzaik’s topological model in terms of the parity of
m+ j. We provide a self-contained proof.

We then show examples of harmonic maps with prescribed numerical invariants or
with prescribed local models.
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6.1 Local models

Theorem 6.1. (topological model, inspired by Lyzzaik, [9]) Let f be a harmonic map with
z0 a smooth critical point. Set m = Ordz0(f). Let j be the integer so that the critical
value curve β at z0 has the order-pair (j, j + 1). Assume j <∞.

In this case, define n± by the following table:

(

2n+ − 1

2n− − 1

)

β convex (m ≤ j odd) β cusp (m ≤ j even)

m odd

(

m
m

) (

m+ 2
m

)

or

(

m
m+ 2

)

m even

(

m+ 1
m− 1

)

or

(

m− 1
m+ 1

) (

m+ 1
m+ 1

)

(6.1)

Set Rn+,n−(z) = Rn+,n−(reiθ) =

{

rei(2n
+−1)θ 0 ≤ θ ≤ π

re−i(2n−−1)θ π ≤ θ ≤ 2π .

Then one of the choices of Rn+,n−(z) (the choice is unique if m + j is odd) is a
local topological model of f , in the following sense: There is a neighborhood U of 0, two
orientation preserving homeomorphisms: h1 : U → D, 0 7→ 0, h2 : C → C, 0 7→ 0, such
that

h2 ◦ f ◦ h−1
1 (z) = Rn+,n−(z).

Moreover #f−1(z) = n+ + n− or n+ + n− − 2 depending on whether z is in one sector or
the other of f(U)rβ.

Notice that only the parity but not the size of j comes into account, and n+−n− = 0, 1
or −1.

Proof. By Lemma 3.3 we can assume z0 = 0 and f takes the form f(z) = p(z)+ q(z) with

p(z) = zm + bzm+1 +O(zm+2), q(z) = zm, |b| = 1.

In this case ψ(z0) = 1. From lemma 4.1, we know that t 7→ β(t) is locally injective
and the local shape of β corresponds to that of u(tj + itj+1). Therefore β is a convex
curve on one half plane if j is odd and is a cusp of the first kind tangent to R if j is even,
then has its tangent lines on the right. See Figure 1.

Write f(z) = p(z)− q(z) + 2ℜq(z) = b(κ(z))m+1 + 2ℜq(z) with κ a holomorphic map
tangent to the identity at 0. We may take κ(z) as coordinate and transform f into the
following holomorphic+real normal form

f(z) = eiθzm+1 + r(z) = F (z) + r(z) with F (z) = eiθzm+1, r(z) = 2ℜ(zm +O(zm+1)).
(6.2)

Claim 0. In this form the critical value curve β is either a convex curve on one half
plane or is a cusp of the first kind tangent to R.
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β+ = f(γ+)

β− = f(γ−)
Case j even

β+
β−

Case j odd

Figure 1: The shape of the critical value curve

γ+

γ−

bU

C

f

Figure 2: The domain U and F−1(R)

Proof. We have only changed the variable in the source plane. So this new normal
form has the same critical value curve as before.

Claim 1. We give here a specific proof to be compared to lemma 5.8. For a small
enough round circle C = {|z| = s} in the range, its preimage by f contains a Jordan
curve connected component bounding a neighborhood U of 0, with f(U) ⊂ Ds (not
necessarily equal) and f : U → Ds proper (see Figure 2).

Notice that the tangent of γ at 0 depends on the choice of θ in b = eiθ, whereas the
tangent of β at 0 does not depend on θ.

Proof. By assumption on j < ∞ the point 0 is an isolated point in f−1(0). So
there is r > 0 such that {|z| ≤ r} is contained in the domain of definition Ω of f and
0 /∈ f({|z| = r}).

There is therefore a small round open disc D centred at 0 in the range such that
D ∩ f({|z| = r}) = ∅.

Let W be an open connected subset of D containing 0.

As f is continuous f−1(W ) is open in Ω. Let V be the connected component of f−1(W )
containing 0. Then V is an open neighborhood of 0 with V ⊂ {|z| < r} ⊂⊂ Ω.

We now claim that f |V : V → W is proper.

Proof. Let V ∋ zn → z ∈ ∂V . We need to show f(zn) → ∂W . As z ∈ ∂V ⊂ Ω the
map f is defined and continuous at z. It follows thatW ∋ f(zn) → f(z) ∈ W =W ⊔∂W .
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If f(z) ∈ W , then by continuity f maps a small disc neighborhood B of z into W ,
consequently

B ∪ V is







connected
strictly larger than V , and
a subset of f−1(W ).

This contradicts the choice of V as a connected component of f−1(W ) and ends the proof
of the claim. We now choose W a small enough disc such that t → |β(t)| is strictly
increasing (resp. decreasing) as along as t > 0 (resp. t < 0) and β(t) ∈ W and consider
the proper map f := f |V : V →W .

Fix now C = {|z| = s} contained in W in the range. The map f is a local homeo-
morphism at every point of f−1Crγ. Due to the local fold model at points of γ∗ we may
conclude that f−1C is a 1-dimensional topological manifold, which is actually piecewise
smooth. It is also compact by properness, so has only finitely many components, each is
a Jordan curve.

Let I be an island, i.e. an open Jordan domain in V bounded by a curve in f−1C .
We claim that f(I) ⊂ Ds := {|z| < s}.

Assume f(I)rDs 6= ∅ . Then |f | on the compact set I reaches its maximum at an
interior point x ∈ I. Then x can not be outside γ as f is locally open outside γ. But if
x ∈ γ then f(x) ∈ β and |f | restricted to γ can not reach a local maximum since |β(t)| is
locally monotone. This is not possible.

So f(I) ⊂ Ds. But if for some x ∈ I we have f(x) ∈ C = ∂Ds, then I contains a
component (so a Jordan curve) of f−1C. Choose a point x′ in this curve but disjoint from
γ. Then f is a local homeomorphism on a small disc B centred at x′ with B ⊂ I and
f(B) contains points outside Ds. This is not possible by the previous paragraph. So we
may conclude that f(I) ⊂ Ds.

We claim now 0 ∈ I. Otherwise 0 6∈ f(I) and we may argue as above using the
minimum of |f | on I to reach a contradiction.

It follows that f−1C has only one component in V bounding a Jordan domain U
containing 0 and f(U) ⊂ Ds. As f maps the boundary into the boundary (not necessarily
onto), f : U → Ds is proper.

Claim 2. The set F−1R∗ is a regular star of 2(m+1) radial branches from 0 to ∞ and
F−1R ∩ U is connected (see Figure 2).

Otherwise there is a segment L ⊂ F−1R∗ connecting two boundary points of U . As
f(s) = F (s) + r(s) with r real, f(L) ⊂ R. But f−1(0) = 0. So f(L) is a segment in
R∗ by Intermediate Value Theorem. Now as f has no turning points (critical points) in
L, it maps L bijectively onto a real segment with constant sign, and the two ends are in
f(∂U) = C. This contradicts the choice that C is a round circle.

Claim 3. Each sector S of UrF−1
R is mapped by both f and F into the same upper

half plane. Each branch ℓ of F−1R∗ is mapped by f to a real segment with constant
sign (but not necessarily equal to the sign of F (ℓ)). Two consecutive branches on the
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same side of γ have images under f with opposite signs, and two consecutive branches
separated by γ have images under f with the same sign.

Proof. As f(s) = F (s) + r(s) with r real, and F (S) is either on the upper or lower
half plane, the same is true for f(S) with the same imaginary sign.

The fact that F (ℓ) ⊂ R
∗ implies f(ℓ) ⊂ R. But f−1(0) = 0. So f(ℓ) is a segment in

R∗ by Intermediate Value Theorem. Now as f has no turning points (critical points) in
ℓ, it maps ℓ bijectively onto a real segment with constant sign.

We now prove by contradiction that two consecutive branches on the same side of γ
have images under f with opposite signs. Let W be a small closed sector neighborhood of
0 bounded by two consecutive branches on the same side of γ and a small arc α. Assume f
maps the two branches to the same segment in R, say [0, ε]. AsW∩f−1

R
∗ = W∩F−1

R
∗ =

∅, the connected set f(W ) is disjoint from R−. And f(α) is disjoint from 0. Since f(W )

is not entirely contained in R+, one can find v ∈ ∂f(W )r
(

f(α)∪R+∪{0}
)

. So v = f(w)

for some interior point w of W . This contradicts that f is a local homeomorphism.

We may prove similarly that two consecutive branches of F−1R∗ separated by γ have
images under f with the same sign, using the fact that f realises a fold along γ∗.

Claim 4. Let S be a sector of UrF−1R disjoint from γ. Then f maps S homeomor-
phically onto one of the half discs {|z| < s,ℑz > 0}, {|z| < s,ℑz < 0}, and in S the
number of branches of f−1(f(γ)) is equal to the number of branches of F−1(F (γ)) (see
Figure 5).

Proof. The previous claim says that f is a local homeomorphism on S, and f(S) is
contained in one of the half discs, say {|z| < s,ℑz > 0}. We also know that f : S →
{|z| < s,ℑz > 0} is proper, so is in fact a covering. As S is simply connected, we conclude
that f on S is a homeomorphism onto its image. We also need to prove that f(S) is one
of the half discs bounded by C ∪ R.

For t ∈]0, ε[, set γ±(t) = γ(±t). Consider δ±(t) = F (γ±(t)) and β±(t) = f(γ±(t)),

By (6.2) we know that δ−(t) and β−(t) are in the same half plane of CrR, idem
for the pair δ+(t) and β+(t). Comparing with the shape of β relative to R we know that
δ±(t) are in the same half plane if β is convex and in opposite half planes otherwise.

Claim 5. The map f sends each S of the two sectors of UrF−1R intersecting γ onto
one small sector χ with 0 angle at 0 of Cr(C ∪ β ∪ R), and S ∩ f−1(β) ⊂ γ (see Figure
3).

This is due to the harmonicness: f folds a small neighborhood of z ∈ γ∗ onto a half
neighborhood of f(z) on the concave side of β (see Figure 3). As χ does not contain the
other branch of β, the preimage S contains no other co-critical points than γ.

Claim 6. The critical curve γ separates the branches of F−1R∗ into two parts whose
numbers depend on the shape of β, by the following table:
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β+β−

γ+

γ−

Case m odd and j odd

β+
β−

γ+

γ−

Case m even and j odd

χ

Figure 3: The folding sides for harmonic maps f

(

#right branches of F−1R∗

#left branches of F−1R∗

)

β convex β cusp

m odd equal number differ by 2
m even differ by 2 equal number

Proof. For t ∈]0, ε[, we have γ±(t) = γ(±t), δ±(t) = F (γ±(t)) and β±(t) = f(γ±(t)).
We need to know the relative positions between δ±(t) and R in order to get the relative
positions between γ ⊂ F−1(δ±(t)) and F−1R∗.

We know that δ±(t) are in the same half plane if β is convex and in opposite half
planes otherwise.

On the other hand, the two curves γ±(t), t ∈ [0, ε[ make an angle π at γ(0). As
F (z) = eiθzm+1,

angle0(δ
±(t)) = (m+ 1) · angle0(γ±(t)) = (m+ 1)π mod2π =

{

0 if m is odd
π if m is even.

Now pullback these shapes by F (z) = eiθzm+1, we get the claim. See Figure 4.

Claim 7. In any case, the number of sectors in Urf−1β is odd in each side of γ.
Denoting them by 2n± − 1, with + for the right-side of γ and − the left side, one can
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related them to the numbers of branches of F−1
R

∗ separated by γ by:

β convex, j odd β cusp, j even
(

2n+ − 1

2n− − 1

)

=

(

#right branches of F−1R∗ − 1

#left branches of F−1R∗ − 1

) (

#right branches of F−1R∗

#left branches of F−1R∗

)

Proof. The shape of β is determined by the parity of j in its order-pair (j, j + 1): If j
is odd then β is convex, if j is even then β is a cusp. In the following only the shape of
β is relevant, but not the value of j. It follows that if m + j is odd, F−1

R contains the
tangent line of γ at 0.

See Figure 5.

Now as the total number of branches of F−1R∗ is 2(m+ 1), we get, by Claim 6,
(

#right branches of F−1R∗

#left branches of F−1R∗

)

β convex, j odd β cusp, j even

m odd

(

m+ 1

m+ 1

)

(

m+ 2
m

)

or

(

m
m+ 2

)

m even

(

m+ 2

m

)

or

(

m
m+ 2

) (

m+ 1
m+ 1

)

We get (6.1) .

Claim 8. Now we forget about F−1R and consider only the sectors in U partitioned
by f−1β. The same arguments as above show that f maps each sector homeomorphically
onto one of the two sectors in Dsrβ in the range.

To construct coordinate changes h1, h2 from f to Rn+,n−, one proceeds as follows:

Define at first an orientation preserving homeomorphisms h2 : Ds → D mapping 0 to
0 and β ∩Ds onto [−1, 1]. Note that R−1

n+,n−
[−1, 1] partitions D into the same number of

sectors as the partition of U by f−1β. We just need now to construct h1 sector on sector
so that Rn+,n− ◦ h1 = h2 ◦ f on that sector and h1 is an orientation preserving mapping
from γ ∩Ds onto [−1, 1]. We can see that h1 is a homeomorphism from U to D. q.e.d.

Notice that the local topological degree of f can be expressed in the following table:

β(t) convex, m ≤ j odd β(t) cusp, m ≤ j even
m odd m even m odd m even

fz=0 ∼
(

z2n
+−1

z2n
−−1

)

(

zm

zm

) (

zm+1

zm−1

)

or

(

zm−1

zm+1

) (

zm+2

zm

)

or

(

zm

zm+2

) (

zm+1

zm+1

)

deg(f, 0) = 0 ±1 ±1 0

#f−1(z) = m+ 1, m− 1 m+ 1, m− 1 m+ 2, m m+ 2, m

µ(f, 0) = j +m2
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Corollary 6.2. In the generic case f(z) = (z + bz2 +O(z3))m − zm with (−b2)m 6= 1, we
have

β(t) convex, m = j odd β(t) cusp, m = j even

fz=0 ∼
(

z2n
+−1

z2n
−−1

)

(

zm

zm

) (

zm+1

zm+1

)

deg(f, 0) = 0 0

#f−1(z) = m+ 1, m− 1 m+ 2, m
µ(f, 0) = m+m2

6.2 Prescribing numerical invariants or local models for har-

monic mappings

Now we are ready to prove Corollary 2.3. Due to the equality j+m2 = µ, we only need to
prove that given two integers µ,m satisfying m ≥ 1 and µ ≥ m2+m there exist harmonic
maps of the form g(z) = p(z)m − z̄m such that µ(g, 0) = µ.

Assume that p(z) = z + bz2 + o(z2) with |b| = 1.

In the case µ = m2 +m, one can take p such that (−b2)m 6= 1 and apply Lemma 5.3.

Assume now µ > m2 + m, in particular µ > 2. Choose b = i. Then −b2 = 1 is
always a m-th root of unity. And f−b2(z) = f1(z) = p(z) − z̄. Choose p such that
µ(f1, 0)− 2 = µ− (m2 +m) and apply Lemma 5.3.

Now given a pair of positive integers n± with n+ = n−, resp. with |n+ − n−| = 1, one
can use the table (6.1) to find a suitable pair m and j, or the table (2.2) to find a
suitable pair m and µ, and proceed as above to find an harmonic map realising the model.
q.e.d.

Here are some concrete examples realizing a given pair (µ,m) with ∞ ≥ µ ≥ m2 +m.

If ∞ > µ = m2 + m, take any p(z) = z + bz2 with |b| = 1 and (−b2)m 6= 1. Then
µ(p(z)m − z̄m, 0) = µ .

If ∞ > µ > m2 +m, set ν = µ − (m2 +m) + 2 = µ − (m − 1)(m + 2) and pν(z) =
z
∑ν−2

s=0(iz)
s + azν with ℜa 6= 0,±1 and gν(z) = (pν(z))

m − zm. Then µ(g, 0) = µ.

If µ = ∞, set p(z) = − z

1 − z
and g(z) = p(z)m − zm. We have p ◦ p(z) = p ◦ p(z) = z,

and

µ(g, 0) =
∑

ξm=1,ηm=1,ξ,η 6=1

Ord0

(

η p(ξ p(z))− z
)

+Ord0

(

p(p(z))− z
)

= ∞.

One can also check by hand that j(g, 0) = ∞.
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β+ = f(γ+)

β− = f(γ−)

δ+ = F (γ+)

δ− = F (γ−)

γ+

γ−

Case m even and j even

β+β− δ+ δ−

γ+

γ−

Case m odd and j odd

β+

β−

δ+

δ−

γ+

γ−

Case m odd and j even

β+
β− δ+δ−

γ+

γ−

Case m even and j odd

Figure 4: The left hand figures are F−1(R) (in red) and F−1(F (γ)) (in black). The shape
of β± is determined by the parity of j. The curves δ± are in the same half planes as β±

due to the fact that F − f is real. The angle between δ± is determined by the parity of
m, as F (z) = eiθzm+1.
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β+ = f(γ+)

β− = f(γ−)

γ+

γ−

Case m even and j even

β+β−

γ+

γ−

Case m odd and j odd

β+

β−

γ+

γ−

Case m odd and j even

β+
β−

γ+

γ−

Case m even and j odd

Figure 5: The cocritical set f−1(f(γ)) = f−1(β). We have kept the red lines for reference.
In each sector S bounded by red lines, the number of branches of f−1(f(γ)) is equal to
that of F−1(F (γ)) (refer to Figure 4), except in the two sectors containing γ±, where
f−1(f(γ)) ⊂ γ.
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A Analytic planar maps at a regular critical point

Let K = R or C. Let f :

(

x
y

)

7→ f

(

x
y

)

be a K-analytic map with a as a regular critical

point. The critical set Cf , as a level set of Jf , is everywhere orthogonal to the gradient
vector field (∂xJf , ∂yJf ). The unique curve Γ(t) satisfying

Γ′(t) =

(

−∂yJf(Γ(t))
∂xJf(Γ(t))

)

, Γ(0) = a

thus parametrizes the critical curve {J = 0}. Now the map f transports the curve Γ(t) to
the critical value set, inducing thus a natural local parametrization t 7→ Σ(t) = f(Γ(t)).

In this section we prove that the critical value curve of a K-analytic map at a regular
critical point takes always a pair (j, j + 1) as its order-pair, and µ = j + 1. We then give
a recursive algorithm computing j, thus µ.

A.1 Critical value order-pair and multiplicity

Theorem A.1. Let K = R or C. Let W ⊂ K2 be an open neighborhood of w0 ∈ K2, and
F :W → K2 a K-analytic mapping with w0 as a regular critical point. Then,

1. (critical value order-pair) Let j be the order at F (w0) of the critical value curve
in its natural parametrization. This curve has an order-pair of the form (1,∞) if
j = 1, and (j, j + 1) if 1 < j <∞.

2. (critical value order and multiplicity) The order j is related to the multiplicity by
the formula

j + 1 = µ(F,w0). (A.1)

3. (topological model in the reals) In the case K = R and µ(F,w0) <∞,
{

µ(F,w0) even, or
µ(F,w0) odd

iff there is a pair of topological local changes of coordinates

h,H of R2, so that H ◦ F ◦ h takes the standard















fold form

(

x
y

)

7→
(

x
y2

)

, or

cusp form

(

x
y

)

7→
(

x
xy + y3

)

.

In particular, outside the critical value set, the number of preimages is either 0 or
2 in the fold case, and 1 or 3 in the cusp case.

Proof. We will make a sequence of analytic changes of coordinates to F . This will lead
to new maps whose critical value curves differ from that of F by analytic changes of
coordinates. We will see that in some suitable coordinates the critical value curve has an
order pair in the form (j, j + 1). If j > 1 then j, j + 1 are co-prime and the pair becomes
then an analytic invariant. It follows that the critical value curve of our original map has
also the same order-pair.
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Precompose F by a translation if necessary we may assume w0 = 0. Denote by DF0

the differential of F at 0.

Precompose and post-compose F by some rotations if necessary we may assume that
Ker(DF0) is the y-axis and Image(DF0) is the x-axis. Divide F by a non-null constant

in K if necessary we may further assume DF0

(

1
0

)

=

(

1
0

)

.

It follows that the Jacobian matrix JacF (0) is

(

1 0
0 0

)

.

Write now F

(

x
y

)

=

(

f(x, y)
g(x, y)

)

and set φ

(

x
y

)

=

(

f(x, y)
y

)

. Then Jacφ(0) = Id. It

follows that φ is a local diffeomorphism.

Replace now F by F ◦ φ−1 we may assume F takes the form

F

(

x
y

)

=

(

x
g(x, y)

)

, DF0 =

(

1 0
0 0

)

.

By assumption (∇JF )0 6= (0, 0). Set (∇JF )0 = (b, b′). Note that JF =
∂g

∂y
. We get

thus the following local expansion

∂g

∂y
= 0 + bx+ b′y +R≥2(x, y) = x(b+ a(x, y)) + yj(c+R≥1(y))

for some ∞ ≥ j ≥ 1 (∞ ≥ j ≥ 2 if b′ = 0) and b · c 6= 0, where the function a(x, y) has
no constant term.

The case b′ 6= 0. The curve β can be parametrized by x and has the order-pair (1,∞)
at 0. details

??
We will only treat the case b · b′ 6= 0. Then j ≥ 2. We will prove that the critical value

curve has (j, j + 1) as its order-pair at 0.

Set B(x) = g(x, 0). We have B(0) = 0. Post-compose now F by

(

u
v

)

7→
(

u
v − B(u)

)

we may assume

F

(

x
y

)

=

(

x
g(x, y)

)

with g(x, y) =

∫ y

0

∂g

∂y
(x, y)dy. (A.2)

Case j = ∞. We see that CF is locally the y-axis and g(x, y) = b xy · A(x, y) with
A(0, 0) = 1. So

F

(

x
y

)

=

(

x
b xy · A(x, y)

)

, A(0, 0) = 1 (A.3)

and F |CF is locally constant. We may also make a change of variable

(

x1
y1

)

=

(

x
b y ·A(x, y)

)

=

Φ

(

x
y

)

. Clearly Φ is locally invertible and F ◦ Φ−1

(

x1
y1

)

=

(

x1
x1y1

)

.
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Case j <∞. The map F takes the form

F

(

x
y

)

=





x
yj+1

j + 1
(c+ s(y)) + b xy ·A(x, y)



 , A(0, 0) = 1.

Let y1 be the analytic function in y tangent to the identity at 0 so that yj+1
1 =

yj+1(1+s(y)/c) and change the variable y to y1, one can further reduce F to the following
form (by abuse of notation we use again y to denote the new variable):

F

(

x
y

)

=





x
c yj+1

j + 1
+ b xy · Â(x, y)



 , Â(0, 0) = 1. (A.4)

Note that JF (x, y) =
∂

∂y

(

c yj+1

j + 1
+ b xy · Â(x, y)

)

= c yj + b · x(1 + C(x, y)) for some

function C(x, y) that vanishes at (0, 0).

Solving now the implicit equation JF (x, y) = 0, we see that the critical set CF is locally

parametrized by y 7→ γ(y) =

(

x(y)
y

)

with x(y) = −c
b
yj +R≥j+1(y).

We may now compute the critical value curve in this coordinate :

β(y) = F (γ(y)) = F

(

x(y)
y

)

=





x(y)
c yj+1

j + 1
− b

c yj

b
y +R≥j+2(y)



 =







−c y
j

b
+R≥j+1(y)

−c j
j + 1

yj+1 +R≥j+2(y)






.

It follows that β has the order-pair (j, j + 1) at 0. This proves Point 1.

Let us prove that the multiplicity µ(F, 0) of F at 0 is j+1. This multiplicity is equal
to

lim sup
(x,y)→0

#

(

U ∩ F−1
C

(

x
y

))

with U a small neighborhood of 0 in C2.

By (A.4) if x = 0 and y is close to 0 but y 6= 0, then #F−1

(

0
y

)

= j+1. This is also

true for

(

x
y

)

close to 0 by Rouché’s theorem applied to the second coordinate function

of F as a function of y. We know that

∀ ε > 0, ∃ η > 0 s.t. ∀|s|, |t| < η, |g(s, y)− t||y|=ε 6= 0 .

This proves Point 2.

Point 3. Assume K = R. All functions below will have real coefficients. One can write
x(y) = −c

b
(y +R≥2(y))

j.
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If j + 1 is even the function x(y) is a local homeomorphism of an interval about 0 so
has a unique inverse. It follows that on each vertical line x = c for c small, the map F
has a unique critical point. Since F sends the line into itself, it must be a fold.

The case j + 1 odd: x(y) is a convex curve staying on one half plane, say the left
half plane. It follows that for every c > 0 small, the map F sends the vertical line x = c
homeomorphically to itself. And for c < 0 small F on the line x = c behaves topologically
as ay + y3 with a < 0. So F is a topological cusp.

The rigorous constructions of the changes of coordinates are very similar to Claims 1
and 8 in the proof of Theorem 6.1. As our map F here preserves vertical lines, we may
instead choose to pull back small rectangles ]− r, r[×]− s, s[ so that the upper and lower
boundary segments do not intersect the critical and co-critical sets. We omit the details.
q.e.d.

Remark that in the proof we have also established a collapsing model in K: We have
µ(F,w0) = ∞ iff there is a pair of K-analytic changes of coordinates ϕ and Φ so that

Φ ◦ F ◦ ϕ takes the standard collapsing form

(

x
y

)

7→
(

x
xy

)

.

Remark also that Whitney has given a geometric model inK for the ’stable singularity’

cases:

{

µ(F,w0) = 2
µ(F,w0) = 3

iff there is a pair of K-analytic changes of coordinates h,H so that

H ◦ F ◦ h takes the standard















fold form

(

x
y

)

7→
(

x
y2

)

cusp form

(

x
y

)

7→
(

x
xy + y3

)

.

A.2 A recursive algorithm computing j

This subsection is inspired by a conversation with H.H. Rugh.

For a C∞ planar mapping f , let J be the jacobien of f . In the following both our
domaine and range planes will be R2 identified with C. In this spirit the jacobien will
also be considered as a map with range in R.

Consider now a map f from U to C, we define

∇Rf = (fx, fy) and ∇f = (fz, fz̄) :=
(1

2
(fx − ify),

1

2
(fx + ify)

)

.

Mimicking Whitney’s definition for folds and cusps, we set recursively

M1 =

∣

∣

∣

∣

∇RJ
∇Rf

∣

∣

∣

∣

, M2 =

∣

∣

∣

∣

∇RJ
∇RM1

∣

∣

∣

∣

, · · · , Mk =

∣

∣

∣

∣

∇RJ
∇RMk−1

∣

∣

∣

∣

, · · · ; (A.5)

L1 =

∣

∣

∣

∣

∇f
∇J

∣

∣

∣

∣

, L2 =

∣

∣

∣

∣

∇L1

∇J

∣

∣

∣

∣

, · · · , Lk =

∣

∣

∣

∣

∇Lk−1

∇J

∣

∣

∣

∣

, · · · . (A.6)
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Proposition A.2. Let f : (R2, a) → (C, f(a)) be a smooth map. We have,

∀ n ≥ 1,Mn = (2i)nLn.

Let Γ(t) the trajectory of the vector field (−Jy(z), Jx(z)) with initial point a, and set
Σ(t) = f(Γ(t)). We have

∀ n ≥ 1, Σ(n)(t) =Mn(Γ(t)) = (2i)nLn(t).

In particular Σ(n)(0) =Mn(a) = (2i)nLn(a) .

Proof. Let G,H : (R2, a) → (C, G(a)) be two C∞ smooth mappings.

I. We claim first
∣

∣

∣

∣

∇RH
∇RG

∣

∣

∣

∣

= 2i

∣

∣

∣

∣

∇G
∇H

∣

∣

∣

∣

. (A.7)

Proof. Recall that ∇RH = (Hx, Hy) and ∇RG = (Gx, Gy). It follows from Gz =
1

2
(Gx −

iGy) and Gz =
1

2
(Gx + iGy) that Gx = Gz +Gz and Gy = i(Gz −Gz). So

∣

∣

∣

∣

∇RH
∇RG

∣

∣

∣

∣

=

∣

∣

∣

∣

Hx Hy

Gx Gy

∣

∣

∣

∣

= i

∣

∣

∣

∣

Hz +Hz Hz −Hz

Gz +Gz Gz −Gz

∣

∣

∣

∣

= −2i

∣

∣

∣

∣

Hz Hz

Gz Gz

∣

∣

∣

∣

= −2i

∣

∣

∣

∣

∇H
∇G

∣

∣

∣

∣

.

II. Apply now (A.7) to G = f and H = J , we get M1 = (2i)L1, then to G =M1 we
get

M2 =

∣

∣

∣

∣

∇RJ
∇RM1

∣

∣

∣

∣

= (2i)

∣

∣

∣

∣

∇RJ
∇RL1

∣

∣

∣

∣

(A.7)
= (2i)2

∣

∣

∣

∣

∇L1

∇J

∣

∣

∣

∣

= (2i)2L2 .

By induction
Mn = (2i)nLn, ∀n ≥ 1 . (A.8)

III. We claim now
d

dt
G(Γ(t)) =

∣

∣

∣

∣

∇RJ
∇RG

∣

∣

∣

∣

Γ(t)

. (A.9)

Proof. Using the fact that Γ′(t) = (−Jy, Jx)|Γ(t), for any v ∈ C2 we have

〈v,Γ′(t)〉 =
∣

∣

∣

∣

Jx Jy
v

∣

∣

∣

∣

Γ(t)

=

∣

∣

∣

∣

∇RJ
v

∣

∣

∣

∣

Γ(t)

.

Write G :

(

x
y

)

7→
(

G1(x, y)
G2(x, y)

)

(by identifying the range plane to R2). Then

d

dt
G(Γ(t)) = DG|Γ(t)(Γ′(t)) =

(

〈∇RG1(Γ(t)),Γ
′(t)〉

〈∇RG2(Γ(t)),Γ
′(t)〉

)

=











∣

∣

∣

∣

∇RJ
∇RG1

∣

∣

∣

∣

∣

∣

∣

∣

∇RJ
∇RG2

∣

∣

∣

∣











Γ(t)

.
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Identify G(x, y) with G1(x, y) + iG2(x, y). We have

d

dt
G(Γ(t)) =

∣

∣

∣

∣

∇RJ
∇RG1

∣

∣

∣

∣

Γ(t)

+ i

∣

∣

∣

∣

∇RJ
∇RG2

∣

∣

∣

∣

Γ(t)

=

∣

∣

∣

∣

∇RJ
∇RG

∣

∣

∣

∣

Γ(t)

.

IV. Apply now (A.9) inductively to G = f,M1,M2, · · · , we get

Σ′(t) =
d

dt
f(Γ(t)) =

∣

∣

∣

∣

∇RJ
∇Rf

∣

∣

∣

∣

Γ(t)

=M1(Γ(t));

Σ′′(t) =
d

dt
M1(Γ(t)) =

∣

∣

∣

∣

∇RJ
∇RM1

∣

∣

∣

∣

Γ(t)

=M2(Γ(t)) .

By induction Σ(n)(t) =Mn(Γ(t)), and Σ(n)(0) =Mn(Γ(0)) =Mn(a).

Combining with (A.8) we get Σ(n)(0) = (2i)nLn(a) as well. q.e.d.

Corollary A.3. The invariant j is the first integer n for which Ln(0) 6= 0.

B Examples

These examples illustrate some differences between the harmonic and the general real
analytic case.

1. General remarks:

a. In the harmonic case, by a theorem of Hans Lewy, the locus of non local injectivity
is the same as the critical set. In particular, this implies that Cf and hence Vf have
a topological meaning. This is no longer true in the real analytic case, as is shown for
instance by the map: (x, y) → (x, y3).

b. One can easily check that for a real analytic planar germ g from (C, 0) into itself,
the critical set (and the locus of non injectivity ) are the same for the germs g and gn

(n ∈ N
∗) outside the origin.

c. As the case of a regular critical point was studied before, we give examples for
which the gradient of the Jacobian vanishes at the origin.

Here are examples of planar analytic germs g at the origin (Cg is smooth and coincides
with thelocus of non local injectivity).

A. In general, the condition µ = j + m2 is not satisfied in the analytic case. The
map g(x, y) = (x, x2y2 + y4) is a simple example. The critical set is the x-axis. One has:
j = m = 1 and µ = 4.

B. Topological differences.

1. g(x, y) = (x + iy2)2 has local topological degree 0 at the origin, but Vf is [0,+ǫ[.
So the germ at the origin is not topologically equivalent to the germ of a harmonic map.
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2. A real analytic germ with a smooth critical set can have any local topological
degree. For instance, take a harmonic map f of degree 1 or −1 and put g = fn. This
map has local topological degree n or −n, and then, is not topologically equivalent to a
harmonic germ for n > 1.

C. Problem for the parametrization of Vg.

g(x, y) = (x+ iy2)3. The parametrization of Vg which comes from the parametrization
x = t, y = 0 of Cf is of the non-injective form x = t3, y = 0, when t is complex.

D. Examples with Puiseux pair (2, 5)

g(x, y) = (x2 + y2, x5 + cx3y2 + xy4).

The Jacobian is equal to 2y((2c− 5)x4 + (4− 3c)x2y2 − y4). Then For 4/3 < c < 5/2,
one gets an example satisfying the wanted conditions (Cg = {y = 0}). Moreover, it is
topologically a fold.

One can also check that m = j = 2 , µ = ∞ for c = 2 and µ = 10 otherwise.

References

[1] Y. Abu Muhanna, A. Lyzzaik, Geometric criterion for decomposition and multi-
valence, Math. Proc. Cambridge Philos. Soc. 103(1988), 487-495.

[2] H. Brieskorn, H. Knörrer, Plane algebraic curves. Birkhauser. 1986.

[3] E.M. Chirka, Complex Analytic sets. Kluwer Academic Publishers. 1989.

[4] T. de Jong, G. Pfister, Local analytic geometry, Advanced lectures in Mathematics,
Vieweg Verlag. 2000.

[5] C. Ehresmann, Sur les espaces fibrés différentiables, Compt Rend. Acad. Sci Paris,
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